
Object-Oriented Programming
and Abstraction

Jerry Cain
CS 106AX

November 6, 2023
slides leveraged from those constructed by Eric Roberts

The Principles of OOP
• Object-oriented programming (often abbreviated to OOP) was

invented in Norway in the 1960s but was not adopted widely
for more than a decade.

• Object-oriented programming is defined by two principles,
both of which I mentioned on Friday during my discussion of
classes and objects in Python:
– Encapsulation—The principle that data values and the methods

that manipulate them should be integrated into a single
coherent structure called an object.

– Inheritance—The idea that objects and the classes that those
objects represent form hierarchies that allow new classes to
share behavior with classes at higher levels in the hierarchy.

• Today’s lecture focuses on the use of encapsulation to define
both the values and operations on rational numbers.

Rational Numbers
• Section 9.3 illustrates the idea of encapsulation by defining a

class called Rational to represent rational numbers, which
are simply the quotient of two integers.

• Rational numbers can be useful in cases in which you need
exact calculation with fractions. Even if you use a double, the
floating-point number 0.1 represented internally is actually an
approximation. The rational number 1 / 10 is exact.

• Rational numbers support the standard arithmetic operations:

a
b + c

d = ad + bc
bd

a
b
– c

d = ad – bc
bd

a
b

x c
d = ac

a
b

c
d =..

bd

ad
bc

Addition:

Subtraction:

Multiplication:

Division:

Implementing the Rational Class
• The next three slides show the initial version of the Rational

class along with some brief annotations.
• As you read through the code, the following features are worth

special attention:
– The constructor checks that rational numbers obey certain rules.

These rules are described in more detail in the text but include
reducing the fraction to lowest terms.

– For now, operations are specified using the receiver syntax.
When you apply an operator to two Rational values, one of the
operands is the receiver and the other is passed as an argument,
as in

r1.add(r2)

The Rational Class

The Rational Class

The Rational Class

Simulating Rational Calculation
• The next slide works through all the steps in the calculation of

a simple program that adds three rational numbers.

1
2

1
3

1
6

+ +

• With rational arithmetic, the computation is exact. If you use
floating-point arithmetic, the result looks like this:

PyCharm

>>> 1/2 + 1/3 + 1/6
0.999999999999999
>>>

Tracing Rational Addition

Overloading the Arithmetic Operators
• The receiver syntax used in the RationalSum program makes

the program hard to read, particularly for people unfamiliar
with object-oriented programming.

• Unlike most modern languages, Python allows you to do just
that. Each operator is associated with a special method name
specifying how that operator should be implemented by the
defining class. This technique is called operator overloading.

a.add(b).add(c)

• The program would be much clearer if you could replace

a + b + c

with the more familiar expression

Redefining Addition
• As an example, you can define addition for the Rational class

by providing a definition for the __add__ method. If you
make use of the fact that the Rational class has an add
method, the definition of the __add__ operator looks like this:

def __add__(self, rhs):
 return self.add(rhs)

• Although this simple implementation works, it is better for
clients if one can mix types in an expression.

• As long as the Rational operand appears to the left of the +
operator, the __add__ method can define mixed-type addition
by checking the type of rhs. If the Rational operand can
appear on the right, you need to define the method __radd__
as well. The code for overloading + in both directions appears
on the next slide.

Overloading Addition on Both Sides

def __add__(self, rhs):
 if type(rhs) is int:
 return self.add(Rational(rhs))
 elif type(rhs) is Rational:
 return self.add(rhs)
 else:
 return NotImplemented

def __radd__(self, lhs):
 if type(lhs) is int:
 return Rational(lhs).add(self)
 elif type(lhs) is Rational:
 return lhs.add(self)
 else:
 return NotImplemented

Operator Methods in Python
__add__
__sub__
__mul__
__truediv__
__floordiv__
__mod__
__pow__

__eq__
__ne__
__lt__
__gt__
__le__
__ge__

Redefines the + operator
Redefines the - operator
Redefines the * operator
Redefines the / operator
Redefines the // operator
Redefines the % operator
Redefines the ** operator

Redefines the == operator
Redefines the != operator
Redefines the < operator
Redefines the > operator
Redefines the <= operator
Redefines the >= operator

__neg__ Redefines the unary - operator

__radd__

__rsub__
__rmul__
__rtruediv__
__rfloordiv_
___rmod__
__rpow__

(symmetric)
(symmetric)
(inferred from >)
(inferred from <)
(inferred from >=)
(inferred from <=)

(not applicable)

Type Abstraction
• One of the most important advantages of the object-oriented

paradigm is the idea of type abstraction, in which the goal is
to think about types in terms of their high-level behavior
rather than their low-level implementation.

• In computer science, types that are defined by their behavior
are called abstract data types or ADTs.

• Python includes several built-in abstract types, and you have
already seen a few implementations of abstract types, such as
the Rational we just discussed.

• We’ll spend the rest of lecture discussing strategies on how to
define your own abstract data types.

Remembering Pig Latin
• One of the largest examples we covered while teaching

JavaScript strings was a program that translated text from
English to Pig Latin. We revisited that same program when
we discussed Python’s support for strings.

• Both Pig Latin translators decomposed the problem into two
functions: a toPigLatin function that divides the input into
words and a wordToPigLatin function that translates a single
word to its Pig Latin equivalent. The first phase of this
operation is completely independent of Pig Latin domain.

• It would be useful to have a package that divides input strings
into individual units that have integrity as a unit, as words do
in English. Since the same idea applies in contexts beyond
human languages, computer scientists use the term token to
define these units. A library that returns individual tokens
from an input source is called a token scanner.

Designing a Token Scanner
• Section 12.2 in the Python reader describes a general library

class called TokenScanner, which is implemented for several
programming languages just as our graphics package is.

• The text also implements a small piece of that library that
exports the following methods:
scanner.setInput(str)

Sets the input for this scanner to the specified string or input stream.
scanner.hasMoreTokens()

Returns true if more tokens exist, and false at the end of the token stream.

scanner.nextToken()
Returns the next token from the token stream, and "" at the end.

scanner.ignoreWhitespace()
Tells the scanner to ignore whitespace characters.

• These methods are the primary TokenScanner methods you
need for your next assignment.

A Simple TokenScanner Class

A Simple TokenScanner Class

A Simple TokenScanner Class

A Simple TokenScanner Class

Using TokenScanner in PigLatin

The End

