Nested Structures
Chris Gregg
Based on Slides by Mehran Sahami and Chris Piech
CS106A, Stanford University
• Assignment 5 goes out today!
Why is this so fast?

Humans and many other primates have three; some birds and reptiles have four photoreceptors. Certain butterflies can even have six. But the mantis shrimp has 12 different types of photoreceptors in their eyes – and scientists haven't understood why until now. Jan 27, 2014

Study Offers Insights into Unique Color Vision of Mantis Shrimp... www.sci-news.com/biology/science-color-vision-mantis-shrimp-01719.html
Review
Core Datastructures

The standard is called “JSON”

All datasets can be represented by:

- Dictionaries
- Lists
- Strings
- Floats
- Integers
- Booleans
- None
- Blob
Example Google Dicts Query Result

{
 "markers": [
 {
 "name": "Rixos The Palm Dubai",
 "position": [25.1212, 55.1535],
 },
 {
 "name": "Shangri-La Hotel",
 "location": [25.2084, 55.2719]
 },
 {
 "name": "Grand Hyatt",
 "location": [25.2285, 55.3273]
 }
]
}
animal_sounds

Values: "woof" "ow ow ow" "meow"

Keys: "dog" "seal" "cat"

1. Make a new Dict
animal_sounds = {}

2. Put things into the Dict
animal_sounds["dog"] = "woof"
animal_sounds["cat"] = "meow"
animal_sounds["seal"] = "ow ow ow"

3. Get things out of the Dict
dog_sound = animal_sounds["dog"] # "woof"
1. Make a new Dict
animal_sounds = {}

2. Put things into the Dict
animal_sounds["dog"] = "woof"
animal_sounds["cat"] = "meow"
animal_sounds["seal"] = "ow ow ow"

3. Get things out of the Dict
dog_sound = animal_sounds["dog"] # "woof"
1. Make a new Dict
animal_sounds = {}

2. Put things into the Dict
animal_sounds["dog"] = "woof"
animal_sounds["cat"] = "meow"
animal_sounds["seal"] = "ow ow ow"

3. Get things out of the Dict
dog_sound = animal_sounds["dog"] # "woof"
animal_sounds

Values:
- "bark"
- "ow ow ow"
- "meow"

Keys:
- "dog"
- "seal"
- "cat"

1. Make a new Dict
animal_sounds = {}

2. Put things into the Dict
animal_sounds["dog"] = "woof"
animal_sounds["cat"] = "meow"
animal_sounds["seal"] = "ow ow ow"

3. Get things out of the Dict
dog_sound = animal_sounds["dog"] # "woof"
fox_sound = animal_sounds["fox"] # Error: not in Dict
Dictionary Recap

key → value
Dictionary Recap

```
\textbf{key} \quad \rightarrow \quad \textbf{value}
```

```
(string) animal \quad \rightarrow \quad (string) animal sound
```

Values:
```
“bark”
```

```
“ow ow ow”
```

```
“meow”
```

Keys:
```
“dog”
```

```
“seal”
```

```
“cat”
```
Dictionary Recap

key value

(string) animal (string) animal sound

(string) name (int) phone number

6701678
1. **Make a Dictionary**

   ```python
   my_Dict = {}
   ```

2. **Put and get values into a Dict**

   ```python
   my_Dict[key] = new_value
   my_Dict[key]  # returns the corresponding value
   ```

3. **Some useful other methods**

   ```python
   size = len(my_Dict)
   key in my_Dict  # returns true or false if key is in Dict
   ```

4. **Iterate using a foreach loop**

   ```python
   for key in my_Dict:
       value = my_Dict[key]  # look up the corresponding value
   ```
Dictionaries are one way!

In dictionaries you can only look up values by keys. You can’t look up keys by value.

animal_sounds['meow'] KeyError: 'b'
Each key gets has only one value!

If you put a key in the dictionary twice, it will overwrite

```python
animal_sounds[‘dog’] = ‘bark’
animal_sounds[‘dog’] = ‘woof’
animal_sounds = {‘dog’: ‘woof’}
```
Learned about Collections
List
index -> value
Dictionary
key -> value
List

```python
my_list = ['a', 'b', 'c']

print(my_list[1])

for i in range(len(my_list)):
    value = my_list[i]
    print(i, value)
```

Dictionary

```python
my_dict = {
    'x': 'a',
    'y': 'b',
    'z': 'c'
}

print(my_dict['y'])

for key in my_dict:
    value = my_dict[key]
    print(key, value)
```
List

```python
my_list = ['a', 'b', 'c']

print(my_list[1])
for i in range(len(my_list)):
    value = my_list[i]
    print(i, value)
```

Dictionary

```python
my_dict = {'x':'a', 'y':'b', 'z':'c'}

print(my_dict['y'])
for key in my_dict:
    value = my_dict[key]
    print(key, value)
```
List

my_list = ['a', 'b', 'c']

print(my_list[1])

for i in range(len(my_list)):
 value = my_list[i]
 print(i, value)

Dictionary

my_dict = {
 'x': 'a',
 'y': 'b',
 'z': 'c'
}

print(my_dict['y'])

for key in my_dict:
 value = my_dict[key]
 print(key, value)
my_list = ['a', 'b', 'c']

print(my_list[1])

for i in range(len(my_list)):
 value = my_list[i]
 print(i, value)

my_dict = {'x':'a', 'y':'b', 'z':'c'}

print(my_dict['y'])

for key in my_dict:
 value = my_dict[key]
 print(key, value)
my_list = ['a', 'b', 'c']

print(my_list[1])
for i in range(len(my_list)):
 value = my_list[i]
 print(i, value)

my_dict = {
 'x': 'a',
 'y': 'b',
 'z': 'c'
}

print(my_dict['y'])
for key in my_dict:
 value = my_dict[key]
 print(key, value)
End Review
Are you ready?
For...
The ULTIMATE cs106a question?
Ultimate CS106A: Reverse a Dict

Normal Dict:
Key -> Value

Reversed Dict:
Value -> Keys

Claim: understanding this single example is most indicative of mastery in CS106A
Ultimate CS106A: Reverse a Dict

ages = {
 'Snoopy': 50,
 'Gary': 70,
 'Ada': 32,
 'Wil': 23,
 'Adele': 32,
 'Lionel': 32,
 'Rihanna': 32,
 'Stephen': 32
}

reversed = {
 50: ['Snoopy'],
 70: ['Gary'],
 32: ['Ada', 'Adele', 'Lionel', 'Rihanna', 'Stephen'],
 23: ['Wil']
}
To the code!!!
reversed = {
 'Gary': 70
}
Ultimate CS106A: Reverse a Dict

Gary -> 70

reversed = {
 70 : ['Gary'],
}

}
Ultimate CS106A: Reverse a Dict

Ada -> 32

reversed = {
 70 : ['Gary'],
 32 : ['Ada'],
}

Ultimate CS106A: Reverse a Dict

Snoopy -> 50

reversed = {
 70 : ['Gary'],
 32 : ['Ada'],
}

reversed = {
 70 : ['Gary'],
 50 : ['Snoopy'],
 32 : ['Ada'],
}

Snoopy -> 50
reversed = {
 70 : ['Gary'],
 50 : ['Snoopy'],
 32 : ['Ada'],
}
Rihanna -> 32
Ultimate CS106A: Reverse a Dict

Rihanna -> 32

reversed = {
 70 : ['Gary'],
 50 : ['Snoopy'],
 32 : ['Ada', 'Rihanna'],
}
reversed = {
 70 : ['Gary'],
 50 : ['Snoopy'],
 32 : ['Ada', 'Rihanna', 'Stephen', ...],
 23 : ['Wil']
}
something awesome

idea credits to Keith
The XKCD Color Survey
Volunteers (online) were shown a randomly-chosen color and asked to name the color.
The result is (after filtering) about 2.8 million RGB triplets and their names.
What do people think the colors are?
The File Format

color-name, red, green, blue

- navy blue, 27, 34, 98
- blue, 41, 201, 234
- lime green, 99, 212, 32
- red brown, 160, 89, 66
- orange, 204, 117, 64
- teal, 12, 208, 219
- blue, 73, 97, 236
- dark tan, 209, 202, 95
- moss green, 77, 147, 83
- magenta, 136, 30, 75
- blue, 33, 115, 229
- goldenrod, 232, 171, 51
- purplish blue, 99, 46, 219
- gray, 212, 209, 208
- green, 56, 188, 125
- mustard, 197, 164, 25
- red, 242, 9, 26
- pale green, 221, 240, 210
- cyan, 199, 254, 247
- carrot, 240, 80, 16
- purple, 186, 117, 237
- pale rose, 197, 68, 63
- fuchsia, 210, 13, 137
- pea green, 198, 247, 15
- forest green, 17, 106, 39
- tan, 173, 163, 123
- dark blue, 27, 7, 117
- teal, 41, 182, 127
- aqua, 36, 219, 173
- dark green, 17, 110, 73
- pale lime, 189, 244, 125
- light green, 115, 235, 119
- bright blue, 17, 155, 238
- hot pink, 247, 3, 229
- lighter green, 98, 253, 147
- brown, 138, 112, 77
- purple, 116, 50, 76
- red, 245, 42, 54
- green, 7, 173, 31
- bluish gray, 82, 110, 127
- blue, 124, 164, 176
- blue, 120, 158, 209
- sand, 235, 175, 100
- forest green, 32, 144, 58
- purple, 145, 37, 226
- dirty green, 87, 130, 64
- dirty green, 125, 136, 42
- brown, 132, 116, 30
- pink, 252, 68, 255
- blueberry, 71, 55, 114
- yellow brown, 179, 163, 23
- purple, 199, 64, 183
- deep purple, 95, 21, 87
- dirty yellow, 221, 198, 107
- light purple, 185, 110, 194
- sea blue, 24, 250, 209
- navy blue, 16, 32, 75
- bluish green, 62, 208, 104
- dark blue, 2, 0, 50
- blue, 107, 148, 220
- dark blue, 101, 68, 175
- sky blue, 7, 152, 170
- teal, 81, 166, 152
- green, 19, 246, 59
- green, 20, 252, 59
- aquamarine, 65, 206, 163
I give this to you so you can focus on data.

```python
def plot_color(canvas, r, g, b):
```

Color name: peach
Color name: sky blue
How to Structure Data

associate each color name with a list of colors
How to Structure Data

{
 "clover green": [[100, 216, 135], [72, 218, 111],
 [57, 109, 40], [9, 190, 78], [4, 217, 90], [36, 164, 33], [85, 195, 120], [137, 207, 101], [155, 213, 167], [41, 141, 12], [35, 195, 118], [63, 169, 115], [2, 184, 86], [49, 189, 100], [147, 200, 8], [63, 160, 43], [87, 121, 8], [49, 183, 44], [61, 190, 119]],
 "sal": [[184, 207, 244], [48, 199, 109], [247, 4, 25], [6, 101, 127], [196, 124, 36], [148, 30, 23], [106, 51, 249], [186, 63, 96], [209, 234, 226], [115, 18, 254], [59, 251, 10], [209, 84, 209], [254, 164, 39], [154, 165, 137], [82, 196, 178], [120, 250, 248], [175, 59, 33], [67, 52, 126], [224, 211, 50], [9, 255, 249], [138, 43, 154], [218, 158, 7], [213, 79, 90]],
 "marzipan": [[202, 197, 102], [34, 80, 112], [127, 162, 51], [90, 171, 24], [134, 198, 156], [163, 138, 126], [212, 248, 154], [133, 25, 118], [75, 143, 86], [46, 108, 0], [9, 242, 107], [29, 120, 25], [237, 209, 155], [215, 82, 187], [200, 79, 52], [12, 78, 60], [18, 52, 183], [186, 61, 232], [169, 201, 232], [173, 216, 142]]
}
Displaying Colors
Further Reading

- http://blog.xkcd.com/2010/05/03/color-survey-results/
Humans and many other primates have three; some birds and reptiles have four photoreceptors. Certain butterflies can even have six. But the mantis shrimp has 12 different types of photoreceptors in their eyes – and scientists haven’t understood why until now. Jan 27, 2014

Study Offers Insights into Unique Color Vision of Mantis Shrimp...
Why is this so fast?

\[
\text{key} \rightarrow \text{Hash Fn} \rightarrow \text{array index}
\]

\[
\text{hash_int} = \text{hash(key)};
\]

* Learn more in CS106B
Why is this so fast?

\[
\text{key} \rightarrow \text{Hash} \rightarrow \text{array index}
\]

\[
\text{hash_int} = \text{hash(key)};
\]

(but we lose sortedness)

* Learn more in CS106B