
    

Mathematical Logic 



    

Where We Are Now 

● Our coverage of logic focused on these topics: 

● Propositional variables. 

● Propositional connectives. 

● Propositional equivalences. 

● Predicates, functions, and constant symbols. 

● Objects and propositions. 

● Quantifiers. 

● Evaluating first-order formulas relative to a world. 

● Translating into first-order logic. 

● Negating and simplifying first-order formulas. 

● Your goal this week is to keep your proof skills sharp 
while mastering the ins and outs of first-order logic. 



    

Things You Should Do Today 

● Review the solutions for Problem Set One 
and make sure you completely and 
unambiguously understand the answers. Ask 
for help if this isn't the case! 

● Read the “Guide to Negating Formulas” and 
“Guide to First-Order Logic Translations” on the 
course website to get more exposure and 
practice with those skills. 

● Continue working through PS2. 



    

Things You Should Do Tomorrow 

● Look over your feedback on PS1 (and the PS2 checkpoint) 

 and make sure you understand all the feedback you get 

completely and unambiguously. Ask the course staff for 
help, either on Piazza or in office hours, if you don't. 

● Continue working on PS2. 

● Start reviewing your partner's answers and 
compiling a single, definitive set of answers that 
you're going to turn in. 

● Stop by office hours to get feedback on your proofs 
and take that feedback seriously. 

● (Also, complete the CS103A assignment after Wednesday’s 
lecture—it is due Friday at 2:30 pm!) 



Topics You Wanted More Practice With 

● First-order logic and translations [today’s topic] 

● Proofs and disproofs [more next week] 

● Truth tables 

● For now, make sure you look at the PS1 solutions  
and feedback!! 



    

Mechanics: Negating Statements 



    

∀p. (Person(p) → 
∃q. (Person(q) ∧ p ≠ q ∧ 

Loves(p, q) 
) 

) 



    

¬∀p. (Person(p) → 
∃q. (Person(q) ∧ p ≠ q ∧ 

Loves(p, q) 
) 

) 



Formulas. 

    

¬∀p. (Person(p) → 
∃q. (Person(q) ∧ p ≠ q ∧ 

Loves(p, q) 
) 

) Useful Resource: 

Go to cs103.stanford.edu and 
read the Guide to Negating 

Useful Resource: 

Go to cs103.stanford.edu and 
read the Guide to Negating 

Formulas. 



    

¬∀p. (Person(p) → 
∃q. (Person(q) ∧ p ≠ q ∧ 

Loves(p, q) 
) 

) ¬∀x. A 

∃x. ¬A 



    

¬∀p. (Person(p) → 
∃q. (Person(q) ∧ p ≠ q ∧ 

Loves(p, q) 
) 

) ¬∀x. A 

∃x. ¬A 



    

¬∀p. (Person(p) → 
∃q. (Person(q) ∧ p ≠ q ∧ 

Loves(p, q) 
) 

) ¬∀x. A 

∃x. ¬A 



    

∃p. ¬(Person(p) → 
∃q. (Person(q) ∧ p ≠ q ∧ 

Loves(p, q) 
) 

) ¬∀x. A 

∃x. ¬A 



    

∃p. ¬(Person(p) → 
∃q. (Person(q) ∧ p ≠ q ∧ 

Loves(p, q) 
) 

) 



    

∃p. ¬(Person(p) → 
∃q. (Person(q) ∧ p ≠ q ∧ 

Loves(p, q) 
) 

) ¬(A → B) 

A ∧ ¬B 



    

∃p. ¬(Person(p) → 
∃q. (Person(q) ∧ p ≠ q ∧ 

Loves(p, q) 
) 

) ¬(A → B) 

A ∧ ¬B 



    

∃p. ¬(Person(p) → 
∃q. (Person(q) ∧ p ≠ q ∧ 

Loves(p, q) 
) 

) ¬(A → B) 

A ∧ ¬B 



    

∃p. (Person(p) ∧ 
¬∃q. (Person(q) ∧ p ≠ q ∧ 

Loves(p, q) 
) 

) ¬(A → B) 

A ∧ ¬B 



    

∃p. (Person(p) ∧ 
¬∃q. (Person(q) ∧ p ≠ q ∧ 

Loves(p, q) 
) 

) 



    

∃p. (Person(p) ∧ 
¬∃q. (Person(q) ∧ p ≠ q ∧ 

Loves(p, q) 
) 

) ¬∃x. A 

∀x. ¬A 



    

∃p. (Person(p) ∧ 
¬∃q. (Person(q) ∧ p ≠ q ∧ 

Loves(p, q) 
) 

) ¬∃x. A 

∀x. ¬A 



    

∃p. (Person(p) ∧ 
¬∃q. (Person(q) ∧ p ≠ q ∧ 

Loves(p, q) 
) 

) ¬∃x. A 

∀x. ¬A 



    

∃p. (Person(p) ∧ 
∀q. ¬(Person(q) ∧ p ≠ q ∧ 

Loves(p, q) 
) 

) ¬∃x. A 

∀x. ¬A 



    

∃p. (Person(p) ∧ 
∀q. ¬(Person(q) ∧ p ≠ q ∧ 

Loves(p, q) 
) 

) 



    

∃p. (Person(p) ∧ 
∀q. ¬(Person(q) ∧ p ≠ q ∧ 

Loves(p, q) 
) 

) ¬(A ∧ B) 

A → ¬B 



    

∃p. (Person(p) ∧ 
∀q. ¬(Person(q) ∧ p ≠ q ∧ 

Loves(p, q) 
) 

) ¬(A ∧ B) 

A → ¬B 



    

∃p. (Person(p) ∧ 
∀q. ¬(Person(q) ∧ p ≠ q ∧ 

Loves(p, q) 
) 

) ¬(A ∧ B) 

A → ¬B 



    

∃p. (Person(p) ∧ 
∀q. (Person(q) ∧ p ≠ q → 

¬Loves(p, q) 
) 

) ¬(A ∧ B) 

A → ¬B 



    

∃p. (Person(p) ∧ 
∀q. (Person(q) ∧ p ≠ q → 

¬Loves(p, q) 
) 

) 



    

∀p. (Person(p) → 
∃q. (Person(q) ∧ p ≠ q ∧ 

Loves(p, q) 
) 

) 

∃p. (Person(p) ∧ 
∀q. (Person(q) ∧ p ≠ q → 

¬Loves(p, q) 
) 

) 



See what you come up with!     

∃p. (Person(p) ∧ 
∀q. (Person(q) ∧ p ≠ q → 

Loves(q, p) 
) 

) 

Your turn! 

Try negating this formula with 

the other folks at your table. 

Your turn! 

Try negating this formula with 

the other folks at your table. 

See what you come up with! 



    

¬∃p. (Person(p) ∧ 
∀q. (Person(q) ∧ p ≠ q → 

Loves(q, p) 
) 

) 



    

∀p. ¬(Person(p) ∧ 
∀q. (Person(q) ∧ p ≠ q → 

Loves(q, p) 
) 

) 



    

∀p. (Person(p) → 
¬∀q. (Person(q) ∧ p ≠ q → 

Loves(q, p) 
) 

) 



    

∀p. (Person(p) → 
∃q. ¬(Person(q) ∧ p ≠ q → 

Loves(q, p) 
) 

) 



    

∀p. (Person(p) → 
∃q. (Person(q) ∧ p ≠ q ∧ 

¬Loves(q, p) 
) 

) 



    

∃p. (Person(p) ∧ 
∀q. (Person(q) ∧ p ≠ q → 

Loves(q, p) 
) 

) 

∀p. (Person(p) → 
∃q. (Person(q) ∧ p ≠ q ∧ 

¬Loves(q, p) 
) 

) 



    

Techniques: Translating Statements 



    

Common Patterns 

● A statement of the form 

∀x. (P(x) → Q(x)) 

can be read as “all P's are Q's.” 

● A statement of the form 

∃x. (P(x) ∧ Q(x)) 

can be read as “there is a P that is also a Q” or 
“some P's are Q's.” 

● Remember: If you see ∃ paired with → or ∀ paired 
with ∧, the statement is probably incorrect! 



    

Given the predicates 
  

· Person(p), which states that p is a person, and 
· CanLearnFrom(x, y), which says that x can learn from y, 

  

write a statement in first-order logic that says “everyone has 
someone they can learn from.” 



    

Everyone has someone they can learn from 

  



    

Every person p has someone they can learn from   

  



    

Every person p has someone they can learn from   

  

“All As are Bs.” 

∀x. (A(x) → B(x)) 



    

∀p. (Person(p) → 
  p has someone they can learn from 
) 



    

∀p. (Person(p) → 
  there is a person q that p can learn from 
) 



    

∀p. (Person(p) → 
  there is a person q that p can learn from 
) 

“Some As are Bs.” 

∃x. (A(x) ∧ B(x)) 



    

∀p. (Person(p) → 
∃q. (Person(q) ∧ 

p can learn from q 
) 

) 



    

∀p. (Person(p) → 
∃q. (Person(q) ∧ 

CanLearnFrom(p, q) 
) 

) 



    

∀p. (Person(p) → 
∃q. (Person(q) ∧ 

CanLearnFrom(p, q) 
) 

) 



    

Consider this statement: 

“If someone is happy, then everyone is happy.” 

What is the contrapositive of this statement? 



    

If someone is happy, then everyone is happy 



    

someone is happy  → everyone is happy 



    

someone is happy  → (∀x. Happy(x)) 



    

(∃x. Happy(x)) → (∀x. Happy(x)) 



    

(∃x. Happy(x)) → (∀x. Happy(x)) 



    

(∃x. Happy(x)) → (∀x. Happy(x)) 



    

¬(∀x. Happy(x)) → ¬(∃x. Happy(x)) 



    

(∃x. ¬Happy(x)) → ¬(∃x. Happy(x)) 



    

(∃x. ¬Happy(x)) → (∀x. ¬Happy(x)) 



    

(∃x. ¬Happy(x)) → (∀x. ¬Happy(x)) 

“If someone is not happy, then everyone is not happy.” 

CONTRAPOSITIVE of “If someone is happy, then everyone is happy” 



    

Consider this statement: 

“If someone is happy, then everyone is happy.” 

What is the negation of this statement? 



    

(∃x. Happy(x)) → (∀x. Happy(x)) 



    

(∃x. Happy(x)) → (∀x. Happy(x)) 

¬((∃x. Happy(x)) → (∀x. Happy(x))) 



    

(∃x. Happy(x)) → (∀x. Happy(x)) 

(∃x. Happy(x)) ∧ ¬(∀x. Happy(x)) 



    

(∃x. Happy(x)) → (∀x. Happy(x)) 

(∃x. Happy(x)) ∧ (∃x. ¬Happy(x)) 



    

(∃x. Happy(x)) → (∀x. Happy(x)) 

(∃x. Happy(x)) ∧ (∃x. ¬Happy(x)) 

“Someone is happy and someone is not happy.” 

“If someone is happy, then everyone is happy” 


