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Problems for Week Four

Problem One: Concept Checks

You know the drill. © Here's a review from the topics from last week.
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Give two examples of binary relations over the set N.

What three properties must a binary relation have to have in order to be an equivalence rela-
tion? Give the first-order definitions of each of those properties. For each definition of a
property, explain how you would write a proof that a binary relation R has that property.

If R is an equivalence relation over a set A and a is an element of A, what does the notation
[a]r mean? Intuitively, what does it represent?

What three properties must a binary relation have to have in order to be a strict order? Give
the first-order definitions of each of those properties. For each definition of a property, ex-
plain how you would write a proof that a binary relation R has that property.

What is a Hasse diagram? Give an example.
What does the notation f: A — B mean?

Let f : A — B be a function. Express, in first-order logic, what property f has to satisfy to be
an injection. Then, based on the structure of that formula, explain how you would write a
proof that f is injective.

Negate your statement from part (vii) and simplify it as much as possible. Then, based on
the structure of your formula, explain how you would write a proof that f is not injective.

Let f : A — B be a function. Express, in first-order logic, what property f has to satisfy to be
a surjection. Then, based on the structure of that formula, explain how you would write a
proof that f is surjective.

Negate your statement from part (ix) and simplify it as much as possible. Then, based on
the structure of your formula, explain how you would write a proof that f is not surjective.

Let f : A — B be a function. What properties must f have to be a bijection? How would you
write a proof that f is bijective?

What would you need to prove to show that f is not a bijection?
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Problem Two: Equivalence Relations
This question explores various properties of equivalence relations.
1. Inlecture, we proved that the binary relation ~ over Z defined as follows is an equivalence relation:
a~b if a+b is even.
Consider this new relation # defined over Z:
a#b if a+b is odd.
Is # an equivalence relation? If so, prove it. If not, disprove it.

ii. How many equivalence classes are there for the ~ relation defined above? What are they?

Problem Three: Inverse Relations

Let R be a binary relation over a set A. We can define a new relation over A called the inverse relation of
R, denoted R, as follows:

xRy if yRx
This question explores properties of inverse relations.
i.  What is the inverse of the < relation over Z? Briefly justify your answer.
ii. What is the inverse of the = relation over Z? Briefly justify your answer.

iii. Prove or disprove: if R is an equivalence relation over A, then R is an equivalence relation over A.

Problem Four: Monotone Functions
A function f : R — R is called monotone increasing if the following is true:
VxeR.VyeR. (x<y— f(x) < f(y)
This problem explores properties of monotone increasing functions.
1. Prove or disprove: every monotone increasing function is injective.

1. Prove or disprove: every injective function from R to R is monotone increasing.

Problem Five: Involutions
A function f: A — A is called an involution if f(f(x)) = x for all x € A.
i. Find three different examples of involutions from Z to Z. Briefly justify your answers.

ii. Prove that if f is an involution, then f is a bijection.

Problem Six: Functions and Relations — Together!

Let f : A — B be an arbitrary function. Define a new binary relation ~ over A as follows:

x~y it f) = £)

Prove that ~ is an equivalence relation over A.
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