

Mathematical Logic

Where We Are Now

● Week 2 covered these key topics:
● Propositional variables.
● Propositional connectives.
● Propositional equivalences.
● Predicates, functions, and constant symbols.
● Objects and propositions.
● Quantifiers.
● Evaluating first-order formulas relative to a world.
● Translating into first-order logic.
● Negating and simplifying first-order formulas.

● Your goal this week is to keep your proof skills sharp
while mastering the ins and outs of first-order logic.

Where We're Going

● Week 3 is about discrete structures:
● Binary relations. (Yesterday)
● Equivalence relations. (Yesterday/Tomorrow)
● Strict order relations (Tomorrow)
● Functions (Friday)

● From yesterday, you should know what a binary
relation is, what the terms reflexive, symmetric,
and transitive mean, and how to prove that a
binary relation has those properties.

Things You Should Do Today

● Review the checkpoint problem from Problem
Set Two and make sure you completely and
unambiguously understand the answers. Ask
for help if this isn't the case!

● Read the “Guide to Negating Formulas” and
“Guide to First-Order Translation” on the
course website to get more exposure and
practice with those skills.

● Continue working through PS2. Aim to
complete Q1 – Q6 by tonight, if possible.

Things You Should Do Tomorrow

● Look over your feedback on PS1 and make sure you
understand all the feedback you get completely
and unambiguously. Ask the course staff for help,
either on Piazza or in office hours, if you don't.

● Continue working on PS2. If at all possible, aim to
complete two of Q7, Q8, and Q9 and start writing
up your answers.

● Start reviewing your partner's answers and
compiling a single, definitive set of answers that
you're going to turn in.

● Stop by office hours to get feedback on your proofs
and take that feedback seriously.

Mechanics: Negating Statements

∀p. (Person(p) →
∃q. (Person(q) ∧ p ≠ q ∧

Loves(p, q)
)

)

¬∀p. (Person(p) →
∃q. (Person(q) ∧ p ≠ q ∧

Loves(p, q)
)

)

Formulas.

¬∀p. (Person(p) →
∃q. (Person(q) ∧ p ≠ q ∧

Loves(p, q)
)

) Useful Resource:

Go to cs103.stanford.edu and
read the Guide to Negating

Useful Resource:

Go to cs103.stanford.edu and
read the Guide to Negating

Formulas.

¬∀p. (Person(p) →
∃q. (Person(q) ∧ p ≠ q ∧

Loves(p, q)
)

) ¬∀x. A

∃x. ¬A

¬∀p. (Person(p) →
∃q. (Person(q) ∧ p ≠ q ∧

Loves(p, q)
)

) ¬∀x. A

∃x. ¬A

¬∀p. (Person(p) →
∃q. (Person(q) ∧ p ≠ q ∧

Loves(p, q)
)

) ¬∀x. A

∃x. ¬A

∃p. ¬(Person(p) →
∃q. (Person(q) ∧ p ≠ q ∧

Loves(p, q)
)

) ¬∀x. A

∃x. ¬A

∃p. ¬(Person(p) →
∃q. (Person(q) ∧ p ≠ q ∧

Loves(p, q)
)

)

∃p. ¬(Person(p) →
∃q. (Person(q) ∧ p ≠ q ∧

Loves(p, q)
)

) ¬(A → B)

A ∧ ¬B

∃p. ¬(Person(p) →
∃q. (Person(q) ∧ p ≠ q ∧

Loves(p, q)
)

) ¬(A → B)

A ∧ ¬B

∃p. ¬(Person(p) →
∃q. (Person(q) ∧ p ≠ q ∧

Loves(p, q)
)

) ¬(A → B)

A ∧ ¬B

∃p. (Person(p) ∧
¬∃q. (Person(q) ∧ p ≠ q ∧

Loves(p, q)
)

) ¬(A → B)

A ∧ ¬B

∃p. (Person(p) ∧
¬∃q. (Person(q) ∧ p ≠ q ∧

Loves(p, q)
)

)

∃p. (Person(p) ∧
¬∃q. (Person(q) ∧ p ≠ q ∧

Loves(p, q)
)

) ¬∃x. A

∀x. ¬A

∃p. (Person(p) ∧
¬∃q. (Person(q) ∧ p ≠ q ∧

Loves(p, q)
)

) ¬∃x. A

∀x. ¬A

∃p. (Person(p) ∧
¬∃q. (Person(q) ∧ p ≠ q ∧

Loves(p, q)
)

) ¬∃x. A

∀x. ¬A

∃p. (Person(p) ∧
∀q. ¬(Person(q) ∧ p ≠ q ∧

Loves(p, q)
)

) ¬∃x. A

∀x. ¬A

∃p. (Person(p) ∧
∀q. ¬(Person(q) ∧ p ≠ q ∧

Loves(p, q)
)

)

∃p. (Person(p) ∧
∀q. ¬(Person(q) ∧ p ≠ q ∧

Loves(p, q)
)

) ¬(A ∧ B)

A → ¬B

∃p. (Person(p) ∧
∀q. ¬(Person(q) ∧ p ≠ q ∧

Loves(p, q)
)

) ¬(A ∧ B)

A → ¬B

∃p. (Person(p) ∧
∀q. ¬(Person(q) ∧ p ≠ q ∧

Loves(p, q)
)

) ¬(A ∧ B)

A → ¬B

∃p. (Person(p) ∧
∀q. (Person(q) ∧ p ≠ q →

¬Loves(p, q)
)

) ¬(A ∧ B)

A → ¬B

∃p. (Person(p) ∧
∀q. (Person(q) ∧ p ≠ q →

¬Loves(p, q)
)

)

∀p. (Person(p) →
∃q. (Person(q) ∧ p ≠ q ∧

Loves(p, q)
)

)

∃p. (Person(p) ∧
∀q. (Person(q) ∧ p ≠ q →

¬Loves(p, q)
)

)

See what you come up with!

∃p. (Person(p) ∧
∀q. (Person(q) ∧ p ≠ q →

Loves(q, p)
)

)

Your turn!

Try negating this formula with
the other folks at your table.

Your turn!

Try negating this formula with
the other folks at your table.
See what you come up with!

¬∃p. (Person(p) ∧
∀q. (Person(q) ∧ p ≠ q →

Loves(q, p)
)

)

∀p. ¬(Person(p) ∧
∀q. (Person(q) ∧ p ≠ q →

Loves(q, p)
)

)

∀p. (Person(p) →
¬∀q. (Person(q) ∧ p ≠ q →

Loves(q, p)
)

)

∀p. (Person(p) →
∃q. ¬(Person(q) ∧ p ≠ q →

Loves(q, p)
)

)

∀p. (Person(p) →
∃q. (Person(q) ∧ p ≠ q ∧

¬Loves(q, p)
)

)

∃p. (Person(p) ∧
∀q. (Person(q) ∧ p ≠ q →

Loves(q, p)
)

)

∀p. (Person(p) →
∃q. (Person(q) ∧ p ≠ q ∧

¬Loves(q, p)
)

)

Techniques: Translating Statements

Common Patterns

● A statement of the form

∀x. (P(x) → Q(x))

can be read as “all P's are Q's.”
● A statement of the form

∃x. (P(x) ∧ Q(x))

can be read as “there is a P that is also a Q” or
“some P's are Q's.”

● Remember: If you see ∃ paired with → or ∀ paired
with ∧, the statement is probably incorrect!

Given the predicates

· Person(p), which states that p is a person, and
· CanLearnFrom(x, y), which says that x can learn from y,

write a statement in first-order logic that says “everyone has
someone they can learn from.”

Everyone has someone they can learn from

Every person p has someone they can learn from

Every person p has someone they can learn from

“All As are Bs.”

∀x. (A(x) → B(x))

∀p. (Person(p) →
 p has someone they can learn from
)

∀p. (Person(p) →
 there is a person q that p can learn from
)

∀p. (Person(p) →
 there is a person q that p can learn from
)

“Some As are Bs.”

∃x. (A(x) ∧ B(x))

∀p. (Person(p) →
∃q. (Person(q) ∧

p can learn from q
)

)

∀p. (Person(p) →
∃q. (Person(q) ∧

CanLearnFrom(p, q)
)

)

Consider this statement:

“If someone is happy, then everyone is happy.”

What is the contrapositive of this statement?

If someone is happy, then everyone is happy

someone is happy → everyone is happy

someone is happy → (∀x. Happy(x))

(∃x. Happy(x)) → (∀x. Happy(x))

(∃x. Happy(x)) → (∀x. Happy(x))

(∃x. Happy(x)) → (∀x. Happy(x))

¬(∀x. Happy(x)) → ¬(∃x. Happy(x))

(∃x. ¬Happy(x)) → ¬(∃x. Happy(x))

(∃x. ¬Happy(x)) → (∀x. ¬Happy(x))

(∃x. ¬Happy(x)) → (∀x. ¬Happy(x))

“If someone is not happy, then everyone is not happy.”

Consider this statement:

“If someone is happy, then everyone is happy.”

What is the negation of this statement?

(∃x. Happy(x)) → (∀x. Happy(x))

(∃x. Happy(x)) → (∀x. Happy(x))

¬((∃x. Happy(x)) → (∀x. Happy(x)))

(∃x. Happy(x)) → (∀x. Happy(x))

(∃x. Happy(x)) ∧ ¬(∀x. Happy(x))

(∃x. Happy(x)) → (∀x. Happy(x))

(∃x. Happy(x)) ∧ (∃x. ¬Happy(x))

(∃x. Happy(x)) → (∀x. Happy(x))

(∃x. Happy(x)) ∧ (∃x. ¬Happy(x))

“Someone is happy and someone is not happy.”

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65

