Nested Structures
Mehran Sahami and Chris Piech
CS106A, Stanford University
• Assignment 5 goes out today!
Why is this so fast?

Google search for "mantis shrimp colors"

About 1,870,000 results (0.54 seconds)

Humans and many other primates have three; some birds and reptiles have four photoreceptors. Certain butterflies can even have six. But the mantis shrimp has 12 different types of photoreceptors in their eyes – and scientists haven’t understood why until now. Jan 27, 2014

Study Offers Insights into Unique Color Vision of Mantis Shrimp...
Review
Core Datastructures

All datasets can be represented by:

- Dictionaries,
- Lists,
- Strings,
- Floats,
- Integers
- Booleans,
- None,
- Blob

The standard is called “JSON”
Example Google Dicts Query Result

```json
{
    "markers": [
        {
            "name": "Rixos The Palm Dubai",
            "position": [25.1212, 55.1535],
        },
        {
            "name": "Shangri-La Hotel",
            "location": [25.2084, 55.2719]
        },
        {
            "name": "Grand Hyatt",
            "location": [25.2285, 55.3273]
        }
    ]
}
```
animal_sounds

Values: "woof" "ow ow ow" "meow"

Keys: "dog" "seal" "cat"

1. Make a new Dict
animal_sounds = {}

2. Put things into the Dict
animal_sounds["dog"] = "woof"
animal_sounds["cat"] = "meow"
animal_sounds["seal"] = "ow ow ow"

3. Get things out of the Dict
dog_sound = animal_sounds["dog"] # "woof"
1. Make a new Dict
animal_sounds = {}

2. Put things into the Dict
animal_sounds["dog"] = "woof"
animal_sounds["cat"] = "meow"
animal_sounds["seal"] = "ow ow ow"

3. Get things out of the Dict
dog_sound = animal_sounds["dog"] # "woof"
1. Make a new Dict
animal_sounds = {}

2. Put things into the Dict
animal_sounds["dog"] = "woof"
animal_sounds["cat"] = "meow"
animal_sounds["seal"] = "ow ow ow"

3. Get things out of the Dict
dog_sound = animal_sounds["dog"] # "woof"
animal_sounds

1. Make a new Dict
animal_sounds = {}

2. Put things into the Dict
animal_sounds["dog"] = "woof"
animal_sounds["cat"] = "meow"
animal_sounds["seal"] = "ow ow ow"

3. Get things out of the Dict
dog_sound = animal_sounds["dog"] # "woof"
fox_sound = animal_sounds["fox"] # Error:not in Dict
brothers Vegard
and Bård Ylvisåker

Circa 2013
But there's one sound
Dictionary Recap

Key → **Value**
Dictionary Recap

key → value

(string) animal → (string) animal sound

Values:
- "bark"
- "ow ow ow"
- "meow"

Keys:
- "dog"
- "seal"
- "cat"
Dictionary Recap

key: (string) animal
value: (string) animal sound

(key: (string) name) value: (int) phone number

6701678
1. Make a Dictionary

```python
my_Dict = {}
```

2. Put and get values into a Dict

```python
my_Dict[key] = new_value
my_Dict[key] # returns the corresponding value
```

3. Some useful other methods

```python
size = len(my_Dict)
key in my_Dict # returns true or false if key is in Dict
```

4. Iterate using a foreach loop

```python
for key in my_Dict:
    value = my_Dict[key] # look up the corresponding value
```
Dictionaries are one way!

In dictionaries you can only look up values by keys. You can’t look up keys by value.

animal_sounds['meow'] KeyError: 'b'
Each key gets has only one value!

If you put a key in the dictionary twice, it will overwrite

```python
animal_sounds[‘dog’] = ‘bark’
animal_sounds[‘dog’] = ‘woof’
animal_sounds = {‘dog’:’woof’}
```
Learned about Collections
List
index -> value
Dictionary
key -> value
my_list = ['a', 'b', 'c']

print(my_list[1])

for i in range(len(my_list)):
 value = my_list[i]
 print(i, value)

my_dict = {
 'x': 'a',
 'y': 'b',
 'c': 'c'
}

print(my_list['y'])

for key in my_dict:
 value = my_dict[key]
 print(key, value)
List

```python
my_list = ['a', 'b', 'c']

print(my_list[1])
for i in range(len(my_list)):
    value = my_list[i]
    print(i, value)
```

Indices

```
my_list
```

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
</tbody>
</table>

Dictionary

```python
my_dict = {'x':'a', 'y':'b', 'c':'c'}

print(my_list['y'])
for key in my_dict:
    value = my_dict[key]
    print(key, value)
```

Keys

```
my_dict
```

<table>
<thead>
<tr>
<th></th>
<th>'x'</th>
<th>'y'</th>
<th>'z'</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
</tbody>
</table>
my_list = ['a', 'b', 'c']

print(my_list[1])

for i in range(len(my_list)):
 value = my_list[i]
 print(i, value)

my_dict = {
 'x': 'a',
 'y': 'b',
 'c': 'c'
}

print(my_list['y'])

for key in my_dict:
 value = my_dict[key]
 print(key, value)
my_list = ['a', 'b', 'c']

print(my_list[1])

for i in range(len(my_list)):
 value = my_list[i]
 print(i, value)

my_dict = {
 'x': 'a',
 'y': 'b',
 'c': 'c'
}

print(my_list['y'])

for key in my_dict:
 value = my_dict[key]
 print(key, value)
List

my_list = ['a', 'b', 'c']

print(my_list[1])

for i in range(len(my_list)):
 value = my_list[i]
 print(i, value)

Dictionary

my_dict = {
 'x': 'a',
 'y': 'b',
 'c': 'c'
}

print(my_dict['y'])

for key in my_dict:
 value = my_dict[key]
 print(key, value)

<table>
<thead>
<tr>
<th>indices</th>
<th>my_list</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>a</td>
</tr>
<tr>
<td>1</td>
<td>b</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>keys</th>
<th>my_dict</th>
</tr>
</thead>
<tbody>
<tr>
<td>'x'</td>
<td>a</td>
</tr>
<tr>
<td>'y'</td>
<td>b</td>
</tr>
<tr>
<td>'z'</td>
<td>c</td>
</tr>
</tbody>
</table>
End Review
Are you ready?
For...
The ULTIMATE cs106a question?
Ultimate CS106A: Reverse a Dict

Normal Dict:
Key -> Value

Reversed Dict:
Value -> Keys

Claim: understanding this single example is most indicative of mastery in CS106A
Ultimate CS106A: Reverse a Dict

ages = {
 'Mehran': 50,
 'Gary': 70,
 'Chris': 32,
 'Brahm': 23,
 'Adele': 32,
 'Lionel': 32,
 'Rihanna': 32,
 'Stephen': 32
}

reversed = {
 50: ['Mehran'],
 70: ['Gary'],
 32: ['Chris', 'Adele', 'Lionel', 'Rihanna', 'Stephen'],
 23: ['Brahm']
}
To the code!!!
Ultimate CS106A: Reverse a Dict

Gary -> 70

reversed = {
}

}
Gary -> 70

reversed = {
 70 : ['Gary'],
}

Ultimate CS106A: Reverse a Dict

Chris -> 32

reversed = {
 70 : ['Gary'],
 32 : ['Chris'],
}

Piech + Sahami, CS106A, Stanford University
Ultimate CS106A: Reverse a Dict

Mehran -> 50

reversed = {
 70: ['Gary'],
 32: ['Chris'],
}

Piech + Sahami, CS106A, Stanford University
Ultimate CS106A: Reverse a Dict

Mehran -> 50

reversed = {
 70 : ['Gary'],
 50 : ['Mehran'],
 32 : ['Chris'],
}

Piech + Sahami, CS106A, Stanford University
Ultimate CS106A: Reverse a Dict

Rihanna -> 32

reversed = {
 70 : [‘Gary’],
 50 : [‘Mehran’],
 32 : [‘Chris’],
}

Piech + Sahami, CS106A, Stanford University
Ultimate CS106A: Reverse a Dict

Rihanna -> 32

reversed = {
 70 : ['Gary'],
 50 : ['Mehran'],
 32 : ['Chris', "Rihanna"],
}

Piech + Sahami, CS106A, Stanford University
Ultimate CS106A: Reverse a Dict

reversed = {
 70 : ['Gary'],
 50 : ['Mehran'],
 32 : ['Chris', "Rihanna", 'Stephen', ...],
 23 : ['Brahm']
}
something awesome

*idea credits to Keith
The XKCD Color Survey
The XKCD Color Survey

- Volunteers (online) were shown a randomly-chosen color and asked to name the color.
- The result is (after filtering) about 2.8 million RGB triplets and their names.
- What do people think the colors are?
The File Format

color-name, red, green, blue

navy blue,27,34,98
blue,41,201,234
lime green,99,212,32
red brown,160,89,66
orange,204,117,64
teal,12,208,219
blue,73,97,236
dark tan,209,202,95
moss green,77,147,83
magenta,136,30,75
blue,33,115,229
goldenrod,232,171,51
purplish blue,99,46,219
gray,212,209,208
green,56,188,125
mustard,197,164,25
red,242,9,26
pale green,221,240,210
cyan,199,254,247
carrot,240,80,16
purple,186,117,237
pale rose,197,68,63
fuchsia,210,13,137
pea green,198,247,15
forest green,17,106,39
tan,173,163,123
dark blue,27,7,117
teal,41,182,127
aqua,36,219,173
dark green,17,110,73
pale lime,189,244,125
light green,115,235,119
bright blue,17,155,238
hot pink,247,3,229
lighter green,98,253,147
brown,138,112,77
purple,116,50,76
red,245,42,54
green,7,173,31
bluish gray,82,110,127
bluish green,62,208,104
dark blue,2,0,50
blue,107,148,220
dark blue,101,68,175
sky blue,7,152,170
teal,81,166,152
green,19,246,59
green,20,252,59
sand,235,175,100
forest green,32,144,58
purple,145,37,226
dirty green,87,130,64
dirty green,125,136,42
brown,132,116,30
pink,252,68,255
blueberry,71,55,114
yellow brown,179,163,23
purple,199,64,183
deep purple,95,21,87
dirty yellow,221,198,107
light purple,185,110,194
sea blue,24,250,209
navy blue,16,32,75
bluish green,62,208,104
dark blue,2,0,50
blue,107,148,220
dark blue,101,68,175
sky blue,7,152,170
teal,81,166,152
green,19,246,59
green,20,252,59
aquamarine,65,206,163

Piech + Sahami, CS106A, Stanford University
How to Structure Data?

I give this to you so you can focus on data

```python
def plot_color(canvas, r, g, b):
```

Color name: peach
Color name: sky blue
How to Structure Data

associate each color name with a list of colors
How to Structure Data

```
{  
    "clover green": [[100, 216, 135], [72, 218, 111], [57, 109, 40], [9, 190, 78], [4, 217, 90], [36, 164, 33], [85, 195, 120], [137, 207, 101], [155, 213, 167], [41, 141, 12], [35, 195, 118], [63, 169, 115], [2, 184, 86], [49, 189, 100], [147, 200, 8], [63, 160, 43], [87, 121, 8], [49, 183, 44], [61, 190, 119]],
    "sal": [[184, 207, 244], [48, 199, 109], [247, 4, 25], [6, 101, 127], [196, 124, 36], [148, 30, 23], [106, 51, 249], [186, 63, 96], [209, 234, 226], [115, 18, 254], [59, 251, 10], [209, 84, 209], [254, 164, 39], [154, 165, 137], [82, 196, 178], [120, 250, 248], [175, 59, 33], [67, 52, 126], [224, 211, 50], [9, 255, 249], [138, 43, 154], [218, 158, 7], [213, 79, 90]],
    "marzipan": [[202, 197, 102], [34, 80, 112], [127, 162, 51], [90, 171, 24], [134, 198, 156], [163, 138, 126], [212, 248, 154], [133, 25, 118], [75, 143, 86], [46, 108, 0], [9, 242, 107], [29, 120, 25], [237, 209, 155], [215, 82, 187], [200, 79, 52], [12, 78, 60], [18, 52, 183], [186, 61, 232], [169, 201, 232], [173, 216, 142]]
}  
```
Displaying Colors
Further Reading

- http://blog.xkcd.com/2010/05/03/color-survey-results/
Why is this so fast?

Google search for "mantis shrimp colors"

About 1,870,000 results (0.54 seconds)

Humans and many other primates have three; some birds and reptiles have four photoreceptors. Certain butterflies can even have six. But the mantis shrimp has 12 different types of photoreceptors in their eyes – and scientists haven’t understood why until now. Jan 27, 2014

Study Offers Insights into Unique Color Vision of Mantis Shrimp... www.sci-news.com/biology/science-color-vision-mantis-shrimp-01719.html
Why is this so fast?

key \rightarrow Hash Fn \rightarrow array index

hash_int = hash(key);
Why is this so fast?

key → Hash Fn → array index

hash_int = hash(key);

(but we lose sortedness)