Lecture 23: Unsolvable Problems, Part I

1) We know that R and RE are different classes of languages. Which of the following statements is true?
 A) We know that $R \neq RE$ because all TMs are deciders, but not all deciders are TMs.
 B) We know that $R \neq RE$ because TMs are allowed to loop on their inputs.
 C) We know that $R \neq RE$ because A_{TM} is undecidable.
 D) All of the above.

 Explanation:

Lecture 24: Unsolvable Problems, Part II

2) Suppose V is a verifier for a language L. You run V on the input string $\langle x, y \rangle$ and V accepts. Which of the following statements MUST be true?
 A) $\langle x, y \rangle \in L$
 B) $x \in L$
 C) $y \in L$
 D) $\langle x, y \rangle \notin L$
 E) $x \notin L$
 F) $y \notin L$
 G) None of these

 Explanation:
3) Suppose \(V \) is a verifier for a language \(L \). You run \(V \) on the input string \(\langle x, y \rangle \) and \(V \) rejects. Which of the following statements MUST be true?

A) \(\langle x, y \rangle \in L \)
B) \(x \in L \)
C) \(y \in L \)
D) \(\langle x, y \rangle \notin L \)
E) \(x \notin L \)
F) \(y \notin L \)
G) None of these

Explanation:

4) Let \(M \) be a TM that always loops. Which of the following is true?

A) \(\langle M, \langle M \rangle \rangle \notin A_{TM} \) and \(\langle M \rangle \notin L_D \)
B) \(\langle M, \langle M \rangle \rangle \notin A_{TM} \) and \(\langle M \rangle \in L_D \)
C) \(\langle M, \langle M \rangle \rangle \in A_{TM} \) and \(\langle M \rangle \notin L_D \)
D) \(\langle M, \langle M \rangle \rangle \in A_{TM} \) and \(\langle M \rangle \in L_D \)

Explanation: