CS 106B
Lecture 25: Graphs II
Wednesday, May 30, 2018

Programming Abstractions in C++, Chapter 18
Today's Topics

• Logistics:
 • Final review session will be early next week.
 • If you need accommodations for the final exam, let Chris and Nick know now.
 • The Final will be using BlueBook — you'll need 3 hours of battery life, or find an outlet (we will try to provide enough outlets for those who need it)

• Real Graphs:
 • Internet routers and traceroute
 • Topological Sort
 • Minimum Spanning Trees
 • Kruskal's algorithm
Real Graphs!

I received some feedback from last quarter that said,

“I would give more examples of how graphs are used, or, in general, give a wider variety of examples of applications to the methods being used. I think it would be interesting to give examples of how certain topics can be used in cross-sections of CS and other majors/departments.”

Let's dig a bit deeper into how the Internet is a real graph by analyzing internet routers, or:

How does a message get sent from your computer to another computer on the Internet, say in Australia?
The Internet: Computers connected through routers

your computer

computer in Australia
The Internet: Computers connected through routers

your computer

computer in Australia
The Internet: Let's simplify a bit

The destination computer has a name and an IP address, like this:
www.engineering.unsw.edu.au
IP address: 149.171.158.109

The first number denotes the "network address" and routers continually pass around information about how many "hops" they think it will take for them to get to all the networks. E.g., for router C:

<table>
<thead>
<tr>
<th>router</th>
<th>hops</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>-</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>2</td>
</tr>
<tr>
<td>F</td>
<td>2</td>
</tr>
</tbody>
</table>
The Internet: Let's simplify a bit

Each router knows its neighbors, and it has a copy of its neighbors' tables. So, B would have the following tables:

<table>
<thead>
<tr>
<th>router</th>
<th>hops</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
</tr>
<tr>
<td>D</td>
<td>2</td>
</tr>
<tr>
<td>E</td>
<td>3</td>
</tr>
<tr>
<td>F</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>router</th>
<th>hops</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>-</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>2</td>
</tr>
<tr>
<td>F</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>router</th>
<th>hops</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>-</td>
</tr>
<tr>
<td>E</td>
<td>2</td>
</tr>
<tr>
<td>F</td>
<td>1</td>
</tr>
</tbody>
</table>
If B wants to connect to F, it connects through its neighbor that reports the shortest path to F. Which router would it choose?

<table>
<thead>
<tr>
<th>router</th>
<th>hops</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
</tr>
<tr>
<td>D</td>
<td>2</td>
</tr>
<tr>
<td>E</td>
<td>3</td>
</tr>
<tr>
<td>F</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>router</th>
<th>hops</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>-</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>2</td>
</tr>
<tr>
<td>F</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>router</th>
<th>hops</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>-</td>
</tr>
<tr>
<td>E</td>
<td>1</td>
</tr>
<tr>
<td>F</td>
<td>1</td>
</tr>
</tbody>
</table>
If B wants to connect to F, it connects through its neighbor that reports the shortest path to F. Which router would it choose? D.
Traceroute

We can use a program called "traceroute" to tell us the path between our computer and a different computer:

```
traceroute -I -e www.engineering.unsw.edu.au
```
Traceroute: Stanford Hops

```
traceroute -I -e www.engineering.unsw.edu.au
traceroute to www.engineering.unsw.edu.au (149.171.158.109), 64 hops max, 72 byte packets

1  csmx-west-rtr.sunet (171.67.64.2)  5.965 ms  11.205 ms  14.180 ms
2  gnat-1.sunet (172.24.70.11)  0.328 ms  0.312 ms  0.289 ms
3  csmx-west-rtr.sunet (171.64.66.2)  15.702 ms  33.031 ms  10.003 ms
4  dc-svl-rtr-18.sunet (171.64.255.204)  0.595 ms  0.552 ms  0.547 ms
5  dc-svl-agg4--stanford-100ge.cenic.net (137.164.23.144)  1.618 ms  1.154 ms  1.672 ms
6  hpr-svl-hpr-2--svl-agg4-10ge.cenic.net (137.164.26.249)  1.056 ms  1.016 ms  0.929 ms
7  aarnet-2-is-jmb-778.sttlwa.pacificwave.net (207.231.245.4)  17.803 ms  17.714 ms  17.978 ms
8  et-2-0-0.pe1.a.hnl.aarnet.net.au (113.197.15.200)  69.984 ms  69.888 ms  70.004 ms
9  et-2-1-0.pe1.sxt.bkvl.nsw.aarnet.net.au (113.197.15.98)  162.935 ms  163.033 ms  162.977 ms
10 et-3-3-0.pe1.brwy.nsw.aarnet.net.au (113.197.15.148)  163.819 ms  163.083 ms  163.111 ms
11 138.44.5.1 (138.44.5.1)  163.124 ms  163.236 ms  163.254 ms
12  libcr1-te-1-5.gw.unsw.edu.au (149.171.255.102)  163.448 ms  163.355 ms  163.307 ms
13  libdcdnex1-po-1.gw.unsw.edu.au (149.171.255.174)  163.544 ms  163.250 ms  163.344 ms
14 srdh4it2r26blfx1-ext.gw.unsw.edu.au (129.94.0.31)  164.605 ms  164.288 ms  164.461 ms
15 bfwl-ae-1-3053.gw.unsw.edu.au (129.94.254.76)  164.065 ms  164.066 ms  164.267 ms
16 engplws008.eng.unsw.edu.au (149.171.158.109)  164.326 ms  164.538 ms  164.462 ms
```
The Corporation for Education Network Initiatives in California (CENIC) is a nonprofit corporation formed in 1996 to provide high-performance, high-bandwidth networking services to California universities and research institutions (source: Wikipedia)
Traceroute: Pacificwave (Seattle)

traceroute -I -e www.engineering.unsw.edu.au
traceroute to www.engineering.unsw.edu.au (149.171.158.109), 64 hops max, 72 byte packets
1 csmx-west-rtr.sunet (171.67.64.2) 5.965 ms 11.205 ms 14.180 ms
2 gnat-1.sunet (172.24.70.11) 0.328 ms 0.312 ms 0.289 ms
3 csmx-west-rtr.sunet (171.64.66.2) 15.702 ms 33.031 ms 10.003 ms
4 dc-svl-rtr-v18.sunet (171.64.255.204) 0.595 ms 0.552 ms 0.547 ms
5 dc-svl-agg4--stanford-100ge.cenic.net (137.164.23.144) 1.618 ms 1.154 ms 1.672 ms
6 hpr-svl-hpr2--svl-agg4-10ge.cenic.net (137.164.26.249) 1.056 ms 1.016 ms 0.929 ms
7 aarnet-2-is-jmb-778.sttlwa.pacificwave.net (207.231.245.4) 17.803 ms 17.714 ms 17.978 ms
8 et-2-0-0.pel.a.hnl.aarnet.net.au (113.197.15.200) 69.984 ms 69.888 ms 70.004 ms
9 et-2-1-0.pel.sxt.bkvl.nsw.aarnet.net.au (113.197.15.98) 162.935 ms 163.033 ms 162.977 ms
10 et-3-3-0.pel.bryw.nsw.aarnet.net.au (113.197.15.148) 163.819 ms 163.083 ms 163.111 ms
11 138.44.5.1 163.124 ms 163.236 ms 163.254 ms
12 libcr1-te-1-5.gw.unsw.edu.au (149.171.255.102) 163.448 ms 163.355 ms 163.307 ms
13 libdcdnex1-po-1.gw.unsw.edu.au (149.171.255.174) 163.544 ms 163.250 ms 163.344 ms
14 srdh4it2r26blfx1-ext.gw.unsw.edu.au (129.94.0.31) 164.605 ms 164.288 ms 164.461 ms
15 bfw1-ae-1-3053.gw.unsw.edu.au (129.94.254.76) 164.065 ms 164.066 ms 164.267 ms
16 engplws008.eng.unsw.edu.au (149.171.158.109) 164.326 ms 164.338 ms 164.466 ms

Pass internet traffic directly with other major national and international networks, including U.S. federal agencies and many Pacific Rim R&E networks (source: http://www.pnwgp.net/services/pacific-wave-peering-exchange/)
Traceroute: Oregon to Australia - underwater!

http://www.submarinecablemap.com
Traceroute: Australia

```
traceroute -I -e www.engineering.unsw.edu.au
traceroute to www.engineering.unsw.edu.au (149.171.158.109), 64 hops max, 72 byte packets
  1  csmx-west-rtr.sunet (171.67.64.2)  5.965 ms  11.205 ms  14.180 ms
  2  gnat-1.sunet (172.24.70.11)  0.328 ms  0.312 ms  0.289 ms
  3  csmx-west-rtr.sunet (171.64.66.2)  15.702 ms  33.031 ms  10.003 ms
  4  dc-svl-rtr-vl8.sunet (171.64.255.204)  0.595 ms  0.552 ms  0.547 ms
  5  dc-svl-agg4--stanford-100ge.cenic.net (137.164.23.144)  1.618 ms  1.154 ms  1.672 ms
  6  hpr-svl-hpr2--svl-agg4-10ge.cenic.net (137.164.26.249)  1.056 ms  1.016 ms  0.929 ms
  7  aarnet-2-is-jmb-778.sttlwa.pacificwave.net (207.231.245.4)  17.803 ms  17.714 ms  17.978 ms
  8  et-2-0-0.pel.a.hnl.aarnet.net.au (113.197.15.200)  69.984 ms  69.888 ms  70.004 ms
  9  et-2-1-0.pel.sxt.bkvl.nsw.aarnet.net.au (113.197.15.98)  162.935 ms  163.033 ms  162.977 ms
 10  et-3-3-0.pel.brwy.nsw.aarnet.net.au (113.197.15.148)  163.819 ms  163.083 ms  163.111 ms
 11  138.44.5.1 (138.44.5.1)  163.124 ms  163.236 ms  163.254 ms
 12  libr1-te-1-5.gw.unsw.edu.au (149.171.255.102)  163.448 ms  163.355 ms  163.307 ms
 13  libdcnexion1-po-1.gw.unsw.edu.au (149.171.255.174)  163.544 ms  163.250 ms  163.344 ms
 14  srdh4it2r26blfx1-ext.gw.unsw.edu.au (129.94.0.31)  164.605 ms  164.288 ms  164.461 ms
 15  bfw1-ae-1-3053.gw.unsw.edu.au (129.94.254.76)  164.065 ms  164.066 ms  164.267 ms
 16  engplws008.eng.unsw.edu.au (149.171.158.109)  164.326 ms  164.538 ms  164.462 ms
```
traceroute -I -e www.engineering.unsw.edu.au
traceroute to www.engineering.unsw.edu.au (149.171.158.109), 64 hops max, 72 byte packets
1 csmx-west-rtr.sunet (171.67.64.2) 5.965 ms 11.205 ms 14.180 ms
2 gnat-1.sunet (172.24.70.11) 0.328 ms 0.312 ms 0.289 ms
3 csmx-west-rtr.sunet (171.64.66.2) 15.702 ms 33.031 ms 10.003 ms
4 dc-svl-rtr-vl8.sunet (171.64.255.204) 0.595 ms 0.552 ms 0.547 ms
5 dc-svl-agg4--stanford-100ge.cenic.net (137.164.23.144) 1.618 ms 1.154 ms 1.672 ms
6 hpr-svl-hpr2--svl-agg4-10ge.cenic.net (137.164.26.249) 1.056 ms 1.016 ms 0.929 ms
7 aarnet-2-is-jmb-778.sttlwa.pacificwave.net (207.231.245.4) 17.803 ms 17.714 ms 17.978 ms
8 et-2-0-0.pe1.a.hnl.aarnet.net.au (113.197.15.200) 69.984 ms 69.888 ms 70.004 ms
9 et-2-1-0.pe1.sxt.bkvl.nsw.aarnet.net.au (113.197.15.98) 162.935 ms 163.033 ms 162.977 ms
10 et-3-3-0.pe1.brwy.nsw.aarnet.net.au (113.197.15.148) 163.819 ms 163.083 ms 163.111 ms
11 138.44.5.1 (138.44.5.1) 163.124 ms 163.236 ms 163.254 ms
12 libcr1-te-1-5.gw.unsw.edu.au (149.171.255.102) 163.448 ms 163.355 ms 163.307 ms
13 libdcdnex1-po-1.gw.unsw.edu.au (149.171.255.174) 163.544 ms 163.250 ms 163.344 ms
14 srdh4it2r26blfx1-ext.gw.unsw.edu.au (129.94.0.31) 164.605 ms 164.288 ms 164.461 ms
15 bfwl-ae-1-3053.gw.unsw.edu.au (129.94.254.76) 164.065 ms 164.066 ms 164.267 ms
16 engplws008.eng.unsw.edu.au (149.171.158.109) 164.326 ms 164.538 ms 164.462 ms

161 milliseconds to get to the final computer
Other Real Life Uses for Graphs

- Amazon.com -- Product relationships are graph-based

Sponsored products related to this item (What's this?)

- Go Pet Club IQ Busy Box Cat Tree, 26'' x 21'' x 45''
 - Price: $58.75
 - Rating: 62 stars

- Go Pet Club F3019 Cat Scratcher Condo Furniture
 - Price: $36.99
 - Rating: 56 stars

- Kurgo Heather Dog Booster Seat for Cars with Seat Belt Tether, Charcoal
 - Price: $58.49
 - Rating: 15 stars

- Favorite Medium Cat Tunnel Foldable Lightweight Fun Dangling Ball Toy,
 - Price: $9.99
 - Rating: 124 stars

- PET SHINEWINGS Basic Cat Scratcher Scratching Board Pad
 - Price: $23.99
 - Rating: 1 star

What product might this be related to?
Other Real Life Uses for Graphs

Cat Scratching DJ Deck

Price: $24.00 Prime | FREE Same-Day Delivery today for FREE with qualifying orders over $35. Details

In Stock.
Get it TODAY, May 24. Order within 2 hrs 53 mins and choose Same-Day Delivery at checkout. Details
Ships from and sold by Amazon.com. Gift-wrap available.

Style: DJ Deck

- Cardboard scratching deck for cats
- Easy to assemble - comes with full instructions
- A fun distraction for your cats!
- Comes with spinable deck and posable arm
- Measures 35cm x 38.8cm x 14.4cm
Other Real Life Uses for Graphs

- Web page searching (discussed last week -- Wikipedia path to Philosophy)
- Google Maps (Trailblazer!)
Other Real Life Uses for Graphs

- Routing circuits:
Other Real Life Uses for Graphs

- Scheduling work based on dependencies (e.g., when doing laundry, the washer must finish before the dryer, and before folding) -- this is called a "topological sort"
Other Real Life Uses for Graphs

- The "Oracle of Bacon": https://oracleofbacon.org (just graph searching!)
Other Real Life Uses for Graphs

- Telecommunications: find the least expensive way to lay out a set of cables for a telephone or cable TV system ("a Minimum Spanning Tree")
Definition: A **Spanning Tree (ST)** of a connected undirected weighted graph G is a subgraph of G that is a tree and connects (spans) all vertices of G. A graph G can have multiple STs. A **Minimum Spanning Tree (MST)** of G is a ST of G that has the **smallest total weight** among the various STs. A graph G can have multiple MSTs but the MST weight is unique.

Minimum Spanning Tree
Kruskal's Algorithm to find a Minimum Spanning Tree

- **Kruskal's algorithm**: Finds a MST in a given graph.

function `kruskal`(graph):

Remove all edges from the graph.
Place all edges into a **priority queue** based on their weight (cost).
While the priority queue is not empty:

- Dequeue an edge `e` from the priority queue.
- If `e`'s endpoints aren't already connected to one another, add that edge into the graph.
- Otherwise, skip the edge.
In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

```python
function kruskal(graph):
    Remove all edges from the graph.
    Place all edges into a priority queue based on their weight (cost).
    While the priority queue is not empty:
        Dequeue an edge $e$ from the priority queue.
        If $e$'s endpoints aren't already connected,
            add that edge into the graph.
        Otherwise, skip the edge.
```

$pq = \{a:1, b:2, c:3, d:4, e:5, f:6, g:7, h:8, i:9, j:10, k:11, l:12, m:13, n:14, o:15, p:16, q:17, r:18\}$
In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

function **kruskal**(graph):
 Remove all edges from the graph.
 Place all edges into a priority queue based on their weight (cost).
 While the priority queue is not empty:
 Dequeue an edge e from the priority queue.
 If e's endpoints aren't already connected,
 add that edge into the graph.
 Otherwise, skip the edge.

$pq = \{a:1, b:2, c:3, d:4, e:5, f:6, g:7, h:8, i:9, j:10, k:11, l:12, m:13, n:14, o:15, p:16, q:17, r:18\}$
In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

```
function kruskal(graph):
    Remove all edges from the graph.
    Place all edges into a priority queue based on their weight (cost).
    While the priority queue is not empty:
        Dequeue an edge $e$ from the priority queue.
        If $e$'s endpoints aren't already connected, add that edge into the graph.
        Otherwise, skip the edge.
```

$pq = \{a:1, b:2, c:3, d:4, e:5, f:6, g:7, h:8, i:9, j:10, k:11, l:12, m:13, n:14, o:15, p:16, q:17, r:18\}$
In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

```
function kruskal(graph):
    Remove all edges from the graph.
    Place all edges into a priority queue based on their weight (cost).
    While the priority queue is not empty:
        Dequeue an edge e from the priority queue.
        If e's endpoints aren't already connected,
            add that edge into the graph.
        Otherwise, skip the edge.
```

pq = {c:3, d:4, e:5, f:6, g:7, h:8, i:9, j:10, k:11, l:12, m:13, n:14, o:15, p:16, q:17, r:18}
In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

function `kruskal(graph):
 Remove all edges from the graph.
 Place all edges into a priority queue based on their weight (cost).
 While the priority queue is not empty:
 Dequeue an edge e from the priority queue.
 If e's endpoints aren't already connected,
 add that edge into the graph.
 Otherwise, skip the edge.

$\text{pq} = \{d:4, e:5, f:6, g:7, h:8, i:9, j:10, k:11, l:12, m:13, n:14, o:15, p:16, q:17, r:18\}$
In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

function kruskal(graph):
 Remove all edges from the graph.
 Place all edges into a priority queue based on their weight (cost).
 While the priority queue is not empty:
 Dequeue an edge e from the priority queue.
 If e’s endpoints aren’t already connected,
 add that edge into the graph.
 Otherwise, skip the edge.

pq = {e:5, f:6, g:7, h:8, i:9, j:10, k:11, l:12, m:13, n:14, o:15, p:16, q:17, r:18}
In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

```
function kruskal(graph):
    Remove all edges from the graph.
    Place all edges into a priority queue based on their weight (cost).
    While the priority queue is not empty:
        Dequeue an edge $e$ from the priority queue.
        If $e$'s endpoints aren't already connected, add that edge into the graph.
        Otherwise, skip the edge.
```

$pq = \{ f:6, g:7, h:8, i:9, j:10, k:11, l:12, m:13, n:14, o:15, p:16, q:17, r:18 \}$
• In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

function `kruskal(graph):
 Remove all edges from the graph.
 Place all edges into a priority queue based on their weight (cost).
 While the priority queue is not empty:
 Dequeue an edge e from the priority queue.
 If e's endpoints aren't already connected,
 add that edge into the graph.
 Otherwise, skip the edge.

$\text{pq} = \{g:7, h:8, i:9, j:10, k:11, l:12, m:13, n:14, o:15, p:16, q:17, r:18\}$
In what order would Kruskal’s algorithm visit the edges in the graph below? What MST would it produce?

function kruskal(graph):
 Remove all edges from the graph.
 Place all edges into a priority queue based on their weight (cost).
 While the priority queue is not empty:
 Dequeue an edge e from the priority queue.
 If e’s endpoints aren’t already connected,
 add that edge into the graph.
 Otherwise, skip the edge.

pq = {h:8, i:9, j:10, k:11, l:12, m:13, n:14, o:15, p:16, q:17, r:18}
• In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

```python
function kruskal(graph):
    Remove all edges from the graph.
    Place all edges into a priority queue based on their weight (cost).
    While the priority queue is not empty:
        Dequeue an edge e from the priority queue.
        If e's endpoints aren't already connected,
            add that edge into the graph.
        Otherwise, skip the edge.
```

```
pq = {i: 9, j: 10, k: 11, l: 12, m: 13, n: 14, o: 15, p: 16, q: 17, r: 18}
```
In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

function \texttt{kruskal}(graph):
Remove all edges from the graph.
Place all edges into a priority queue based on their weight (cost).
While the priority queue is not empty:
\begin{itemize}
 \item Dequeue an edge \(e \) from the priority queue.
 \item If \(e \)'s endpoints aren't already connected, add that edge into the graph.
 \item Otherwise, skip the edge.
\end{itemize}

\[
pq = \{j:10, k:11, l:12, m:13, n:14, o:15, p:16, q:17, r:18\}
\]
In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

function `kruskal(graph):
 Remove all edges from the graph.
 Place all edges into a priority queue based on their weight (cost).
 While the priority queue is not empty:
 Dequeue an edge `e` from the priority queue.
 If `e`'s endpoints aren't already connected, add that edge into the graph.
 Otherwise, skip the edge.

`pq = { k:11, l:12, m:13, n:14, o:15, p:16, q:17, r:18 }`
In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

Function

```python
function kruskal(graph):
    Remove all edges from the graph.
    Place all edges into a priority queue based on their weight (cost).
    While the priority queue is not empty:
        Dequeue an edge \( e \) from the priority queue.
        If \( e \)'s endpoints aren't already connected,
            add that edge into the graph.
        Otherwise, skip the edge.
```

pq = \{l:12, m:13, n:14, o:15, p:16, q:17, r:18\}
In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

function `kruskal(graph):
 Remove all edges from the graph.
 Place all edges into a priority queue based on their weight (cost).
 While the priority queue is not empty:
 Dequeue an edge \(e\) from the priority queue.
 If \(e\)'s endpoints aren't already connected, add that edge into the graph.
 Otherwise, skip the edge.

\[pq = \{m:13, n:14, o:15, p:16, q:17, r:18\}\]
In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

function `kruskal(graph):
Remove all edges from the graph.
Place all edges into a priority queue based on their weight (cost).
While the priority queue is not empty:
 Dequeue an edge e from the priority queue.
 If e's endpoints aren't already connected, add that edge into the graph.
 Otherwise, skip the edge.

$pq = \{n:14, o:15,p:16,q:17,r:18\}$
• In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

function kruskal(graph):
 Remove all edges from the graph.
 Place all edges into a priority queue based on their weight (cost).
 While the priority queue is not empty:
 Dequeue an edge e from the priority queue.
 If e’s endpoints aren’t already connected,
 add that edge into the graph.
 Otherwise, skip the edge.

pq = {o:15, p:16, q:17, r:18}
In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

```
function kruskal(graph):
    Remove all edges from the graph.
    Place all edges into a priority queue based on their weight (cost).
    While the priority queue is not empty:
        Dequeue an edge e from the priority queue.
        If e's endpoints aren't already connected,
        add that edge into the graph.
        Otherwise, skip the edge.
```

```
pq = {p:16, q:17, r:18}
```
• In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

function kruskal(graph):
 Remove all edges from the graph.
 Place all edges into a priority queue based on their weight (cost).
 While the priority queue is not empty:
 Dequeue an edge \(e \) from the priority queue.
 If \(e \)'s endpoints aren't already connected,
 add that edge into the graph.
 Otherwise, skip the edge.

\[pq = \{ q:17, r:18 \} \]
In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

```
function kruskal(graph):
    Remove all edges from the graph.
    Place all edges into a priority queue based on their weight (cost).
    While the priority queue is not empty:
        Dequeue an edge e from the priority queue.
        If e's endpoints aren't already connected, add that edge into the graph.
        Otherwise, skip the edge.
```

pq = \{r:18\}
In what order would Kruskal's algorithm visit the edges in the graph below? What MST would it produce?

function **kruskal** (graph):
Remove all edges from the graph.
Place all edges into a priority queue based on their weight (cost).
While the priority queue is not empty:
 Dequeue an edge \(e \) from the priority queue.
 If \(e \)'s endpoints aren't already connected,
 add that edge into the graph.
 Otherwise, skip the edge.

\[pq = {} \]
Kruskal's algorithm would output the following MST:
- \{a, b, c, d, f, h, i, k, p\}

The MST's total cost is:
\[1 + 2 + 3 + 4 + 6 + 8 + 9 + 11 + 16 = 60\]
• What data structures should we use to implement this algorithm?

function `kruskal(graph):`
Remove all edges from the graph.
Place all edges into a **priority queue**
 based on their weight (cost).
While the priority queue is not empty:
 Dequeue an edge e from the priority queue.
 If e's endpoints aren't already connected,
 add that edge into the graph.
 Otherwise, skip the edge.
• Need some way to identify which vertexes are "connected" to which other ones
 – we call these "clusters" of vertices

• Also need an efficient way to figure out which cluster a given vertex is in.

• Also need to **merge clusters** when adding an edge.
References:
• Minimum Spanning Tree visualization: https://visualgo.net/mst
• Kruskal’s Algorithm: https://en.wikipedia.org/wiki/Kruskal’s_algorithm

Advanced Reading:
• How Internet Routing works: https://web.stanford.edu/class/msande91si/www-spr04/readings/week1/InternetWhitepaper.htm
• http://www.explainthatstuff.com/internet.html