
  

Complexity Theory
Part Two



  

Recap from Last Time



  

The Cobham-Edmonds Thesis

A language L can be decided efficiently if
there is a TM that decides it in polynomial time.

 

Equivalently, L can be decided efficiently if
it can be decided in time O(nk) for some k ∈ ℕ.

Like the Church-Turing thesis, this is 
not a theorem!

 

It's an assumption about the nature of 
efficient computation, and it is 

somewhat controversial.

Like the Church-Turing thesis, this is 
not a theorem!

 

It's an assumption about the nature of 
efficient computation, and it is 

somewhat controversial.



  

The Complexity Class P

● The complexity class P (for polynomial 
time) contains all problems that can be 
solved in polynomial time.

● Formally:

P = { L | There is a polynomial-time   
decider for L }      

● Assuming the Cobham-Edmonds thesis, a 
language is in P if it can be decided 
efficiently.



  

Polynomial-Time Verifiers

● A polynomial-time verifier for L is a 
TM V such that
● V halts on all inputs.
● w ∈ L    iff    ∃c ∈ Σ*. V accepts ⟨w, c⟩.
● V's runtime is a polynomial in |w| (that is, V's 

runtime is O(|w|k) for some integer k)



  

The Complexity Class NP

● The complexity class NP (nondeterministic 
polynomial time) contains all problems that can be 
verified in polynomial time.

● Formally:

             NP = { L | There is a polynomial-time 
                                 verifier for L }

● The name NP comes from another way of 
characterizing NP. If you introduce nondeterministic 
Turing machines and appropriately define 
“polynomial time,” then NP is the set of problems 
that an NTM can solve in polynomial time.



  

Theorem (Baker-Gill-Solovay): Any 
proof that purely relies on universality and 
self-reference cannot resolve P  ≟ NP.

Proof: Take CS154!



  

So how are we going to
reason about P and NP?



  

Maximum Matching

● Given an undirected graph G, a matching in G is a 
set of edges such that no two edges share an 
endpoint.

● A maximum matching is a matching with the 
largest number of edges.
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Maximum Matching

● Jack Edmonds' paper “Paths, Trees, and 
Flowers” gives a polynomial-time 
algorithm for finding maximum 
matchings.
● (This is the same Edmonds as in “Cobham-

Edmonds Thesis.”)
● Using this fact, what other problems can 

we solve?
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Solving Domino Tiling



  

In Pseudocode

boolean canPlaceDominos(Grid G, int k) {

 return hasMatching(gridToGraph(G), k);

}



  

Intuition:

Tiling a grid with dominoes can't be 
“harder” than solving maximum matching, 

because if we can solve maximum 
matching efficiently, we can solve domino 

tiling efficiently.



New Stuff!



  

Another Example



  

Reachability

● Consider the following problem:

Given an directed graph G and nodes s 
and t in G, is there a path from s to t? 

● It's known that this problem can be solved in 
polynomial time (use DFS or BFS).

● Given that we can solve the reachability 
problem in polynomial time, what other 
problems can we solve in polynomial time?



  

Converter Conundrums

● Suppose that you want to plug your laptop into a 
projector.

● Your laptop only has a VGA output, but the 
projector needs HDMI input.

● You have a box of connectors that convert various 
types of input into various types of output (for 
example, VGA to DVI, DVI to DisplayPort, etc.)

● Question: Can you plug your laptop into the 
projector?



  

Converter Conundrums

Connectors
RGB to USB

VGA to DisplayPort
DB13W3 to CATV

DisplayPort to RGB
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USB to S-Video
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In Pseudocode

boolean canPlugIn(List<Plug> plugs) {

 return isReachable(plugsToGraph(plugs),
                     VGA, HDMI);

}



  

Intuition:

Finding a way to plug a computer into a 
projector can't be “harder” than 

determining reachability in a graph, since 
if we can determine reachability in a graph, 
we can find a way to plug a computer into a 

projector.



  

Intuition:

Problem A can't be “harder” than problem 
B, because solving problem B lets us solve 

problem A.

bool solveProblemA(string input) {
    return solveProblemB(transform(input));
}



  

bool solveProblemA(string input) {
    return solveProblemB(transform(input));
}

● If A and B are problems where it's 
possible to solve problem A using the 
strategy shown above*, we write

A ≤p B. 

● We say that A is polynomial-time 
reducible to B.

* Assuming that transform
* runs in polynomial time.



  

Polynomial-Time Reductions

● If A ≤p B and B ∈ P, then A ∈ P.

If L1 ≤P L2 and L2 ∈ NP, then L1 ∈ NP.

P
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Polynomial-Time Reductions

● If A ≤p B and B ∈ P, then A ∈ P.

● If A ≤p B and B ∈ NP, then A ∈ NP.

      NPP



This ≤ₚ relation lets us rank the relative 
difficulties of problems in P and NP.

What else can we do with it?



Time-Out for Announcements!



Please evaluate this course on Axess.

Your feedback makes a difference.



  

Problem Set Nine

● Problem Set Nine is due this Wednesday 
at the start of class.
● No late submissions can be accepted. 

This is university policy – sorry!
● This problem set is much shorter than the 

other ones we’ve given out so far this 
quarter.

● Check the course website for the final 
office hours timetable for the week.



  

Final Exam Logistics

● Our final exam is this Friday from 3:30PM – 6:30PM. 
Rooms are divvied up by last (family) name:
● Abb – Kan: Go to Bishop Auditorium.
● Kar – Zuc: Go to Cemex Auditorium.

● Exam is cumulative and all topics from the lectures and 
problem sets are fair game.

● The exam focus is roughly 50/50 between discrete math 
topics (PS1 – PS5) and computability/complexity topics 
(PS6 – PS9).

● As with the midterms, the exam is closed-book, closed-
computer, and limited-note. You can bring a single, 
double-sided, 8.5” × 11” sheet of notes with you to the 
exam.



  

Preparing for the Exam

● Up on the course website, you’ll find
● three sets of extra practice problems (EPP9 – EPP11), with 

solutions, and
● four practice final exams, with solutions.

● Feel free to ask questions about them on Piazza or in 
office hours.
● Thursday office hours are a great place to ask questions!

● Need more practice on a particular topic? Let us know!
● Folks on Piazza have asked for more practice with Myhill-

Nerode and CFG design, and we’re working on putting 
together some more practice problems along those lines. 
Stay tuned!



  

Your Questions



  

“Regarding CS tracks, are there any 
references out there that help describe the 
CS tracks in greater detail and how each 

apply to industry today?”

This is a great question and I don’t have a 
good answer for you. I’ll ask around and see 
if I can come up with anything. If so, I’ll 

share it on Wednesday. If not, I’ll ask around 
about making one!

This is a great question and I don’t have a 
good answer for you. I’ll ask around and see 
if I can come up with anything. If so, I’ll 

share it on Wednesday. If not, I’ll ask around 
about making one!



  

“Keith! as someone struggles in CS/STEM, 
your constant encouragement and belief in 
us makes a world of difference. Any advice 

for the future when things get hard”

On entry to this quarter, I’ve had 7,265 total students in the courses I’ve 
taught. I’ve seen a lot of people struggle. I’ve met people for whom the 

material didn’t click as quickly as they’d like. I’ve chatted with folks who were 
worried about whether they could keep up. But I have never, not once, met 

someone I legitimately thought could not learn this material.

Learning is uncomfortable – it requires you to face the harsh reality that 
there are things that you don’t understand as well as you think you do. It 
requires repetition and practice and can be frustrating. But the rewards are 
immense. Take a look back on what you’ve accomplished in this quarter. Where 
did you start? And where are you now? It’s easy to lose sight of that in the 

daily/weekly/monthly grind, but it’s so refreshing when you see it.

And you’re always welcome to come talk to me even if you aren’t in CS103! I 
love hearing what people are up to!
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love hearing what people are up to!



  

“How do you think the mindset of computer 
science thinking extend to life? (How CS 
affects one's outlook of life compared to 

non-STEM disciplines?)”

I’ll take this one in class because I 
was silly and didn’t budget enough 
time to write up an answer before 

coming to class. ☺

I’ll take this one in class because I 
was silly and didn’t budget enough 
time to write up an answer before 

coming to class. ☺



  

Back to CS103!



  

NP-Hardness and NP-Completeness



  

Question: What makes a problem
hard to solve?



  

Intuition: If A ≤ₚ B, then problem B is at 
least as hard* as problem A.

* for some definition of “at least as hard as.”



  

Intuition: To show that some problem is 
hard, show that lots of other problems 

reduce to it.

 



  

NP-Hardness

● A language L is called NP-hard if for every A ∈ NP, we have 
A ≤P L.

A language in L is called NP-complete iff L is NP-hard and 
L ∈ NP.

The class NPC is the set of NP-complete problems.

P

      NP
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What's in here?What's in here?
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NP-Hardness

● A language L is called NP-hard if for every A ∈ NP, we have 
A ≤P L.

● A language in L is called NP-complete if L is NP-hard and 
L ∈ NP.

● The class NPC is the set of NP-complete problems.
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      NP NP-Hard
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The Tantalizing Truth

Theorem: If any NP-complete language is in P, then P = NP.

Proof: Suppose that L is NP-complete and L ∈ P. Now consider
any arbitrary NP problem X. Since L is NP-complete, we know
that X ≤p L. Since L ∈ P and X ≤p L, we see that X ∈ P. Since
our choice of X was arbitrary, this means that NP ⊆ P, so
P = NP. ■
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The Tantalizing Truth

     P = NP

Theorem: If any NP-complete language is in P, then P = NP.

Proof: Suppose that L is NP-complete and L ∈ P. Now consider
any arbitrary NP problem A. Since L is NP-complete, we know
that A ≤p L. Since L ∈ P and A ≤p L, we see that A ∈ P. Since
our choice of A was arbitrary, this means that NP ⊆ P, so
P = NP. ■



  

The Tantalizing Truth

      NP

P 
NPC

Theorem: If any NP-complete language is not in P, then P ≠ NP.

Proof: Suppose that L is an NP-complete language not in P. Since
L is NP-complete, we know that L ∈ NP. Therefore, we know
that L ∈ NP and L ∉ P, so P ≠ NP. ■



  

How do we even know NP-complete
problems exist in the first place?



  

Satisfiability

● A propositional logic formula φ is called 
satisfiable if there is some assignment to 
its variables that makes it evaluate to true.
● p ∧ q is satisfiable.
● p ∧ ¬p is unsatisfiable.
● p → (q ∧ ¬q) is satisfiable.

● An assignment of true and false to the 
variables of φ that makes it evaluate to 
true is called a satisfying assignment.



  

SAT

● The boolean satisfiability problem 
(SAT) is the following:

Given a propositional logic
formula φ, is φ satisfiable?

● Formally:

SAT = { ⟨φ⟩ | φ is a satisfiable PL       
formula }



  

Theorem (Cook-Levin): SAT is NP-complete.

Proof Idea: Given a polymomial-time verifier V 
for an arbitrary NP language L, for any string w 
you can construct a polynomially-sized formula 
φ(w) that says “there is a certificate c where V 
accepts ⟨w, c⟩.” This formula is satisfiable if and 
only if w ∈ L, so deciding whether the formula is 
satisfiable decides whether w is in L.

Proof: Take CS154!



  

Why All This Matters

● Resolving P   ≟ NP is equivalent to just figuring 
out how hard SAT is.
● If SAT ∈ P, then P = NP.

If SAT ∉ P, then P ≠ NP.
● We've turned a huge, abstract, theoretical 

problem about solving problems versus 
checking solutions into the concrete task of 
seeing how hard one problem is.

● You can get a sense for how little we know 
about algorithms and computation given that 
we can't yet answer this question!



  

Why All This Matters

● You will almost certainly encounter NP-hard 
problems in practice – they're everywhere!

● If a problem is NP-hard, then there is no known 
algorithm for that problem that
● is efficient on all inputs,
● always gives back the right answer, and
● runs deterministically.

● Useful intuition: If you need to solve an NP-hard 
problem, you will either need to settle for an 
approximate answer, an answer that's likely but not 
necessarily right, or have to work on really small 
inputs.



  

Sample NP-Hard Problems
● Computational biology: Given a set of genomes, what is the most 

probable evolutionary tree that would give rise to those genomes? 
(Maximum parsimony problem)

● Game theory: Given an arbitrary perfect-information, finite, twoplayer 
game, who wins? (Generalized geography problem)

● Operations research: Given a set of jobs and workers who can 
perform those tasks in parallel, can you complete all the jobs within 
some time bound? (Job scheduling problem)

● Machine learning: Given a set of data, find the simplest way of 
modeling the statistical patterns in that data (Bayesian network 
inference problem)

● Medicine: Given a group of people who need kidneys and a group of 
kidney donors, find the maximum number of people who can end up 
with kidneys (Cycle cover problem)

● Systems: Given a set of processes and a number of processors, find the 
optimal way to assign those tasks so that they complete as soon as 
possible (Processor scheduling problem)



  

Coda: What if P  ≟ NP is resolved?



  

Intermediate Problems

● With few exceptions, every problem we've discovered in 
NP has either
● definitely been proven to be in P, or
● definitely been proven to be NP-complete.

● A problem that's NP, not in P, but not NP-complete is 
called NP-intermediate.

● Theorem (Ladner): There are NP-intermediate 
problems if and only if P ≠ NP.

P
    NP

NPC



  

What if P ≠ NP?



  

A Good Read:

“A Personal View of Average-Case 
Complexity” by Russell Impagliazzo



  

What if P = NP?



  

And a Dismal Third Option



  

Next Time

● The Big Picture
● Where to Go from Here
● A Final “Your Questions”
● Parting Words!
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