Mathematical Logic

Where We Are Now

- Our coverage of logic focused on these topics:
 - Propositional variables.
 - Propositional connectives.
 - Propositional equivalences.
 - Predicates, functions, and constant symbols.
 - Objects and propositions.
 - Quantifiers.
 - Evaluating first-order formulas relative to a world.
 - Translating into first-order logic.
 - Negating and simplifying first-order formulas.
- Your goal this week is to keep your proof skills sharp while mastering the ins and outs of first-order logic.

Things You Should Do Today

- Review the solutions for Problem Set One and make sure you *completely* and *unambiguously* understand the answers. Ask for help if this isn't the case!
- Read the "Guide to Negating Formulas" and "Guide to First-Order Translation" on the course website to get more exposure and practice with those skills.
- Continue working through PS2.

Things You Should Do Tomorrow

- Look over your feedback on PS1 and make sure you understand all the feedback you get *completely* and *unambiguously*. Ask the course staff for help, either on Piazza or in office hours, if you don't.
- Continue working on PS2. If at all possible, aim to complete two of Q8, Q9, and Q10 and start writing up your answers.
- Start reviewing your partner's answers and compiling a single, definitive set of answers that you're going to turn in.
- Stop by office hours to get feedback on your proofs and take that feedback seriously.

Mechanics: *Negating Statements*

```
 \forall p. (Person(p) \rightarrow \exists q. (Person(q) \land p \neq q \land Loves(p, q))
```

```
\neg \forall p. (Person(p) \rightarrow \exists q. (Person(q) \land p \neq q \land Loves(p, q))
```

$\neg \forall p. (Person(p) \rightarrow \exists q. (Person(q) \land p \neq q \land Loves(p, q))$

Useful Resource:

Go to cs103.stanford.edu and read the Guide to Negating Formulas.

```
\neg \forall p. (Person(p) \rightarrow \exists q. (Person(q) \land p \neq q \land Loves(p, q))
```

$$\neg \forall x. A$$
$$\exists x. \neg A$$

```
\neg \forall p. (Person(p) \rightarrow \exists q. (Person(q) \land p \neq q \land Loves(p, q))
```

$$\neg \forall x. A$$
$$\exists x. \neg A$$

```
\neg \forall p. (Person(p) \rightarrow \exists q. (Person(q) \land p \neq q \land Loves(p, q))
```

$$\neg \forall x. A$$
$$\exists x. \neg A$$

```
\exists p. \neg (Person(p) \rightarrow \\ \exists q. (Person(q) \land p \neq q \land \\ Loves(p, q) \\ \end{pmatrix}
```

$$\neg \forall x. A$$
$$\exists x. \neg A$$

```
\exists p. \neg(Person(p) \rightarrow \exists q. (Person(q) \land p \neq q \land Loves(p, q))
```

```
\exists p. \neg(Person(p) \rightarrow \exists q. (Person(q) \land p \neq q \land Loves(p, q))
```

$$\frac{\neg (A \to B)}{A \land \neg B}$$

```
 \exists p. \neg(Person(p) \rightarrow \\ \exists q. (Person(q) \land p \neq q \land \\ Loves(p, q) \\ )
```

$$\frac{\neg (A \to B)}{A \land \neg B}$$

```
\exists p. \neg (Person(p)) \rightarrow \\ \exists q. (Person(q) \land p \neq q \land \\ Loves(p, q) \end{cases}
```

$$\frac{\neg (A \to B)}{A \land \neg B}$$

$$\frac{\neg (A \to B)}{A \land \neg B}$$

```
\exists p. (Person(p) \land \neg \exists q. (Person(q) \land p \neq q \land Loves(p, q))
```

$$\neg \exists x. A$$

$$\forall x. \neg A$$

$$\neg \exists x. A$$

$$\forall x. \neg A$$

$$\neg \exists x. A$$
$$\forall x. \neg A$$

$\exists p. (Person(p) \land \forall q. \neg (Person(q) \land p \neq q \land Loves(p, q))$

$$\neg \exists x. A$$

$$\forall x. \neg A$$

```
\exists p. (Person(p) \land \forall q. \neg(Person(q) \land p \neq q \land Loves(p, q))
```

$\exists p. (Person(p) \land \forall q. \neg(Person(q) \land p \neq q \land Loves(p, q))$

$$\frac{\neg (A \land B)}{A \rightarrow \neg B}$$

$\exists p. (Person(p) \land \forall q. \neg(Person(q) \land p \neq q \land Loves(p, q))$

$$\frac{\neg (A \land B)}{A \rightarrow \neg B}$$

$\exists p. (Person(p) \land \forall q. \neg(Person(q) \land p \neq q \land Loves(p, q))$

$$\frac{\neg (A \land B)}{A \rightarrow \neg B}$$

$\exists p. (Person(p) \land \forall q. (Person(q) \land p \neq q \rightarrow \neg Loves(p, q))$

$$\frac{\neg (A \land B)}{A \rightarrow \neg B}$$

```
\exists p. (Person(p) \land \forall q. (Person(q) \land p \neq q \rightarrow \neg Loves(p, q))
```

```
\forall p. (Person(p) \rightarrow
   \exists q. (Person(q) \land p \neq q \land
       Loves(p, q)
\exists p. (Person(p) \land
   \forall q. \ (Person(q) \land p \neq q \rightarrow
       \neg Loves(p, q)
```

$\exists p. (Person(p) \land \forall q. (Person(q) \land p \neq q \rightarrow Loves(q, p))$

Your turn:

Try negating this formula with the other folks at your table. See what you come up with!

```
\neg \exists p. (Person(p) \land \forall q. (Person(q) \land p \neq q \rightarrow Loves(q, p))
```

```
 \forall p. \neg(Person(p) \land \forall q. (Person(q) \land p \neq q \rightarrow Loves(q, p))
```

```
 \forall p. (Person(p) \rightarrow \\ \neg \forall q. (Person(q) \land p \neq q \rightarrow \\ Loves(q, p) \\ )
```

```
\begin{array}{l} \forall p. \ (Person(p) \rightarrow \\ \exists q. \ \neg(Person(q) \land p \neq q \rightarrow \\ Loves(q, p) \end{array}\right) \end{array}
```

```
 \forall p. (Person(p) \rightarrow \exists q. (Person(q) \land p \neq q \land \neg Loves(q, p)
```

```
\exists p. (Person(p) \land
   \forall q. \ (Person(q) \land p \neq q \rightarrow
       Loves(q, p)
\forall p. (Person(p) \rightarrow
   \exists q. (Person(q) \land p \neq q \land
       \neg Loves(q, p)
```

Techniques: *Translating Statements*

Common Patterns

• A statement of the form

 $\forall x. \ (P(x) \rightarrow Q(x))$

can be read as "all P's are Q's."

• A statement of the form

 $\exists x. \ (P(x) \land Q(x))$

can be read as "there is a P that is also a Q" or "some P's are Q's."

• **Remember:** If you see \exists paired with \rightarrow or \forall paired with \land , the statement is probably incorrect!

Given the predicates

- \cdot *Person*(*p*), which states that *p* is a person, and
- · CanLearnFrom(x, y), which says that x can learn from y,

write a statement in first-order logic that says "everyone has someone they can learn from."

Everyone has someone they can learn from

Every person p has someone they can learn from

Every person p has someone they can learn from

"All As are Bs." $\forall x. (A(x) \rightarrow B(x))$

```
\forall p. (Person(p) \rightarrow p has someone they can learn from
```

)

```
\forall p. (Person(p) \rightarrow there is a person q that p can learn from the second second
```

)

```
\forall p. (Person(p) \rightarrow there is a person q that p can learn from the second second
```

"Some As are Bs."

 $\exists x. \ (A(x) \land B(x))$

```
\begin{array}{l} \forall p. \ (Person(p) \rightarrow \\ \exists q. \ (Person(q) \land \\ p \ can \ learn \ from \ q \\ \end{array}) \end{array}
```

```
 \begin{array}{l} \forall p. \ (Person(p) \rightarrow \\ \exists q. \ (Person(q) \land \\ CanLearnFrom(p, q) \\ \end{array} \end{array}
```

Consider this statement:

"If someone is happy, then everyone is happy."

What is the *contrapositive* of this statement?

If someone is happy, then everyone is happy

someone is happy \rightarrow everyone is happy

someone is happy \rightarrow ($\forall x. Happy(x)$)

 $\neg(\forall x. Happy(x)) \rightarrow \neg(\exists x. Happy(x))$

 $(\exists x. \neg Happy(x)) \rightarrow \neg (\exists x. Happy(x))$

"If someone is not happy, then everyone is not happy."

Consider this statement:

"If someone is happy, then everyone is happy."

What is the *negation* of this statement?

 $(\exists x. Happy(x)) \rightarrow (\forall x. Happy(x))$ $\neg((\exists x. Happy(x)) \rightarrow (\forall x. Happy(x)))$ $(\exists x. Happy(x)) \rightarrow (\forall x. Happy(x))$ $(\exists x. Happy(x)) \land \neg(\forall x. Happy(x))$ $(\exists x. Happy(x)) \rightarrow (\forall x. Happy(x))$ $(\exists x. Happy(x)) \land (\exists x. \neg Happy(x))$ $(\exists x. Happy(x)) \rightarrow (\forall x. Happy(x))$ $(\exists x. Happy(x)) \land (\exists x. \neg Happy(x))$ "Someone is happy and someone is not happy."