
Chris Piech Section #3
CS 106A January 27, 2019

Solutions to Section #3
Portions of this handout by Eric Roberts, Ruchir Rastogi, Guy Blanc, Julia Daniel, Brahm Capoor and Andrew Tierno

Warmup: True/False questions

a) The value of a local variable named i has no direct relationship with that of a
variable named i in its caller. Answer: True

b) The value of a parameter named x has no direct relationship with that of a variable
named x in its caller. Answer: True

1. Parameters (MakeBoxes)

1. What is the value of i in run at the time createBox is first called? 0
2. What is the value of i in createBox after it is first called? 1
3. What is the value of i in run after createBox is first called but before newBox is

added to the screen? 0

The output of MakeBoxes.java looks like this:

For this problem it is important to realize that local variables do not retain their values
between method calls unless passed as parameters and return values. Particularly, when
primitive types are passed as arguments to methods, their values are copied to new
variables, and therefore any changes made will be lost once the method terminates. In order
to transfer a value computed by a method back to the method that called it, it is necessary
to return that value using the return statement. Note that methods can only return one value
– in this case, a GRect.

 – 2 –

2. RandomCircles

/*
 * File: RandomCircles.java
 * ------------------------
 * This program draws a set of 10 circles with different sizes,
 * positions, and colors. Each circle has a randomly chosen
 * color, a randomly chosen radius between 5 and 50 pixels,
 * and a randomly chosen position on the canvas, subject to
 * the condition that the entire circle must fit inside the
 * canvas without extending past the edge.
 */

import acm.program.*;
import acm.graphics.*;
import acm.util.*;

public class RandomCircles extends GraphicsProgram {

/** Number of circles */
 private static final int NCIRCLES = 10;

/** Minimum radius */
 private static final double MIN_RADIUS = 5;

/** Maximum radius */
 private static final double MAX_RADIUS = 50;

 public void run() {
 for (int i = 0; i < NCIRCLES; i++) {
 double r = rgen.nextDouble(MIN_RADIUS, MAX_RADIUS);
 double x = rgen.nextDouble(0, getWidth() - 2 * r);
 double y = rgen.nextDouble(0, getHeight() - 2 * r);
 GOval circle = new GOval(x, y, 2 * r, 2 * r);
 circle.setFilled(true);
 circle.setColor(rgen.nextColor());
 add(circle);
 }
 }

/* Private instance variable */
 private RandomGenerator rgen = RandomGenerator.getInstance();

}

Note: on some runs of the program you might not see 10 circles because some circles will
be drawn white, or happen be drawn on top of other previously drawn circles, potentially
blocking them entirely from view.

 – 3 –

3. Mouse Circles

/*
 * File: MouseCircles.java
 * ------------------------
 * This program draws a circle each times the mouse is clicked,
 * centered where the click occurs. Each circle has a randomly
 * chosen color and a randomly chosen radius between 5 and 50
 * pixels.
 */

import java.awt.event.MouseEvent;

import acm.program.*;
import acm.graphics.*;
import acm.util.*;

public class MouseCircles extends GraphicsProgram {

 /** Minimum radius */
 private static final double MIN_RADIUS = 5;

 /** Maximum radius */
 private static final double MAX_RADIUS = 50;

 public void run() {
 addMouseListeners();
 }

 /* Called on mouse click to create a new circle */
 public void mouseClicked(MouseEvent e) {
 double x = e.getX();
 double y = e.getY();
 drawCircle(x,y);
 }

 /* Draws a single circle at (x, y) */
 private void drawCircle(double x, double y) {
 double r = rgen.nextDouble(MIN_RADIUS, MAX_RADIUS);
 GOval circle = new GOval(x - r, y - r, 2 * r, 2 * r);
 circle.setFilled(true);
 circle.setColor(rgen.nextColor());
 add(circle);
 }

 /* Private instance variable */
 private RandomGenerator rgen = RandomGenerator.getInstance();
}

 – 4 –

4. The Hitchhiker’s Guide to Tracing

42

Note: A previous version of the section handout returned an int rather than a double.
This would lead to a compiler error, since a method that guarantees a returned int
cannot return a value of type double. If the method was allowed to return an int, the
answer would be 14.

5. Hogwarts Tracing

1. What is the value of the parameter y in bludger? 2001
2. What is the value of the first parameter, x, in quaffle? 2003
3. What is the value of the second parameter, y, in quaffle? 2001
4. What is the value of the first parameter, x, in snitch? 4004
5. What is the value of the second parameter, y, in snitch? 2001

The println output of Hogwarts.java is:

snitch: x = 4004, y = 1001
quaffle: x = 2003, y = 1, z = 1001
bludger: x = 1001, y = 2001, z = 2003

For this problem the main idea is that there is no connection between the names given to
variables in one method, and the names of the parameters which those variables are
assigned to during a method call. When passing a variable as an argument to a method,
Java assigns the first argument to the first parameter, the second argument to the second
parameter, and so forth, regardless of the names they are given. Giving confusing names
to parameters, while certainly possible (as illustrated here), constitutes bad style and should
be avoided.

6. Guess Your Number Debugging
For a complete walkthrough of this problem with additional debugging tips and strategies,
check out the debugging handout on the CS 106A website.

Bug #1: The parameters in the call to findNumber in run are reversed from the order
expected by findNumber's method header. The corrected line in run should read

int answer = findNumber(lowest, highest);
Bug #2: The formula used to compute the midpoint of the bounds for the guess in
findNumber is incorrect. It should read instead

int guess = (upperBound + lowerBound) / 2;

Style Focus for Section 3:

When to Use Instance Variables: Often, we can solve our programming problems by
choosing to make our variables instance variables. However, this is not always the right

 – 5 –

choice. Instance variables should only be used when this value needs to be accessed in
multiple methods of the class, and it makes sense for multiple methods to have access.
Usually, this is only the case when there is some state information that must be maintained
in the object between method calls. Most of the time, you actually should be using local
variables and parameters. In RandomCircles, can you explain why circle should be local
and not an instance variable?

