Advanced Maps and Interactors

Julia Daniel for Chris Piech
CS106A, Stanford University
You’re not Chris...
HashMap Recap

key \rightarrow value
HashMap Recap

Key: (String) animal
Value: (String) animal sound

Values: "bark", "ow ow ow", "meow"
Keys: "dog", "seal", "cat"
HashMap Recap

key → **value**

- (String) animal → (String) animal sound
- (String) name → (int) phone number

![Contact app screenshot showing Micah Cratty's contact with phone number 6701678]
HashMap Recap

key value

(String) animal (String) animal sound

(String) name (int) phone number

(GRect) key (AudioClip) note
HashMaps on one slide

1. Make a HashMap

```java
HashMap<KeyType, ValueType> myMap = 
    new HashMap<KeyType, ValueType>();
```

2. Put and get values into a map

```java
myMap.put(key, value);
myMap.get(key) // returns the corresponding value
```

3. Some useful other methods

```java
int size = myMap.size();
myMap.contains(key); // returns true or false if key is in map
myMap.keySet();
myMap.remove(key); // make like a tree and leave!
```

4. Iterate using a foreach loop

```java
for(keyType key : myMap.keySet()){ // not ordered
    myMap.get(key); // do something with the key/value pair
}
```
Why is this so fast?

Humans and many other primates have three; some birds and reptiles have four photoreceptors. Certain butterflies can even have six. But the mantis shrimp has 12 different types of photoreceptors in their eyes – and scientists haven’t understood why until now. Jan 27, 2014

Study Offers Insights into Unique Color Vision of Mantis Shrimp ...
Why is this so fast?

```c
int hash(string key);
```

* Learn more in CS106B
Why is this so fast?

```
int hash(string key);
```

(but we lose sortedness)

* Learn more in CS106B*
Interactors
Where are we?

- Karel the Robot
- Java
- Console Programs
- Graphics Programs
- Text Processing
- Data Structures
- **GUIs**
- Defining our own Variable Types
Button demo

Piech, CS106A, Stanford University
Assignment 5: ImageShop

DUE: MONDAY, FEB 26TH, 11A.M.
YEAH HOURS: TUES. 2/20 7-8PM IN 380-380C
Adding Iteractors

• When you create an instance of any Program subclass, Java divides the window area into five regions as follows:

```
    NORTH
   /     \   EAST
W   CENTER  E
   \     /   WEST
     \  /   
     \SOUTH
```

• The CENTER region is typically where the action takes place. A ConsoleProgram adds a console to the CENTER region, and a GraphicsProgram puts a GCanvas there.

• The other regions are visible only if you add an interactor to them. The examples in the text use the SOUTH region as a control strip containing a set of interactors, which are laid out from left to right in the order in which they were added.
JLabel
JLabel label = new JLabel("Hi");
JLabel label = new JLabel("Hi");
JLabel

JLabel label = new JLabel("Hi");
add(label, SOUTH);
JTextField
JTextField field = new JTextField(10);
add(field, SOUTH);
field.setText("Good times");
JTextField field = new JTextField(10);
add(field, SOUTH);
field.getText(); // returns string in field
field.setText("Good times");
JTextField field = new JTextField(10);
add(field, SOUTH);
field.getText(); // returns string in field
field.setText("Good times");
JTextField field = new JTextField(10);
add(field, SOUTH);
field.getText(); // returns “some input"
field.setText("Good times");
JTextField field = new JTextField(10);
add(field, SOUTH);
field.getText(); // returns “some input”
field.setText("Good times");
JButton
JButton button = new JButton("Press me");
```
JButton button = new JButton("Press me");
```
JButton button = new JButton("Press me");
add(button, SOUTH);
public void actionPerformed(ActionEvent e) {
 println(e.getActionCommand());
}
All together now

Hello, Chris
Hello, world
Hello, darkness

Name: darkness
Press me
Recall the Dancing Children
Normal Program

Run Method
Normal Program

Run Method

```java
public void run() {
    for(int i = 0; i < N_Dribbles; i++) {
        dropOneDribble();
    }
}
```
Normal Program

Run Method

```java
public void run() {
    for (int i = 0; i < N_DRIBBLES; i++) {
        dropOneDribble();
    }
}
```
Normal Program

Run Method
New Listener Characters

Action Listener

Action Performed
Program Starts Running

Run Method

Action Performed

Piech, CS106A, Stanford University
Add Action Listeners

Run Method

Action Performed

Action Listener

```
addActionListeners();
```
Program Runs as Usual

Run Method Action Performed Action Listener

Piech, CS106A, Stanford University
Button Clicked!

Run Method Action Performed Action Listener

Piech, CS106A, Stanford University
Calls Action Performed Method

Run Method Action Performed Action Listener

Piech, CS106A, Stanford University
When done, Run continues.

Run Method Action Performed Action Listener
Keeps Doing Its Thing…

Run Method

Action Performed

Action Listener

Piech, CS106A, Stanford University
Button Clicked!

Run Method

Action Performed

Action Listener
Calls Action Performed Method

Run Method Action Performed Action Listener

Piech, CS106A, Stanford University
When done, Run continues.

Run Method

Action Performed

Action Listener

Piech, CS106A, Stanford University
Recall the Dancing Children
Two Buttons

Oh wow!
Dag, yo.
Oh wow!
something awesome

*idea credits to Keith
The XKCD Color Survey
The XKCD Color Survey

- Volunteers (online) were shown a randomly-chosen color and asked to name the color.
- The result is (after filtering) about 2.8 million RGB triplets and their names.
- What do people think the colors are?
The File Format

<table>
<thead>
<tr>
<th>color-name</th>
<th>RGB value</th>
</tr>
</thead>
<tbody>
<tr>
<td>light purple</td>
<td>185, 110, 194</td>
</tr>
<tr>
<td>sea blue</td>
<td>24, 250, 209</td>
</tr>
<tr>
<td>navy blue</td>
<td>16, 32, 75</td>
</tr>
<tr>
<td>bluish green</td>
<td>62, 208, 104</td>
</tr>
<tr>
<td>dark blue</td>
<td>2, 0, 50</td>
</tr>
<tr>
<td>blue</td>
<td>107, 148, 220</td>
</tr>
<tr>
<td>dark blue</td>
<td>101, 68, 175</td>
</tr>
<tr>
<td>sky blue</td>
<td>7, 152, 170</td>
</tr>
<tr>
<td>teal</td>
<td>81, 166,</td>
</tr>
<tr>
<td>purple</td>
<td>130, 64, 234</td>
</tr>
<tr>
<td>blue</td>
<td>75, 49, 234</td>
</tr>
<tr>
<td>light blue</td>
<td>76, 215, 249</td>
</tr>
<tr>
<td>olive green</td>
<td>111, 145, 122</td>
</tr>
<tr>
<td>brown</td>
<td>88, 70, 1</td>
</tr>
<tr>
<td>pink</td>
<td>218, 35, 156</td>
</tr>
<tr>
<td>purple</td>
<td>154, 42, 159</td>
</tr>
<tr>
<td>navy</td>
<td>179, 67, 229</td>
</tr>
<tr>
<td>teal</td>
<td>92,</td>
</tr>
</tbody>
</table>
How to Structure Data

<table>
<thead>
<tr>
<th>Color</th>
<th>R</th>
<th>G</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>blue</td>
<td>15</td>
<td>137</td>
<td>255</td>
</tr>
<tr>
<td>red</td>
<td>166</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>gray</td>
<td>154</td>
<td>156</td>
<td>157</td>
</tr>
</tbody>
</table>

associate each color name with a list of colors

Piech, CS106A, Stanford University
How to Structure Data

<table>
<thead>
<tr>
<th>color name</th>
<th>blue colors</th>
<th>red colors</th>
<th>gray colors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15 137 255</td>
<td>0 0 127</td>
<td>88 88 190</td>
</tr>
<tr>
<td></td>
<td>166 14 7</td>
<td>99 55 5</td>
<td>255 0 0</td>
</tr>
<tr>
<td></td>
<td>154 156 157</td>
<td>243 242 254</td>
<td>140 143 148</td>
</tr>
</tbody>
</table>

HashMap<color name, list of colors>
HashMap<String, list of colors>
HashMap<String, ArrayList<color>>

How to Structure Data
HashMap<String, ArrayList<Color>>
Further Reading

- http://blog.xkcd.com/2010/05/03/color-survey-results/