CS106 AP Midterm Exam Solutions
Summer 2019

1. Trace: The Mystery Bill

Part 1:
The output of the functioncall zoo (6, 2, 0.5) is2600.

Part 2:

There are two issues with the code. The first is that the kakapo () function makes a modification
to the parameter x that is passed in, but never returns that value. Since that specific value of x only
exists in the kakapo () function, this function has no effect on the larger outcome of the program
as currently written. We need to modify the kakapo () function to look like this:

def kakapo(x, p):
X = X - X*p
return x

The second issue is that we never do anything with the return value of the kakapo () functionin
zoo (). To fix this, we would do the following:

def zoo(c,h,p):
x=0
x += pangolin(c)
x += sloth(h)
x = kakapo (x,p)
print (x)

Common errors

e Toreceive full credit for your explanation, you need to state both that kakapo () needed
to return x and also that the return value needed to be assigned to x inside zoo ().

e Be careful with variable names here. Just because a variable named ¢ exists inside both
zoo () and sloth (), these two variables are not actually related! Because zoo () passes
hinto sloth, it passes the value 2 into the function, which is the correct value for the
number of hospital services, despite the parameter’s name inside sloth ().sloth () can
choose to name this variable whatever it wants (c could have been named panda, and it
wouldn’t matter!). The same is true for pangolin (). Although the variable names are
confusing, they don’t actually cause any bugs in the program.

2. Karel: Pharmacist Karel

from karel.stanfordkarel import *

PROVIDED

def turn right():
turn_left()
turn_left()
turn_left()

PROVIDED

def turn_around():
turn_left()
turn_left()

def move until blocked():
while front_is_clear():
move ()

def fill vial():
while front_is_clear():
put_beeper ()
move ()
put_beeper ()
turn_around()

Not provided in the decomp
def scale vial():
while not right is clear():
move ()
turn_right()
move ()
turn_right()

def main() :

wuan

Your code goes here!
move_until blocked()
turn_left()
while front_is_clear():
scale_vial()
move ()
f£fill vial()
scale_vial()

move until blocked() # descend from vial
turn_left()
move_until blocked() # move to next vial
turn_left()

####### DO NOT EDIT CODE BELOW THIS LINE ########

if name == ' main ':

execute_karel task(main)

3. Images: Detecting cancerous growths

Part A

CANCEROUS_THRESHOLD = 50

def highlight cancerous_growths (filename) :
image = SimpleImage (filename) :
for pixel in image:
average = (pixel.red + pixel.blue + pixel.green) // 3
Float division (/ instead of //) also fine in the line above
if average < CANCEROUS_ THRESHOLD: # Both < and <= accepted
pixel.green = 255
pixel.red = 0
pixel.blue = 0
else:
pixel.red = average
pixel.green = average
pixel.blue = average
return image

Part B

def improve detection_ accuracy(best_image, images):
best_image: an unprocessed SimpleImage object of the potentially
affected area
images: a list of SimpleImage objects
for y in range (best_image.height):
for x in range(best_image.width) :
count = 0
for image in images:
processed pixel = image.get pixel(x, y)
if processed pixel.green == 255:
count +=1

if count > len(images) / 2:
pixel.green = 255
pixel.red = 0
pixel.blue = 0

return best image

4. Console Program: Online Appointments

Part A

def convert_to_24 hour_ time (time):
Takes in a string representing a time:
X [AM| PM]
where X is a number between 1-12

Returns an int between 0-24 corresponding to the time.

wan

am_index time.find('AM')
pm_index = time.find('PM')

if am index !'= -1: # Inputted morning time
time = int(time[:am_index])
if time == 12: # Handle the edge case of 12AM
time = 0
else: # Inputted evening time
time = int(time[:pm_index]) + 12
if time == 24: # Handle the edge case of 12PM
time = 12

return time

ALTERNATE SOLUTION
def convert to_24 hour_ time (time):

Takes in a string representing a time:
X[AM| PM]
where X is a number between 1-12

Returns an int between 0-24 corresponding to the time.

wuan

time num = int(time[:len(time) - 2]) # Get just the number as an int
if time.find('PM') != -1: # Add 12 if PM time
time num += 12
if time num $ 12 == 0: # Handle 12AM/PM edge cases
time num -= 12

return time num

Part B

def get_appointments (filename) :
appointments = []
with open(filename, 'r') as f:
for line in f:
times = line.split()
for time in times:
appointments.append(convert_to 24 hour_ time (time))

return appointments

Part C

def schedule appointment (filename) :
Times are inputted in the following form:
The user will only input times on the hour (1PM, 2PM, 8AM, etc...)
The number indicating hour is immediately followed by AM/PM
All PM/AM will be in uppercase letters

You should return a time converted to a 24-hour clock
E.g. 12aMm = 0, 1AM =1, ..., 12PM = 12, 1PM = 13, 2PM = 14, etc.
existing appointments = get appointments(filename)
best_time = 25
time = input(“Please input a time when you're available or DONE when
finished: “)
while time != 'DONE':
time num = convert_to_24 hour time (time)
if time num < best_time and time num not in existing appointments:
best_time = time_num
time = input(“Please input a time when you're available or DONE when
finished: ”) # Reprompt

print('Your appointment is scheduled for :', str(best_time), “o'clock”)

5. Dictionaries: Patient Visit Count

def count visits(filename):
count dict = {}
with open(filename, 'r') as f:
for line in f:
name = line.split() [1]
if name not in count dict:

count dict[name]
count dict[name] += 1
return count dict

0

