
CS106AP Midterm Exam Solutions
Summer 2019

1. Trace: The Mystery Bill

Part 1:
The output of the function call​ ​zoo(6, 2, 0.5)​ is 2600.

Part 2:
There are two issues with the code. The first is that the ​kakapo()​ ​function makes a modification
to the parameter x that is passed in, but never returns that value. Since that specific value of x only
exists in the ​kakapo()​ function, this function has no effect on the larger outcome of the program
as currently written. We need to modify the ​kakapo()​ function to look like this:

def kakapo(x, p):

 x = x - x*p

 return x

The second issue is that we never do anything with the return value of the ​kakapo()​ function in
zoo()​. To fix this, we would do the following:

def zoo(c,h,p):

 x=0

 x += pangolin(c)

 x += sloth(h)

 x = kakapo(x,p)

 print(x)

Common errors
● To receive full credit for your explanation, you need to state both that ​kakapo()​ needed

to ​return​ ​x​ and also that the return value needed to be ​assigned​ to ​x​ inside ​zoo()​.
● Be careful with variable names here. Just because a variable named ​c​ exists inside both

zoo()​ and ​sloth()​, these two variables are not actually related! Because ​zoo()​ passes
h​ into sloth, it passes the ​value​ 2 into the function, which is the correct value for the
number of hospital services, despite the parameter’s name inside ​sloth()​. ​sloth()​ can
choose to name this variable whatever it wants (​c​ could have been named ​panda​, and it
wouldn’t matter!). The same is true for ​pangolin()​. Although the variable names are
confusing, they don’t actually cause any bugs in the program.

2. Karel: Pharmacist Karel

from karel.stanfordkarel import *

PROVIDED

def turn_right():

 turn_left()

 turn_left()

 turn_left()

PROVIDED

def turn_around():

 turn_left()

 turn_left()

def move_until_blocked():

 while front_is_clear():

 move()

def fill_vial():

 while front_is_clear():

 put_beeper()

 move()

 put_beeper()

 turn_around()

Not provided in the decomp

def scale_vial():

 while not right_is_clear():

 move()

 turn_right()

 move()

 turn_right()

def main():

 """

 Your code goes here!

 """

 move_until_blocked()

 turn_left()

 while front_is_clear():

 scale_vial()

 move()

 fill_vial()

 scale_vial()

 move_until_blocked() # descend from vial

 turn_left()

 move_until_blocked() # move to next vial

 turn_left()

####### DO NOT EDIT CODE BELOW THIS LINE ########

if __name__ == '__main__':

 execute_karel_task(main)

3. Images: Detecting cancerous growths

Part A

CANCEROUS_THRESHOLD = 50

def highlight_cancerous_growths(filename):

 image = SimpleImage(filename):

 for pixel in image:

 average = (pixel.red + pixel.blue + pixel.green) // 3

 # Float division (/ instead of //) also fine in the line above

 if average < CANCEROUS_THRESHOLD: # Both < and <= accepted

 pixel.green = 255

 pixel.red = 0

 pixel.blue = 0

 else:

 pixel.red = average

 pixel.green = average

 pixel.blue = average

 return image

Part B

def improve_detection_accuracy(best_image, images):

 """

 best_image: an unprocessed SimpleImage object of the potentially

 affected area

 images: a list of SimpleImage objects

 """

 for y in range(best_image.height):

 for x in range(best_image.width):

 count = 0

 for image in images:

 processed_pixel = image.get_pixel(x, y)

 if processed_pixel.green == 255:

 count += 1

 if count > len(images) / 2:

 pixel.green = 255

 pixel.red = 0

 pixel.blue = 0

 return best_image

4. Console Program: Online Appointments

Part A

def convert_to_24_hour_time(time):

 """

 Takes in a string representing a time:

 X[AM|PM]

 where X is a number between 1-12

 Returns an int between 0-24 corresponding to the time.

 """

 am_index = time.find('AM')

 pm_index = time.find('PM')

 if am_index != -1: # Inputted morning time

 time = int(time[:am_index])

 if time == 12: # Handle the edge case of 12AM

 time = 0

 else: # Inputted evening time

 time = int(time[:pm_index]) + 12

 if time == 24: # Handle the edge case of 12PM

 time = 12

 return time

ALTERNATE SOLUTION

def convert_to_24_hour_time(time):

 """

 Takes in a string representing a time:

 X[AM|PM]

 where X is a number between 1-12

 Returns an int between 0-24 corresponding to the time.

 """

 time_num = int(time[:len(time) - 2]) # Get just the number as an int

 if time.find('PM') != -1: # Add 12 if PM time

 time_num += 12

 if time_num % 12 == 0: # Handle 12AM/PM edge cases

 time_num -= 12

 return time_num

Part B

def get_appointments(filename):

 appointments = []

 with open(filename, 'r') as f:

 for line in f:

 times = line.split()

 for time in times:

 appointments.append(convert_to_24_hour_time(time))

 return appointments

Part C

def schedule_appointment(filename):

 """

 Times are inputted in the following form:

 The user will only input times on the hour (1PM, 2PM, 8AM, etc...)

 The number indicating hour is immediately followed by AM/PM

 All PM/AM will be in uppercase letters

 You should return a time converted to a 24-hour clock

 E.g. 12AM = 0, 1AM = 1, ..., 12PM = 12, 1PM = 13, 2PM = 14, etc.

 """

 existing_appointments = get_appointments(filename)

 best_time = 25

 time = input(“Please input a time when you're available or DONE when

finished: “)

 while time != 'DONE':

 time_num = convert_to_24_hour_time(time)

 if time_num < best_time and time_num not in existing_appointments:

 best_time = time_num

 time = input(“Please input a time when you're available or DONE when

finished: ”) # Reprompt

 print('Your appointment is scheduled for :', str(best_time), “o'clock”)

5. Dictionaries: Patient Visit Count

def count_visits(filename):

 count_dict = {}

 with open(filename, 'r') as f:

 for line in f:

 name = line.split()[1]

 if name not in count_dict:

 count_dict[name] = 0

 count_dict[name] += 1

 return count_dict

