Course Overview

Math, like programming, is a skill that takes practice to develop. In CS103A, we'll provide extra review of the topics from CS103 and discuss general problem-solving strategies that often come up in proof-based mathematics. We hope that the course helps solidify the concepts from CS103 and provide you a set of tools you can use to confront challenging math problems with confidence.

If you're interested in taking CS103 but feel like you could use a little bit more practice and review, this is the course for you!

Instructors

Amy Liu (liuamyj@cs.stanford.edu)
Amanda Spyropoulos (CS103 head TA)
Anthony Galczak
Fei Fang
Jessica Guo

If you have any general questions about the material from CS103A, you're welcome to send an email to the CS103A staff mailing list, which is cs103a-aut1920-staff@lists.stanford.edu.

Website

All materials for CS103A will be posted at http://cs103a.stanford.edu. Let us know if there's anything else you'd like us to post there!

Time/Location

CS103A meets Tuesday of each week from 4:30PM – 6:20PM in 380–380Y.

Course Format

Math is a skill that you'll learn with practice, so most of the class time in CS103A will be spent working on practice problems in small groups. We'll typically start off each class with some review questions on the CS103 course material, then transition to group work.

Corequisite

CS103A has CS103 as a corequisite. This class is specifically designed as an add-on course for CS103 and the material and presentation will be tailored to current CS103 students. As a result, you must be enrolled in CS103 to take CS103A.

Grading

Your grade in CS103A will be based on a combination of attendance and small weekly check-in assignments. Each week during CS103A, we'll release the assignment for next week, which comes in two parts:

- **Homework Problems** – a set of short answer questions due in class the following week
- **Attendance Problems** – a set of multiple choice questions due in class the following week

Homework Problems will be collected at the beginning of class and will be graded on a 0 / ✓ / ✓⁺ scale. Solutions that reasonably attempt to solve all of the problems, even if the attempts are incorrect, will receive a ✓⁺. Solutions that reasonably attempt some but not all of the problems will receive a ✓. Solutions that do not reasonably attempt any of the problems – or that are submitted after the deadline – will receive a 0.

We'll then spend the first part of class discussing the Attendance Problems in small groups, so the expectation is that you come to class having attempted these problems on your own and ready to discuss them with your peers. You'll have a chance to revise your answers and turn these in by the end of class, after which we’ll grade these for correctness.
Your grade for that week will then be computed as:

$$\frac{1}{2} \cdot \text{Homework Problems Score} + \frac{1}{2} \cdot \text{Attendance Problems Score},$$

with the exception of Week 1, where you will not submit Homework Problems. You are required to attend eight of the ten class meetings and to have an average score of at least 80% across your weekly assignment scores.

CS103A and CS103 are independent courses, so your grade in CS103 has no bearing on your grade in CS103A (and vice-versa).