Week 5 Tutorial

Cardinality and Graph Theory
Part 1: *Graph Theory Warmup*
Consider the following FOL statements about some graph $G = (V, E)$:

a) $\forall u \in V. \forall v \in V. \{u, v\} \notin E$

b) $\exists u \in V. \forall v \in V. (u \neq v \rightarrow \{u, v\} \in E)$

c) $\forall u \in V. \exists v \in V. (\{u, v\} \in E \land (\forall w \in V. w \neq v \rightarrow \{u, w\} \notin E))$

1. Translate these FOL statements into English. Please use graph theory terms (adjacent, connected, degree, etc.) where appropriate.

Fill in answer on Gradescope!
Part 2: *Graph Theory*
From the problem set:

An undirected graph $G = (V, E)$ is called **bipartite** if there exist two sets V_1 and V_2 such that

- every node $v \in V$ belongs to exactly one of V_1 and V_2, and
- every edge $e \in E$ has one endpoint in V_1 and the other in V_2.
From the problem set:

An undirected graph $G = (V, E)$ is called **bipartite** if there exist two sets V_1 and V_2 such that

- every node $v \in V$ belongs to exactly one of V_1 and V_2, and
- every edge $e \in E$ has one endpoint in V_1 and the other in V_2.

Now, a new definition:

Let $d(u, v)$ denote the length of the shortest path in G from u to v.
From the problem set:

An undirected graph \(G = (V, E) \) is called \textit{bipartite} if there exist two sets \(V_1 \) and \(V_2 \) such that

- every node \(v \in V \) belongs to exactly one of \(V_1 \) and \(V_2 \), and
- every edge \(e \in E \) has one endpoint in \(V_1 \) and the other in \(V_2 \).

Now, a new definition:

Let \(d(u, v) \) denote the length of the shortest path in \(G \) from \(u \) to \(v \).

\textbf{Theorem:} A connected graph \(G \) is bipartite if and only if for every vertex \(v \), there is no edge \(\{u, w\} \) where \(d(v, u) = d(v, w) \).
Theorem: If G is a connected graph where for every vertex v, there is no edge $\{u, w\}$ where $d(v, u) = d(v, w)$, then G is bipartite.

We'll now prove this direction of the biconditional.
Theorem: If G is a connected graph where for every vertex v, there is no edge $\{u, w\}$ where $d(v, u) = d(v, w)$, then G is bipartite.

Choose an arbitrary connected graph $G = (V, E)$ where for every vertex v, $d(v, u) \neq d(v, w)$ for any choice of $\{u, w\} \in E$. Pick a node $v \in V$ to use as an “anchor point” and define the following two sets based on v:

- $V_1 = \{ x \in V \mid d(x, v) \text{ is even} \}$
- $V_2 = \{ x \in V \mid d(x, v) \text{ is odd} \}$
Theorem: If G is a connected graph where for every vertex v, there is no edge $\{u, w\}$ where $d(v, u) = d(v, w)$, then G is bipartite.

Choose an arbitrary connected graph $G = (V, E)$ where for every vertex v, $d(v, u) \neq d(v, w)$ for any choice of $\{u, w\} \in E$. Pick a node $v \in V$ to use as an “anchor point” and define the following two sets based on v:

- $V_1 = \{ x \in V | d(x, v) \text{ is even} \}$
- $V_2 = \{ x \in V | d(x, v) \text{ is odd} \}$

2a) Refer back to the definition of a bipartite graph and list out the **three** things you need to prove in order to prove that G is bipartite.

Hint: To prove “exactly one” there are two things you need to show. What are they?

Fill in answer on Gradescope!
Theorem: If G is a connected graph where for every vertex v, there is no edge $\{u, w\}$ where $d(v, u) = d(v, w)$, then G is bipartite.

Choose an arbitrary connected graph $G = (V, E)$ where for every vertex v, $d(v, u) \neq d(v, w)$ for any choice of $\{u, w\} \in E$. Pick a node $v \in V$ to use as an “anchor point” and define the following two sets based on v:

- $V_1 = \{ x \in V \mid d(x, v) \text{ is even} \}$
- $V_2 = \{ x \in V \mid d(x, v) \text{ is odd} \}$

Want to Show:

1. Every node is in *at least* one of V_1 and V_2
2. Every node is in *at most* one of V_1 and V_2
3. Every edge has one endpoint in V_1 and one in V_2
Theorem: If G is a connected graph where for every vertex v, there is no edge $\{u, w\}$ where $d(v, u) = d(v, w)$, then G is bipartite.

Choose an arbitrary connected graph $G = (V, E)$ where for every vertex v, $d(v, u) \neq d(v, w)$ for any choice of $\{u, w\} \in E$. Pick a node $v \in V$ to use as an “anchor point” and define the following two sets based on v:

- $V_1 = \{ x \in V \mid d(x, v) \text{ is even} \}$
- $V_2 = \{ x \in V \mid d(x, v) \text{ is odd} \}$

Want to Show:

1. Every node is in *at least* one of V_1 and V_2

2b) Explain why this assertion holds for the choices of V_1 and V_2 given above.

Fill in answer on Gradescope!
Want to Show:

1. Every node is in \textit{at least} one of V_1 and V_2

Pick an arbitrary node x
Want to Show:

1. Every node is in *at least* one of V_1 and V_2

Pick an arbitrary node x.

Since \mathcal{G} is connected, we know that there's at least one path from x to our anchor point v.

(This dotted line just represents that there's some series of edges you can follow to get from x to v)
Want to Show:

1. Every node is in \textit{at least} one of V_1 and V_2

Pick an arbitrary node x

Since G is connected, we know that there's at least one path from x to our anchor point v.

- $V_1 = \{ x \in V \mid d(x, v) \text{ is even} \}$
- $V_2 = \{ x \in V \mid d(x, v) \text{ is odd} \}$

If $d(x, v)$ is even, then x is in V_1.
Otherwise, x is in V_2.
Theorem: If G is a connected graph where for every vertex v, there is no edge $\{u, w\}$ where $d(v, u) = d(v, w)$, then G is bipartite.

Pick any node $v \in V$ to use as an “anchor point” and define the following two sets based on v:

- \(V_1 = \{ x \in V \mid d(x, v) \text{ is even} \} \)
- \(V_2 = \{ x \in V \mid d(x, v) \text{ is odd} \} \)

Want to Show:

2. Every node is in *at most* one of V_1 and V_2

2c) Explain why this assertion holds for the choices of V_1 and V_2 given above.

Fill in answer on Gradescope!
Want to Show:

2. Every node is in \textit{at most} one of V_1 and V_2

Pick an arbitrary node x
Want to Show:

2. Every node is in \textit{at most} one of V_1 and V_2

- $V_1 = \{ x \in V \mid d(x, v) \text{ is even} \}$
- $V_2 = \{ x \in V \mid d(x, v) \text{ is odd} \}$
Want to Show:

2. Every node is in *at most* one of \(V_1 \) and \(V_2 \)

Pick an arbitrary node \(x \)

Let's suppose that \(x \) is in both \(V_1 \) and \(V_2 \).

\[
d(x, v) \quad \cdots \quad v
\]

- \(V_1 = \{ x \in V \mid d(x, v) \text{ is even} \} \)
- \(V_2 = \{ x \in V \mid d(x, v) \text{ is odd} \} \)

This would mean that \(d(x, v) \) is both even and odd, which is impossible.
Theorem: If G is a connected graph where for every vertex v, there is no edge $\{u, w\}$ where $d(v, u) = d(v, w)$, then G is bipartite.

Pick any node $v \in V$ to use as an “anchor point” and define the following two sets based on v:

- $V_1 = \{ x \in V \mid d(x, v) \text{ is even} \}$
- $V_2 = \{ x \in V \mid d(x, v) \text{ is odd} \}$

Want to Show:

3. Every edge has one endpoint in V_1 and one in V_2

2d) Explain why this assertion holds for the choices of V_1 and V_2 given above. Click to the next few slides for some hints.

Fill in answer on Gradescope!
Want to Show:
3. Every edge has one endpoint in V_1 and one in V_2

Hint 1:

Pick an arbitrary edge $\{u, w\}$ and think about $d(v, u)$, $d(v, w)$, and $d(u, w)$
Want to Show:

3. Every edge has one endpoint in V_1 and one in V_2

Hint 2:

$|d(v, u) - d(v, w)| \leq 1$

Why is this the case? Suppose for the sake of contradiction that $|d(v, u) - d(v, w)| > 1$

These vertical bars mean absolute value :)
Want to Show:

3. Every edge has one endpoint in V_1 and one in V_2

Hint 3:

$$|d(v, u) - d(v, w)| \leq 1$$

We’ve assumed that $d(v, u) \neq d(v, w)$, so the difference $|d(v, u) - d(v, w)|$ can’t be 0. What does that mean about the statement above?
Want to Show:

3. Every edge has one endpoint in V_1 and one in V_2

Hint 4:

$$d(v, u) \quad \ldots \quad u \quad \ldots \quad d(u, w)$$

$$d(v, w) \quad \ldots \quad v \quad \ldots \quad d(v, w)$$

$$|d(v, u) - d(v, w)| = 1$$

Think about what this tells you about whether or not $d(v, u)$ and $d(v, w)$ can both be even or odd.
Theorem: If G is a connected graph where for every vertex v, there is no edge $\{u, w\}$ where $d(v, u) = d(v, w)$, then G is bipartite.

Proof: To prove that G is bipartite, will prove that every node in V belongs to exactly one of V_1 and V_2 and that every edge in E has one endpoint in V_1 and one in V_2.

We’ll start by showing that every node in V belongs to exactly one of V_1 and V_2. Pick an arbitrary node $x \in V$. To see that x belongs to at least one of V_1 and V_2, notice that G is connected so there is at least one path from x to v. If $d(v, x)$ is even, then x is in V_1, otherwise $d(v, x)$ is odd and x is in V_2. Additionally, x can be in at most one of V_1 and V_2. To see why, suppose for the sake of contradiction that $x \in V_1$ and $x \in V_2$. This would mean that $d(v, x)$ is both even and odd, which is impossible.

(continued on next slide ...)
Now we will show that the edges of G run between V_1 and V_2.

Pick an arbitrary edge $\{u, w\} \in E$.

We’ll first show that $d(v, u)$ and $d(v, w)$ differ by no more than 1. Suppose for the sake of contradiction that $|d(v, u) - d(v, w)| > 1$, and without loss of generality let $d(v, u) > d(v, w)$. This would mean that $d(v, u) \geq d(v, w) + 2$. However, we can find a shorter path from v to u by following a path of length $d(v, w)$ from v to w and then following the edge $\{u, w\}$ for a total length of $d(v, w) + 1$, contradicting our assertion that $d(v, u) \geq d(v, w) + 2$.

Thus, we know that $|d(v, u) - d(v, w)| \leq 1$. Furthermore, since we assumed that $d(v, u) \neq d(v, w)$, so the difference $|d(v, u) - d(v, w)|$ can’t be 0 and we must have

$$|d(v, u) - d(v, w)| = 1.$$

Since this difference is odd, we know that that the integers $d(v, u)$ and $d(v, w)$ have opposite parity, allowing us to conclude that u and w cannot both be in V_1 or in V_2. Therefore we’ve shown that G must be bipartite, as required. ■