

Complexity Theory
Part Two

Recap from Last Time

The Cobham-Edmonds Thesis

A language L can be decided efficiently if
there is a TM that decides it in polynomial time.

Equivalently, L can be decided efficiently if
it can be decided in time O(nk) for some k ∈ ℕ.

Like the Church-Turing thesis, this is
not a theorem!

It's an assumption about the nature of
efficient computation, and it is

somewhat controversial.

Like the Church-Turing thesis, this is
not a theorem!

It's an assumption about the nature of
efficient computation, and it is

somewhat controversial.

The Complexity Class P

● The complexity class P (for polynomial
time) contains all problems that can be
solved in polynomial time.

● Formally:

P = { L | There is a polynomial-time
decider for L }

● Assuming the Cobham-Edmonds thesis, a
language is in P if it can be decided
efficiently.

Polynomial-Time Verifiers

● A polynomial-time verifier for L is a
TM V such that
● V halts on all inputs.
● w ∈ L iff ∃c ∈ Σ*. V accepts ⟨w, c⟩.
● V's runtime is a polynomial in |w| (that is, V's

runtime is O(|w|k) for some integer k)

The Complexity Class NP

● The complexity class NP (nondeterministic
polynomial time) contains all problems that can be
verified in polynomial time.

● Formally:

 NP = { L | There is a polynomial-time
 verifier for L }

● The name NP comes from another way of
characterizing NP. If you introduce nondeterministic
Turing machines and appropriately define
“polynomial time,” then NP is the set of problems
that an NTM can solve in polynomial time.

Theorem (Baker-Gill-Solovay): Any
proof that purely relies on universality and
self-reference cannot resolve P ≟ NP.

Proof: Take CS154!

So how are we going to
reason about P and NP?

Maximum Matching

● Given an undirected graph G, a matching in G is a
set of edges such that no two edges share an
endpoint.

● A maximum matching is a matching with the
largest number of edges.

Maximum Matching

● Given an undirected graph G, a matching in G is a
set of edges such that no two edges share an
endpoint.

● A maximum matching is a matching with the
largest number of edges.

Maximum Matching

● Given an undirected graph G, a matching in G is a
set of edges such that no two edges share an
endpoint.

● A maximum matching is a matching with the
largest number of edges.

A matching, but
not a maximum

matching.

A matching, but
not a maximum

matching.

Maximum Matching

● Given an undirected graph G, a matching in G is a
set of edges such that no two edges share an
endpoint.

● A maximum matching is a matching with the
largest number of edges.

A maximum
matching.

A maximum
matching.

Maximum Matching

● Given an undirected graph G, a matching in G is a
set of edges such that no two edges share an
endpoint.

● A maximum matching is a matching with the
largest number of edges.

Maximum Matching

● Given an undirected graph G, a matching in G is a
set of edges such that no two edges share an
endpoint.

● A maximum matching is a matching with the
largest number of edges.

Maximum Matching

● Jack Edmonds' paper “Paths, Trees, and
Flowers” gives a polynomial-time
algorithm for finding maximum
matchings.
● (This is the same Edmonds as in “Cobham-

Edmonds Thesis.”)
● Using this fact, what other problems can

we solve?

Domino Tiling

Domino Tiling

Domino Tiling

Domino Tiling

Domino Tiling

Domino Tiling

Solving Domino Tiling

Solving Domino Tiling

Solving Domino Tiling

Solving Domino Tiling

Solving Domino Tiling

Solving Domino Tiling

Solving Domino Tiling

Solving Domino Tiling

In Pseudocode

boolean canPlaceDominos(Grid G, int k) {

 return hasMatching(gridToGraph(G), k);

}

Intuition:

Tiling a grid with dominoes can't be
“harder” than solving maximum matching,

because if we can solve maximum
matching efficiently, we can solve domino

tiling efficiently.

New Stuff!

Another Example

Reachability

● Consider the following problem:

Given an directed graph G and nodes s
and t in G, is there a path from s to t?

● It's known that this problem can be solved in
polynomial time (use DFS or BFS).

● Given that we can solve the reachability
problem in polynomial time, what other
problems can we solve in polynomial time?

Converter Conundrums

● Suppose that you want to plug your laptop into a
projector.

● Your laptop only has a VGA output, but the
projector needs HDMI input.

● You have a box of connectors that convert various
types of input into various types of output (for
example, VGA to DVI, DVI to DisplayPort, etc.)

● Question: Can you plug your laptop into the
projector?

Converter Conundrums

Connectors
RGB to USB

VGA to DisplayPort
DB13W3 to CATV

DisplayPort to RGB
DB13W3 to HDMI
DVI to DB13W3
S-Video to DVI
FireWire to SDI

VGA to RGB
DVI to DisplayPort

USB to S-Video
SDI to HDMI

Connectors
RGB to USB

VGA to DisplayPort
DB13W3 to CATV

DisplayPort to RGB
DB13W3 to HDMI
DVI to DB13W3
S-Video to DVI
FireWire to SDI

VGA to RGB
DVI to DisplayPort

USB to S-Video
SDI to HDMI

Converter Conundrums

Connectors
RGB to USB

VGA to DisplayPort
DB13W3 to CATV

DisplayPort to RGB
DB13W3 to HDMI
DVI to DB13W3
S-Video to DVI
FireWire to SDI

VGA to RGB
DVI to DisplayPort

USB to S-Video
SDI to HDMI

Connectors
RGB to USB

VGA to DisplayPort
DB13W3 to CATV

DisplayPort to RGB
DB13W3 to HDMI
DVI to DB13W3
S-Video to DVI
FireWire to SDI

VGA to RGB
DVI to DisplayPort

USB to S-Video
SDI to HDMI

VGA RGB USB

DisplayPort DB13W3 CATV

X DVIHDMI S-Video

FireWire SDI

Converter Conundrums

VGA RGB USB

DisplayPort DB13W3 CATV

X DVIHDMI S-Video

FireWire SDI

Converter Conundrums

VGA RGB USB

DisplayPort DB13W3 CATV

X DVIHDMI S-Video

FireWire SDI

Converter Conundrums

VGA RGB USB

DisplayPort DB13W3 CATV

X DVIHDMI S-Video

FireWire SDI

Converter Conundrums

VGA RGB USB

DisplayPort DB13W3 CATV

X DVIHDMI S-Video

FireWire SDI

Connectors
RGB to USB

VGA to DisplayPort
DB13W3 to CATV

DisplayPort to RGB
DB13W3 to HDMI
DVI to DB13W3
S-Video to DVI
FireWire to SDI

VGA to RGB
DVI to DisplayPort

USB to S-Video
SDI to HDMI

Connectors
RGB to USB

VGA to DisplayPort
DB13W3 to CATV

DisplayPort to RGB
DB13W3 to HDMI
DVI to DB13W3
S-Video to DVI
FireWire to SDI

VGA to RGB
DVI to DisplayPort

USB to S-Video
SDI to HDMI

In Pseudocode

boolean canPlugIn(List<Plug> plugs) {

 return isReachable(plugsToGraph(plugs),
 VGA, HDMI);

}

Intuition:

Finding a way to plug a computer into a
projector can't be “harder” than

determining reachability in a graph, since
if we can determine reachability in a graph,
we can find a way to plug a computer into a

projector.

Intuition:

Problem A can't be “harder” than problem
B, because solving problem B lets us solve

problem A.

bool solveProblemA(string input) {
 return solveProblemB(transform(input));
}

bool solveProblemA(string input) {
 return solveProblemB(transform(input));
}

● If A and B are problems where it's
possible to solve problem A using the
strategy shown above*, we write

A ≤p B.

● We say that A is polynomial-time
reducible to B.

* Assuming that transform
* runs in polynomial time.

Polynomial-Time Reductions

● If A ≤p B and B ∈ P, then A ∈ P.

If L1 ≤P L2 and L2 ∈ NP, then L1 ∈ NP.

P

Polynomial-Time Reductions

● If A ≤p B and B ∈ P, then A ∈ P.

If L1 ≤P L2 and L2 ∈ NP, then L1 ∈ NP.

P

Polynomial-Time Reductions

● If A ≤p B and B ∈ P, then A ∈ P.

If L1 ≤P L2 and L2 ∈ NP, then L1 ∈ NP.

P

Polynomial-Time Reductions

● If A ≤p B and B ∈ P, then A ∈ P.

● If A ≤p B and B ∈ NP, then A ∈ NP.

P

Polynomial-Time Reductions

● If A ≤p B and B ∈ P, then A ∈ P.

● If A ≤p B and B ∈ NP, then A ∈ NP.

 NPP

Polynomial-Time Reductions

● If A ≤p B and B ∈ P, then A ∈ P.

● If A ≤p B and B ∈ NP, then A ∈ NP.

 NPP

Polynomial-Time Reductions

● If A ≤p B and B ∈ P, then A ∈ P.

● If A ≤p B and B ∈ NP, then A ∈ NP.

 NPP

This ≤ₚ relation lets us rank the relative
difficulties of problems in P and NP.

What else can we do with it?

Time-Out for Announcements!

Please evaluate this course on Axess.

Your feedback makes a difference.

Problem Set Nine

● Problem Set Nine is due this Wednesday
at the start of class.
● No late submissions can be accepted.

This is university policy – sorry!
● This problem set is much shorter than the

other ones we’ve given out so far this
quarter.

● Check the course website for the final
office hours timetable for the week.

Final Exam Logistics

● Our final exam is this Friday from 3:30PM – 6:30PM.
Rooms are divvied up by last (family) name:
● Abb – Kan: Go to Bishop Auditorium.
● Kar – Zuc: Go to Cemex Auditorium.

● Exam is cumulative and all topics from the lectures and
problem sets are fair game.

● The exam focus is roughly 50/50 between discrete math
topics (PS1 – PS5) and computability/complexity topics
(PS6 – PS9).

● As with the midterms, the exam is closed-book, closed-
computer, and limited-note. You can bring a single,
double-sided, 8.5” × 11” sheet of notes with you to the
exam.

Preparing for the Exam

● Up on the course website, you’ll find
● three sets of extra practice problems (EPP9 – EPP11), with

solutions, and
● four practice final exams, with solutions.

● Feel free to ask questions about them on Piazza or in
office hours.
● Thursday office hours are a great place to ask questions!

● Need more practice on a particular topic? Let us know!
● Folks on Piazza have asked for more practice with Myhill-

Nerode and CFG design, and we’re working on putting
together some more practice problems along those lines.
Stay tuned!

Your Questions

“Regarding CS tracks, are there any
references out there that help describe the
CS tracks in greater detail and how each

apply to industry today?”

This is a great question and I don’t have a
good answer for you. I’ll ask around and see
if I can come up with anything. If so, I’ll

share it on Wednesday. If not, I’ll ask around
about making one!

This is a great question and I don’t have a
good answer for you. I’ll ask around and see
if I can come up with anything. If so, I’ll

share it on Wednesday. If not, I’ll ask around
about making one!

“Keith! as someone struggles in CS/STEM,
your constant encouragement and belief in
us makes a world of difference. Any advice

for the future when things get hard”

On entry to this quarter, I’ve had 7,265 total students in the courses I’ve
taught. I’ve seen a lot of people struggle. I’ve met people for whom the

material didn’t click as quickly as they’d like. I’ve chatted with folks who were
worried about whether they could keep up. But I have never, not once, met

someone I legitimately thought could not learn this material.

Learning is uncomfortable – it requires you to face the harsh reality that
there are things that you don’t understand as well as you think you do. It
requires repetition and practice and can be frustrating. But the rewards are
immense. Take a look back on what you’ve accomplished in this quarter. Where
did you start? And where are you now? It’s easy to lose sight of that in the

daily/weekly/monthly grind, but it’s so refreshing when you see it.

And you’re always welcome to come talk to me even if you aren’t in CS103! I
love hearing what people are up to!

On entry to this quarter, I’ve had 7,265 total students in the courses I’ve
taught. I’ve seen a lot of people struggle. I’ve met people for whom the

material didn’t click as quickly as they’d like. I’ve chatted with folks who were
worried about whether they could keep up. But I have never, not once, met

someone I legitimately thought could not learn this material.

Learning is uncomfortable – it requires you to face the harsh reality that
there are things that you don’t understand as well as you think you do. It
requires repetition and practice and can be frustrating. But the rewards are
immense. Take a look back on what you’ve accomplished in this quarter. Where
did you start? And where are you now? It’s easy to lose sight of that in the

daily/weekly/monthly grind, but it’s so refreshing when you see it.

And you’re always welcome to come talk to me even if you aren’t in CS103! I
love hearing what people are up to!

“How do you think the mindset of computer
science thinking extend to life? (How CS
affects one's outlook of life compared to

non-STEM disciplines?)”

I’ll take this one in class because I
was silly and didn’t budget enough
time to write up an answer before

coming to class. ☺

I’ll take this one in class because I
was silly and didn’t budget enough
time to write up an answer before

coming to class. ☺

Back to CS103!

NP-Hardness and NP-Completeness

Question: What makes a problem
hard to solve?

Intuition: If A ≤ₚ B, then problem B is at
least as hard* as problem A.

* for some definition of “at least as hard as.”

Intuition: To show that some problem is
hard, show that lots of other problems

reduce to it.

NP-Hardness

● A language L is called NP-hard if for every A ∈ NP, we have
A ≤P L.

A language in L is called NP-complete iff L is NP-hard and
L ∈ NP.

The class NPC is the set of NP-complete problems.

P

 NP

NP-Hardness

● A language L is called NP-hard if for every A ∈ NP, we have
A ≤P L.

A language in L is called NP-complete iff L is NP-hard and
L ∈ NP.

The class NPC is the set of NP-complete problems.

P

 NP NP-Hard

NP-Hardness

● A language L is called NP-hard if for every A ∈ NP, we have
A ≤P L.

A language in L is called NP-complete iff L is NP-hard and
L ∈ NP.

The class NPC is the set of NP-complete problems.

P

 NP NP-Hard

NP-Hardness

● A language L is called NP-hard if for every A ∈ NP, we have
A ≤P L.

A language in L is called NP-complete iff L is NP-hard and
L ∈ NP.

The class NPC is the set of NP-complete problems.

P

 NP NP-Hard

Intuitively: L has to be at least as
hard as every problem in NP, since
an algorithm for L can be used to

decide all problems in NP.

Intuitively: L has to be at least as
hard as every problem in NP, since
an algorithm for L can be used to

decide all problems in NP.

NP-Hardness

● A language L is called NP-hard if for every A ∈ NP, we have
A ≤P L.

A language in L is called NP-complete iff L is NP-hard and
L ∈ NP.

The class NPC is the set of NP-complete problems.

P

 NP NP-Hard

NP-Hardness

● A language L is called NP-hard if for every A ∈ NP, we have
A ≤P L.

A language in L is called NP-complete iff L is NP-hard and
L ∈ NP.

The class NPC is the set of NP-complete problems.

P

 NP NP-Hard

What's in here?What's in here?

NP-Hardness

● A language L is called NP-hard if for every A ∈ NP, we have
A ≤P L.

● A language in L is called NP-complete if L is NP-hard and
L ∈ NP.

● The class NPC is the set of NP-complete problems.

P

 NP NP-Hard

NP-Hardness

● A language L is called NP-hard if for every A ∈ NP, we have
A ≤P L.

● A language in L is called NP-complete if L is NP-hard and
L ∈ NP.

● The class NPC is the set of NP-complete problems.

P

 NP NP-Hard
NPC

The Tantalizing Truth

Theorem: If any NP-complete language is in P, then P = NP.

Proof: Suppose that L is NP-complete and L ∈ P. Now consider
any arbitrary NP problem X. Since L is NP-complete, we know
that X ≤p L. Since L ∈ P and X ≤p L, we see that X ∈ P. Since
our choice of X was arbitrary, this means that NP ⊆ P, so
P = NP. ■

The Tantalizing Truth

 NP
P

NPC

Theorem: If any NP-complete language is in P, then P = NP.

Proof: Suppose that L is NP-complete and L ∈ P. Now consider
any arbitrary NP problem X. Since L is NP-complete, we know
that X ≤p L. Since L ∈ P and X ≤p L, we see that X ∈ P. Since
our choice of X was arbitrary, this means that NP ⊆ P, so
P = NP. ■

The Tantalizing Truth

 NP
P

NPC

Theorem: If any NP-complete language is in P, then P = NP.

Proof: Suppose that L is NP-complete and L ∈ P. Now consider
any arbitrary NP problem X. Since L is NP-complete, we know
that X ≤p L. Since L ∈ P and X ≤p L, we see that X ∈ P. Since
our choice of X was arbitrary, this means that NP ⊆ P, so
P = NP. ■

The Tantalizing Truth

Theorem: If any NP-complete language is in P, then P = NP.

Proof: Suppose that L is NP-complete and L ∈ P. Now consider
any arbitrary NP problem X. Since L is NP-complete, we know
that X ≤p L. Since L ∈ P and X ≤p L, we see that X ∈ P. Since
our choice of X was arbitrary, this means that NP ⊆ P, so
P = NP. ■

 NP
P

NPC

The Tantalizing Truth

 P = NP

Theorem: If any NP-complete language is in P, then P = NP.

Proof: Suppose that L is NP-complete and L ∈ P. Now consider
any arbitrary NP problem X. Since L is NP-complete, we know
that X ≤p L. Since L ∈ P and X ≤p L, we see that X ∈ P. Since
our choice of X was arbitrary, this means that NP ⊆ P, so
P = NP. ■

The Tantalizing Truth

 P = NP

Theorem: If any NP-complete language is in P, then P = NP.

Proof: Suppose that L is NP-complete and L ∈ P. Now consider
any arbitrary NP problem A. Since L is NP-complete, we know
that A ≤p L. Since L ∈ P and A ≤p L, we see that A ∈ P. Since
our choice of A was arbitrary, this means that NP ⊆ P, so
P = NP. ■

The Tantalizing Truth

 NP

P
NPC

Theorem: If any NP-complete language is not in P, then P ≠ NP.

Proof: Suppose that L is an NP-complete language not in P. Since
L is NP-complete, we know that L ∈ NP. Therefore, we know
that L ∈ NP and L ∉ P, so P ≠ NP. ■

How do we even know NP-complete
problems exist in the first place?

Satisfiability

● A propositional logic formula φ is called
satisfiable if there is some assignment to
its variables that makes it evaluate to true.
● p ∧ q is satisfiable.
● p ∧ ¬p is unsatisfiable.
● p → (q ∧ ¬q) is satisfiable.

● An assignment of true and false to the
variables of φ that makes it evaluate to
true is called a satisfying assignment.

SAT

● The boolean satisfiability problem
(SAT) is the following:

Given a propositional logic
formula φ, is φ satisfiable?

● Formally:

SAT = { ⟨φ⟩ | φ is a satisfiable PL
formula }

Theorem (Cook-Levin): SAT is NP-complete.

Proof Idea: Given a polymomial-time verifier V
for an arbitrary NP language L, for any string w
you can construct a polynomially-sized formula
φ(w) that says “there is a certificate c where V
accepts ⟨w, c⟩.” This formula is satisfiable if and
only if w ∈ L, so deciding whether the formula is
satisfiable decides whether w is in L.

Proof: Take CS154!

Why All This Matters

● Resolving P ≟ NP is equivalent to just figuring
out how hard SAT is.
● If SAT ∈ P, then P = NP.

If SAT ∉ P, then P ≠ NP.
● We've turned a huge, abstract, theoretical

problem about solving problems versus
checking solutions into the concrete task of
seeing how hard one problem is.

● You can get a sense for how little we know
about algorithms and computation given that
we can't yet answer this question!

Why All This Matters

● You will almost certainly encounter NP-hard
problems in practice – they're everywhere!

● If a problem is NP-hard, then there is no known
algorithm for that problem that
● is efficient on all inputs,
● always gives back the right answer, and
● runs deterministically.

● Useful intuition: If you need to solve an NP-hard
problem, you will either need to settle for an
approximate answer, an answer that's likely but not
necessarily right, or have to work on really small
inputs.

Sample NP-Hard Problems
● Computational biology: Given a set of genomes, what is the most

probable evolutionary tree that would give rise to those genomes?
(Maximum parsimony problem)

● Game theory: Given an arbitrary perfect-information, finite, twoplayer
game, who wins? (Generalized geography problem)

● Operations research: Given a set of jobs and workers who can
perform those tasks in parallel, can you complete all the jobs within
some time bound? (Job scheduling problem)

● Machine learning: Given a set of data, find the simplest way of
modeling the statistical patterns in that data (Bayesian network
inference problem)

● Medicine: Given a group of people who need kidneys and a group of
kidney donors, find the maximum number of people who can end up
with kidneys (Cycle cover problem)

● Systems: Given a set of processes and a number of processors, find the
optimal way to assign those tasks so that they complete as soon as
possible (Processor scheduling problem)

Coda: What if P ≟ NP is resolved?

Intermediate Problems

● With few exceptions, every problem we've discovered in
NP has either
● definitely been proven to be in P, or
● definitely been proven to be NP-complete.

● A problem that's NP, not in P, but not NP-complete is
called NP-intermediate.

● Theorem (Ladner): There are NP-intermediate
problems if and only if P ≠ NP.

P
 NP

NPC

What if P ≠ NP?

A Good Read:

“A Personal View of Average-Case
Complexity” by Russell Impagliazzo

What if P = NP?

And a Dismal Third Option

Next Time

● The Big Picture
● Where to Go from Here
● A Final “Your Questions”
● Parting Words!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96

