Practice Problems 8

Context-Free Grammars
Here’s some practice problems to help you get comfortable designing CFGs. There are a number of patterns that come up over the course of these problems, and we hope that by the time you’ve finished working through them you have a deeper understanding of how CFGs work!

i. Let \(\Sigma = \{a, b\} \) and let \(L = \{ w \in \Sigma^* \mid w \text{ has no } a \text{'s or has no } b \text{'s } \}. \) Write a CFG for \(L. \)

ii. Let \(\Sigma = \{a, b\} \) and let \(L = \{ w \in \Sigma^* \mid w \text{ has at least one } a \text{ and at least one } b \}. \) Write a CFG for \(L. \)

iii. Let \(\Sigma = \{a, b\} \) and let \(L = \{ a^nb^n \mid n \in \mathbb{N} \}. \) Write a CFG for \(L. \)

iv. Let \(\Sigma = \{a, b\} \) and let \(L = \{ a^n b^{2n} \mid n \in \mathbb{N} \}. \) Write a CFG for \(L. \)

v. Let \(\Sigma = \{a, b\} \) and let \(L = \{ a^n b^m \mid n, m \in \mathbb{N} \text{ and } n \leq m \leq 5n \}. \) Write a CFG for \(L. \)

vi. Let \(\Sigma = \{a, b\} \) and let \(L = \{ a^n b^m \mid n, m \in \mathbb{N} \text{ and } n \neq m \}. \) Write a CFG for \(L. \)

vii. Let \(\Sigma = \{a, b, c\} \) and let \(L = \{ a^n b^m c^p \mid n, m, p \in \mathbb{N} \text{ and } n = m \text{ or } n = p \}. \) Write a CFG for \(L. \)

viii. Let \(\Sigma = \{a, b\} \) and let \(L = \{ a^n b^n \mid n \in \mathbb{N} \}. \) Write a CFG for \(L^*, \) the Kleene closure of \(L. \)

ix. Let \(\Sigma = \{a, b\} \) and let \(L = \{ a^n b^m \mid n, m \in \mathbb{N} \text{ and either } n=2m \text{ or } m=2n \}. \) Write a CFG for \(L. \)

x. Let \(\Sigma = \{a, b\} \) and let \(L = \{ a^n b^n \mid n \in \mathbb{N} \}. \) Write a CFG for \(\overline{L}, \) the complement of \(L. \)

Turing Machines
Although much of our discussion of Turing machines takes place at a high level, it's still instructive to try to design Turing machines at the level of individual states.

i. Let \(\Sigma = \{\emptyset, 1\} \) and let \(L = \{ w \in \Sigma^* \mid w \text{ is a palindrome } \} \) (recall that a palindrome is a string that's the same when read forwards and backwards). Draw a state-transition diagram of a TM for \(L. \)

ii. Draw the state-transition diagram for a TM whose language is \(\{ a^n b^n c^n \mid n \in \mathbb{N} \}. \)
The Story So Far
From the “lava diagram” in lecture, you probably noticed that
\[\text{REG} \subseteq \text{R} \subseteq \text{RE} \]
Here, \text{REG} is the class of all regular languages, \text{R} is the class of all decidable languages, and \text{RE} is the class of all recognizable languages.

On Problem Set Eight, you’ll show that \text{REG} \subseteq \text{R}.

i. Show that \text{REG} \neq \text{R}.

ii. Show that \text{R} \subseteq \text{RE}. (Hint: What's the definition of \text{R}? What's the definition of \text{RE}? Expand out the requisite terms and see what you find.)

Closure Properties of \text{R}
This question explores various closure properties of \text{R}. Because \text{R} corresponds to decidable problems, languages in \text{R} are precisely the languages for which you can write a method
\[\text{bool } \text{inL}(\text{string } w) \]
such that
- for any string \(w \in L \), calling \text{inL}(w) returns true.
- for any string \(w \notin L \), calling \text{inL}(w) returns false.

This means that we can reason about closure properties of the decidable languages by writing actual pieces of code.

i. Let \(L_1 \) and \(L_2 \) be decidable languages over the same alphabet \(\Sigma \). Prove that \(L_1 \cup L_2 \) is also decidable. To do so, suppose that you have methods \(\text{inL1} \) and \(\text{inL2} \) matching the above conditions, then show how to write a method \(\text{inL1uL2} \) with the appropriate properties. Then, briefly justify why your construction is correct.

ii. Repeat problem (i), except proving that the \text{R} languages are closed under concatenation.

Decidable Languages
All regular languages are decidable, but below is a purported proof that the regular language described by the regular expression \(a^*b \) is undecidable:

\textbf{Theorem:} \(a^*b \) is undecidable.

\textbf{Proof:} By contradiction; assume \(a^*b \) is decidable. Let \(D \) be a decider for it. Consider what happens when we run \(D \) on a string of infinitely many \(a \)'s followed by a \(b \) and on a string of infinitely many \(a \)'s. Let's call this first string \(x \) and the second string \(y \). Since \(D \) is a decider, it halts on all inputs, and therefore cannot run for an infinitely long time. Therefore, \(D \) must halt before reading the last character of \(x \) and the last character of \(y \). Because \(x \) and \(y \) are the same except for their last character, we see that \(D \) must have the same behavior when run on \(x \) and when run on \(y \). If \(D \) accepts \(x \), then \(D \) also accepts \(y \), but \(y \) is not in the language \(a^*b \). Otherwise, \(D \) rejects \(x \), but \(x \) is in the language \(a^*b \). Both cases contradict the fact that \(D \) is a decider for \(a^*b \). We have reached a contradiction, so our assumption must have been wrong. Thus \(a^*b \) is undecidable. \(\blacksquare \)

What's wrong with this proof?