Problems for Week Four

Problem One: Concept Checks

You know the drill. Here’s a review from the topics from last week.

i. Give two examples of binary relations over the set \mathbb{N}.

ii. What three properties must a binary relation have to have in order to be an equivalence relation? Give the first-order definitions of each of those properties. For each definition of a property, explain how you would write a proof that a binary relation R has that property.

iii. If R is an equivalence relation over a set A and a is an element of A, what does the notation $[a]_R$ mean? Intuitively, what does it represent?

iv. What three properties must a binary relation have to have in order to be a strict order? Give the first-order definitions of each of those properties. For each definition of a property, explain how you would write a proof that a binary relation R has that property.

v. What is a Hasse diagram? Give an example.

vi. What does the notation $f : A \rightarrow B$ mean?

vii. Let $f : A \rightarrow B$ be a function. Express, in first-order logic, what property f has to satisfy to be an injection. Then, based on the structure of that formula, explain how you would write a proof that f is injective.

viii. Negate your statement from part (vii) and simplify it as much as possible. Then, based on the structure of your formula, explain how you would write a proof that f is not injective.

ix. Let $f : A \rightarrow B$ be a function. Express, in first-order logic, what property f has to satisfy to be a surjection. Then, based on the structure of that formula, explain how you would write a proof that f is surjective.

x. Negate your statement from part (ix) and simplify it as much as possible. Then, based on the structure of your formula, explain how you would write a proof that f is not surjective.

xi. Let $f : A \rightarrow B$ be a function. What properties must f have to be a bijection? How would you write a proof that f is bijective?

xii. What would you need to prove to show that f is not a bijection?
Problem Two: Equivalence Relations

This question explores various properties of equivalence relations.

i. In lecture, we proved that the binary relation \(\sim \) over \(\mathbb{Z} \) defined as follows is an equivalence relation:

\[
a \sim b \quad \text{if} \quad a + b \text{ is even.}
\]

Consider this new relation \(\# \) defined over \(\mathbb{Z} \):

\[
a \# b \quad \text{if} \quad a + b \text{ is odd.}
\]

Is \(\# \) an equivalence relation? If so, prove it. If not, disprove it.

ii. How many equivalence classes are there for the \(\sim \) relation defined above? What are they?

Problem Three: Inverse Relations

Let \(R \) be a binary relation over a set \(A \). We can define a new relation over \(A \) called the inverse relation of \(R \), denoted \(R^{-1} \), as follows:

\[
xR^{-1}y \quad \text{if} \quad yRx
\]

This question explores properties of inverse relations.

i. What is the inverse of the \(< \) relation over \(\mathbb{Z} \)? Briefly justify your answer.

ii. What is the inverse of the \(= \) relation over \(\mathbb{Z} \)? Briefly justify your answer.

iii. Prove or disprove: if \(R \) is an equivalence relation over \(A \), then \(R^{-1} \) is an equivalence relation over \(A \).

Problem Four: Monotone Functions

A function \(f : \mathbb{R} \to \mathbb{R} \) is called monotone increasing if the following is true:

\[
\forall x \in \mathbb{R}. \forall y \in \mathbb{R}. (x < y \to f(x) < f(y))
\]

This problem explores properties of monotone increasing functions.

i. Prove or disprove: every monotone increasing function is injective.

ii. Prove or disprove: every injective function from \(\mathbb{R} \) to \(\mathbb{R} \) is monotone increasing.

Problem Five: Involutions

A function \(f : A \to A \) is called an involution if \(f(f(x)) = x \) for all \(x \in A \).

i. Find three different examples of involutions from \(\mathbb{Z} \) to \(\mathbb{Z} \). Briefly justify your answers.

ii. Prove that if \(f \) is an involution, then \(f \) is a bijection.

Problem Six: Functions and Relations – Together!

Let \(f : A \to B \) be an arbitrary function. Define a new binary relation \(\sim \) over \(A \) as follows:

\[
x \sim y \quad \text{if} \quad f(x) = f(y)
\]

Prove that \(\sim \) is an equivalence relation over \(A \).