
Introduction to HTTP

Jerry Cain
CS 106AX

November 27, 2023

The Client-Server Model, Take I

O

1. The user launches a web browser.
2. The user requests a web page.
3. The browser sends a request for the page.
4. The server sends back the requested HTML.
5. The browser interprets the HTML and renders it in the browser.

https://pinterest.com

index.html

client browser web server

The Client-Server Model, Take II

O

1. The user launches a web browser.
2. The user requests a document via some URL.
3. The browser sends a request for the document at that location.
4. The server synthesizes the requested document and replies with it.
5. The browser receives the document and renders it.

http://numbersapi.com/143

server-generated content

client browser web server

Establishing the Connection
• Whenever a web browser needs some resource, it opens a

network connection to the server where that resource lives.
• Opening a connection to a server like www.stanford.edu or

maps.google.com is akin to making a phone call, where the
IP address of the host serves functions as the phone number.

• A port number—almost always the number 80 for web
servers—is used to identify the server process that’s listening
for incoming web requests. Other services (e.g. email) are
managed by applications listening to different port numbers.

• Typically, web servers typically listen to port 80, secure web
servers listen to port 443, email servers listen to port 993, etc.

• Most port numbers between 1 and 1024 have been assigned to
well known services. Those that haven’t are reserved for
services that haven’t been invented yet.

The Hypertext Transfer Protocol
• Once the connection has been established—that is, the client

has initiated the connection and the server has accepted it—
the two endpoints are free to exchange data, provided the
exchange respects the Hypertext Transfer Protocol, or HTTP.

• In a standard exchange, the client sends over an HTTP-
compliant request. The server ingests the request, processes
it, and sends back an HTTP-compliant response.
• In some cases, the response is little more than the contents

of a static file, like index.html or JSGraphics.js.

• Other times, the server programmatically synthesizes a
response and sends that back as if the response payload
were locally stored (e.g., your Google search result).

HTTP GET Request Structure
• When we enter http://numbersapi.com/156?json=true,

the browsers opens a connection to numbersapi.com, port 80,
and sends a request that looks like this:

• The first line is the request line contains three tokens: the
method, the request path, and the protocol version.

• The remaining lines are response headers—think of them as
key/value pairs of a dictionary—that further inform the server
how to respond.

• All GET requests are terminated by a single blank line.

GET /156?json=true HTTP/1.1
Host: numbersapi.com
Cache-Control: max-age=0
Accept-Encoding: gzip, deflate
Accept-Language: en-US,en;q=0.9,fr;q=0.8
other similarly structured request headers
<blank line>

• Whenever the browser needs to upload new data to the server,
the method will be POST instead of GET, as with:

• The Content-Length request header must be present, so the
server knows exactly how many bytes follow the blank line.

• The material after that blank line is referred to as the request
payload, and it can only be present for POST requests.

• The most common actions that result in POST requests are
ones like secure logins, payment submissions, photo and video
uploads, and so forth.

HTTP POST Request Structure

POST /scripts/addListItem.py HTTP/1.1
Host: localhost:8000
Content-Length: 41
Content-Type: application/json
other similarly structured request headers
<blank line>
"Get dry cleaning before 7:00pm closing."

• HTTP responses have their own structure. Here are the two
responses to each of the two requests presented earlier:

• The first line is the status line that lists the protocol, the status
code (200 means success, and you’ve likely seen others like
403 and 404), and a status message consistent with the code.

• Everything following is structured much as HTTP requests
are, except there’s almost always a payload (and hence a
Content-Length response header is always included).

HTTP/1.1 200 OK
Content-Length: 157
Content-Type: application/json
other similarly structured response headers
<blank line>
{
"text": "156 is the number of hourly…
"number": 156,
"found": true,
"type": "trivia"
}

HTTP Response Structure

HTTP/1.1 200 Script output follows
Server: SimpleHTTP/0.6 Python/3.8.0
Date: Sun, 28 Nov 2023 04:39:35 GMT
Content-Length: 69
Content-Type: application/json
other similarly structured response headers
<blank line>
{
 "id": 55,
 "item": "Get dry cleaning before…

}

• Python provides a generic HTTP server implementation that
allows us to serve static resources (images, JavaScript files,
etc.) and run Python scripts to dynamically generate responses.

• The HTTPServer and CGIHTTPRequestHandler classes are
built-ins, and the above program can be run as is. Doing so
creates a server that listens for incoming requests on port 8000.

• Any request path beginning with /scripts/ invokes a specific
Python program that knows to programmatically synthesize a
response and send it back to the client.

Implementing HTTP Servers

def runServer(port):
 CGIHTTPRequestHandler.cgi_directories = ['/scripts']
 server = HTTPServer(("", port), CGIHTTPRequestHandler)
 server.serve_forever()

DEFAULT_PORT = 8000 # must be larger than 1024, choose 8000
runServer(DEFAULT_PORT)

Let’s implement a server endpoint called factor.py that
assumes assumes a single query string parameter (often called
a GET parameter) called numbers and responds with an HTTP
response payload that looks like this:

The implementation can assume the existence of a function
called extractRequestParameter(key) that returns the string
value associated with the provided key in the query string.
Assume the response is formatted as JSON so the client can
easily parse the response.

Example: Prime Factorization Service

{
 success: true,
 number: 96294000,
 factors: [2, 2, 2, 2, 3, 5, 5, 5, 11, 1459]
}

http://localhost:8000/scripts/factor.py?number=96294000

Example: Prime Factorization Service
def computeFactorization(n):
 factors = []
 factor = 2
 while n > 1:
 while n % factor == 0:
 factors.append(factor)
 n /= factor
 factor += 1
 return factors

number = extractRequestParameter("number")
response = {}
response["success"] = \
 number is not None and number.isdigit() and int(number) > 0
if response["success"]:
 response["number"] = int(number)
 response["factors"] = computeFactorization(int(number))

responsePayload = json.dumps(response)
print("Content-Length: " + str(len(responsePayload)))
print("Content-Type: application/json")
print()
print(responsePayload)

File: factor.py

• The script assumes the full HTTP request has already been
ingested. In fact, that’s what the HTTPServer class does.

• The only thing we need from the request is the value attached
to number in the query string. We rely on a function we
wrote for you—extractRequestParameter—to do that.

• Provided the number parameter is well-formed—that is, it’s
truly a number and it’s positive so it can be factored—we tap
a standard Python function that computes the prime
factorization, places all factors in a list, and returns it.

• Once the response dictionary has been assembled, we
invoke json.dumps to generate its JSON serialization. The
script publishes two response headers (Content-Length is
mandatory, the other is optional if the client knows to expect
JSON), followed by a blank line, followed by the payload.

Example: Prime Factorization Service

The End

