Simple Java YEAH Hours

Brahm Capoor
What are YEAH hours?

Held soon after each assignment is released

Help you to get an early start on your assignments

Future dates TBA

Recorded and slides will be posted!
Roadmap

- - -

Review

Assignment overview and tips

Questions
Dropping the mic on Karel

Karel taught us a lot of things!
Dropping the mic on Karel

Karel taught us a lot of things!

Control Flow
Dropping the mic on Karel

Karel taught us a lot of things!

Control Flow

Decomposition & Top Down Design
Dropping the mic on Karel

Karel taught us a lot of things!

Control Flow

Decomposition & Top Down Design

Algorithmic Strategy
Control Flow in Karel

```java
for (int i = 0; i < 5; i++) {
    if (beepersPresent()) {
        move();
    } else {
        putBeeper();
    }
}

while (frontIsClear()) {
    move();
    putBeeper();
}
```

// do whatever is in the loop 5 times
// what to do if a particular condition is true
// what to do if that condition is false
// do this until a particular condition is false
Control Flow outside Karel

```java
for (int i = 0; i < 100; i++) {
    if (i % 2 == 0) {
        println("Even: "+ i);
    } else {
        println("Odd: "+ i);
    }
}
```

```java
while (true) {
    if (agentOfChaos()) {
        break;
    }
    println("Good prevails!");
}
```

// do whatever is in the loop 100 times
// what to do if a particular condition is true
// what to do if that condition is false
// loop indefinitely
// savagely immediately end while loop
Control Flow-ception

```java
for (int i = 0; i < 10; i++) {
    for (int j = 0; j < 10; j++) {
        if (i == j) {
            println("i and j are equal!");
        } else {
            int difference = i - j;
            if (difference > 0) {
                println("i is bigger than j by "+ difference + "!");
            } else {
                println("j is bigger than i by "+ difference + "!");
            }
        }
    }
}
```
Control Flow-ception

```java
for (int i = 0; i < 10; i++) {
    for (int j = 0; j < 10; j++) {
        if (i == j) {
            println("i and j are equal!");
        } else {
            int difference = i - j;
            if (difference > 0) {
                println("i is bigger than j by "+ difference + "!");
            } else {
                println("j is bigger than i by "+ difference + "!");
            }
        }
    }
}
```

// bruh.
Control Flow-ception

```java
for (int i = 0; i < 10; i++) {
    for (int j = 0; j < 10; j++) {
        if (i == j) {
            println("i and j are equal!");
        } else {
            int difference = i - j;
            if (difference > 0) {
                println("i is bigger than j by "+ difference + "!");
            } else {
                println("j is bigger than i by "+ difference + "!");
            }
        }
    }
}
```
Graphics

GRect rect = new GRect(50, 50, 200, 200);
rect.setFilled(true);
rect.setColor(Color.BLUE);

GOval oval = new GOval(0, 0, getWidth(), getHeight());
oval.setFilled(false);
oval.setColor(Color.GREEN);

GLabel text = new GLabel("banter", 200, 10);

add(text);
add(rect);
add(oval);
Graphics

GRect rect = new GRect(50, 50, 200, 200);
rect.setFilled(true);
rect.setColor(Color.BLUE);

GOval oval = new GOval(0, 0, getWidth(), getHeight());
oval.setFilled(false);
oval.setColor(Color.GREEN);

GLabel text = new GLabel("banter", 200, 10);
add(text);
add(rect);
add(oval);

Things to remember

● Coordinates are doubles

● Coordinates are measured from the top left of the screen

● Coordinates of a shape are coordinates of its top left corner

● Coordinates of a label are coordinates of its bottom left corner

● Remember to add objects to the screen!

● Use the online documentation!

● These are class variables!
Primitive variables

```java
int x = 7;  // declare and initialize a variable
x = 9;      // change the value of x
x = x + 1;  // increment (add 1 to) x. A.K.A. x++
x = x + 2;  // add 2 to x. A.K.A. x += 2
x /= 2;     // divide x by 2, and truncate result

double d = 3.5;

boolean isThisTrue = true;
isThisTrue = !isThisTrue;  // flip isThisTrue
```
Primitive variables

```java
int x = 7; // declare and initialize a variable
x = 9; // change the value of x
x = x + 1; // increment (add 1 to) x. A.K.A. x++
x = x + 2; // add 2 to x. A.K.A. x += 2
x /= 2 // divide x by 2, and truncate result

double d = 3.5;

boolean isThisTrue = true;
isThisTrue = !isThisTrue; // flip isThisTrue
```

Things to remember

- The expressive hierarchy:
  ```java
  boolean < char < int < double
  ```
- Compare variables using `==`
  ```java
  if (x == 7) {
  ```
- Conditional operators: `&` and `|`
  ```java
  if (x == 7 && y == 6.3)
  if (x == 7 || x == 6)
  Avoid this:
  ```java
 if (x == 7 || 6)
  ```
- Use `constants`
  ```java
 private static final int MY_NUM = 10;
  ```
Assignment 2!

You can do all of it right now

You’ll learn tools to improve your style for some problems after Wednesday’s lecture
High level overview

- Due Monday 29/1/2017
- 8 Problems
- 2 warmups
- 3 Graphics Programs
- 3 Console Programs
Problem 1: Draw a blue, filled rectangle in the center of the screen with dimensions 350 x 270

Questions to ask yourself:

1. How do I find the center of the screen?
2. Given the location of the center of the screen, where should I put the rectangle?

Useful ideas from lecture:

- Coordinates are measured from the top left of shapes and the window

Useful methods:

- `getWidth()` tells you the width of the canvas
- `getHeight()` tells you the height of the canvas
- `rect.getWidth()` tells you the width of `rect`
- `rect.getHeight()` tells you the height of `rect`
- See [lecture/video](#) and [GRect documentation](#) for more!
Problem 2: Print out a countdown down from 10 to 1 and then print “Liftoff!”

Questions to ask yourself:

1. What sort of control flow structure best suits this problem?
2. What’s a nice way to represent what the current number is?

Useful ideas from lecture

- You can use the variables inside for loops!
Problem 3 Draw a pyramid!

Questions to ask yourself:

1. What sort of control flow structure best suits this problem?
2. How do I decompose this problem?
3. What information do I need to draw a row and the bricks inside a row?

Useful ideas from lecture

- You can use the variables inside for loops!
- You can nest for loops!
- This checkerboard example from lecture

Useful methods

- getWidth() tells you the width of the canvas
- getHeight() tells you the height of the canvas
- rect.getWidth() tells you the width of rect
- rect.getHeight() tells you the height of rect
- See lecture/video and GRect documentation for more!

**remember that coordinates should be doubles**
Problem 4 Bullseye!

Questions to ask yourself:

1. Can this problem be decomposed?
2. What information is needed to draw each circle?

Useful ideas from lecture

- Stay tuned for Wednesday’s lecture to better decompose the problem!

Useful methods

- See lecture/video and GOval documentation for more!
Problem 5  CS 106A Tiles

Questions to ask yourself:

1. Can this problem be decomposed?
2. What information is needed to draw each rectangle?

Useful ideas from lecture

- Stay tuned for Wednesday’s lecture to better decompose the problem!
- Remember that a label’s coordinate is its bottom left corner

Useful methods

- `label.getAscent()` tells you the distance between the baseline of the label and the top of the label. This is useful for centering!
- See [lecture/video](#) and [GRect documentation](#) and [GLabel documentation](#) for more!
Problem 6 Pythagorean Theorem

Questions to ask yourself:

1. What data type should I store numbers as?
2. How many variables do I need?

Useful ideas from lecture

- Primitive data types
- The expressive hierarchy

Useful methods

- `math.sqrt(n)` tells you the square root of `n`
- Look at the lecture for more!

Enter values to compute the Pythagorean theorem.
a: 3.5
b: 4.2
c = 5.4671747731346585
Problem 7  Keeping track of the largest and smallest

Questions to ask yourself:

1. What sorts of things do you need to store?
2. How do you initialize variables?

Useful ideas from lecture

- Loop structures
- Variable scope
- Edge cases
- Sentinel values

This program finds the largest and smallest numbers.

? 11
? 17
? 42
? 9
? -3
? 35
? 0
smallest: -3
largest: 42
Problem 8  Hailstone sequence

Questions to ask yourself:

1. What sorts of things do you need to store?
2. How do you *initialize* variables?

Useful ideas from lecture

- Loop structures
- Variable scope
- Edge cases
- Sentinel values

Enter a number: 17
17 is odd, so I make 3n + 1: 52
52 is even so I take half: 26
26 is even so I take half: 13
13 is odd, so I make 3n + 1: 40
40 is even so I take half: 20
20 is even so I take half: 10
10 is even so I take half: 5
5 is odd, so I make 3n + 1: 16
16 is even so I take half: 8
8 is even so I take half: 4
4 is even so I take half: 2
2 is even so I take half: 1
The process took 12 to reach 1
A last few tips and tricks

● “Write a GraphicsProgram SubClass”: Don’t worry about what this means! (You’ll learn a lot about this in a few weeks)
● Draw things on paper for Graphics Programs
● Use Top Down Decomposition wherever you can
● Go to the LaIR!
● Incorporate your IG feedback!
● Use the debugger!
Questions?