
  

Mathematical Logic



  

Where We Are Now

● Week 2 covered these key topics:
● Propositional variables.
● Propositional connectives.
● Propositional equivalences.
● Predicates, functions, and constant symbols.
● Objects and propositions.
● Quantifiers.
● Evaluating first-order formulas relative to a world.
● Translating into first-order logic.
● Negating and simplifying first-order formulas.

● Your goal this week is to keep your proof skills sharp 
while mastering the ins and outs of first-order logic.



  

Where We're Going

● Week 3 is about discrete structures:
● Binary relations. (Yesterday)
● Equivalence relations. (Yesterday/Tomorrow)
● Strict order relations (Tomorrow)
● Functions (Friday)

● From yesterday, you should know what a binary 
relation is, what the terms reflexive, symmetric, 
and transitive mean, and how to prove that a 
binary relation has those properties.



  

Things You Should Do Today

● Review the checkpoint problem from Problem 
Set Two and make sure you completely and 
unambiguously understand the answers. Ask 
for help if this isn't the case!

● Read the “Guide to Negating Formulas” and 
“Guide to First-Order Translation” on the 
course website to get more exposure and 
practice with those skills.

● Continue working through PS2. Aim to
complete Q1 – Q6 by tonight, if possible.



  

Things You Should Do Tomorrow

● Look over your feedback on PS1 and make sure you 
understand all the feedback you get completely 
and unambiguously. Ask the course staff for help, 
either on Piazza or in office hours, if you don't.

● Continue working on PS2. If at all possible, aim to 
complete two of Q7, Q8, and Q9 and start writing
up your answers.

● Start reviewing your partner's answers and 
compiling a single, definitive set of answers that 
you're going to turn in.

● Stop by office hours to get feedback on your proofs 
and take that feedback seriously.



  

Mechanics: Negating Statements



  

∀p. (Person(p) → 
∃q. (Person(q) ∧ p ≠ q ∧

Loves(p, q)
) 

)



  

¬∀p. (Person(p) → 
∃q. (Person(q) ∧ p ≠ q ∧

Loves(p, q)
) 

)



Formulas.

  

¬∀p. (Person(p) → 
∃q. (Person(q) ∧ p ≠ q ∧

Loves(p, q)
) 

) Useful Resource:

Go to cs103.stanford.edu and 
read the Guide to Negating 

Useful Resource:

Go to cs103.stanford.edu and 
read the Guide to Negating 

Formulas.



  

¬∀p. (Person(p) → 
∃q. (Person(q) ∧ p ≠ q ∧

Loves(p, q)
) 

) ¬∀x. A

∃x. ¬A



  

¬∀p. (Person(p) → 
∃q. (Person(q) ∧ p ≠ q ∧

Loves(p, q)
) 

) ¬∀x. A

∃x. ¬A



  

¬∀p. (Person(p) → 
∃q. (Person(q) ∧ p ≠ q ∧

Loves(p, q)
) 

) ¬∀x. A

∃x. ¬A



  

∃p. ¬(Person(p) → 
∃q. (Person(q) ∧ p ≠ q ∧

Loves(p, q)
) 

) ¬∀x. A

∃x. ¬A



  

∃p. ¬(Person(p) → 
∃q. (Person(q) ∧ p ≠ q ∧

Loves(p, q)
) 

)



  

∃p. ¬(Person(p) → 
∃q. (Person(q) ∧ p ≠ q ∧

Loves(p, q)
) 

) ¬(A → B)

A ∧ ¬B



  

∃p. ¬(Person(p) → 
∃q. (Person(q) ∧ p ≠ q ∧

Loves(p, q)
) 

) ¬(A → B)

A ∧ ¬B



  

∃p. ¬(Person(p) → 
∃q. (Person(q) ∧ p ≠ q ∧

Loves(p, q)
) 

) ¬(A → B)

A ∧ ¬B



  

∃p. (Person(p) ∧
¬∃q. (Person(q) ∧ p ≠ q ∧

Loves(p, q)
) 

) ¬(A → B)

A ∧ ¬B



  

∃p. (Person(p) ∧ 
¬∃q. (Person(q) ∧ p ≠ q ∧

Loves(p, q)
) 

)



  

∃p. (Person(p) ∧ 
¬∃q. (Person(q) ∧ p ≠ q ∧

Loves(p, q)
) 

) ¬∃x. A

∀x. ¬A



  

∃p. (Person(p) ∧ 
¬∃q. (Person(q) ∧ p ≠ q ∧

Loves(p, q)
) 

) ¬∃x. A

∀x. ¬A



  

∃p. (Person(p) ∧ 
¬∃q. (Person(q) ∧ p ≠ q ∧

Loves(p, q)
) 

) ¬∃x. A

∀x. ¬A



  

∃p. (Person(p) ∧ 
∀q. ¬(Person(q) ∧ p ≠ q ∧

Loves(p, q)
) 

) ¬∃x. A

∀x. ¬A



  

∃p. (Person(p) ∧ 
∀q. ¬(Person(q) ∧ p ≠ q ∧

Loves(p, q)
) 

)



  

∃p. (Person(p) ∧ 
∀q. ¬(Person(q) ∧ p ≠ q ∧

Loves(p, q)
) 

) ¬(A ∧ B)

A → ¬B



  

∃p. (Person(p) ∧ 
∀q. ¬(Person(q) ∧ p ≠ q ∧

Loves(p, q)
) 

) ¬(A ∧ B)

A → ¬B



  

∃p. (Person(p) ∧ 
∀q. ¬(Person(q) ∧ p ≠ q ∧

Loves(p, q)
) 

) ¬(A ∧ B)

A → ¬B



  

∃p. (Person(p) ∧ 
∀q. (Person(q) ∧ p ≠ q →

¬Loves(p, q)
) 

) ¬(A ∧ B)

A → ¬B



  

∃p. (Person(p) ∧ 
∀q. (Person(q) ∧ p ≠ q →

¬Loves(p, q)
) 

)



  

∀p. (Person(p) → 
∃q. (Person(q) ∧ p ≠ q ∧

Loves(p, q)
) 

)

∃p. (Person(p) ∧ 
∀q. (Person(q) ∧ p ≠ q →

¬Loves(p, q)
) 

)



See what you come up with!  

∃p. (Person(p) ∧ 
∀q. (Person(q) ∧ p ≠ q →

Loves(q, p)
)

)

Your turn!

Try negating this formula with 
the other folks at your table. 

Your turn!

Try negating this formula with 
the other folks at your table. 
See what you come up with!



  

¬∃p. (Person(p) ∧ 
∀q. (Person(q) ∧ p ≠ q →

Loves(q, p)
)

)



  

∀p. ¬(Person(p) ∧ 
∀q. (Person(q) ∧ p ≠ q →

Loves(q, p)
)

)



  

∀p. (Person(p) → 
¬∀q. (Person(q) ∧ p ≠ q →

Loves(q, p)
)

)



  

∀p. (Person(p) → 
∃q. ¬(Person(q) ∧ p ≠ q →

Loves(q, p)
)

)



  

∀p. (Person(p) → 
∃q. (Person(q) ∧ p ≠ q ∧

¬Loves(q, p)
)

)



  

∃p. (Person(p) ∧ 
∀q. (Person(q) ∧ p ≠ q →

Loves(q, p)
)

)

∀p. (Person(p) → 
∃q. (Person(q) ∧ p ≠ q ∧

¬Loves(q, p)
)

)



  

Techniques: Translating Statements



  

Common Patterns

● A statement of the form

∀x. (P(x) → Q(x))

can be read as “all P's are Q's.”
● A statement of the form

∃x. (P(x) ∧ Q(x))

can be read as “there is a P that is also a Q” or 
“some P's are Q's.”

● Remember: If you see ∃ paired with → or ∀ paired 
with ∧, the statement is probably incorrect!



  

Given the predicates
 

· Person(p), which states that p is a person, and
· CanLearnFrom(x, y), which says that x can learn from y,

 

write a statement in first-order logic that says “everyone has 
someone they can learn from.”



  

Everyone has someone they can learn from

 



  

Every person p has someone they can learn from 

 



  

Every person p has someone they can learn from 

 

“All As are Bs.”

∀x. (A(x) → B(x))



  

∀p. (Person(p) →
 p has someone they can learn from
)



  

∀p. (Person(p) →
 there is a person q that p can learn from
)



  

∀p. (Person(p) →
 there is a person q that p can learn from
)

“Some As are Bs.”

∃x. (A(x) ∧ B(x))



  

∀p. (Person(p) →
∃q. (Person(q) ∧

p can learn from q
)

)



  

∀p. (Person(p) →
∃q. (Person(q) ∧

CanLearnFrom(p, q)
)

)



  

Consider this statement:

“If someone is happy, then everyone is happy.”

What is the contrapositive of this statement?



  

If someone is happy, then everyone is happy



  

someone is happy → everyone is happy



  

someone is happy → (∀x. Happy(x))



  

(∃x. Happy(x)) → (∀x. Happy(x))



  

(∃x. Happy(x)) → (∀x. Happy(x))



  

(∃x. Happy(x)) → (∀x. Happy(x))



  

¬(∀x. Happy(x)) → ¬(∃x. Happy(x))



  

(∃x. ¬Happy(x)) → ¬(∃x. Happy(x))



  

(∃x. ¬Happy(x)) → (∀x. ¬Happy(x))



  

(∃x. ¬Happy(x)) → (∀x. ¬Happy(x))

“If someone is not happy, then everyone is not happy.”



  

Consider this statement:

“If someone is happy, then everyone is happy.”

What is the negation of this statement?



  

(∃x. Happy(x)) → (∀x. Happy(x))



  

(∃x. Happy(x)) → (∀x. Happy(x))

¬((∃x. Happy(x)) → (∀x. Happy(x)))



  

(∃x. Happy(x)) → (∀x. Happy(x))

(∃x. Happy(x)) ∧ ¬(∀x. Happy(x))



  

(∃x. Happy(x)) → (∀x. Happy(x))

(∃x. Happy(x)) ∧ (∃x. ¬Happy(x))



  

(∃x. Happy(x)) → (∀x. Happy(x))

(∃x. Happy(x)) ∧ (∃x. ¬Happy(x))

“Someone is happy and someone is not happy.”
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