
Interactive Graphics

Jerry Cain
CS 106AX

October 4, 2023
slides leveraged from those written by Eric Roberts

Additional Methods for GLine
setStartPoint(x, y)
setEndPoint(x, y)

Sets the start point without changing the end point
Sets the end point without changing the start point

function LineGeometryExample() {
 let gw = GWindow(GWINDOW_WIDTH, GWINDOW_HEIGHT);
 let line = GLine(0, 0, 100, 100);
 gw.add(line);
 line.setLocation(200, 50);
 line.setStartPoint(200, 150);
 line.setEndPoint(300, 50);
}

LineGeometryExample

The JavaScript Event Model
• Graphical applications usually make it possible for the user to

control the action of a program by using an input device such
as a mouse. Programs that support this kind of user control
are called interactive programs.

• User actions such as mouse clicks and keystrokes are called
events. Programs that respond to events are event-driven.

• In modern interactive programs, user input doesn’t occur at
predictable times. A running program doesn’t tell the user
when to click the mouse. The user decides when to click the
mouse, and the program reacts. Because events are not
controlled by the program, they are said to be asynchronous.

• In JavaScript program, you write a function that acts as a
listener for a particular event type. When the event occurs,
that listener is called.

First-Class Functions
• Writing listener functions requires you to make use of one of

JavaScript’s most important features, which is summed up in
the idea that functions in JavaScript are treated as data values
just like any others.

• Given a function in JavaScript, you can assign it to a variable,
pass it as a parameter, or return it from another function.

• Functions that can be treated like any other data value are
called first-class functions.

• The textbook includes examples of how first-class functions
can be used to write a program that generates a table of values
for a client-supplied function. The focus here is using first-
class functions as listeners.

Declaring Functions using Assignment
• The syntax for function definitions you have been using all

along is really just a convenient shorthand for assigning a
function to a variable. Thus, instead of writing

JavaScript allows you to write

function fahrenheitToCelsius(f) {
 return 5 / 9 * (f – 32);
}

let fahrenheitToCelsius = function(f) {
 return 5 / 9 * (f – 32);
};

• Note this second form is a declaration and requires a semicolon.

Closures
• The assignment syntax has a few advantages over the more

familiar definition for functions defined at the highest level of
a program.

• The real advantage of declaring functions in this way comes
when you declare one function as a local variable inside
another function. In that case, the inner function not only
includes the code in the function body but also has access to
the outer function’s local variables.

• This combination of a function definition and the collection of
local variables available in the stack frame in which the new
function is defined is called a closure.

• Closures are essential to writing interactive programs in
JavaScript, so it’s worth going through some examples in
detail.

A Simple Interactive Example
• The first interactive example in the text is DrawDots:

function DrawDots() {
 let gw = GWindow(GWINDOW_WIDTH, GWINDOW_HEIGHT);
 let clickAction = function(e) {
 let dot = GOval(e.getX() - DOT_SIZE / 2,
 e.getY() - DOT_SIZE / 2,
 DOT_SIZE, DOT_SIZE);
 dot.setFilled(true);
 gw.add(dot);
 };
 gw.addEventListener("click", clickAction);
}

• The key to understanding this program is the clickAction
function, which defines what to do when the mouse is clicked.

• It is imperative we note that clickAction has access to the
gw variable in DrawDots because gw is included in the closure.

Registering an Event Listener
• The last line in the DrawDots function is

gw.addEventListener("click", clickAction);

which tells the graphics window (gw) to call clickAction
whenever a mouse click occurs in the window.

let clickAction = function(e) {
 let dot = GOval(e.getX() - DOT_SIZE / 2,
 e.getY() - DOT_SIZE / 2,
 DOT_SIZE, DOT_SIZE);
 dot.setFilled(true);
 gw.add(dot);
};

• The definition of clickAction is

Callback Functions
• The clickAction function in the DrawDots.js program is

representative of all functions that handle mouse events. The
DrawDots.js program passes the function to the graphics
window using the addEventListener method. When the
user clicks the mouse, the graphics window, in essence, calls
the client back with the message that a click occurred. For
this reason, such functions are known as callback functions.

• The parameter e supplied to the clickAction function is a
data structure called a mouse event, which gives information
about the specifics of the event that triggered the action.

• The programs in the text use only two methods that are part of
the mouse event object: getX() and getY(). These methods
return the x and y coordinates of the mouse click in the
coordinate system of the graphics window.

Mouse Events
• The following table shows the different mouse-event types:

• Certain user actions can generate more than one mouse event.
For example, clicking the mouse generates a "mousedown"
event, a "mouseup" event, and a "click" event, in that order.

• Events trigger no action unless a client is listening for that
event type. The DrawDots.js program listens only for the
"click" event and is therefore never notified about any of the
other event types that occur.

"click"

"dblclk"

"mousedown"

"mouseup"

"mousemove"

"drag"

The user clicks the mouse in the window.
The user double-clicks the mouse.
The user presses the mouse button.
The user releases the mouse button.
The user moves the mouse with the button up.
The user drags the mouse with the button down.

A Simple Line-Drawing Program

const GWINDOW_WIDTH = 500;
const GWINDOW_HEIGHT = 300;

function DrawLines() {
 let gw = GWindow(GWINDOW_WIDTH, GWINDOW_HEIGHT);
 let line = null;

 let mousedownAction = function(e) {
 line = GLine(e.getX(), e.getY(), e.getX(), e.getY());
 gw.add(line);
 };
 let dragAction = function(e) {
 line.setEndPoint(e.getX(), e.getY());
 };

 gw.addEventListener("mousedown", mousedownAction);
 gw.addEventListener("drag", dragAction);
}

Drawing a line using this program requires three actions: pressing
the mouse button at the starting point of the line, dragging the
mouse to the desired end point, and then releasing the mouse.

The function mousedownAction responds to the event by creating
a new zero-length line that begins and ends at the current mouse
position.

Dragging the mouse results in a series of dragAction calls that
come in rapid succession each time the computer reads the mouse
position. Each call simply resets the end point of the line.

The effect of this strategy is that the user sees the line as it grows,
providing the necessary visual feedback to position the line
correctly.

As you drag the mouse, the line will stretch, contract, and change
direction as if the two points were connected by an elastic band.
This technique is therefore called rubber-banding.

In all likelihood, you have at some point used an application that
allows you to draw lines with the mouse. In JavaScript, the
necessary code fits easily on a single slide.

Simulating the DrawLines Program

DrawLines

– The two calls to addEventListener register the listeners.
– Depressing the mouse button generates a "mousedown" event.
– The mousedownAction call adds a zero-length line to the canvas.
– Dragging the mouse generates a series of "drag" events.
– Each dragAction call extends the line to the new position.
– Releasing the mouse stops the dragging operation.
– Repeating these steps adds new lines to the canvas.

mouse
downdragdragdragdragdragdragdrag

DrawLines

The End

