
Strings in JavaScript

Jerry Cain
CS 106AX

October 11, 2023
slides leveraged from those constructed by Eric Roberts

Strings in JavaScript

Using Methods in the String Class
• JavaScript defines many useful methods to operate on strings.

Before trying to use those methods individually, it is
important to understand how those methods work at a more
general level.

• Because strings are objects, JavaScript uses the receiver
syntax to invoke string methods. So, if str is a string, you
invoke the name method using str.name(arguments).

• None of the methods in JavaScript’s String class change the
value of the string used as the receiver. Each method returns a
new string reflecting the outcome of the method’s execution.

• Classes that prohibit clients from changing an object’s state
are said to be immutable. Immutable types have many
advantages and play an important role in programming.

Selecting Characters from a String
• Conceptually, a string is an ordered collection of characters.

• In JavaScript, the character positions in a string are identified
by an index that begins at 0 and extends up to one less than
the length of the string. For example, the characters in the
string "hello, world" are arranged like this:

h
0

e
1

l
2

l
3

o
4

,
5 6

w
7

o
8

r
9

l
10

d
11

• You can obtain the number of characters by checking the
length property, as in str.length.

• You can select an individual character by calling charAt(k),
where k is the index of the desired character. The expression

returns the one-character string "h" that appears at index 0.
str.charAt(0);

Concatenation
• One of the most useful operations available for strings is

concatenation, which consists of combining two strings end
to end with no intervening characters.

• As you know from earlier in the quarter, concatenation is built
into JavaScript in the form of the + operator.

• It is also important to recall that JavaScript interprets the +
operator as concatenation if one or both operands are strings.
If both operands are numbers, the + operator signifies
traditional addition.

Extracting Substrings
• The substring method makes it possible to extract a piece of

a larger string by providing index numbers that determine the
extent of the substring.

where p1 is the first index position in the desired substring
and p2 is the index position immediately following the last
position in the substring.

• The general form of the substring call is

str.substring(p1, p2);

• As an example, if you wanted to select the substring "ell"
from a string variable str containing "hello, world" you
would make the following call:

str.substring(1, 4);

Comparing Strings
• JavaScript allows you to call the standard relational operators

to compare the values of two strings in a natural way. For
example, if s1 and s2 are strings, the expression

is true if the strings s1 and s2 contain the same characters.

s1 === s2

• String comparisons involving the operators <, <=, >, and >=
are implemented in a fashion like traditional alphabetic
ordering: if the first characters match, the comparison
operator checks the second characters, and so on.

• Characters are compared numerically using their Unicode
values. For example, "cat" > "CAT" because the character
code for "c" (99) is greater than the code for "C" (67). This
style of comparison is called lexicographic comparison.

• We’ll revisit character encodings and Unicode next week.

Searching in a String
• The indexOf method takes a string and returns the index

within the receiver at which the first instance of that string
begins. If the string is not found, indexOf returns -1. For
example, if str contains the string "hello, world":

str.indexOf("h") returns 0
str.indexOf("o") returns 4
str.indexOf("ell") returns 1
str.indexOf("x") returns -1

• The indexOf method takes an optional second argument that
indicates the starting position for the search. Thus:

str.indexOf("o", 5) returns 8

• The lastIndexOf method works similarly except that it
searches backward from the end of the receiving string.

Other Methods in the String Class
String.fromCharCode(code)

Returns the one-character string whose Unicode value is code.
charCodeAt(index)

Returns the Unicode value of the character at the specified index.

startsWith(prefix)
Returns true if this string starts with prefix.

endsWith(suffix)
Returns true if this string ends with suffix.

trim()
Returns a copy of this string with leading and trailing spaces removed.

toLowerCase()
Returns a copy of this string converted to lower case.

toUpperCase()
Returns a copy of this string converted to upper case.

Simple String Idioms
When you work with strings, there are two idiomatic patterns that
are particularly important:

for (let i = 0; i < str.length; i++) {
 let ch = str.charAt(i);
 . . . code to process each character in turn . . .
}

Iterating through the characters in a string. 1.

let result = "";
for (whatever limits are appropriate to the application) {
 . . . code to determine the next character to be added . . .
 result += ch;
}

Growing a new string character by character. 2.

Reversing a String

> reverse("stressed")

str result i
"stressed" "" 7"d" 6"de" 5"des" 4"dess" 3"desse" 2"desser" 1"dessert" 0"desserts" -1

desserts
>

String Calisthenics
Let’s review some String methods before continuing:
ü "AEIOUaeiou".length

ü "ABCDEFG".charAt(6)

ü "Harry Potter".indexOf("a")

ü "Harry Potter".indexOf("a", 6)

ü "Harry Potter".lastIndexOf("rr")

ü "bumfuzzle".substring(3, 7)

ü "cabotage".substring(1, 1)

ü "agelast".substring(3)

10

"G"

1

-1

2

"fuzz"

""

"last"

Generating Acronyms
• An acronym is a word formed by taking the first letter of each

word in a sequence, as in
"North American Free Trade Agreement" "NAFTA"
"not in my back yard" "nimby"
"self-contained underwater breathing apparatus" "scuba"

• The text describes and implements two versions of a function
acronym(str) that generates an acronym for str:
– The first version searches for spaces in the string and includes

the following character in the acronym. This version, however,
fails for acronyms like scuba, in which some of the words are
separated by hyphens rather than spaces.

– The second version looks at every character and keeps track of
whether the algorithm is scanning a word formed composed of
sequential letters. This version correctly handles scuba as well
as strings that have leading, trailing, or multiple spaces.

acronym , Take I

> acronym("not in my back yard")

str result sp
"not in my back yard" "n" 3"ni" 6"nim" 9"nimb" 14"nimby" -1

nimby

acroynm, Take II

> acronym("In My Humble Opinion")

str result i inWord ch
"In My Humble Opinion" "" false0 "I"

ch
"I"

8

"I" true1 "n"true2 " "
ch
" "

-1

false3 "M""IM" true4 "y"true5 " "false6 "H""IMH" true7 "u"true8 "m"true9 "b"true10 "l"true11 "e"true12 " "false13 "O""IMHO" true14 "p"true15 "i"true16 "n"true17 "i"true18 "o"true19 "n"true20

IMHO

Translating Pig Latin to English
Section 7.4 works through the design and implementation of a
program to convert a sentence from English to Pig Latin. In this
dialect, the Pig Latin version of a word is formed by applying the
following rules:

If the word begins with a consonant, the wordToPigLatin function
moves the initial consonant string to the end of the word and then
adds the suffix ay, as follows:

1.

scram scramscramscramscramscramscramscramscramscramscram
scr
am
scr
am
scr
am
scr
am
scr
am
scr
am
scr

amscramscramscramscramscramscramscramscramscram ay

If the word begins with a vowel, wordToPigLatin generates the Pig
Latin version simply by adding the suffix way, like this:

2.

apple appleway

If the word contains no vowels at all, wordToPigLatin returns the
original word unchanged.

3.

Translating Pig Latin to English

"stout plunder lover"

i

inWord

start

0

T

0

F

-1

1

T

0

2

T

0

3

T

0

4

T

0

5

F

-1

6

T

6

12

T

6

13

F

-1

14

T

14

18

T

14

• inWord is true if and only if we’re in a word, and start is the index of the
first character of the word we’re currently in (or -1 if we’re not in a word).

• inWord is now true and start is set equal to 0. We set assign the value of i
to start at the same time inWord is transitioning from false to true , so we
can remember where the current word of interest begins.

• This is an interesting transition, since the current word we’re in is just now ending.
We can isolate the word by calling str.substring(start, i), where str
is assumed to be the entire sentence or fragment to be translated.
• Right now, str.substring(start, i) produces "stout".
• And now, str.substring(start, i) produces "plunder".

Pseudocode for the Pig Latin Program
function toPigLatin(str) {
 Initialize a variable called result to hold the growing string.
 for (each character position in str) {
 if (the current character is a letter) {
 if (we’re not yet scanning a word) Remember the start of this word.
 } else {
 if (we were scanning a word) {
 Call wordToPigLatin to translate the word.
 Append the translated word to the result variable.
 }
 Append the separator character to the result variable.
 }
 }
 if (we’re still scanning a word) {
 Call wordToPigLatin and append the translated word to result.
 }
}

function wordToPigLatin(word) {
 Find the first vowel in the word.
 If there are no vowels, return the original word unchanged.
 If the vowel appears in the first position, return the word concatenated with "way".
 Divide the string into two parts (head and tail) before the vowel.
 Return the result of concatenating the tail, the head, and the string "ay".
}

Simulating the PigLatin Program

> toPigLatin("this is pig latin")

str result start i ch

"this is pig latin" "" -1 0 "t"0 1 "h"2 "i"3 "s"4 " "
word vp head tail

"this"

word i

"this" 0

ch

"t"122 "th" "is"

"isthay"

"isthay" -1"isthay " 5 "i"5 6 "s"7 " "
word vp head tail

"is" 0

"isway"

"isthay isway" -1"isthay isway " 8 "p"8 9 "i"10 "g"11 " "
word vp head tail

"pig" 1 "p" "ig"

"igpay"

"isthay isway igpay" -1"isthay isway igpay " 12 "l"12 13 "a"14 "t"15 "i"16 "n"17
word vp head tail

"latin" 1 "l" "atin"

"atinlay"

"isthay isway igpay atinlay"

isthay isway igpay atinlay

The GLabel Class
You can display a string in the graphics window using the GLabel
class, as illustrated by the following function that displays the
string "hello, world" on the graphics window:

HelloWorld

hello, world

function HelloWorld() {
 let gw = GWindow(GWINDOW_WIDTH, GWINDOW_HEIGHT);
 let label = GLabel("hello, world", 100, 75);
 label.setFont("36px Helvetica");
 label.setColor("Red");
 gw.add(label);
}

Operations on the GLabel Class
Function to create a GLabel
GLabel(text, x, y)

Creates a label containing the specified text that begins at the point (x, y).

Methods specific to the GLabel class
label.setFont(font)

Sets the font used to display the label as specified by the font string.

The font is specified as a CSS fragment, the details of which are
described in the JavaScript textbook, pp. 129-131.

Examples of legal font strings:
• "italic 36px Helvetica"
• "24px 'Times New Roman'"
• "bold 14px Courier,'Courier New',Monaco"
• "oblique bold 44px 'Lucida Blackletter',serif"

The Geometry of the GLabel Class
• The GLabel class relies on a set of geometrical concepts that

are derived from classical typesetting:
– The baseline is the imaginary line on which the characters rest.
– The origin is the point on the baseline at which the label begins.
– The height of the font is the distance between successive baselines.
– The ascent is the distance characters rise above the baseline.
– The descent is the distance characters drop below the baseline.

• You can use the getHeight, getAscent, and getDescent
methods to determine the corresponding property of the font.
You can use the getWidth method to determine the width of
the entire label, which depends on both the font and the text.

QuickBrownFox

The quick brown fox jumps
over the lazy dog. baseline

origin

height

ascent

descent

The End

