
CS 103X: Discrete Structures
Homework Assignment 8 — Solutions

Exercise 1 (10 points). The complement of a graph G = (V, E) is the graph

(V, {{x, y} : x, y ∈ V, x 6= y} \ E).

A graph is self-complementary if it is isomorphic to its complement.

(a) Prove that no simple graph with two or three vertices is self-complementary, without enumer-
ating all isomorphisms of such simple graphs.

(b) Find examples of self-complementary simple graphs with 4 and 5 vertices.

Solution

(a) Obviously, two isomorphic graphs must have the same number of edges. Thus for a graph
with n vertices to be self-complementary, the total number of possible edges,

(
n
2

)
, must be

even so that the graph and its complement can have the same number of edges.
(
2
2

)
= 1 and(

3
2

)
= 3, so no graph with 2 or 3 vertices can be self-complementary.

(b) Here are the examples (top row) with their complements (bottom row). Convince yourself
(with a bit of wire if necessary) that the pentagon and the five-pointed star are indeed iso-
morphic.

Exercise 2 (10 points). Prove that if a graph has at most m vertices of degree at most n and all
other vertices have degree of at most k, with k < n and m < n, then the graph is colorable with
m + k + 1 colors.



Solution First consider the reduced problem of coloring the graph minus the m vertices of degree
at most n and all edges involving those vertices. From the lecture notes, since all remaining vertices
have degree k or less, k +1 colors are enough for this reduced graph. Then if we restore the original
graph and assign one color not used to each of the m vertices, the resulting graph will be colored
using m + k + 1 colors.

Exercise 3 (30 points). Prove or disprove, for a graph G on a finite set of n vertices:

(a) If every vertex of G has degree 2, then G contains a cycle.

(b) If G is disconnected, then its complement is connected.

(c) If T is a non-cyclic tour in G, and no strictly longer tour in G contains T , then both endpoints
of T have odd degree.

Solution

(a) True. Assume, for contradiction, that G has no cycle, and consider the longest path P in G
(one must exist, since the graph is finite). Let v be the final vertex in P — since v has degree
2, it must have two edges e1 and e2 incident on it, of which one, say e1, is the last edge of the
path P . Then e2 cannot be incident on any other vertex of P since that would create a cycle
(v, e2, [section of P ending in e1], v). So e2 and its other endpoint are not part of P , and can
be appended to P to give a strictly longer path, which contradicts our choice of P . Hence G
must contain a cycle.

(b) True. Let G′ denote the complement of G. Consider any two vertices u, v in G. If u and v are
in different connected components in G, then no edge of G connects them, so there will be an
edge {u, v} in G′. If u and v are in the same connected component in G, then consider any
vertex w in a different connected component (since G is disconnected, there must be at least
one other connected component). By our first argument, the edges {u, w} and {v, w} exist in
G′, so u and v are connected by the path (u, w, v). Hence any two vertices are connected in
G′, so the whole graph is connected.

(c) True. This is similar to Theorem 15.1.1 for Eulerian tours. At each vertex of the tour T , label
the incident edges as “entering” or “leaving” as in the lecture notes. At each endpoint of the
tour, there is one leaving edge for every entering edge, except for exactly one edge (since the
tour is non-cyclic) which is either leaving (if the vertex is the first one of the tour) or entering
(if the vertex is the last one). This means an odd number of edges of the tour are incident
at each endpoint. Assume, for contradiction, that an endpoint has even degree — since the
tour contributes an odd number of edges to this count, there must be at least one non-tour
edge incident at this vertex. This edge can be added to T to give a strictly longer tour that
contains T , which is a contradiction. Hence both endpoints of T have odd degree.

Exercise 4 (15 points). Consider m graphs G1 = (V1, E1), G2 = (V2, E2), . . ., Gm = (Vm, Em).
Their union can be defined as

m⋃
i=1

Gi =

(
m⋃

i=1

Vi,

m⋃
i=1

Ei

)
.

Show that, for any natural number n ≥ 2, the clique Kn can be expressed as the union of k bipartite
graphs if n ≤ 2k.
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Solution We proceed by induction on k. For k = 1, there are two cliques: K1 is just a single
point, which is trivially a bipartite graph. K2 is also a single bipartite graph (each vertex in its own
group). Now, for the inductive step assume the claim holds for k = m. Now for any n ≤ 2m+1, let
a = bn

2
c and b = dn

2
e, and divide the vertices of Kn into disjoint sets A, B with |A| = a and |B| = b.

We can define a bipartite graph G with vertices A∪B and edges v, w with v ∈ A, w ∈ B. Removing
all of these edges from Kn leave two cliques Ka and Kb. Since a, b ≤ 2m, each of these cliques can
be represented as a union of m bipartite graphs. Since the two cliques have disjoint vertex sets, we
can say that the union of a bipartite graph over the vertices of Ka and a bipartite graph over the
vertices of Kb will still be a bipartite graph. Thus the two cliques together can be represented as
the union of m bipartite graphs, and adding G to the union represents all of Kn as m + 1 bipartite
graphs. This completes the inductive step and thus by induction the property holds for all k.

Exercise 5 (15 points). A binary tree is defined inductively as follows:

• A single vertex u defines a binary tree with root u.

• A vertex u linked by edges to the roots of one or two binary trees defines a binary tree with
root u.

The following figure illustrates the three possibilities:

T1 and T2 are called subtrees, u is the parent of the roots of the subtrees, and these roots are children
of u. The vertices of a binary tree without any children are called leaves. Here’s an example of a
binary tree:

The distance between two vertices of a tree is the number of edges in the shortest path connecting
them. The height of the tree is the maximum distance between the root and a leaf. Prove that the
height of a binary tree with n vertices is at least blog2 nc. (Hint: use the strong induction principle.)
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Solution The result follows from strong induction on n. The base case is the binary tree with one
vertex, which is just the vertex itself. Obviously, this has height 0 = blog2 1c, so the base case holds.
Now assume the result holds for all binary trees with at most m vertices, and consider a binary tree
with n = m + 1 vertices. By definition, this can be viewed as a root vertex u plus two subtrees T1

and T2 — evidently T1 and T2 together contain m vertices. Assume that T1 has p vertices — then
T2 has m− p vertices. Since both p and m− p are at most m, the induction hypothesis applies and
the heights of the subtrees are at least blog2 pc and blog2(m− p)c respectively. The height h of the
original tree is one more than the height of the “taller” subtree (because of the edge linking the
root of the subtree to the root of the original tree), so we have

h = 1 + max{blog2 pc, blog2(m− p)c}

Now at least one of the subtrees must have at least dm
2
e vertices, so we can write

h ≥ 1 +
⌊
log2

⌈m

2

⌉⌋
If m is odd, then this gives

h ≥ 1 +

⌊
log2

m + 1

2

⌋
= 1 + blog2(m + 1)− log2 2c
= 1 + blog2(m + 1)− 1c
= 1 + blog2(m + 1)c − 1

= blog2(m + 1)c

Also, if m is even, then we have

h ≥ 1 +
⌊
log2

m

2

⌋
≥ 1 + blog2 m− log2 2c
≥ 1 + blog2 m− 1c
≥ 1 + blog2 mc − 1

≥ blog2 mc

But since m is even, blog2 mc = blog2(m+1)c (the integer part of log2 x increases by one only when
x is a power of 2). So in either case, h ≥ blog2(m+1)c, and the induction step holds. By the strong
induction principle, this proves the result for all n ∈ N+.

Exercise 6 (20 points). Given a graph G = (V, E), an edge e ∈ E is said to be a bridge if the
graph G′ = (V, E \ {e}) has more connected components than G. Let G be a bipartite k-regular
graph for k ≥ 2. Prove that G has no bridge.

Solution We will prove the result by contradiction. Assume G has a bridge e = {u, v}. Let’s start
with a couple of easy observations. Firstly, note that a bridge affects only the connected component
it belongs to. Every connected component of a bipartite k-regular graph is itself bipartite k-regular,
so we can assume, without loss of generality, that G is a connected bipartite k-regular graph.
Secondly, removal of an edge can split a connected graph into at most two connected components
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— to see why, observe that if we restore the edge, the graph should be connected, but three or more
disjoint components cannot be linked by a single edge.

Now assume G has classes A and B, where u ∈ A and v ∈ B. Removal of e splits G into disjoint
components G1 and G2. Let A′ be the set of vertices of A in G1 and A′′ be those in G2 — both these
sets are non-empty. Similarly let B′, B′′ be the vertices of B in G1 and G2 respectively. Observe
that the bridge e must be the only edge linking G1 and G2, and assume without loss of generality
that u ∈ A′ and v ∈ B′′.

Now look at G1, which is a bipartite graph with classes A′ and B′. Since e is the only edge
linking G1 and G2, every other edge of G incident on A′ or B′ is retained in G1. So every vertex in
A′ and B′ still has degree k in G1, except u which has degree k − 1. Let a := |A′| and b := |B′|.
Since no edge links two vertices in B′ (bipartite property), the number of edges in G1 is simply kb
(every edge is incident to some vertex in B′, so we can add up the degrees of the vertices in B′).
Similarly, adding up the degrees in A′ instead, the number of edges is k(a − 1) + k − 1. Equating
the two formulæ, we have

k(a− 1) + k − 1 = kb

⇒ k(a− b) = 1

But this implies k = 1, which contradicts the given condition that k ≥ 2. Hence the bridge cannot
exist.
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