
Building Web Applications

Jerry Cain
CS 106AX

November 29, 2023

• Most web applications bias toward a thin-client architecture,
which means most of the computationally intense program
logic is managed by the server. The client, conversely, requires
a minimal amount of processing power and typically manages
the user experience and virtually nothing else.

• Programs coded to such an architecture are organized across
several different files:
• HTML files housing the smallest amount of markup needed

to structure the web pages, alongside CSS files supplying
rules to inform the browser how to style them.

• A collection of server-side endpoints that are operationally
a library of functions invoked using networking and URLs.

• JavaScript code that knows when to invoke these endpoints
(using AsyncRequest) and update the DOM in response.

Building Web Applications

• One of many important aspects of the architecture is to ensure
the client and server are consistent—that is, the browser
presentation of information is in sync with the information
stored on the server.

• To that end, the server typically defines a collection of server-
side endpoints that comprise an API. In web programming, the
API is comprised of a collection of URLs that can be used to
make remotely executing functions appear to run locally.

• When we make API calls like /factor.py?number=14728, we
are invoking a remotely implemented function called
factor.py. factor.py expects its arguments to be expressed
within the query string (here, one argument called number).
The factorization is returned via the response payload.

Building Web Applications

• We’ll revisit the to-do list application from last week and
implement one key difference: we’ll require a server to store a
persistent copy of the list that can be syndicated to every
browser that ever connects to it.

• In order to fully realize the application, we need to define the
structure and behavior of a small number of endpoints allowing
us to synchronize application state between client and server.
Those endpoints are:
• GET /scripts/getListItems.py, which returns a JSON object

of item-id/item-text pairs.

• POST /scripts/addListItem.py, which posts the text of a
new item so it’s shared with and stored by the server.

• POST /scripts/removeListItems.py, which posts a JSON
list of item-ids that the server should delete.

Example: Persistent To-Do List

Example: Persistent To-Do List
<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8">
 <title>To-Do List</title>
 <script src="async.js" type="text/javascript"></script
 <script src="todo.js" type="text/javascript"></script>
 </head>
 <body>
 Today's To-Do List:
 <ul id="to-do-list">
 <!-- This is where list items will be placed. -->

 New item: <input id="item-text" size="60"/>
 <button id="add-item" type="button">Add To List</button>
 <button id="clear-all-items" type="button">Clear</button>
 </body>
</html>

File: todo.html

Very often the HTML is small and only includes elements that are
always visible—e.g., the text input, the two buttons, and a skeletal
unordered list. We rely on JavaScript and AsyncRequest to pull
in list items, which potentially vary with each page load.

Example: Persistent To-Do List
def extractItems(name): # used by all three endpoints
 with open(name) as infile:
 return json.loads(infile.read())

def publishPayloadAsJSON(response): # used by all three endpoints
 responsePayload = json.dumps(response)
 print("Content-Length: " + str(len(responsePayload)))
 print("Content-Type: application/json")
 print()
 print(responsePayload)

info = extractItems("items.json")
publishPayloadAsJSON(info["items"])

File: /scripts/getListItems.py

This is the server-side endpoint that will be called by the onload
AsyncRequest. The response payload will look like this:
 {

 4: "Pick up dry cleaning.",
 5: "Call Wells Fargo about mortgage rate.",
 6: "Write last CS106AX final exam question.",
 8: "Schedule dinner with Avi and SLs."
}

Example: Persistent To-Do List
function BootstrapToDoList() {
 let ul = document.getElementById("to-do-list");
 let input = document.getElementById("item-text");
 // other variables omitted for brevity

 AsyncRequest("/scripts/getListItems.py")
 .setSuccessHandler(populateInitialList)
 .send(); # notation provided to daisy chain method calls

 function populateInitialList(response) {
 while (ul.lastChild !== null) ul.removeChild(ul.lastChild);
 let items = JSON.parse(response.getPayload());
 for (let key in items) appendListItem(key, items[key]);
 } // implementation of appendListItem on next slide
}

document.addEventListener("DOMContentLoaded", BootstrapToDoList);

File: todo.js (part 1)

The above JavaScript is a subset of the full controller, but just
enough to be clear how the to-do list is populated with the current
set of items as stored server-side. This programming model works
to ensure the web page and server can always be in sync.

Example: Persistent To-Do List
function appendListItem(itemid, text) {

 let li = document.createElement("li");
 let tn = document.createTextNode(text);
 li.setAttribute("id", "item-" + itemid)
 li.setAttribute("data-id", itemid);
 li.addEventListener("dblclick", onItemDoubleClick);
 li.appendChild(tn);
 ul.appendChild(li);
 }

File: todo.js (part 2)

The implementation of appendListItem should be familiar from
prior versions of our to-do list application. We create a text node
around the supplied text and embed it within a new node.
This new node is appended to the running list of nodes
already hanging from ul. The key differences? We add an id
attribute so the node can be programmatically discovered by
document.getElementById, and we add a data-id attribute that
stores the raw list item identifier as it's stored server-side.

Example: Persistent To-Do List
function onAddClick(e) { // e argument is ignored

 let text = input.value.trim();
 input.value = "";
 if (text.trim() == 0) return;

 AsyncRequest("/scripts/addListItem.py")
 .setMethod("POST") # defaults to "GET", so override
 .setPayload(JSON.stringify(text))
 .setSuccessHandler(addNewListItem)
 .send();
 }

 function addNewListItem(response) {
 let payload = JSON.parse(response.getPayload());
 appendListItem(payload.id, payload.item);
 }

File: todo.js (part 3)

onAddClick is invoked whenever the user clicks the Add To List
button. We want this new item to persist server-side, so we issue a
"POST" request via an AsyncRequest, and install a response
callback that inserts a new item to the DOM. This model
ensures the server and the client agree on the state of the list.

Example: Persistent To-Do List
requestPayload = json.loads(extractPayload())
info = extractItems("items.json")
id = info["id"]
newItem = {"id": id, "item": requestPayload }
info["id"] += 1
info["items"][id] = requestPayload
saveAllItems("items.json", info)
publishPayloadAsJSON(newItem)

File: /scripts/addListItem.py

The addListItem.py endpoint is invoked by the AsyncRequest
outlined on the previous slide. As the client is uploading new
information , the request method is "POST" and the request includes
a payload (returned by a library function called extractPayload).
The payload is a string constant, which is valid JSON provided it
includes the double quotes. Our endpoint associates the next
available id with the uploaded text, updates the internal store to
include the association, and publishes a response whose payload
includes the original text along with the assigned id.

Example: Persistent To-Do List
function onClearClick(e) { // e argument is ignored

 let itemIDs = [];
 for (let i = 0; i < ul.childNodes.length; i++) {
 itemIDs.push(ul.childNodes[i].getAttribute("data-id"));
 }
 AsyncRequest("/scripts/removeListItems.py")
 .setMethod("POST")
 .setPayload(JSON.stringify(itemIDs))
 .setSuccessHandler(removeListItems)
 .send();
 }

File: todo.js (part 4)

onClearClick is invoked whenever the user clicks the Clear
button. It collects all of the text item ids into an array, and then
posts that array to the third of our three server-side endpoints,
/scripts/removeListItems.py. We install removeListItems
to be invoked once the server responds with information about
which items were successfully deleted (generally all of them) and
which ones were not.

Example: Persistent To-Do List
function removeListItems(response) {

 let itemsToDelete = JSON.parse(response.getPayload());
 for (let key in itemsToDelete) {
 let li = document.getElementById("item-" + key);
 li.parentNode.removeChild(li);
 }
 }

File: todo.js (part 5)

The above is invoked on the removeListItems.py endpoint
responds with a payload that is structured as follows:

The for loop instructs each of the relevant nodes to remove
itself from its parent.

{
 4: true,
 5: true,
 6: true,
 8: true
}

Example: Persistent To-Do List
itemsToDelete = json.loads(extractPayload())
info = extractItems("items.json")
results = {};
for itemID in itemsToDelete:
 results[itemID] = itemID in info["items"]
 if results[itemID]:
 del info["items"][itemID]
saveAllItems("items.json", info)
publishPayloadAsJSON(results)

File: /scripts/removeListItems.py

The above endpoint expects the request payload to be structured as
an array of item ids of those items that should be removed from the
data store. It does precisely that for each id, allowing for the
possibility that an id is no longer present, because a second client
deleted the item and the first is just out of sync. The script
responds with information about what items were truly deleted and
which ones weren’t.

Example: Persistent To-Do List
function onItemDoubleClick(e) {
 let itemID = e.target.getAttribute("data-id");
 let itemIDs = [itemID]
 AsyncRequest("/scripts/removeListItems.py")
 .setMethod("POST")
 .setPayload(JSON.stringify(itemIDs))
 .setSuccessHandler(removeListItems)
 .send();
 }
}

File: todo.js (part 6)

The onItemDoubleClick handler uses the same endpoint
onClearClick does. In this case, we extract the item id right out
of the element that triggered the callback, embed that item in an
array as /scripts/removeListItems.py expects, and post the
request to the server. Note we’re able to install the same success
handler used by onClearClick, which was coded specifically to
handle the both the remove-all and remove-one user interactions.

The End

