Recap from Last Time
The Complexity Class \mathbf{P}

- The *complexity class* \mathbf{P} (for *polynomial* time) contains all problems that can be solved in polynomial time.

- Formally:

\[
\mathbf{P} = \{ L \mid \text{There is a polynomial-time decider for } L \}
\]
The Complexity Class \textbf{NP}

- The complexity class \textbf{NP} (\textit{nondeterministic polynomial time}) contains all problems that can be verified in polynomial time.

- Formally:

$$\textbf{NP} = \{ L \mid \text{There is a polynomial-time verifier for } L \}$$

- This means a verifier V's runtime is a polynomial in $|w|$ (that is, V's runtime is $O(|w|^k)$ for some integer k).
So how *are* we going to reason about P and NP?
New Stuff!
A Challenge
Problems in **NP** vary widely in their difficulty, even if **P = NP**.

How can we rank the relative difficulties of problems?
Reducibility
Maximum Matching

- Given an undirected graph G, a matching in G is a set of edges such that no two edges share an endpoint.
- A maximum matching is a matching with the largest number of edges.
Maximum Matching

- Given an undirected graph \(G \), a matching in \(G \) is a set of edges such that no two edges share an endpoint.
- A maximum matching is a matching with the largest number of edges.
Maximum Matching

- Given an undirected graph G, a matching in G is a set of edges such that no two edges share an endpoint.
- A maximum matching is a matching with the largest number of edges.

A matching, but not a maximum matching.
Maximum Matching

- Given an undirected graph G, a \textit{matching} in G is a set of edges such that no two edges share an endpoint.
- A \textit{maximum matching} is a matching with the largest number of edges.
Maximum Matching

- Given an undirected graph G, a matching in G is a set of edges such that no two edges share an endpoint.
- A maximum matching is a matching with the largest number of edges.
Maximum Matching

- Given an undirected graph G, a matching in G is a set of edges such that no two edges share an endpoint.
- A maximum matching is a matching with the largest number of edges.
Maximum Matching

• Jack Edmonds' paper “Paths, Trees, and Flowers” gives a polynomial-time algorithm for finding maximum matchings.
 • (This is the same Edmonds as in “Cobham-Edmonds Thesis.”)
• Using this fact, what other problems can we solve?
Domino Tiling
Domino Tiling
Domino Tiling
Domino Tiling
Domino Tiling
Domino Tiling
Solving Domino Tiling
In Pseudocode

```java
boolean canPlaceDominoes(Grid G, int k) {
    return hasMatching(gridToGraph(G), k);
}
```
Based on this connection between maximum matching and domino tiling, which of the following statements would be more proper to conclude?

A. Finding a maximum matching isn’t any more difficult (in BigO/P-NP terms) than tiling a grid with dominoes.

B. Tiling a grid with dominoes isn’t any more difficult (in BigO/P-NP terms) than finding a maximum matching.
Intuition:

Tiling a grid with dominoes can't be "harder" than solving maximum matching, because if we can solve maximum matching efficiently, we can solve domino tiling efficiently.
Another Example
Reachability

• Consider the following problem:

 Given an directed graph \(G \) and nodes \(s \) and \(t \) in \(G \), is there a path from \(s \) to \(t \)?

• It's known that this problem can be solved in polynomial time (use DFS or BFS).

• Given that we can solve the reachability problem in polynomial time, what other problems can we solve in polynomial time?
Converter Conundrums

- Suppose that you want to plug your laptop into a projector.
- Your laptop only has a VGA output, but the projector needs HDMI input.
- You have a box of connectors that convert various types of input into various types of output (for example, VGA to DVI, DVI to DisplayPort, etc.)
- **Question:** Can you plug your laptop into the projector?
Converter Conundrums

Connectors
RGB to USB
VGA to DisplayPort
DB13W3 to CATV
DisplayPort to RGB
DB13W3 to HDMI
DVI to DB13W3
S-Video to DVI
FireWire to SDI
VGA to RGB
DVI to DisplayPort
USB to S-Video
SDI to HDMI
Converter Conundrums

Connectors
RGB to USB
VGA to DisplayPort
DB13W3 to CATV
DisplayPort to RGB
DB13W3 to HDMI
DVI to DB13W3
S-Video to DVI
FireWire to SDI
VGA to RGB
DVI to DisplayPort
USB to S-Video
SDI to HDMI
Converter Conundrums

VGA ➔ RGB ➔ USB

DisplayPort ➔ DB13W3 ➔ CATV

HDMI ➔ DVI ➔ S-Video

FireWire ➔ SDI
Converter Conundrums
Converter Conundrums

- VGA
- DisplayPort
- RGB
- HDMI
- FireWire
- USB
- DB13W3
- DVI
- SDI
- CATV
- S-Video
Converter Conundrums

Connectors
- RGB to USB
- VGA to DisplayPort
- DB13W3 to CATV
- DisplayPort to RGB
- DB13W3 to HDMI
- DVI to DB13W3
- S-Video to DVI
- FireWire to SDI
- VGA to RGB
- DVI to DisplayPort
- USB to S-Video
- SDI to HDMI
In Pseudocode

```java
boolean canPlugIn(List<Plug> plugs) {
    return isReachable(plugsToGraph(plugs), VGA, HDMI);
}
```
Based on this connection between plugging a laptop into a projector and determining reachability, which of the following statements would be more proper to conclude?

A. Plugging a laptop into a projector isn’t any more difficult than computing reachability in a directed graph.

B. Computing reachability in a directed graph isn’t any more difficult than plugging a laptop into a projector.
Intuition:

Finding a way to plug a computer into a projector can't be "harder" than determining reachability in a graph, since if we can determine reachability in a graph, we can find a way to plug a computer into a projector.
```cpp
bool solveProblemA(string input) {
    return solveProblemB(transform(input));
}
```

Intuition:

Problem A can't be “harder” than problem B, because solving problem B lets us solve problem A.
```c
bool solveProblemA(string input) {
    return solveProblemB(transform(input));
}
```

- If A and B are problems where it's possible to solve problem A using the strategy shown above\(^*\), we write
 $$A \leq_p B.$$
- We say that A is polynomial-time reducible to B.

\(^*\) Assuming that transform runs in polynomial time.
Polynomial-Time Reductions

- If $A \leq_p B$ and $B \in \text{P}$, then $A \in \text{P}$.

\[P \]

\[* \]
Polynomial-Time Reductions

- If $A \leq_p B$ and $B \in \mathbf{P}$, then $A \in \mathbf{P}$.
Polynomial-Time Reductions

- If \(A \leq_p B \) and \(B \in \text{P} \), then \(A \in \text{P} \).
Polynomial-Time Reductions

- If $A \leq_p B$ and $B \in \mathsf{P}$, then $A \in \mathsf{P}$.
- If $A \leq_p B$ and $B \in \mathsf{NP}$, then $A \in \mathsf{NP}$.
Polynomial-Time Reductions

- If $A \leq_p B$ and $B \in \mathbf{P}$, then $A \in \mathbf{P}$.
- If $A \leq_p B$ and $B \in \mathbf{NP}$, then $A \in \mathbf{NP}$.
Polynomial-Time Reductions

- If \(A \leq_p B \) and \(B \in \mathbf{P} \), then \(A \in \mathbf{P} \).
- If \(A \leq_p B \) and \(B \in \mathbf{NP} \), then \(A \in \mathbf{NP} \).
 Polynomial-Time Reductions

- If $A \leq_p B$ and $B \in \mathbf{P}$, then $A \in \mathbf{P}$.
- If $A \leq_p B$ and $B \in \mathbf{NP}$, then $A \in \mathbf{NP}$.
This \leq_p relation lets us rank the relative difficulties of problems in \mathbf{P} and \mathbf{NP}.

What else can we do with it?
NP-Hardness and NP-Completeness
Question: What makes a problem hard to solve?
Intuition: If $A \leq_p B$, then problem B is at least as hard* as problem A.

* for some definition of “at least as hard as.”
Intuition: To show that some problem is hard, show that lots of other problems reduce to it.
NP-Hardness

- A language L is called **NP-hard** if for every $A \in \text{NP}$, we have $A \leq_p L$.

The class NPC is the set of NP-complete problems.
A language L is called **NP-hard** if for every $A \in \text{NP}$, we have $A \leq_p L$.

The class NPC is the set of NP-complete problems.

NP-Hardness

- A language L is called **NP-hard** if for every $A \in \text{NP}$, we have $A \leq_p L$.

A Venn diagram is shown with circles representing P, NP, and NP-Hard, illustrating the relationships between these classes.
A language \(L \) is called **NP-hard** if for every \(A \in \text{NP} \), we have \(A \leq_p L \).

A language in \(L \) is called **NP-complete** iff \(L \) is \(\text{NP} \)-hard and \(L \in \text{NP} \).

The class \(\text{NPC} \) is the set of \(\text{NP} \)-complete problems.
A language L is called **NP-hard** if for every $A \in \text{NP}$, we have $A \leq_p L$.

Intuitively: L has to be at least as hard as every problem in NP, since an algorithm for L can be used to decide all problems in NP.
A language L is called **NP-hard** if for every $A \in \text{NP}$, we have $A \leq_p L$.

The class NP-Hard is the set of **NP-complete problems**.
A language L is called $\textbf{NP-hard}$ if for every $A \in \textbf{NP}$, we have $A \leq_p L$.

A language in L is called $\textbf{NP-complete}$ iff L is \textbf{NP}-hard and $L \in \textbf{NP}$.

The class \textbf{NPC} is the set of \textbf{NP}-complete problems.
A language L is called **NP-hard** if for every $A \in \text{NP}$, we have $A \leq_p L$.

A language in L is called **NP-complete** if L is NP-hard and $L \in \text{NP}$.

The class **NPC** is the set of NP-complete problems.
A language L is called **NP-hard** if for every $A \in \text{NP}$, we have $A \leq_p L$.

A language in L is called **NP-complete** if L is NP-hard and $L \in \text{NP}$.

The class NPC is the set of NP-complete problems.
The Tantalizing Truth

Theorem: If *any* NP-complete language is in \mathbf{P}, then $\mathbf{P} = \mathbf{NP}$.
The Tantalizing Truth

Theorem: If any NP-complete language is in P, then $P = NP$.
The Tantalizing Truth

Theorem: If any NP-complete language is in P, then P = NP.
The Tantalizing Truth

Theorem: If any NP-complete language is in P, then P = NP.
The Tantalizing Truth

Theorem: If any \(\text{NP} \)-complete language is in \(\text{P} \), then \(\text{P} = \text{NP} \).
The Tantalizing Truth

Theorem: If any \textbf{NP}-complete language is in \textbf{P}, then \textbf{P} = \textbf{NP}.

Proof: Suppose that \(L \) is \textbf{NP}-complete and \(L \in \textbf{P} \). Now consider any arbitrary \textbf{NP} problem \(A \). Since \(L \) is \textbf{NP}-complete, we know that \(A \leq_p L \). Since \(L \in \textbf{P} \) and \(A \leq_p L \), we see that \(A \in \textbf{P} \). Since our choice of \(A \) was arbitrary, this means that \textbf{NP} \subseteq \textbf{P}, so \(\textbf{P} = \textbf{NP} \). ■
The Tantalizing Truth

Theorem: If any **NP**-complete language is not in **P**, then **P** \(\not=\) **NP**.

Proof: Suppose that \(L\) is an **NP**-complete language not in **P**. Since \(L\) is **NP**-complete, we know that \(L \in \text{NP}\). Therefore, we know that \(L \in \text{NP}\) and \(L \notin \text{P}\), so **P** \(\not=\) **NP**. ■
How do we even know NP-complete problems exist in the first place?
Satisfiability

- A propositional logic formula φ is called **satisfiable** if there is some assignment to its variables that makes it evaluate to true.
 - $p \land q$ is satisfiable.
 - $p \land \lnot p$ is unsatisfiable.
 - $p \rightarrow (q \land \lnot q)$ is satisfiable.
- An assignment of true and false to the variables of φ that makes it evaluate to true is called a **satisfying assignment**.
The **boolean satisfiability problem** (**SAT**) is the following:

Given a propositional logic formula φ, **is** φ **satisfiable?**

Formally:

$$SAT = \{ \langle \varphi \rangle \mid \varphi \text{ is a satisfiable PL formula} \}$$
The language SAT happens to be in \textbf{NP}. Think about how a polynomial-time verifier for SAT might work. Which of the following would work as certificates for such a verifier, given that the input is a propositional formula φ?

A. The truth table of φ.
B. One possible variable assignment to φ.
C. A list of all possible variable assignments for φ.
D. None of the above, or two or more of the above.

Answer at \textbf{PollEv.com/cs103} or text \textbf{CS103} to \textbf{22333} once to join, then \textbf{A, B, C,} or \textbf{D}.

\[
SAT = \{ \langle \varphi \rangle \mid \varphi \text{ is a satisfiable PL formula} \}
\]
Theorem (Cook-Levin): SAT is NP-complete.

Proof Idea: To see that SAT ∈ NP, show how to make a polynomial-time verifier for it. Key idea: have the certificate be a satisfying assignment.

To show that SAT is NP-hard, given a polynomial-time verifier V for an arbitrary NP language L, for any string w you can construct a polynomials-sized formula φ(w) that says “there is a certificate c where V accepts ⟨w, c⟩.” This formula is satisfiable if and only if w ∈ L, so deciding whether the formula is satisfiable decides whether w is in L.

Proof: Take CS154!
Why All This Matters

• Resolving $\mathbf{P} \neq \mathbf{NP}$ is equivalent to just figuring out how hard SAT is.
 • If $\text{SAT} \in \mathbf{P}$, then $\mathbf{P} = \mathbf{NP}$.
 If $\text{SAT} \notin \mathbf{P}$, then $\mathbf{P} \neq \mathbf{NP}$.
Sample NP-Hard Problems

- **Computational biology:** Given a set of genomes, what is the most probable evolutionary tree that would give rise to those genomes? *(Maximum parsimony problem)*
- **Game theory:** Given an arbitrary perfect-information, finite, twoplayer game, who wins? *(Generalized geography problem)*
- **Operations research:** Given a set of jobs and workers who can perform those tasks in parallel, can you complete all the jobs within some time bound? *(Job scheduling problem)*
- **Machine learning:** Given a set of data, find the simplest way of modeling the statistical patterns in that data *(Bayesian network inference problem)*
- **Medicine:** Given a group of people who need kidneys and a group of kidney donors, find the maximum number of people who can end up with kidneys *(Cycle cover problem)*
- **Systems:** Given a set of processes and a number of processors, find the optimal way to assign those tasks so that they complete as soon as possible *(Processor scheduling problem)*
Coda: What if $P \neq NP$ is resolved?
Intermediate Problems

- With few exceptions, every problem we've discovered in \(\text{NP} \) has either
 - definitely been proven to be in \(\text{P} \), or
 - definitely been proven to be \(\text{NP} \)-complete.
- A problem that's \(\text{NP} \), not in \(\text{P} \), but not \(\text{NP} \)-complete is called \textit{NP-intermediate}.
- \textit{Theorem (Ladner):} There are \(\text{NP} \)-intermediate problems if and only if \(\text{P} \neq \text{NP} \).
What if $P \neq NP$?
A Good Read:

“A Personal View of Average-Case Complexity” by Russell Impagliazzo
What if \(\mathbf{P} = \mathbf{NP} \)?
And a Dismal Third Option