
Simple Python

Jerry Cain
CS 106AX

October 25, 2023
slides leveraged from those constructed by Eric Roberts

Python Data Types
• Python includes three data types for numbers: the data type

int for integers or whole numbers, the data type float for
floating-point numbers containing a decimal point, and the
data type complex for complex numbers, which are beyond
the scope of this course. Much of what you know from
JavaScript about integers and floating-point numbers applies
to Python as well.

• Python also provides string support in much the same way
that JavaScript does. Strings are immutable objects in both
JavaScript and Python, and Python includes many of the same
string methods you’ve seen with JavaScript strings.
• The biggest differences between JavaScript and Python strings are

notational, particularly with substrings. The differences are so
pronounced that we’ll spend all of this Friday addressing them.

Arithmetic Expressions
• Like most languages, Python specifies computation in the

form of an arithmetic expression, which consists of terms
joined together by operators.

• Each term in an arithmetic expression is one of the following:
– An explicit numeric value, such as 2 or 3.14159265
– A variable name that serves as a placeholder for a value
– A function call that computes a value
– An expression enclosed in parentheses

• The operators include the conventional ones from arithmetic,
along with a few that are somewhat less familiar:

+ Addition
– Subtraction
* Multiplication
/ Division (exact)

// Quotient (floor division)
% Remainder
** Exponentiation

Python Division and Exponentiation
• Python has three operators that involve division:

– The / operator computes the exact result of division, so that the
expression 6 / 4 has the value 1.5. Applying the / operator
always produces a floating-point value.

– The // operator implements floor division, which is the result
of exact division rounded down to the next smaller integer.
The expression 6 // 4 produces the value 1, and -6 // 4
produces the value –2.

– The % operator behaves the same in Python and JavaScript. As
before, we assume the first operand is nonnegative and the
second operand is positive, so that 6 % 4 is 2 and 0 % 11 is 0.

• The ** operator doesn’t appear in JavaScript. It implements
exponentiation, so the expression 3 ** 4 evaluates to 81.

• The other operators all behave as you’d expect.

Using the PyCharm Interpreter
• The easiest way to get a sense of how arithmetic expressions

work in Python is to enter them into the PyCharm interpreter,
which you’ll be using for the Python segment of the course.

PyCharm

>>> 2 + 2
4
>>> 342 - 173
169
>>> 12345679 * 63
777777777
>>> 9 * 9 * 9 + 10 * 10 * 10
1729
>>>

Python Variables and Assignment

variable = expression

• In Python, you create a variable simply by assigning it a value
in an assignment statement, which has the general form:

• As in most languages, including JavaScript, the effect of an
assignment statement is to compute the value of the
expression on the right side of the equal sign and assign that
value to the variable that appears on the left, as with:

total = total + value

• Note you need not precede the variable name with the let
keyword. If the Python interpreter encountered an identifier it’s
not seen prior, it assumes a new variable is coming into scope.

• Python includes shorthand notation like +=, but not ++ or --!

Naming Conventions
• In Python, names uses for variables, functions, and classes are

called identifiers. Identifier names are composed of letters,
digits, and underscores and cannot begin with a digit.

• Programmers use a variety of different conventions to mark
word boundaries in an identifier:
– Snake case uses underscores, as in number_of_students.
– Camel case embeds uppercase, as in numberOfStudents.

• CS 106AX and the Python reader use these conventions:
– Variable and function names use camel case and begin with a

lowercase letter.
– Constant names are written entirely in uppercase and use the

underscore character, as in MAX_HEADROOM.
– Class names and function names designed to be run as

programs use camel case and begin with an uppercase letter.

Multiple Assignment
• Python, unlike JavaScript, supports multiple assignment, where

the left side of an assignment consists of a list of variables and
the right side consists of a list of expressions, as with:

x, y, z = 5, 12, 13

• All the values on the right side are computed before any
assignments are performed. For example, the statement

exchanges the values of the variables a and b.
a, b = b, a

which sets x to 5, y to 12, and z to 13.

Functions
• A function is a sequence of statements that has been bundled

together and given a name, which makes it possible to invoke
the complete set of statements simply by supplying the name.

• A function typically takes information from its caller in the
form of arguments, perform some computation involving the
values of the arguments, and then returns a result to the caller,
which continues from the point of the call;

• This notion that functions exist to manipulate information and
return results makes functions in programming like functions
in mathematics, which is the historical reason for the name.

• All of this is a repeat of how functions operate in JavaScript
(and virtually all other languages).

Functions in Mathematics

• Plugging in a value for x allows you to
compute the value of f (x), as follows:

• The graph at the right shows the values
of the function

f (x) = x
2 - 5

f (0) = 02 - 5 = -5
f (1) = 12 - 5 = -4
f (2) = 22 - 5 = -1
f (3) = 32 - 5 = 4

• The Python version of f (x) is
def f(x):
 return x ** 2 – 5

Built-In Functions
• To make programming easier, all modern languages

(including Python, of course) include collections of
predefined functions. The built-in functions that operate on
numeric data appear in the following table:

max(x, y, . . .)
min(x, y, . . .)

float(x)

round(x)

abs(x)

int(x)

The absolute value of x
The largest of the arguments
The smallest of the arguments

The value of x converted to floating-point

The value of x rounded to the nearest integer
The value of x truncated to an integer

Importing Library Functions
• In addition to the built-in functions, Python offers a larger set

of resources, which are organized into collections called
libraries. Before you can use a library function, you must
import that library in one of two ways.

• The most common strategy is to use an import statement to
acquire access to that library’s facilities without specifying
any particular functions. For example, the statement

import math

indicates that your program will use resources from the math
library. When you do, you must use the fully qualified name,
which includes the library name, as in math.sqrt.

• You can also use the from-import statement to gain access to
specific functions without having to include the library name.

Useful Entries in Python’s math Library

math.floor(x)

math.log(x)

math.sin(q)
math.cos(q)

math.sqrt(x)

math.pi
math.e

math.exp(x)

The mathematical constant π
The mathematical constant e

Rounds x down to the nearest integer

The natural logarithm of x

The inverse logarithm (e x)
The sine of q, measured in radians
The cosine of q, measured in radians

The square root of x

math.ceil(x) Rounds x up to the nearest integer

math.atan2(y, x) The arctangent of y / x
math.degrees(q)
math.radians(q)

Converts from radians to degrees
Converts from degrees to radians

math.log10(x) The common (base 10) logarithm of x

math.atan(x) The principal arctangent of x

Writing Your Own Functions
• The general form of a Python function definition is

def name(parameter list):
 statements in the function body

where name is the name of the function, and parameter list is
a list of variables used to hold the values of each argument.

• You can return a value from a function by including a return
statement, which is usually written as

return expression

Note the lack of curly braces and semicolons. Python instead
relies on strict indentation to specify block structure.

Examples of Simple Functions
• The following function converts Fahrenheit temperatures to

their Celsius equivalent:

def ftoc(f):
 return 5 / 9 * (f – 32)

• The following function computes the volume of a cylinder of
radius r and height h.

def cylinderVolume(r, h):
 return math.pi * r ** 2 * h

Built-In Functions for Strings
• Python includes the following built-in functions to operate on

string values:

• Python programs often require that the user type in free form
text in response to input calls. This underscores a key
difference between JavaScript programs, which are almost
always event-driven, and Python programs, which are often
scripts that run uninterrupted, save for occasional calls to
input.

str(x)
int(s)

input(prompt)

float(s)

len(s)

print(. . .)

The number of characters in s
The value of x converted to a string
The string s interpreted as an integer

Reads a string from the user

The string s interpreted as floating-point
Prints the arguments separated by spaces

Running Command-Line Programs
• Although it is possible to import programs into PyCharm and

run them there, most Python programs are created as text files
and then invoked from a command line.

• Python programs specify what happens when the program is
run from the command line using the following lines at the
end of the program file:

if __name__ == "__main__":
 function()

where function is the name of the function that serves as an
entry point into the entire program.

• Lines of this sort are often called boilerplate. It’s generally
better to just memorize the boilerplate than to understand it.

The AddTwoIntegers Program
File: AddTwoIntegers.py

"""
This program adds two integers entered by the user.
"""
def AddTwoIntegers():
 print("This program adds two integers.")
 n1 = int(input("Enter n1? "))
 n2 = int(input("Enter n2? "))
 sum = n1 + n2
 print("The sum is", sum)

Startup code
if __name__ == "__main__":
 AddTwoIntegers()

Boolean Expressions in Python
• Unsurprisingly Python defines operators that work with

Boolean data: relational operators and logical operators.
• There are six relational operators that compare values of other

types and produce a True/False result (note == versus ===):
= = Equals
< Less than

!= Not equals
<= Less than or equal to
>= Greater than or equal to> Greater than

Of course, the expression n <= 10 evaluates to True if n is less
than or equal to 10 and evaluates to False otherwise.

p or q means either p or q (or both)

• Whereas JavaScript has &&, ||, and !, Python has these:
and Logical AND
or Logical OR
not Logical NOT

p and q means both p and q

not p means the opposite of p

The if Statement

if condition:
 statements to be executed if the condition is true

• The simplest of the control statements is the if statement,
which occurs in two forms. You use the first when you need
to perform an operation only if a particular condition is true:

if condition:
 statements to be executed if the condition is true
else:
 statements to be executed if the condition is false

• You use the second form whenever you need to choose
between two alternative paths, depending on whether the
condition is true or false:

Functions Involving Control Statements
• The body of a function can contain statements of any type,

including control statements. As an example, the following
function uses an if statement to find the larger of two values:

def max(x, y):
 if x > y:
 return x
 else:
 return y

• Notice the reliance on the : and struct indentation to specify
block structure. It’s very easy to identify Python code because
of this.

• Python doesn’t require semicolons to terminate expressions as
our JavaScript programs do.

The while Statement

while condition:
 statements to be repeated

• The while statement is the simplest of Python’s iterative
control statements and has the following form:

while condition:
 statements to be repeated

while True:
 line = input(prompt)
 if line == "": break
 rest of loop body

• A particularly useful while loop pattern we never needed in
JavaScript looks like this:

• The while True control line loops forever. The loop exits
when the break statement is executed at the end of the input.

The AddList Program
File: AddList.py

def AddList():
 print("This program adds a list of integers.")
 print("Enter a blank line to stop.")
 sum = 0
 while True:
 line = input(" ? ")
 if line == "": break
 sum += int(line)
 print("The sum is", sum)

Startup code
if __name__ == "__main__":
 AddList()

The for Statement
• The for statement is Python’s most powerful mechanism for

specifying iteration and has the following general form:

• In this pattern, var is a variable name and iterable is any
expression that produces a value that supports iteration.

• The effect of the for statement is to iterate over each value
produced by the iterable object and assign it to var. The for
loop continues as long as there are more values in the iterable.

for var in iterable:
 statements to be repeated

The range Function
• The most common for loop pattern uses the built-in range

function to produce the iterable object.
• The range function can take one, two, or three arguments, as

follows:
range(limit) counts from 0 up to limit – 1
range(start, limit) counts from start up to limit – 1
range(start, limit, step) counts by step

• Note that the range function always stops one step before the
limit value is reached.

• The first of the three range structures above is the most
common.

The fact Function
• The factorial of a number n (which is usually written as n! in

mathematics) is defined to be the product of the integers from
1 up to n. Thus, 5! is equal to 120, which is 1 x 2 x 3 x 4 x 5.

def fact(n):
 result = 1
 for i in range(1, n + 1):
 result *= i
 return result

• The following function definition uses a for loop to compute
the factorial function:

Iterating over Sequences
• The for statement is also used to iterate over the elements of

a sequence of values.
• Python supports many different kinds of sequences that you

will learn over the course of the next three weeks. The only
sequence type you’ve seen so far is the string, which
represents a sequence of characters.

• The following function returns the number of times the
character c appears in the string s:

def countOccurrences(s, c):
 count = 0
 for ch in s:
 if c == ch:
 count += 1 # no ++ operator
 return count

The End

