
Binary Representation

Jerry Cain
CS 106AX

October 18, 2023
slides leveraged from those constructed by Eric Roberts

The Power of Bits
• The fundamental unit of memory inside a computer is called a

bit—a term introduced in a paper by Claude Shannon as a
contraction of the words binary digit.

• An individual bit exists in one of two states, usually denoted
as 0 and 1.

• More sophisticated data can be represented by combining
larger numbers of bits:
– Two bits can represent four (2 × 2) values.
– Three bits can represent eight (2 × 2 × 2) values.
– Four bits can represent 16 (24) values, and so on.

• This laptop has 64GB of main memory and can therefore
exist in 2549,755,813,888 states, because 64GB is actually 239 =
549,755,813,888 independent bits.

Leibniz and Binary Notation
• Binary notation is an old idea.

It was described back in 1703
by the German mathematician
Gottfried Wilhelm von Leibniz.

• Writing in the proceedings of
the French Royal Academy of
Science, Leibniz describes his
use of binary notation in a
simple, easy-to-follow style.

• Leibniz’s paper further suggests
that the Chinese were clearly
familiar with binary arithmetic
thousands of years prior, as
evidenced by the patterns of
lines found in the I Ching.

https://www.wikihow.com/Consult-the-I-Ching-Using-3-Coins

The rightmost digit
is the units place.

The next digit gives
the number of 2s.

The next digit gives
the number of 4s.

42

0 x 01 =
1 x 22 =
0 x 04 =
1 x 88 =
0 x 016 =
1 x 3232 =
0 x 064 =
0 x 0128 =

Using Bits to Represent Integers
• Binary notation is like decimal notation but uses a different

base. Decimal numbers use 10 as their base, which means that
each digit counts for ten times as much as the digit to its right.
Binary notation uses base 2, which means that each position
counts for twice as much instead of 10, as follows:

0 0 1 0 1 0 1 0

Numbers and Bases
• The calculation at the end of the preceding slide makes it

clear that the binary representation 00101010 is equivalent to
the number 42. When it is important to distinguish the base,
the text uses a small subscript, like this:

001010102 = 4210

• Although it is useful to be able to convert a number from one
base to another, it is important to remember that the number
remains the same. What changes is how you write it down.

• The number 42 is what you get if you count
how many stars are in the pattern at the right.
The number is the same whether you write it
in English as forty-two, in decimal as 42, or
in binary as 00101010.

• Numbers do not have bases. Representations do.

Octal and Hexadecimal Notation
• Because binary notation tends to get rather long, computer

scientists often prefer octal (base 8) or hexadecimal (base 16)
notation instead. Octal notation uses eight digits: 0 to 7.
Hexadecimal notation uses sixteen digits: 0 to 9, followed by
the letters A through F to indicate the values 10 to 15.

• The advantage of using either octal or hexadecimal notation is
that doing so makes it easy to translate the number back to
individual bits because you can convert each digit separately.

• The following diagrams show how the number forty-two
appears in both octal and hexadecimal notation:

2 x 21
5 x 408

5 2

42

10 x 101
02 x 3216

2 A

42

octal hexadecimal

=
=

=
=

Exercises: Number Bases
• What is the decimal value for each of the following numbers?

100012 1778 AD16

1 x 11
0 x 02
0 x 04
0 x 08
1 x 116

1 0 0 0 1

17

7 x 71
7 x 568

7 7

127

1

1 x 6464

13 x 131
10 x 16016

A D

173

17 127 173

• As part of a code to identify the file type, every Java class file
begins with the following sixteen bits:

1 1 0 0 1 0 1 0 1 1 1 1 1 1 1 0

How would you express that number in hexadecimal notation?

1 1 0 0 1 0 1 0 1 1 1 1 1 1 1 0

A F E
CAFE16

1 1 0 0 1 0 1 0 1 1 1 1 1 1 1 0

Exercise: Perfect Numbers in Binary
• Greek mathematicians took a special interest in numbers that

are equal to the sum of their proper divisors, which are
simply those divisors less than the number itself. They called
such numbers perfect numbers.

• For example, 6 is a perfect number because it is the sum of
1, 2, and 3, which are the integers less than 6 that divide into
6 evenly. The next three perfect numbers—all of which were
known to Greeks mathematicians—are 28, 496, and 8128.

6 =

• Convert each of these numbers into its binary representation:

28 =
496 =

8128 =

1102
111002
1111100002
11111110000002

Bits and Representation
• Sequences of bits have no intrinsic meaning except for

whatever meaning that we assign to them, both by convention
and by building specific operations into the hardware.

• As an example, a 32-bit word represents an integer only
because we have designed hardware that can manipulate those
figures arithmetically, applying operations such as addition,
subtraction, and comparison.

• By choosing an appropriate representation, you can use bits to
represent any value you can imagine:
– Characters are represented using numeric character codes.
– Floating-point representation supports real numbers.
– Two-dimensional arrays of bits represent images.
– Sequences of images represent video.
– And so on . . .

Representing Characters
• Computers use numeric encodings to represent character data

inside the memory of the machine, in which each character is
assigned an integral value.

• Character codes, however, are not very useful unless they are
standardized. When different computer manufacturers use
different coding sequence (as was indeed the case in the early
years), it is harder to share such data across machines.

• The first widely adopted character encoding was ASCII
(American Standard Code for Information Interchange).

• With only 256 possible characters, the ASCII system proved
inadequate to represent the many alphabets in use throughout
the world. It has therefore been superseded by Unicode,
which allows for a much larger number of characters.

The ASCII Subset of Unicode
The Unicode value for any character in the table is the sum of the
octal numbers at the beginning of that row and column.
The letter A, for example, has the Unicode value 1018, which is
the sum of the row and column labels.
The table below shows the first 128 characters in the Unicode
character set, which are the same as those in the older ASCII set:

\000 \001 \002 \003 \004 \005 \006 \007
\b \t \n \011 \f \r \016 \017

\020 \021 \022 \023 \024 \025 \026 \027
\030 \031 \032 \033 \034 \035 \036 \037
space ! " # $ % & '

() * + , - . /
0 1 2 3 4 5 6 7
8 9 : ; < = > ?
@ A B C D E F G
H I J K L M N O
P Q R S T U V W
X Y Z [\] ^ _
` a b c d e f g
h i j k l m n o
p q r s t u v w
x y z { | } ~ \177

0 1 2 3 4 5 6 7
00x
01x
02x
03x
04x
05x
06x
07x
10x
11x
12x
13x
14x
15x
16x
17x

\000 \001 \002 \003 \004 \005 \006 \007
\b \t \n \011 \f \r \016 \017

\020 \021 \022 \023 \024 \025 \026 \027
\030 \031 \032 \033 \034 \035 \036 \037
space ! " # $ % & '

() * + , - . /
0 1 2 3 4 5 6 7
8 9 : ; < = > ?
@ A B C D E F G
H I J K L M N O
P Q R S T U V W
X Y Z [\] ^ _
` a b c d e f g
h i j k l m n o
p q r s t u v w
x y z { | } ~ \177

Hardware Support for Characters

10000110

=97

a

Unicode String Methods
String.fromCharCode(code)

Returns the one-character string whose Unicode value is code.
charCodeAt(index)

Returns the Unicode value of the character at the specified index.

• These two methods allow us to alternate between characters
and their internal numeric representations.

• While it’s rarely important to know what numbers back each
character, it is important to remember that neighboring
lowercase letters have consecutive codes, so that
"b".charCodeAt(0) – "a".charCodeAt(0) is always 1.

• The uppercase letters are also laid out contiguously, as are the
ten digit characters.

• String algorithms can and often do leverage these guarantees.

Exercise: Implementing toUpperCase
• Pretend the toUpperCase method doesn’t exist. Implement a

toUpperCase function that returns the same result.

/*
 * Function: toUpperCase
 * ---------------------
 * Accepts the provided string and returns the same string
 * where all alphabetic letters are uppercase.
 */
function toUpperCase(str) {
 let result = "";
 for (let i = 0; i < str.length; i++) {
 let ch = str.charAt(i);
 if (ch >= "a" && ch <= "z") {
 let offset = ch.charCodeAt(0) - "a".charCodeAt(0);
 ch = String.fromCharCode("A".charCodeAt(0) + offset);
 }
 result += ch;
 }
 return result;
}

The End

