
CS103X: Discrete Structures
Homework Assignment 7

Due March 14, 2008

Exercise 1 (20 points). Let G be a graph that has no induced subgraphs that are P4 or C3.

(a) Prove that G is bipartite.

Solution Since we know a graph is bipartite if and only if it has no odd cycles, we can
equivalently prove that G has no odd cycles. Then by taking the contrapositive, it is equiva-
lent to prove that any graph with an odd cycle has either P4 or C3 as an induced subgraph.
From here we proceed by contradiction, assume there exists some graph G with an odd cycle
and no induced subgraphs that are P4 or C3. Obviously, if this cycle is length 3, then C3 is
an induced subgraph. If the length is 5 or greater, select any four adjacent points in the cycle
(i.e. points A, B, C, D such that edges AB, BC, CD are part of the cycle) and consider the
induced subgraph on those four. If the cycle edges are the only ones present, P4 is an induced
subgraph. If not, then one of the edges AC,BD,AD must be in the original graph. If AC is,
then we have an induced C3 subgraph on A, B, C, and if BD is then there is an induced C3

on B, C,D. The only remaining possibility is that AD is present; then we can make a new
cycle by removing AB, BC, CD from the original cycle and adding AD. This new cycle has
length 2 less than the original, so it is still odd. Since this is the only possibility that does not
immediately produce a C3 or P4, we can repeat this process to examine progressively smaller
cycles. But then eventually we will create a cycle of length 3, the shortest possible odd-cycle
length, which produces a C3 induced subgraph. This is a contradiction, and thus any graph
with an odd cycle must have either P4 or C3 as an induced subgraph. This completes the proof.

(Note: The word “induced” is very important here! See the definition of “induced subgraph”
in the lecture notes — it is not the same as a “subgraph”.)

(b) Assume in addition that G is connected. Prove that G is a complete bipartite graph.

Solution Suppose vertex u in one of the classes is not connect to vertex v in the other class.
Since G is connected, there exists some shortest path from u to v. Consider the induced
subgraph produced by this path. This path must be of at least length 3 since they live in
different classes and are not connected. If it is of length 3, then we have a subgraph of P4.
Otherwise if it has length > 3, consider the first four vertices of the path {u, u1, u2, u3}. This
must be the shortest path from u to u3 since it is in the shortest path between u to v (otherwise
there would be a shorter path from u to v). Thus, if we consider this induced subgraph, we
again get a subgraph of P4. Thus, every u, v pair must be connected, which implies that the
bipartite graph is complete.

Exercise 2 (15 points). Given a bipartite graph G, prove that its two classes are unique (up to
interchanging their order) if and only if G is connected.
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Solution If u and v are in different partite sets in some bipartition, and they are connected by a
path, then the path must have odd length. Also, if an odd length path connects two vertices, then
any bipartition must put them in different partite sets (since every edge switches sets). Putting
these together, we conclude that every pair originally separated must remain separated in any other
bipartition, giving the result. (Only if) Each connected component of a bipartite graph is bipartite.
A disconnected graph has more than one connected component. Swap the partite sets in exactly
one connected component to get a different bipartition.

Exercise 3 (15 points). For any k ∈ N+, prove that a k-regular bipartite graph has a perfect
matching.

Solution We will apply Theorem 15.3.4 from the lecture notes. So we need to show that for
the two classes, A and B, that |A| = |B| and |Γ(S)| ≥ |S| ∀S ⊆ A. First note that there must be
the same number of vertices on each class otherwise there are more edges leaving one class than
there are entering the other class. Now consider any set S ⊆ A. Each vertex has degree k, so if
|S| < k then |Γ(S)| ≥ |S| trivially holds. In the other case, |S| ≥ k, we will show that |Γ(S)| ≥ |S|
by contradiction. Suppose |Γ(S)| < |S|. There are k|S| edges leaving set S and they all enter the
set Γ(S). However, there can only be k|Γ(S)| < k|S| edges connected to the set, meaning not all
of the edges leaving S is enclosed in Γ(S). This is a contradiction. Therefore, |Γ(S)| ≥ |S| ∀S ⊆ A
also holds. By Theorem 15.3.4 from the lecture notes, we know that there must be a perfect
matching.

Exercise 4 (15 points). Given a tree G that contains a vertex of degree k, prove that G has at
least k leaves.

Solution Let vertex v be in a tree G = (V, E) with degree k. Consider the induced subgraph G′ by
taking out vertex v which is k connected components, each being a tree. Formally, G′ = (V \ v, E ′)
where E ′ = E \ {{v, u} : {v, u} ∈ E ∀u ∈ V }. First note that if any connected component only
has 1 vertex, then it was a leaf in G. Consider the connected components that have more than
one vertex. By Lemma 16.1.3 the connected component has at least 2 leaves. Since in G, it
is connected to v so we have lost 1 leaf, so each connected component contributes at least 1 leaf.
Therefore, for each connected component, it contributes either 1 leaf (for 1 vertex component) or
at least 1 leaf (for > 1 vertex component). Therefore, with k components, we have at least k leaves.

Exercise 5 (15 points). Prove that G = (V, E) is a tree if and only if |V | = |E|+ 1 and G has no
cycles.

Solution We will use induction on |V |. For a tree with a single vertex, the claim holds since
|E| + 1 = 0 + 1 = 1. Now suppose that the claim holds for all n-vertex trees and consider an
(n + 1)-vertex tree. Let v be a leaf of the tree. Deleting v and its incident edge gives a smaller
tree for which the equation |V | = |E| + 1 holds by induction. If we add back the vertex v and its
incident edge, then the equation still holds because the number of vertices and number of edges
both increased by 1. Thus, the claim holds for the n + 1-vertex tree and, by induction, for all trees.

Exercise 6 (20 points). Let G be a simple graph with n vertices and k connected components.

(a) What is the minimum possible number of edges of G?
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Solution Let each component i have ci vertices. If we put a minimum spanning tree to keep
it connected, we get ci − 1 edges. So the total number of edges is

k∑
i=1

(ci − 1) =
k∑

i=1

ci − k = n− k

Thus it does not matter how the components are selected, we always get this minimum.

(b) What is the maximum possible number of edges of G?

Solution Let each component i have ci vertices. If we put a complete graph for each
connected component, we will maximize edges. So the total number of edges is

k∑
i=1

(
ci

2

)
=

k∑
i=1

ci(ci − 1)

2
=

1

2
(

k∑
i=1

c2
i − ci) =

1

2
(

k∑
i=1

c2
i − n)

We now need to find some distribution of vertices for each connected component such that we
maximize this expression. Consider some sequence {c1, c2, . . . , ck} such that c1 ≤ c2 ≤ . . . ≤
ck. Let’s compare the number of edges produced with sequence {c1 − 1, c2 + 1, c3, . . . , ck}.
Notice that this sequence is still in increasing order. The additional edges gained from using
this new sequence for number of vertices for each of the components:

(c1 − 1)2 + (c2 + 1)2 − c2
1 − c2

2 = 2(c2 − c1 + 1)

So this is a positive increase as long as c1 ≤ c2 + 1. We have assumed that c1 ≤ c2, so this
means that decreasing c1 by 1 and increasing c2 by 1 results in creation of additional edges.
We can apply this argument to any two consecutive ci and cj repeatedly, thus resulting in
c1 = c2 = . . . = ck−1 = 1 and ck = n− (k − 1). Therefore the maximal number of edges that
can be created is

1

2

(
k − 1 + (n− (k − 1))2 − n

)
=

1

2

(
(n− k)2 + (n− k)

)
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