Welcome to CS103A!

- Two handouts!
- Find a nice group of people to work with!
 - Break apart into groups of three or four.
 - No one should be all by their lonesome selves. If you have a pair, adopt someone who's going solo. 😊
What is this course all about?
Course Objectives

- Provide extra practice and review of the content from CS103.
- Explore problem-solving strategies useful in mathematics.
- Improve teamwork skills for mathematics.
Course Staff

Instructor
Amy Liu (*liuamyj@cs.stanford.edu*)

TAs
Amanda Spyropoulos (*CS103 Head TA*)
Anthony Galczak
Fei Fang
Jessica Guo

Staff Email List: cs103a-aut1920-staff@lists.stanford.edu
Class Website

http://cs103a.stanford.edu
Class Format

- You'll spend most of your time in CS103A working through extra practice problems in small groups.
- Usually we'll start of with a quick review of the material from the past week.
- We'll then turn you loose to work on problems in groups, periodically coming back together as a group.
Assignments

• Each week during CS103A, we’ll release a small set of problems:
 – *Practice Problems* – not collected
 – *Homework Problems* – due the next week
 – *Attendance Problems* – due the next week

• The expectation is that you come to class caught up on lectures and having completed the Homework and Attendance Problems for the week.

• We’ll spend the first part of class discussing the Attendance Problems in your groups, where you’ll each be responsible for explaining one of the questions.
Grading

• Your grade will be computed as follows:
 - 50% for the **Homework Problems**: We’ll grade these problems on a 0 / ✓ / ✓+ scale.
 - 50% for the **Attendance Problems**: After discussing in your groups, you may optionally choose to change your answers. You’ll then turn in the problems and we’ll grade them for correctness.

• To receive credit for CS103A, you must score at least an **80%** across the assignments.

• Additionally, you must attend at least **eight** of the ten class meetings.
Introduction:
How to Approach Mathematics
Proof-Based Mathematics

- Most high-school math classes – with the exception of geometry – focus on calculation.
- CS103 focuses on argumentation.
- Your goal is to see why things are true, not check that they work in a few cases.
- Be curious! Ask questions. Try things out on your own. You'll learn this material best if you engage with it and refuse to settle for a “good enough” understanding.
Mathematical Prerequisites

- On Monday in CS103, we handed out a “Mathematical Prerequisites” handout. We recommend that you read over it and ask us questions.
- We will *not* be referencing concepts from linear algebra, calculus, trigonometry, etc. in CS103 or CS103A. You should be good to go with basic algebra and innate curiosity.
Mental Traps to Avoid

• “Everyone else has been doing math since before they were born and there is no way I'll ever be as good as them.”

• “A small minority of people are math geniuses and everyone else has no chance at being good at math.”

• “Being good at math means being able to instantly solve any math problem thrown at you.”
Mental Traps to Avoid

• “Everyone else has been doing math since before they were born and there is no way I'll ever be as good as them.”

“A small minority of people are math geniuses and everyone else has no chance at being good at math.”

“Being good at math means being able to instantly solve any math problem thrown at you.”
“A little slope makes up for a lot of y-intercept.”
- John Ousterhout
Mental Traps to Avoid

- “Everyone else has been doing math since before they were born and there is no way I'll ever be as good as them.”
- “A small minority of people are math geniuses and everyone else has no chance at being good at math.”
- “Being good at math means being able to instantly solve any math problem thrown at you.”
Mental Traps to Avoid

“Everyone else has been doing math since before they were born and there is no way I'll ever be as good as them.”

- “A small minority of people are math geniuses and everyone else has no chance at being good at math.”

“Being good at math means being able to instantly solve any math problem thrown at you.”
Pro Tip #1:

Never Confuse Experience for Talent
Pro Tip #2: Have a Growth Mindset
Fun Math Question

Suppose you improve at some skill at a rate of 1% per day. How much better at that skill will you be by the end of the year?

After one day, you're 1.01 times better. After two days, you're \((1.01)^2\) times better.

After one year, you'll be \((1.01)^{365} \approx 37.8\) times better!
Pro Tip #3:

Avoid an Ingroup/Outgroup Mindset
Mental Traps to Avoid

- “Everyone else has been doing math since before they were born and there is no way I'll ever be as good as them.”
- “A small minority of people are math geniuses and everyone else has no chance at being good at math.”
- “Being good at math means being able to instantly solve any math problem thrown at you.”
Mental Traps to Avoid

“Everyone else has been doing math since before they were born and there is no way I'll ever be as good as them.”

“A small minority of people are math geniuses and everyone else has no chance at being good at math.”

• “Being good at math means being able to instantly solve any math problem thrown at you.”
Simple Open Problems

• Math is often driven by seemingly simple problems that no one knows the answer to.

• Example: the **integer brick problem**:

 Is there a rectangular brick where any line connecting two corners has integer length?

• Having open problems like these drives the field forward – it motivates people to find new discoveries and to invent new techniques.
Don't Psych Yourself Out

- It is *perfectly normal* to get stuck or be confused when learning math.
- We've all been on the Struggle Bus. Don't be afraid to ask for help!
Getting Good at Math

- **Engage with the concepts.** Work through lots of practice problems. Play around with new terms and definitions on your own time to see how they work.

- **Ask for help when you need it.** We're here to help you. We want you to succeed, so let us know what we can do to help!

- **Work in groups.** Get help from your problem set partner, the TAs, and your CS103A buddies.
Today's Plan

- Review some concepts from high-school mathematics (different types of numbers, polynomials, and inequalities.)
- Review set theory concepts from the first lecture.
- Play around with those concepts to get a familiarity with how they work.
Recommendations

• Read the “Guide to Elements and Subsets” on the course website for practice with the \in and \subseteq relations.

• Read the “Mathematical Prerequisites” handout for a review of some key mathematical ideas.

• Read Chapter 1 of the course notes for a more thorough introduction to the concepts from the first lecture.
A brief intermission:
A magic trick!
Thinking About Problems

● Is there some sort of pattern or underlying structure?

● Does this procedure always work? What happens if I tweak the initial assumptions? (in this scenario, what if I flipped two or more cards? What if I changed the size of the grid?)

● Why, fundamentally, does this work? How come the bottom right hand card is always consistent with the added row and column?
A Cool Application

- Error correcting codes leverage this same concept of sending some extra redundant information to allow messages to be transmitted over unreliable channels.
Back to set theory!
Set Theory Concept Check

• If you haven’t already, take a minute or two to introduce yourself to your group!

• As a warmup, briefly recap the following set theory symbols one by one within your group:

\[\in \quad \notin \quad \emptyset \quad \mathbb{N} \quad \mathbb{Z} \quad \mathbb{R} \quad \cup \quad \cap \quad - \quad \Delta \quad \subseteq \quad \subseteq \quad \emptyset \quad | \quad | \quad \aleph_0 \]

Go around in a circle and have someone explain what the symbol means and give an example of how it might be used.
Attendance Problems 0

• Now, spend the next few minutes working through Attendance Problems 0 individually.

• Once everyone has had the chance to attempt everything on their own, discuss within your groups.

• Similar to the previous exercise, go around in a circle and have each person explain one problem.
Before You Leave...

Turn in:

- Attendance Problems 0

Pick up:

- Homework Problems 1
- Attendance Problems 1
- Solutions to Practice Problems 0