Problems for Week Four

Problem One: Concept Checks

You know the drill. ☺ Here's a review from the topics from last week.

i. Give two examples of binary relations over the set \(\mathbb{N} \).

ii. What three properties must a binary relation have to have in order to be an equivalence relation? Give the first-order definitions of each of those properties. For each definition of a property, explain how you would write a proof that a binary relation \(R \) has that property.

iii. If \(R \) is an equivalence relation over a set \(A \) and \(a \) is an element of \(A \), what does the notation \([a]_R\) mean? Intuitively, what does it represent?

iv. What three properties must a binary relation have to have in order to be a strict order? Give the first-order definitions of each of those properties. For each definition of a property, explain how you would write a proof that a binary relation \(R \) has that property.

v. What is a Hasse diagram? Give an example.

vi. What does the notation \(f : A \rightarrow B \) mean?

vii. Let \(f : A \rightarrow B \) be a function. Express, in first-order logic, what property \(f \) has to satisfy to be an injection. Then, based on the structure of that formula, explain how you would write a proof that \(f \) is injective.

viii. Negate your statement from part (vii) and simplify it as much as possible. Then, based on the structure of your formula, explain how you would write a proof that \(f \) is not injective.

ix. Let \(f : A \rightarrow B \) be a function. Express, in first-order logic, what property \(f \) has to satisfy to be a surjection. Then, based on the structure of that formula, explain how you would write a proof that \(f \) is surjective.

x. Negate your statement from part (ix) and simplify it as much as possible. Then, based on the structure of your formula, explain how you would write a proof that \(f \) is not surjective.

xi. Let \(f : A \rightarrow B \) be a function. What properties must \(f \) have to be a bijection? How would you write a proof that \(f \) is bijective?

xii. What would you need to prove to show that \(f \) is not a bijection?
Problem Two: Equivalence Relations
This question explores various properties of equivalence relations.

i. In lecture, we proved that the binary relation ∼ over ℤ defined as follows is an equivalence relation:
 \[a \sim b \text{ if } a+b \text{ is even.} \]
 Consider this new relation # defined over ℤ:
 \[a \# b \text{ if } a+b \text{ is odd.} \]
 Is # an equivalence relation? If so, prove it. If not, disprove it.

ii. How many equivalence classes are there for the ∼ relation defined above? What are they?

Problem Three: Inverse Relations
Let \(R \) be a binary relation over a set \(A \). We can define a new relation over \(A \) called the inverse relation of \(R \), denoted \(R^{-1} \), as follows:
 \[xR^{-1}y \text{ if } yRx \]
This question explores properties of inverse relations.

i. What is the inverse of the < relation over ℤ? Briefly justify your answer.

ii. What is the inverse of the = relation over ℤ? Briefly justify your answer.

iii. Prove or disprove: if \(R \) is an equivalence relation over \(A \), then \(R^{-1} \) is an equivalence relation over \(A \).

Problem Four: Monotone Functions
A function \(f : \mathbb{R} \rightarrow \mathbb{R} \) is called monotone increasing if the following is true:
 \[\forall x \in \mathbb{R}. \forall y \in \mathbb{R}. (x < y \rightarrow f(x) < f(y)) \]
This problem explores properties of monotone increasing functions.

i. Prove or disprove: every monotone increasing function is injective.

ii. Prove or disprove: every injective function from \(\mathbb{R} \) to \(\mathbb{R} \) is monotone increasing.

Problem Five: Involutions
A function \(f : A \rightarrow A \) is called an involution if \(f(f(x)) = x \) for all \(x \in A \).

i. Find three different examples of involutions from ℤ to ℤ. Briefly justify your answers.

ii. Prove that if \(f \) is an involution, then \(f \) is a bijection.

Problem Six: Functions and Relations – Together!
Let \(f : A \rightarrow B \) be an arbitrary function. Define a new binary relation ∼ over \(A \) as follows:
 \[x \sim y \text{ if } f(x) = f(y) \]
Prove that ∼ is an equivalence relation over \(A \).