

Turing Machines
Part Three

Last Time: How powerful are Turing
machines?

The Church-Turing Thesis claims that

every effective method of computation is either
equivalent to or weaker than a Turing machine.

“This is not a theorem – it is a
falsifiable scientific hypothesis.
And it has been thoroughly
tested!”

- Ryan Williams

Regular
Languages CFLs

All Languages

Problems
solvable by

Turing
Machines

New Stuff!

Strings, Languages,
Encodings, and Problems

What problems can we solve with a computer?

What kind of
computer?

What problems can we solve with a computer?

What is a
“problem?”

Decision Problems

● A decision problem is a type of problem where the goal is to
provide a yes or no answer.

● Example: Bin Packing

You're given a list of patients who need to be seen and how much time
each one needs to be seen for. You're given a list of doctors and how

much free time they have. Is there a way to schedule the patients so that
they can all be seen?

● Example: Dominating Set Problem

You're given a transportation grid and a number k. Is there a way to
place emergency supplies in at most k cities so that every city either has
emergency supplies or is adjacent to a city that has emergency supplies?

● Example: Route Planning

You're given the transportation grid of a city, a start location, a
destination location, and information about the traffic over the course of
the day. Given a time limit T, is there a way to drive from the start to the

end locations in at most T hours?

Solving Decision Problems

Yes

No

Computational
Device

input

Solving Decision Problems

Yes

No

Computational
Device

input

Yes

Solving Decision Problems

Yes

No

Computational
Device

input

No

Solving Decision Problems

Yes

No

Computational
Device

input

Solving Decision Problems

Yes

No

Turing Machine
input

Solving Decision Problems

Yes

No

Turing Machine
input

(accept)

(reject)

Solving Decision Problems

Yes

No

Turing Machine
input

(accept)

(reject)How do we
represent our

inputs?

How do we
represent our

inputs?

An Observation

● We've seen several TMs that answer questions
about numbers.

● Our first TM was for { 0n1n | n ∈ ℕ }, where the
number n was represented by writing out some
number of copies of a symbol.

● Later, we designed TMs that worked on decimal
representations of integers.

● The computers we use every day work with
numbers represented in binary.

● On Problem Set Seven, you’re using regular
expressions to compute on Roman numerals.

An Observation

● There is a distinction between the mathematical object “the
number 24” and the different ways of representing it.

● Each of the following denotes one way to write the number 24:
● 24 (decimal)
● XXIV (Roman numerals)
● 18 (hexadecimal)
● 11000 (binary)

● 卌卌卌卌 |||| (tally marks)

● 二十四 (Chinese numerals)
● (Hebrew numerals) כ״ד
● ٢٤ (Arabic numerals)

● Computers are powerful enough to convert any of these formats
into any of these other formats. In a sense, what matters more is
what number we're working with rather than how that number is
represented.

An Observation

● Imagine that you’re implementing this method:

private boolean isEvenNumber(int n) {
 /* … some code … */
}

● As a programmer, you don't need to know how the
integer n is represented internally in the computer in
order to write a working implementation.

● Knowing how n is represented might be useful for
implementing this method efficiently, but it's
certainly not necessary for an implementation to use
properties of that representation.

Strings and Objects

● Think about how my
computer encodes the
image on the right.

● Internally, it's just a
series of zeros and
ones sitting on my
hard drive.

● All data on my
computer can be
thought of as (suitably-
encoded) strings of 0s
and 1s.

Strings and Objects

● A different sequence
of 0s and 1s gives rise
to the image on the
right.

● Every image can be
encoded as a sequence
of 0s and 1s, though
not all sequences of 0s
and 1s correspond to
images.

Strings and Objects

● If Obj is some mathematical object that is discrete and
finite, then we’ll use the notation ⟨Obj⟩ to refer to some
what of encoding that object as a string.

● Think of ⟨Obj⟩ like a file on disk – it encodes complex data
as a series of characters.

● Key idea: If you want to have a TM compute something
about Obj, you can provide the string ⟨Obj⟩ as input to that
Turing machine.

● A few remarks about encodings:
● We don't care how we encode the object, just that we can.
● The particular choice of alphabet isn't important. Given any

alphabet, we can always find a way of encoding things.
● We'll assume we can perform “reasonable” operations on

encoded objects.

Strings and Objects

● Given a group of objects Obj₁, Obj₂, …, Objₙ, we
can create a single string encoding all these
objects.
● Think of it like a .zip file, but without the

compression.
● We'll denote the encoding of all of these objects

as a single string by ⟨Obj₁, …, Objₙ⟩.
● This lets us feed multiple inputs into our

computational device at the same time.

Solving Decision Problems

Yes

No

Turing Machine
input

(accept)

(reject)

Solving Decision Problems

Yes

No

Turing Machine
input
string

(probably
encoded)

(accept)

(reject)

What All This Means

● Our goal is to speak of computers solving
problems.

● We will model this by looking at TMs
recognizing languages.

● For decision problems that we're
interested in solving, this precisely
captures what we're interested in
capturing.

Other Models

● Rather than talking about decision problems, we
could talk about function problems, where we
take in an input and produce some output object
rather than just a yes/no answer.

● Rather than running a single input through the
TM and looking at the result, we could imagine
that the TM is constantly running, processing
inputs as they arrive.

● These are interesting questions to explore! Take
CS154 or CS254 for more details!

What problems can we solve with a computer?

What kind of
computer?

What problems can we solve with a computer?

What is a
“problem?”

What problems can we solve with a computer?

What does it
mean to “solve”
a problem?

The Hailstone Sequence

● Consider the following procedure,
starting with some n ∈ ℕ, where n > 0:
● If n = 1, you are done.
● If n is even, set n = n / 2.
● Otherwise, set n = 3n + 1.
● Repeat.

● Question: Given a number n, does this
process terminate?

11

34

17

52

26

13

40

20

10

5

16

8

4

2

1

· If n = 1, stop.

· If n is even, set n = n / 2.

· Otherwise, set n = 3n + 1.

· Repeat.

· If n = 1, stop.

· If n is even, set n = n / 2.

· Otherwise, set n = 3n + 1.

· Repeat.

The Hailstone Sequence

● Let Σ = {1} and consider the language

 L = { 1n | n > 0 and the hailstone
 sequence terminates for n }.

● Could we build a TM for L?

The Hailstone Turing Machine

● We can build a TM that works as follows:
● If the input is ε, reject.
● While the string is not 1:

– If the input has even length, halve the length of
the string.

– If the input has odd length, triple the length of
the string and append a 1.

● Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

Poof!

The Hailstone Turing Machine

… 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

Problem Set Question:
Build a TM that, starting
with n 1s on its tape,

ends with 3n + 1 1s on its
tape.

Problem Set Question:
Build a TM that, starting
with n 1s on its tape,

ends with 3n + 1 1s on its
tape.

The Hailstone Turing Machine

… 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

Poof!

The Hailstone Turing Machine

… 1 1 1 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

Problem Set Question:
Build a TM that, starting
with 2n 1s on its tape,
ends with n 1s on its

tape.

Problem Set Question:
Build a TM that, starting
with 2n 1s on its tape,
ends with n 1s on its

tape.

The Hailstone Turing Machine

… 1 1 1 1 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

The Hailstone Turing Machine

… 1 …

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

If the input is ε, reject.

While the input is not 1:

· If the input has even length, halve the length
 of the string.

· If the input has odd length, triple the length of the
 string and append a 1.

Accept.

Does this Turing machine accept all
nonempty strings?

The Collatz Conjecture

● It is unknown whether this process will
terminate for all natural numbers.

● In other words, no one knows whether
the TM described in the previous
slides will always stop running!

● The conjecture (unproven claim) that this
always terminates is called the Collatz
Conjecture.

The Collatz Conjecture

“Mathematics may not be ready
for such problems.” - Paul Erdős

● The fact that the Collatz Conjecture is
unresolved is useful later on for building
intuitions. Keep this in mind!

An Important Observation

● Unlike finite automata, which automatically halt
after all the input is read, TMs keep running until
they explicitly enter an accept or reject state.

● It is possible for a TM to run forever without
accepting or rejecting.

● This leads to several important questions:
● How do we formally define what it means to build a

TM for a language?
● What implications does this have about problem-

solving?

Very Important Terminology

● Let M be a Turing machine.

● M accepts a string w if it enters an accept state when run on w.

● M rejects a string w if it enters a reject state when run on w.

● M loops infinitely (or just loops) on a string w if when run on w
it enters neither an accept nor a reject state.

● M does not accept w if it either rejects w or loops infinitely on w.

● M does not reject w w if it either accepts w or loops on w.

● M halts on w if it accepts w or rejects w.

Accept

Loop

Reject
does not accept

does not reject

halts

The Language of a TM

● The language of a Turing machine M, denoted (ℒ M), is
the set of all strings that M accepts:

ℒ(M) = { w ∈ Σ* | M accepts w }

● For any w ∈ (ℒ M), M accepts w.

● For any w ∉ (ℒ M), M does not accept w.

● It might loop forever, or it might explicitly reject.
● A language is called recognizable if it is the language

of some TM.

● A TM M where (ℒ M) = L is called a recognizer for L.

● Notation: the class RE is the set of all recognizable
languages.

L ∈ RE ↔ L is recognizable

What do you think? Does that
correspond to what you think it

means to solve a problem?

Deciders

● Some Turing machines always halt; they never
go into an infinite loop.

● If M is a TM and M halts on every possible
input, then we say that M is a decider.

● For deciders, accepting is the same as not
rejecting and rejecting is the same as not
accepting.

Accept

Reject
 halts (always)

does not accept

does not reject

Decidable Languages

● A language L is called decidable if there is a
decider M such that (ℒ M) = L.

● Equivalently, a language L is decidable if there is a
TM M such that

● If w ∈ L, then M accepts w.
● If w ∉ L, then M rejects w.

● The class R is the set of all decidable languages.

L ∈ R ↔ L is decidable

Examples of R Languages

● All regular languages are in R.

● If L is regular, we can run the DFA for L on a string w
and then either accept or reject w based on what state it
ends in.

● { 0n1n | n ∈ ℕ } is in R.

● The TM we built is a decider.
● All CFLs are in R.

● Proof is tricky; check Sipser for details.
● (This is why it's possible to build the CFG tool online!)

Why R Matters

● If a language is in R, there is an algorithm that can
decide membership in that language.

● Run the decider and see what it says.

● If there is an algorithm that can decide membership in
a language, that language is in R.

● By the Church-Turing thesis, any effective model of
computation is equivalent in power to a Turing machine.

● Therefore, if there is any algorithm for deciding
membership in the language, there is a decider for it.

● Therefore, the language is in R.

● A language is in R if and only if there is an
algorithm for deciding membership in that
language.

R and RE Languages

● Every decider is a Turing machine, but not
every Turing machine is a decider.

● This means that R ⊆ RE.
● Hugely important theoretical question:

R ≟ RE
● That is, if you can just confirm “yes” answers to

a problem, can you necessarily solve that
problem?

Regular
Languages CFLs

All Languages

R

RE

Which Picture is Correct?

Regular
Languages CFLs

All Languages

R RE

Which Picture is Correct?

Unanswered Questions

● Why exactly is RE an interesting class of
problems?

● What does the R ≟ RE question mean?
● Is R = RE?
● What lies beyond R and RE?
● We'll see the answers to each of these in

due time.

Time-Out for Announcements!

Midterm Debrief

● You’re done with the second midterm!
Woohoo!

● We’ll be grading the exam over the
weekend. We’ll get back with solutions and
statistics as soon as the exam is graded.

● If you have questions about the midterm in
the meantime, please feel free to contact us
over email, ask in office hours, or ask on
Piazza.

Problem Set Seven

● PS7 is due on Friday.
● You can use late days to extend the deadline

to Monday if you’d like.
● Planning ahead: You can’t use late days on

PS9. You can use late days on PS8, but it will
cut into the time you’ll likely want to spend
working on PS9.

● As always, please feel free to reach out to
us if you have any questions!

Back to CS103!

Emergent Properties

Emergent Properties

● An emergent property of a system is a property
that arises out of smaller pieces that doesn't seem
to exist in any of the individual pieces.

● Examples:
● Individual neurons work by firing in response to

particular combinations of inputs. Somehow, this leads
to thought and consciousness.

● Individual atoms obey the laws of quantum mechanics
and just interact with other atoms. Somehow, it's
possible to combine them together to make iPhones and
pumpkin pie.

Emergent Properties of Computation

● All computing systems equal to Turing machines
exhibit several surprising emergent properties.

● If we believe the Church-Turing thesis, these
emergent properties are, in a sense, “inherent” to
computation. You can't have computation without
these properties.

● These emergent properties are what ultimately
make computation so interesting and so powerful.

● As we'll see, though, they're also computation's
Achilles heel – they're how we find concrete
examples of impossible problems.

Two Emergent Properties

● There are two key emergent properties of
computation that we will discuss:
● Universality: There is a single computing device

capable of performing any computation.
● Self-Reference: Computing devices can ask

questions about their own behavior.
● As you'll see, the combination of these

properties leads to simple examples of
impossible problems and elegant proofs of
impossibility.

Universal Machines

An Observation

● When we've been discussing Turing
machines, we've talked about designing
specific TMs to solve specific problems.

● Does this match your real-world
experiences? Do you have one computing
device for each task you need to
perform?

Computers and Programs

● When talking about actual computers, most
people just have a single computer.

● To get the computer to perform a particular task,
we load a program into it and have the computer
execute that program.

● In certain cases it's faster or more efficient to
make dedicated hardware to solve a problem, but
the benefits of having one single computer
outweigh the costs.

● Question: Can we do something like this for
Turing machines?

A TM Simulator

● It is possible to program a TM simulator on an unbounded-
memory computer.
● In fact, we did this! It's on the CS103 website.

● We could imagine it as a method

boolean simulateTM(TM M, string w)

with the following behavior:
● If M accepts w, then simulateTM(M, w) returns true.
● If M rejects w, then simulateTM(M, w) returns false.
● If M loops on w, then simulateTM(M, w) loops infinitely.

true!

false!

simulateTM

(loop)

M

...input...w

A TM Simulator

● It is known that anything that can be done
with an unbounded-memory computer can
be done with a TM.

simulateTM

true!

false!

(loop)

...input...

M

w

A TM Simulator

● It is known that anything that can be done
with an unbounded-memory computer can
be done with a TM.

● This means that there must be some TM
that has the behavior of this simulateTM
method.

simulateTM

true!

false!

(loop)

...input...

M

w

A TM Simulator

● It is known that anything that can be done
with an unbounded-memory computer can
be done with a TM.

● This means that there must be some TM
that has the behavior of this simulateTM
method.

● What would that look like?

simulateTM

true!

false!

(loop)

...input...

M

w

A TM Simulator

● It is known that anything that can be done
with an unbounded-memory computer can
be done with a TM.

● This means that there must be some TM
that has the behavior of this simulateTM
method.

● What would that look like?

true!

false!

(loop)

...input...

M

w
TM that runs

other TMs

A TM Simulator

● It is known that anything that can be done
with an unbounded-memory computer can
be done with a TM.

● This means that there must be some TM
that has the behavior of this simulateTM
method.

● What would that look like?

true!

false!

(loop)

...input...

M

w Universal TM

The Universal Turing Machine

● Theorem (Turing, 1936): There is a Turing machine UT called the
universal Turing machine that, when run on an input of the form
⟨M, w⟩, where M is a Turing machine and w is a string, simulates M
running on w and does whatever M does on w (accepts, rejects, or loops).

● The observable behavior of U TM is the following:

● If M accepts w, then UTM accepts ⟨M, w⟩.

● If M rejects w, then UTM rejects ⟨M, w⟩.

● If M loops on w, then UTM loops on ⟨M, w⟩.

● UTM accepts ⟨M, w⟩ if and only if M accepts w.

TM

true!

false!

(loop)

...input...

M

w Universal TM

An Intuition for UTM

● You can think of U as a general-purpose,
programmable computer.

● Rather than purchasing one TM for each
language, just purchase U and program in the
“software” corresponding to the TM you
actually want.

● U is a powerful machine: it can perform any
computation that could be performed by
any feasible computing device!

TM

TM

TM

A Universal Machine

UTM

… …

A Universal Machine

UTM

… …p r o g r a m

A Universal Machine

UTM

… …p r o g r a m i n p u t

A Universal Machine

UTM

… …p r o g r a m i n p u t

The “program” is an encoding
of some Turing machine M

The “program” is an encoding
of some Turing machine M

that we want to run.

A Universal Machine

UTM

… …p r o g r a m i n p u t

The input to that program is The input to that program is
some string

A Universal Machine

UTM

… …

The input has the form ⟨M, w⟩, where M is
some TM and w is some string.

p r o g r a m i n p u t

A Universal Machine

UTM

… …

⟨M, w⟩

p r o g r a m i n p u t

Since UTM is a TM, it has a language.

What is the language of the universal
Turing machine?

The Language of UTM

● Recall: For any TM M, the language of M, denoted
(ℒ M), is the set

ℒ(M) = { w ∈ Σ* | M accepts w }

● What is the language of UTM?

● UTM accepts ⟨M, w⟩ iff M is a TM that accepts w.

● Therefore:

ℒ(UTM) = { ⟨M, w⟩ | M is a TM and M accepts w }

ℒ(UTM) = { ⟨M, w⟩ | M is a TM and w ∈ ℒ(M) }

● For simplicity, define ATM = ℒ(UTM). This is an
important language and we'll see it many times.

Regular
Languages CFLs

All Languages

RE

A
TM

Why Does This Matter?

● The existence of a universal Turing machine has both
theoretical and practical significance.

● For a practical example, let's review this diagram from
before.

● Previously we replaced the computer with a TM. (This
gave us the universal TM.)

● What happens if we replace the TM with a computer
program?

true!

false!

simulateTM

(loop)

M

...input...w

Why Does This Matter?

● The existence of a universal Turing machine has both
theoretical and practical significance.

● For a practical example, let's review this diagram from
before.

● Previously we replaced the computer with a TM. (This
gave us the universal TM.)

● What happens if we replace the TM with a computer
program?

true!

false!

simulateProgram

(loop)

...input...w

for (int i = 2;
 i < n; i++) {
 if (n % i == 0)
 …
}

code

Universal Computers

● In the context of TMs, a TM that simulates
other TMs is called a universal TM.

● In the context of computers, a program that
simulates other programs goes by many names:
● An interpreter, like the Java Virtual Machine.
● An emulator, like VirtualBox.

● The existence of the universal TM means that
any model of computation equal to a
Turing machine can simulate itself!

Why Does This Matter?

● The key idea behind the universal TM is that
idea that TMs can be fed as inputs into other
TMs.
● Similarly, an interpreter is a program that takes

other programs as inputs.
● Similarly, an emulator is a program that takes entire

computers as inputs.

● This hits at the core idea that computing
devices can perform computations on other
computing devices.

Next Time

● Self-Reference
● Half party trick, half fundamental property

of computing, half ancient source of
philosophical questions.

● Undecidable Problems
● A truly impossible problem!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143

