
Asynchronous Requests

Jerry Cain and Avi Gupta
CS 106AX

November 17, 2023

Asynchronous Data Requests
• When you load a website, the initial HTML document often

references many other resources (images, JavaScript files,
CSS stylesheets, and so forth) to be downloaded as well.

• Some resources—images and videos, in particular—can be
very large. The larger the resources, the longer it takes for the
application to load and properly function.

• Most web applications minimize the amount of data needed
for the initial user interaction. By doing so, their website
loads more quickly, and the application is operational with
minimal lag time.

• As new resources are needed, the website can download those
resources in the background—that is, asynchronously. Once
the new resources have been downloaded, JavaScript can
programmatically update the DOM to incorporate them.

Asynchronous Data Requests
• The initial resource needed by most web applications is almost

always formatted as HTML, which includes data and
information about how they should be presented in the browser.

• Asynchronous requests, however, generally fetch data as
plaintext or JSON format without the surrounding HTML. The
new data can be programmatically inserted into the DOM.

• As with the initial request for the HTML document,
asynchronous data requests are framed as URLs, as with:

Ø graph.facebook.com/me (Facebook API)
Ø api.x.com/1.1/statuses/user_timeline.json (X/Twitter API)
Ø numbersapi.com/122 (Toy API providing fun facts about numbers)
Ø numbersapi.com/122?json=true (Same API that formats response as JSON)

• Most servers can infer from the URL itself whether the
response should be HTML, plaintext, or JSON.

Asynchronous Data Requests

• The URL used on the left fetches a plaintext resource with
trivia about the number 122 and renders it once it arrives.

• The URL on the right requests the same resource, formatted as
JSON instead of plaintext.

• In both cases, the browser opens a connection to the relevant
server. It then issues a request for the resource associated with
the URL, waits for the server to respond, and renders the
response’s payload once it arrives.

Asynchronous Data Requests

• Life would be terrific if we had JavaScript functionality to do
the same thing a browser can—to programmatically request a
resource through some URL, wait for a server response, and
then process that response to suit the needs to the application.

Fortunately, life is terrific!

• JavaScript provides built-in libraries to help asynchronously
fetch resources as they’re needed. Unfortunately, they rely on
JavaScript features slightly beyond the scope of our syllabus.

• The CS106AX libraries include two classes that layer over
the complexities of those built-ins so we can still
asynchronously fetch new resources.

• Those new classes are called AsyncRequest and
AsyncResponse.

• The code above illustrates how these classes can be used to
publish some trivia about the number 538 to the console.

Asynchronous Data Requests

let req = AsyncRequest("http://numbersapi.com/538");
req.addParams({json: true});
req.setSuccessHandler(function(response) {
 console.log(response.getPayload())
});
req.send();

request.setErrorHandler(callback) Sets the callback to be executed
if the server fails to fetch the url.

AsyncRequest and AsyncResponse
AsyncRequest(url)

Creates a request object primed
to fetch a document from url.

request.addParam(key, value) Adds a key-value pair to the
url’s of query string.

request.addParams(params) Adds all key-values pairs in
params to the url’s query string.

request.send() Initiates the request for the
relevant resource.

response.getPayload() Returns the payload from the
response passed to your callback.

request.setSuccessHandler(callback) Sets the callback to be executed
when the server responds.

AsyncResponse and JSON.parse
• The callbacks passed to request.setSuccessHandler and
request.setErrorHandler should be functions that take a
single argument of type AsyncResponse.

• AsyncResponse exports several methods, but in a success
scenario, the only one that matters is getPayload().

• If the payload is formatted as a JSON string, then you should
pass that string to the built-in JSON.parse function to
rehydrate it into a true JavaScript object.

let req = AsyncRequest("http://numbersapi.com/222");
req.addParams({json: true});
req.setSuccessHandler(function(response) {
 let payload = response.getPayload();
 let info = JSON.parse(payload);
 console.log("Trivia: " + info.text);
});
req.send();

Exercise: Number Trivia Slideshow
Implement a program that generates a random number between
1 and 200 and presents a random piece of trivia about it. Allow
the user to increment and decrement that number by clicking +
and - buttons, and with each increment and decrement present
some new morsel of information about the new number.
Asynchronously fetch the trivia only as the number is being
showcased.

Exercise: Number Trivia Slideshow
<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8">
 <title>Number Trivia</title>
 <link rel="stylesheet" type="text/css"
 href="number-trivia.css">
 <script type="text/javascript" src="Async.js"></script>
 <script type="text/javascript" src="number-trivia.js"></script>
 </head>
 <body>
 <div id="showcase" class="showcase"></div>
 <input id="decrement-button" type="image"
 src="minus.png" class="control-row"/>
 <input id="number" class="control-row number"
 value="42" readonly/>
 <input id="increment-button" type="image"
 src="plus.png" class="control-row"/>
 </body>
</html>

File: number-trivia.html

Exercise: Number Trivia Slideshow
function BootstrapNumberTrivia() {
 /* all four variables are referenced by inner callback functions */
 let contentArea = document.getElementById("showcase");
 let number = document.getElementById("number");
 let decrementButton = document.getElementById("decrement-button");
 let incrementButton = document.getElementById("increment-button");
 decrementButton.addEventListener("click", decrementNumber);
 incrementButton.addEventListener("click", incrementNumber);

 function showcaseTrivia(response) {
 while (contentArea.childNodes.length > 0) {
 contentArea.removeChild(contentArea.lastChild);
 }
 let info = JSON.parse(response.getPayload());
 contentArea.appendChild(document.createTextNode(info.text));
 }

 function initiateNumberTriviaFetch() {
 let req = AsyncRequest("http://numbersapi.com/" + number.value);
 req.addParams({json: true});
 req.setSuccessHandler(showcaseTrivia);
 req.send();
 }

File: number-trivia.js (page 1)

Exercise: Number Trivia Slideshow
function decrementNumber(e) {

 incrementButton.disabled = false;
 let current = parseInt(number.value) - 1;
 number.value = current.toString();
 if (current === 1) decrementButton.disabled = true;
 initiateNumberTriviaFetch();
 }

 function incrementNumber(e) {
 decrementButton.disabled = false;
 let current = parseInt(number.value) + 1;
 number.value = current.toString();
 if (current === 200) incrementButton.disabled = true;
 initiateNumberTriviaFetch();
 }

 /* seed initial presentation with a random number from [1, 200] */
 number.value = (Math.floor(Math.random() * 200) + 1).toString();
 initiateNumberTriviaFetch();
}

document.addEventListener("DOMContentLoaded", BootstrapNumberTrivia);

File: number-trivia.js (page 2)

The End

