
CS106AP Midterm Exam Solutions
Summer 2019

1. Trace: The Mystery Bill

Part 1:
The output of the function call zoo(6, 2, 0.5) is 2600.

Part 2:
There are two issues with the code. The first is that the kakapo() function makes a modification
to the parameter x that is passed in, but never returns that value. Since that specific value of x only
exists in the kakapo() function, this function has no effect on the larger outcome of the program
as currently written. We need to modify the kakapo() function to look like this:

def kakapo(x, p):

 x = x - x*p

 return x

The second issue is that we never do anything with the return value of the kakapo() function in
zoo(). To fix this, we would do the following:

def zoo(c,h,p):

 x=0

 x += pangolin(c)

 x += sloth(h)

 x = kakapo(x,p)

 print(x)

Common errors
● To receive full credit for your explanation, you need to state both that kakapo() needed

to return x and also that the return value needed to be assigned to x inside zoo().
● Be careful with variable names here. Just because a variable named c exists inside both

zoo() and sloth(), these two variables are not actually related! Because zoo() passes
h into sloth, it passes the value 2 into the function, which is the correct value for the
number of hospital services, despite the parameter’s name inside sloth(). sloth() can
choose to name this variable whatever it wants (c could have been named panda, and it
wouldn’t matter!). The same is true for pangolin(). Although the variable names are
confusing, they don’t actually cause any bugs in the program.

2. Karel: Pharmacist Karel

from karel.stanfordkarel import *

PROVIDED

def turn_right():

 turn_left()

 turn_left()

 turn_left()

PROVIDED

def turn_around():

 turn_left()

 turn_left()

def move_until_blocked():

 while front_is_clear():

 move()

def fill_vial():

 while front_is_clear():

 put_beeper()

 move()

 put_beeper()

 turn_around()

Not provided in the decomp

def scale_vial():

 while not right_is_clear():

 move()

 turn_right()

 move()

 turn_right()

def main():

 """

 Your code goes here!

 """

 move_until_blocked()

 turn_left()

 while front_is_clear():

 scale_vial()

 move()

 fill_vial()

 scale_vial()

 move_until_blocked() # descend from vial

 turn_left()

 move_until_blocked() # move to next vial

 turn_left()

####### DO NOT EDIT CODE BELOW THIS LINE ########

if __name__ == '__main__':

 execute_karel_task(main)

3. Images: Detecting cancerous growths

Part A

CANCEROUS_THRESHOLD = 50

def highlight_cancerous_growths(filename):

 image = SimpleImage(filename):

 for pixel in image:

 average = (pixel.red + pixel.blue + pixel.green) // 3

 # Float division (/ instead of //) also fine in the line above

 if average < CANCEROUS_THRESHOLD: # Both < and <= accepted

 pixel.green = 255

 pixel.red = 0

 pixel.blue = 0

 else:

 pixel.red = average

 pixel.green = average

 pixel.blue = average

 return image

Part B

def improve_detection_accuracy(best_image, images):

 """

 best_image: an unprocessed SimpleImage object of the potentially

 affected area

 images: a list of SimpleImage objects

 """

 for y in range(best_image.height):

 for x in range(best_image.width):

 count = 0

 for image in images:

 processed_pixel = image.get_pixel(x, y)

 if processed_pixel.green == 255:

 count += 1

 if count > len(images) / 2:

 pixel.green = 255

 pixel.red = 0

 pixel.blue = 0

 return best_image

4. Console Program: Online Appointments

Part A

def convert_to_24_hour_time(time):

 """

 Takes in a string representing a time:

 X[AM|PM]

 where X is a number between 1-12

 Returns an int between 0-24 corresponding to the time.

 """

 am_index = time.find('AM')

 pm_index = time.find('PM')

 if am_index != -1: # Inputted morning time

 time = int(time[:am_index])

 if time == 12: # Handle the edge case of 12AM

 time = 0

 else: # Inputted evening time

 time = int(time[:pm_index]) + 12

 if time == 24: # Handle the edge case of 12PM

 time = 12

 return time

ALTERNATE SOLUTION

def convert_to_24_hour_time(time):

 """

 Takes in a string representing a time:

 X[AM|PM]

 where X is a number between 1-12

 Returns an int between 0-24 corresponding to the time.

 """

 time_num = int(time[:len(time) - 2]) # Get just the number as an int

 if time.find('PM') != -1: # Add 12 if PM time

 time_num += 12

 if time_num % 12 == 0: # Handle 12AM/PM edge cases

 time_num -= 12

 return time_num

Part B

def get_appointments(filename):

 appointments = []

 with open(filename, 'r') as f:

 for line in f:

 times = line.split()

 for time in times:

 appointments.append(convert_to_24_hour_time(time))

 return appointments

Part C

def schedule_appointment(filename):

 """

 Times are inputted in the following form:

 The user will only input times on the hour (1PM, 2PM, 8AM, etc...)

 The number indicating hour is immediately followed by AM/PM

 All PM/AM will be in uppercase letters

 You should return a time converted to a 24-hour clock

 E.g. 12AM = 0, 1AM = 1, ..., 12PM = 12, 1PM = 13, 2PM = 14, etc.

 """

 existing_appointments = get_appointments(filename)

 best_time = 25

 time = input(“Please input a time when you're available or DONE when

finished: “)

 while time != 'DONE':

 time_num = convert_to_24_hour_time(time)

 if time_num < best_time and time_num not in existing_appointments:

 best_time = time_num

 time = input(“Please input a time when you're available or DONE when

finished: ”) # Reprompt

 print('Your appointment is scheduled for :', str(best_time), “o'clock”)

5. Dictionaries: Patient Visit Count

def count_visits(filename):

 count_dict = {}

 with open(filename, 'r') as f:

 for line in f:

 name = line.split()[1]

 if name not in count_dict:

 count_dict[name] = 0

 count_dict[name] += 1

 return count_dict

