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class FunctionBase
{
public:

/* Polymorphic classes need virtual destructors. */
virtual ~FunctionBase() {}

/* Calls the stored function. */
virtual Ret execute(const Arg& val) = 0;
virtual FunctionBase* clone() const = 0;

};

/* Template derived class that executes a specific type of function. */
template <typename UnaryFunction> class FunctionImpl: public FunctionBase
{
public:

explicit FunctionImpl(UnaryFunction fn) : fn(fn) {}
virtual Ret execute(const Arg& val)
{

return fn(val);
}
virtual FunctionImpl* clone() const
{

return new FunctionImpl(*this);
}
UnaryFunction fn;

};
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Part Zero
Introduction

Suppose we want to write a function that computes the average of a list of numbers.  One implementation  
is given here:

    double GetAverage(double arr[], int numElems) {
        double total = 0.0;
        for(int h = 0; h < numElems; ++h)
            total += arr[h] / numElems;
    
        return total;
    }

An alternative implementation is as follows:

    template <typename ForwardIterator>
    double GetAverage(ForwardIterator begin, ForwardIterator end) {
        return accumulate(begin, end, 0.0) / distance(begin, end);
    }

Don't panic if you don't understand any of this code – you're not expected to at this point – but even  
without an understanding of how either of  these functions work it's  clear that they are implemented 
differently.   Although  both  of  these  functions  are  valid  C++  and  accurately  compute  the  average, 
experienced C++ programmers will likely prefer the second version to the first because it is safer, more 
concise, and more versatile.  To understand why you would prefer the second version of this function 
requires a solid understanding of the C++ programming language.  Not only must you have a firm grasp of  
how all the language features involved in each solution work, but you must also understand the benefits 
and weaknesses of each of the approaches and ultimately which is a more versatile solution.

The purpose of this course is to get you up to speed on C++'s language features and libraries to the point  
where you are capable of not only writing C++ code, but also critiquing your design decisions and arguing  
why the cocktail of language features you chose is appropriate for your specific application.  This is an  
ambitious goal, but if you take the time to read through this reader and work out some of the practice  
problems you should be in excellent C++ shape.  

Who this Course is For

This  course  is  designed  to  augment  CS106B/X  by  providing  a  working  knowledge  of  C++  and  its  
applications.  C++ is an industrial-strength tool that can be harnessed to solve a wide array of problems,  
and by the time  you've  completed  CS106B/X and CS106L you  should be  equipped with  the  skill  set 
necessary to identify solutions to complex problems, then to precisely and efficiently implement those 
solutions in C++.
This course reader assumes a knowledge of C++ at the level at which it would be covered in the first two 
weeks of CS106B/X.  In particular, I assume that you are familiar with the following:
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0. How to print to the console (i.e. cout and endl)
1. Primitive variable types (int, double, etc.)
2. The string type.
3. enums and structs.
4. Functions and function prototypes.
5. Pass-by-value and pass-by-reference.
6. Control structures (if, for, while, do, switch).
7. CS106B/X-specific libraries (genlib.h, simpio.h, the ADTs, etc.)

If you are unfamiliar with any of these terms, I recommend reading the first chapter of  Programming 
Abstractions in C++ by Eric Roberts and Julie Zelenski, which has an excellent treatment of the material.  
These concepts are fundamental to C++ but aren't that particular to the language – you'll  find similar 
constructs  in C,  Java,  Python,  and other  languages – and so I  won't  discuss them at great  length.   In 
addition to the language prerequisites, you should have at least one quarter of programming experience 
under your belt (CS106A should be more than enough).   We'll  be writing a lot of  code, and the more  
programming savvy you bring to this course, the more you'll take out of it.

How this Reader is Organized

The course reader is logically divided into six sections:

0. Introduction:  This  section  motivates  and  introduces  the  material  and  covers  information 
necessary to be a working C++ programmer. In particular, it focuses on the history of C++, how to  
set up a C++ project for compilation, and how to move away from the genlib.h training wheels 
we've provided you in CS106B/X.

1. A Better C: C++ supports imperative programming, a style of programming in which programs are 
sequences of commands executed in order.  In this sense, C++ can be viewed as an extension to the 
C programming language which makes day-to-day imperative programming more intuitive and 
easier to use.  This section of the course reader introduces some of C++'s most common libraries,  
including the standard template library, and shows how to use these libraries to build imperative 
programs.  In addition, it explores new primitives in the C++ language that originally appeared in 
the C programming language, namely pointers, C strings, and the preprocessor.

2. Data Abstraction.  What most distinguishes C++ from its sibling C is the idea of data abstraction, 
that  the  means  by  which  a  program  executes  can  be  separated  from  the  ways  in  which 
programmers talk about that program.  This section of the course reader explores the concept of 
abstraction,  how to model it  concretely in C++ using the  class keyword,  and an assortment of 
language features which can be used to refine abstractions more precisely.

3. Object-Oriented Programming.   Object-oriented  programming is  an entirely  different  way of 
thinking about program design and can dramatically simplify complex software systems.  The key  
concepts behind object-orientation are simple, but to truly appreciate the power of object-oriented 
programming you will need to see it in action time and time again.  This section of the course  
reader explores major concepts in object-oriented programming and how to realize it in C++ with 
inheritance and polymorphism.
 

4. Generic Programming.   Generic programming is a  style of  programming which aims to build 
software  that  can  tackle  an  array  of  problems  far  beyond  what  it  was  initially  envisioned to  
perform. While a full treatment of generic programming is far beyond the scope of an introductory 
C++ programming class,  many of  the  ideas  from  generic  programming are  accessible  and can 
fundamentally  change  the  ways  in  which  you  think about  programming in  C++.   This  section 
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explores  the  main  ideas  behind  generic  programming  and  covers  several  advanced  C++ 
programming techniques not typically found in an introductory text. 

5. More to Explore.  C++ is an enormous language and there simply isn't enough time to cover all of  
its facets in a single course.  To help guide further exploration into C++ programming, this course 
reader ends with a treatment of the future of C++ and a list of references for further reading.

Notice that this course reader focuses on C++'s standard libraries before embarking on a detailed tour of  
its language features.  This may seem backwards – after all, how can you understand libraries written in a 
language you have not yet studied?  – but from experience I believe this is the best way to learn C++.  A 
comprehensive understanding of the streams library and STL requires a rich understanding of templates,  
inheritance, functors, and operator overloading, but even without knowledge of these techniques it's still  
possible to write nontrivial C++ programs that use these libraries.  For example, after a quick tour of the  
streams library and basic STL containers, we'll see how to write an implementation of the game Snake 
with an AI-controlled player.  Later, once we've explored the proper language features, we'll revisit the 
standard libraries and see how they're put together.

To give you a feel for how C++ looks in practice, this course reader contains several extended examples  
that demonstrate how to harness the concepts of the previous chapters to solve a particular problem.  I 
strongly suggest that you take the time to read over these examples and play around with the code.  The 
extended examples showcase how to use the techniques developed in previous chapters, and by seeing 
how the different pieces of C++ work together you will be a much more capable coder.  In addition, I've 
tried to conclude each chapter with a few practice problems.  Take a stab at them – you'll get a much more  
nuanced view of the language if you do.  Solutions to some of my favorite problems are given in Appendix  
One.  Exercises with solutions are marked with a diamond ( ).♦

C++ is a large language and it is impossible to cover all of its features in a single course.  To help guide 
further  exploration  into  C++  techniques,  most  chapters  contain  a  “More  to  Explore”  section  listing 
important topics and techniques that may prove useful in your future C++ career.

Supplemental Reading

This course reader is by no means a complete C++ reference and there are many libraries and language 
features that we simply do not have time to cover.  However, the portions of C++ we do cover are among 
the most-commonly used and you should be able to pick up the remaining pieces on a need-to-know basis.  
If  you  are  interested  in  a  more  complete  reference  text,  Bjarne  Stroustrup's  The  C++  Programming 
Language, Third Edition is an excellent choice.  Be aware that TC++PL is not a tutorial – it's a reference – 
and so you will probably want to read the relevant sections from this course reader before diving into it.  If  
you're  interested  in  a  hybrid  reference/tutorial,  I  would  recommend  C++  Primer,  Fourth  Edition by 
Lippman, Lajoie, and Moo.  As for online resources, the C++ FAQ Lite at www.parashift.com/c++-faq-lite/ 
has a great discussion of C++'s core language features.  cplusplus.com has perhaps the best coverage of the 
C++ standard library on the Internet, though its discussion of the language as a whole is fairly limited.

Onward and Forward!

http://www.cplusplus.com/
http://www.parashift.com/c++-faq-lite/
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C++ is a general purpose programming language with a bias towards systems programming that
• is a better C.
• supports data abstraction.
• supports object-oriented programming.
• supports generic programming

– Bjarne Stroustrup, inventor of C++ [Str09.2]

Every programming language has its own distinct flavor influenced by its history and design.   Before 
seriously studying a programming language, it's important to learn why the language exists and what its 
objectives are.  This chapter covers a quick history of C++, along with some of its design principles.

An Abbreviated History of C++*

The story of C++ begins with Bjarne Stroustrup, a Danish computer scientist working toward his PhD at 
Cambridge University.  Stroustrup's research focus was distributed systems, software systems split across 
several  computers  that  communicated  over  a  network  to  solve  a  problem.   At  one  point  during  his 
research, Stroustrup came up with a particularly clever idea for a distributed system.  Because designing 
distributed systems is an enormously complicated endeavor, Stroustrup decided to test out his idea by 
writing  a  simulation  program,  which  is  a  significantly  simpler  task.   Stroustrup  chose  to  write  this  
simulation  program  in  a  language  called  Simula,  one  of  the  earliest  object-oriented  programming 
languages.  As Stroustrup recalled, initially, Simula seemed like the perfect tool for the job:

It was a pleasure to write that simulator.   The features of Simula were almost ideal for the 
purpose, and I was particularly impressed by the way the concepts of the language helped me 
think  about  the  problems  in  my  application.   The  class  concept  allowed  me  to  map  my 
application concepts into the language constructs in a direct way that made my code more 
readable than I had seen in any other language...

I had used Simula before... but was very pleasantly surprised by the way the mechanisms of the 
Simula language became increasingly helpful as the size of the program increased. [Str94]

In Simula, it was possible to model a  physical computer using a computer  object and a physical network 
using  a  network  object,  and  the  way  that  physical  computers  sent  packets  over  physical  networks 
corresponded to the way computer objects sent and received messages from network objects.  But while  
Simula made it easier for Stroustrup to develop the simulator, the resulting program was so slow that it  
failed to produce any meaningful results.  This was not the fault of Stroustrup's implementation, but of the  
language Simula itself.  Simula was bloated and language features Stroustrup didn't use in his program 
were  crippling  the  simulator's  efficiency.   For  example,  Stroustrup  found  that  eighty  percent  of  his 
program time was being spent on garbage collection despite the fact that the simulation didn't create any  
garbage. [Str94]  In other words, while Simula had decreased the time required to build the simulator, it 
dramatically increased the time required for the simulator to execute.

Stroustrup  realized  that  his  Simula-based  simulator  was  going  nowhere.   To  continue  his  research,  
Stroustrup scrapped his Simula implementation and rewrote the program in a language he knew ran 
quickly and efficiently: BCPL.  BCPL has since gone the way of the dodo, but at the time was a widely used,  

* This section is based on information from The Design and Evolution of C++ by Bjarne Stroustrup.
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low-level  systems programming language.  Stroustrup later recalled that writing the simulator in BCPL 
was “horrible.”  [Str94]  As a  low-level  language,  BCPL lacked objects and to represent computers and 
networks Stroustrup had to manually lay out and manipulate the proper bits and bytes.  However, BCPL 
programs were far  more efficient  than their  Simula counterparts,  and Stroustrup's  updated simulator 
worked marvelously.

Stroustrup's experiences with the distributed systems simulator impressed upon him the need for a more 
suitable  tool  for  constructing  large  software  systems.   Stroustrup  sought  a  hybridization  of  the  best 
features of Simula and BCPL – a language with both high-level constructs and low-level runtime efficiency.  
After receiving his PhD, Stroustrup accepted a position at Bell Laboratories and began to create such a  
language.  Settling on C as a base language, Stroustrup incorporated high-level constructs in the style of 
Simula  while still  maintaining C's  underlying efficiency.   After several  revisions,  C with Classes,  as his 
language was known, accumulated other high-level features and was officially renamed C++.  C++ was an 
overnight success and spread rapidly into the programming community; for many years the number of C+
+  programmers  was  doubling  every  seven  months.   By  2007,  there  were  over  three  million  C++ 
programmers worldwide, and despite competition from other languages like Java and Python the number 
of C++ programmers is still increasing.  [Str09]  What began as Stroustrup's project at Bell Laboratories 
became an ISO-standardized programming language found in a variety of applications.

C++ as a Language

When confronted with a new idea or concept, it's often enlightening to do a quick Wikipedia search to see  
what others have to say on the subject. If you look up C++ this way, one of the first sentences you'll read (at  
least, at the time of this writing) will tell you that C++ is a general-purpose, compiled, statically-typed,  
multiparadigm, mid-level programming language. If you are just learning C++, this description may seem 
utterly mystifying. However, this sentence very aptly captures much of the spirit of C++, and so before 
continuing  our  descent  into  the  realm  of  C++  let's  take  a  few  minutes  to  go  over  exactly  what  this  
definition entails.

C++ is a General-Purpose Programming Language

Programming  languages  can  be  broadly  categorized  into  two  classes  –  domain-specific  programming 
languages and general-purpose programming languages. A language is domain-specific if it is designed to 
solve a certain class of problems in a particular field. For example, the MATLAB programming language is a  
domain-specific language designed for numerical and mathematical computing, and so has concise and 
elegant support for matrix and vector operations. Domain-specific languages tend to be extremely easy to 
use,  particularly because these languages let  programmers express common operations concisely and 
elegantly because the language has been designed with them in mind. As an example, in MATLAB it is  
possible to solve a linear system of equations using the simple syntax x = A\b. The equivalent C++ or Java 
code would be significantly more complex. However, because domain-specific languages are optimized on 
a particular class of problems, it can be difficult if  not impossible to adapt those languages into other  
problem domains. This has to do with the fact that domain-specific languages are custom-tailored to the 
problems they solve,  and consequently lack the vocabulary or syntactic richness to express structures 
beyond their narrow scope. This is best illustrated by analogy – an extraordinary mathematician with  
years of training would probably have great difficulty holding a technical discussion on winemaking with 
the  world's  expert  oenologist  simply  because  the  vocabularies  of  mathematics  and  winemaking  are 
entirely  different.  It  might  be  possible  to  explain  viticulture  to  the  mathematician  using  terms  from 
differential topology or matrix theory, but this would clearly be a misguided effort.

Contrasting with domain-specific languages are general-purpose languages which, as their name suggests, 
are designed to tackle all categories of problems, not just one particular class. This means that general-
purpose languages are more readily adapted to different scenarios and situations, but may have a harder 
time describing some of the fundamental concepts of those domains than a language crafted specifically 
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for that purpose. For example, an American learning German as a second language may be fluent enough 
in  that  language  to  converse  with  strangers  and  to  handle  day-to-day  life,  but  might  have  quite  an 
experience trying to hold a technical conversation with industry specialists. This is not to say, of course,  
that the American would not be able to comprehend the ideas that the specialist was putting forth, but  
rather that any discussion the two would have would require the specialist to define her terms as the 
conversation unfolded, rather than taking their definitions for granted at the start.

C++ is a general-purpose programming language, which means that it is robust enough to adapt to handle  
all sorts of problems without providing special tools that simplify tasks in any one area. This is a trade-off,  
of  course.  Because  C++  is  general-purpose,  it  will  not  magically  provide  you  a  means  for  solving  a 
particular problem; you will have to think through a design for your programs in order for them to work 
correctly. But because C++ is general-purpose, you will be hard-pressed to find a challenge for which C++  
is a poor choice for the solution. Moreover, because C++ is a general-purpose language, once you have 
learned the structures and techniques of C++,  you can apply your knowledge to any problem domain 
without having to learn new syntax or structures designed for that domain.

C++ is a Compiled Language

The programs that actually execute on a computer are written in machine language, an extremely low-
level  and  hardware-specific  language  that  encodes  individual  instructions  for  the  computer's  CPU. 
Machine languages are indecipherable even to most working programmers because these languages are 
designed  to  be  read  by  computer  hardware  rather  than  humans.  Consequently,  programmers  write 
programs in programming languages, which are designed to be read by humans. In order to execute a 
program written in a programming language, that program must somehow be converted from its source 
code representation into equivalent machine code for execution. How this transformation is performed is 
not set in stone, and in general there are two major approaches to converting source code to machine  
code. The first of these is to interpret the program. In interpreted languages,a special program called the 
interpreter takes  in  the  program's  source  code  and  translates  the  program  as  it  is  being  executed.  
Whenever the program needs to execute a new piece of code, the interpreter reads in the next bit of the  
source code, converts it into equivalent machine code, then executes the result.  This means that if the 
same interpreted program is run several times,  the interpreter will  translate the program anew every 
time. The other option is to compile the program. In a compiled language, before running the program, the 
programmer executes a special program called the compiler on the source code which translates the entire 
program into machine code. This means that no matter how many times the resulting program is run, the 
compiler is only invoked once. In general, interpreted languages tend to run more slowly than compiled 
languages  because  the  interpreter  must  translate  the  program  as  it  is  being  executed,  whereas  the 
translation work has already been done in the case of compiled languages. Because C++ places a premium 
on efficiency, C++ is a compiled language.  While C++ interpreters do exist, they are almost exclusively for 
research purposes and rarely (if at all) used in professional settings.

What does all of this mean for you as a C++ programmer? That is, why does it matter whether C++ is  
compiled or interpreted? A great deal, it turns out; this will be elaborated upon in the next segment on 
static type checking. However, one way that you will notice immediately is that you will have to compile 
your programs every time you make a change to the source code that you want to test out. When working  
on very large software projects (on the order of millions to hundreds of millions of lines of code), it is not  
uncommon for a recompilation to take hours to complete, meaning that it is difficult to test out lots of  
minor changes to a C++ program. After all, if every change takes three minutes to test, then the number of 
possible changes you can make to a program in hopes of eliminating a bug or extending functionality can  
be greatly limited. On the other hand, though, because C++ is compiled,  once you have your resulting 
program it will tend to run much,  much faster than programs written in other languages. Moreover, you 
don't need to distribute an interpreter for your program in addition to the source – because C++ programs  
compile down directly to the machine code, you can just ship an executable file to whoever wants to run 
your program and they should be able to run it without any hassle.
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C++ is a Statically-Typed Language

One of the single most important aspects of C++ is that it is a statically-typed language. If you want to  
manipulate data in a C++ program, you must specify in advance what the type of that data is (for example, 
whether it's an integer, a real number, English text, a jet engine, etc.). Moreover, this type is set in stone and 
cannot change elsewhere in the source code. This means that if you say that an object is a coffee mug, you 
cannot treat it as a stapler someplace else.

At first this might seem silly – of course you shouldn't be able to convert a coffee mug into a stapler or a 
ball of twine into a jet engine; those are entirely different entities! You are completely correct about this.  
Any program that tries to treat a coffee mug as though it is a stapler is bound to run into trouble because a 
coffee mug isn't a stapler. The reason that static typing is important is that these sorts of errors are caught 
at compile-time instead of at runtime. This means that if you write a program that tries to make this sort of  
mistake, the program won't compile and you won't even have an executable containing a mistake to run. If 
you write a C++ program that tries to treat a coffee mug like a stapler, the compiler will give you an error  
and you will need to fix the problem before you can test out the program. This is an extremely powerful  
feature  of  compiled  languages  and will  dramatically  reduce  the  number  of  runtime  errors  that  your 
programs encounter. As you will see later in this book, this also enables you to have the compiler verify 
that complex relationships hold in your code and can conclude that if the program compiles, your code 
does not contain certain classes of mistakes.

C++ is a Multi-Paradigm Language

C++ began as a hybrid of high- and low-level languages but has since evolved into a distinctive language 
with its own idioms and constructs. Many programmers treat C++ as little more than an object-oriented C,  
but this view obscures much of the magic of C++. C++ is a multiparadigm programming language, meaning 
that it supports several different programming styles. C++ supports imperative programming in the style 
of C, meaning that you can treat C++ as an upgraded C. C++ supports object-oriented programming, so you 
can construct  elaborate class  hierarchies that hide complexity behind simple interfaces.  C++ supports 
generic programming, allowing you to write code reusable in a large number of contexts.  Finally,  C++ 
supports a limited form of higher-order programming, allowing you to write functions that construct and 
manipulate other functions at runtime.

C++ being a multiparadigm language is both a blessing and a curse. It is a blessing in that C++ will let you 
write code in the style that you feel is most appropriate for a given problem, rather than rigidly locking 
you into a particular framework.  It  is  also a blessing in that  you can mix and match styles  to create  
programs that are precisely suited for the task at hand.  It  is  a  curse,  however,  in that multiparadigm 
languages are necessarily more complex than single-paradigm languages and consequently C++ is more 
difficult to pick up than other languages. Moreover, the interplay among all of these paradigms is complex,  
and you will need to learn the subtle but important interactions that occur at the interface between these 
paradigms.

This  book  is  organized so  that  it  covers  a  mixture  of  all  of  the  aforementioned paradigms one  after  
another, and ideally you will be comfortable working in each by the time you've finished reading.

C++ is a Mid-Level Language

Computer programs ultimately must execute on computers. Although computers are capable of executing  
programs which perform complex abstract  reasoning,  the  computers themselves understand only the 
small set of commands necessary to manipulate bits and bytes and to perform simple arithmetic. Low-
level languages are languages like C and assembly language that provide minimal structure over the actual  
machine  and  expose  many  details  about  the  inner  workings  of  the  computer.  To  contrast,  high-level 
languages  are  languages  that  abstract  away  from  the  particulars  of  the  machine  and  let  you  write  
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programs independently of the computer's idiosyncrasies. As mentioned earlier, low-level languages make 
it  hard  to  represent  complex  program  structure,  while  high-level  languages  often  are  too  abstract  to 
operate efficiently on a computer.

C++ is a rare language in that it combines the low-level efficiency and machine access of C with high-level  
constructs like those found in Java. This means that it is possible to write C++ programs with the strengths  
of both approaches. It is not uncommon to find C++ programs that model complex systems using object-
oriented techniques (high level) while taking advantage of specific hardware to accelerate that simulation  
(low-level). One way to think about the power afforded by C++ is to recognize that C++ is a language that  
provides a set of abstractions that let you intuitively design large software systems, but which lets you 
break  those  abstractions  when  the  need  to  optimize  becomes  important.  We  will  see  some  ways  to 
accomplish this later in this book.

Design Philosophy

C++  is  a  comparatively  old  language;  its  first  release  was  in  1985.   Since  then  numerous  other 
programming languages have sprung up – Java, Python, C#, and Javascript, to name a few.  How exactly has 
C++ survived so long when others have failed?  C++ may be useful and versatile, but so were BCPL and  
Simula, neither of which are in widespread use today.

One of the main reasons that C++ is still in use (and evolving) today has been its core guiding principles.  
Stroustrup has maintained an active interest in C++ since its inception and has steadfastly adhered to a 
particular design philosophy.  Here is a sampling of the design points, as articulated in Stroustrup's The 
Design and Evolution of C++.

• C++'s evolution must be driven by real problems. When existing programming styles prove 
insufficient  for  modern  challenges,  C++  adapts.   For  example,  the  introduction  of  exception 
handling  provided  a  much-needed  system  for  error  recovery,  and  abstract  classes  allowed 
programmers to define interfaces more naturally.

• Don't try to force people.  C++ supports multiple programming styles.  You can write code similar 
to  that  found  in  pure  C,  design  class  hierarchies  as  you  would  in  Java,  or  develop  software 
somewhere in between the two.  C++ respects and trusts you as a programmer, allowing you to 
write the style of code you find most suitable to the task at hand rather than rigidly locking you 
into a single pattern.

• Always provide a transition path.  C++ is designed such that the programming principles and 
techniques developed at any point in its history are still applicable.  With few exceptions, C++ code  
written ten or twenty years ago should still compile and run on modern C++ compilers.  Moreover,  
C++ is designed to be mostly backwards-compatible with C, meaning that veteran C coders can  
quickly get up to speed with C++.

The Goal of C++

There is one quote from Stroustrup ([Str94]) I believe best sums up C++:

C++ makes programming more enjoyable for serious programmers.

What exactly does this mean?  Let's begin with what constitutes a serious programmer.  Rigidly defining 
“serious programmer” is difficult, so instead I'll list some of the programs and projects written in C++ and 
leave it as an exercise to the reader to infer a proper definition.  For example, you'll find C++ in:
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Mozilla Firefox.   The core infrastructure underlying all Mozilla 
projects is written predominantly in C++.  While much of the code 
for Firefox is written in Javascript and XUL, these languages are 
executed by interpreters written in C++.

The WebKit layout engine used by Safari and Google Chrome is 
also written in C++.  Although it's closed-source, I suspect that 
Internet Explorer is also written in C++.  If you're browsing the 
web, you're seeing C++ in action.

Java HotSpot.  The widespread success of Java is in part due to 
HotSpot,  Sun's  implementation  of  the  Java  Virtual  Machine. 
HotSpot supports just-in-time compilation and optimization and 
is a beautifully engineered piece of software.  It's also written in 
C++.  The next time that someone engages you in a debate about 
the relative merits of C++ and Java, you can mention that if not for 
a well-architected C++ program Java would not be a competitive 
language.

NASA / JPL.  The rovers currently exploring the surface of Mars 
have their autonomous driving systems written in C++.  C++ is on  
Mars!

C++ makes programming  more enjoyable for serious programmers.  Not only does C++ power all of the 
above applications,  it powers them  in style.   You can program with high-level constructs yet enjoy the 
runtime efficiency of a low-level language like C.  You can choose the programming style that's right for 
you and work in a language that trusts and respects your expertise.  You can write code once that you will  
reuse time and time again.  This is what C++ is all about, and the purpose of this book is to get you up to 
speed on the mechanics, style, and just plain excitement of C++.

With that said, let's dive into C++.  Our journey begins!
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Every journey begins with a single step, and in ours it's getting to the point where you can compile, link,  
run, and debug C++ programs.  This depends on what operating system you have, so in this section we'll  
see how to get a C++ project up and running under Windows, Mac OS X, and Linux.

Compiling C++ Programs under Windows

This section assumes that you are using Microsoft Visual Studio 2005 (VS2005).   If  you are a current  
CS106B/X student, you can follow the directions on the course website to obtain a copy.  Otherwise, be  
prepared to shell out some cash to get your own copy, though it is definitely a worthwhile investment.* 
Alternatively,  you  can  download  Visual  C++  2008  Express  Edition,  a  free  version  of  Microsoft's 
development environment sporting a fully-functional C++ compiler.   The express edition of Visual C++ 
lacks support for advanced Windows development, but is otherwise a perfectly fine C++ compiler.  You can 
get Visual C++ 2008 Express Edition from http://www.microsoft.com/express/vc/.  With only a few minor 
changes, the directions for using VS2005 should also apply to Visual C++ 2008 Express Edition, so this  
section will only cover VS2005.

VS2005 organizes C++ code into “projects,” collections of source and header files that will be built into a  
program.  The first step in creating a C++ program is to get an empty C++ project up and running, then to  
populate  it  with  the  necessary  files.   To begin,  open VS2005 and from the  File menu choose  New > 
Project....  You should see a window that looks like this:

* I first began programming in C++ in 2001 using Microsoft Visual C++ 6.0, which cost roughly eighty dollars.  I  
recently (2008) switched to Visual Studio 2005.  This means that the compiler cost just over ten dollars a year. 
Considering the sheer number of hours I have spent programming, this was probably the best investment I have 
made.

http://www.microsoft.com/express/vc/
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As you can see,  VS2005 has template support for all  sorts of different projects,  most of which are for 
Microsoft-specific  applications  such  as  dynamic-link  libraries  (DLLs)  or  ActiveX  controls.   We're  not 
particularly interested in most of these choices – we just want a simple C++ program!  To create one, find  
and choose  Win32 Console Application.   Give your project an appropriate name, then click  OK.   You 
should now see a window that looks like this, which will ask you to configure project settings:

Note that the window title will have the name of the project you entered in the previous step in its title;  
“Yet Another C++ Program” is a placeholder.

At this point,  you  do not want to click  Finish.   Instead,  hit  Next > and you'll  be presented with the 
following screen:



Chapter 1: Getting Started - 13 -

Keep all of the default settings listed here, but make sure that you check the box marked Empty Project. 
Otherwise VS2005 will give you a project with all sorts of Microsoft-specific features built into it.  Once  
you've checked that box, click Finish and you'll have a fully functional (albeit empty) C++ project.

Now, it's time to create and add some source files to this project so that you can enter C++ code.  To do this,  
go to Project > Add New Item... (or press CTRL+SHIFT+A).  You'll be presented with the following dialog 
box:
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Choose C++ File (.cpp) and enter a name for it inside the Name field.  VS2005 automatically appends .cpp 
to the end of the filename, so don't worry about manually entering the extension.  Once you're ready, click 
Add and you should have your source file ready to go.  Any C++ code you enter in here will be considered  
by the compiler and built into your final application.

Once you've written the source code, you can compile and run your programs by pressing  F5, choosing 
Debug> Start Debugging,  or clicking the green “play” icon.  By default  VS2005 will  close the console  
window after your program finishes running, and if you want the window to persist after the program 
finishes executing you can run the program without debugging by pressing CTRL+F5 or choosing Debug > 
Start Without Debugging.  You should be all set to go!

Compiling C++ Programs in Mac OS X

If you're developing C++ programs on Mac OS X, your best option is to use Apple's Xcode development 
environment.  You can download Xcode free of charge from the Apple Developer Connection website at 
http://developer.apple.com/.

Once you've downloaded and installed Xcode, it's reasonably straightforward to create a new C++ project.  
Open Xcode.  The first time that you run the program you'll get a nice welcome screen, which you're free to 
peruse but which you can safely dismiss.  To create a C++ project, choose File > New Project....  You'll be 
presented with a screen that looks like this:

http://developer.apple.com/
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There are a lot of options here, most of which are Apple-specific or use languages other than C++ (such as  
Java or Objective-C).  In the panel on the left side of the screen, choose Command Line Utility and you will 
see the following options:

Select C++ Tool and click the Choose... button.  You'll be prompted for a project name and directory; feel 
free to choose whatever name and location you'd like.  In this example I've used the name “Yet Another C+
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+ Project,” though I suggest you pick a more descriptive name.  Once you've made your selection, you'll see 
the project window, which looks like this:

Notice that your project comes prepackaged with a file called main.cpp.  This is a C++ source file that will 
be compiled and linked into the final program.  By default, it contains a skeleton implementation of the  
Hello, World! program, as shown here:
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Feel free to delete any of the code you see here and rewrite it as you see fit.

Because the program we've just created is a command-line utility, you will need to pull up the console 
window to see the output from your program.  You can do this by choosing Run > Console or by pressing 

�

⌘R.  Initially the console will be empty, as shown here:

Once you've run your program, the output will be displayed here in the console.  You can run the program 
by clicking the Build and Go button (the hammer next to a green circle containing an arrow).  That's it!  
You now have a working C++ project.

If  you're interested in compiling programs from the Mac OS X terminal,  you might find the following  
section on Linux development useful.

Compiling C++ Programs under Linux

For those of you using a Linux-based operating system, you're in luck – Linux is extremely developer-
friendly and all of the tools you'll need are at your disposal from the command-line.

Unlike the Windows or Mac environments,  when compiling code in Linux you won't  need to set up a 
development environment using Visual Studio or Xcode.  Instead, you'll just set up a directory where you'll  
put and edit your C++ files, then will directly invoke the GNU C++ Compiler (g++) from the command-line.

If you're using Linux I'll assume that you're already familiar with simple commands like mkdir and chdir 
and that you know how to edit and save a text document.  When writing C++ source code, you'll probably  
want to save header files with the .h extension and C++ files with the .cc, .cpp, .C, or .c++ extension.  The .cc 
extension seems to be in vogue these days, though .cpp is also quite popular.

To compile your source code, you can execute g++ from the command line by typing g++ and then a list of 
the files you want to compile.  For example, to compile myfile.cc and myotherfile.cc, you'd type

    g++ myfile.cc myotherfile.cc
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By default, this produces a file named a.out, which you can execute by entering ./a.out.  If you want to 
change the name of the program to something else, you can use g++'s -o switch, which produces an output 
file of a different name.  For example, to create an executable called myprogram from the file myfile.cc, you 
could write

     g++ myfile.cc -o myprogram

g++ has a whole host of other switches (such as -c to compile but not link a file), so be sure to consult the 
man pages for more info.

It can get tedious writing out the commands to compile every single file in a project to form a finished  
executable, so most Linux developers use makefiles, scripts which allow you to compile an entire project 
by typing the make command.  A full tour of makefiles is far beyond the scope of an introductory C++ text,  
but fortunately there are many good online tutorials on how to construct a makefile.  The full manual for 
make is available online at http://www.gnu.org/software/make/manual/make.html.

Other Development Tools

If you are interested in using other development environments than the ones listed above, you're in luck. 
There are dozens of IDEs available that work on a wide range of platforms.  Here's a small sampling:

• NetBeans: The NetBeans IDE supports C++ programming and is highly customizable.  It also is 
completely cross-platform compatible, so you can use it on Windows, Mac OS X, and Linux.

• MinGW: MinGW is a port of common GNU tools to Microsoft Windows, so you can use tools like 
g++ without  running  Linux.   Many  large  software  projects  use  MinGW  as  part  of  their  build 
environment, so you might want to explore what it offers you.

• Eclipse: This popular Java IDE can be configured to run as a C++ compiler with a bit of additional  
effort.  If you're using Windows you might need to install some additional software to get this IDE 
working, but otherwise it should be reasonably straightforward to configure.

• Sun Studio: If you're a Linux user and command-line hacking isn't your cup of tea, you might want  
to consider installing Sun Studio, Sun Microsystem's C++ development environment, which has a 
wonderful GUI and solid debugging support.
 

• Qt Creator: This Linux-based IDE is designed to build C++ programs using the open-source Qt 
libraries,  but is  also an excellent  general-purpose C++ IDE.   It  is  a  major step above what the 
terminal and your favorite text editor have to offer, and I highly recommend that you check this  
program out if you're a Linux junkie.

http://www.gnu.org/software/make/manual/make.html
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When you arrived at your first CS106B/X lecture, you probably learned to write a simple “Hello, World” 
program like the one shown below:

    #include "genlib.h"
    #include <iostream>

    int main() {
        cout << "Hello, world!" << endl;
        return 0;
    }

Whether or not you have previous experience with C++, you probably realized that the first line means  
that the source code references an external file called genlib.h.  For the purposes of CS106B/X, this is 
entirely  acceptable  (in  fact,  it's  required!),  but  once  you  migrate  from  the  educational  setting  to  
professional code you will run into trouble because genlib.h is not a standard header file; it's included in 
the CS106B/X libraries to simplify certain language features so you can focus on writing code, rather than 
appeasing the compiler.

In CS106L, none of our programs will use genlib.h, simpio.h, or any of the other CS106B/X library files. 
Don't worry, though, because none of the functions exported by these files are “magical.”  In fact, in the  
next few chapters you will learn how to rewrite or supersede the functions and classes exported by the 
CS106B/X libraries.*  If you have the time, I encourage you to actually open up the genlib.h file and peek 
around at its contents.

To write “Hello, World” without genlib.h, you'll need to add another line to your program.  The “pure” C+
+ version of “Hello, World” thus looks something like this:

    #include <iostream>
    using namespace std;

    int main() {
        cout << "Hello, World!" << endl;
        return 0;
    }

We've replaced the header file  genlib.h with the cryptic statement “using namespace std;”  Before 
explaining exactly what this statement does, we need to take a quick diversion to lessons learned from  
development history.  Suppose you're working at a company that produces two types of software: graphics 
design programs and online gunfighter duels (admittedly, this combination is pretty unlikely, but humor 
me for a while).  Each project has its own source code files complete with a set of helper functions and 
classes.  Here are some sample header files from each project, with most of the commenting removed:

* The exceptions are the graphics and sound libraries.  C++ does not have natural language support for multimedia,  
and although many such libraries exist, we won't cover them in this text.
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GraphicsUtility.h:
/* File: graphicsutility.h
 * Graphics utility functions. 
 */

/* ClearScene: Clears the current scene. */
void ClearScene();

/* AddLine: Adds a line to the current scene. */
void AddLine(int x0, int y0, int x1, int y1);

/* Draw: Draws the current scene. */
void Draw();

GunfighterUtility.h:
/* File: gunfighterutility.h
 * Gunfighter utility functions. 
 */

/* MarchTenPaces: Marches ten paces, animating each step. */
void MarchTenPaces(PlayerObject &toMove);

/* FaceFoe: Turns to face the opponent. */
void FaceFoe();

/* Draw: Unholsters and aims the pistol. */
void Draw();

Suppose  the  gunfighter  team  is  implementing  MarchTenPaces and  needs  to  animate  the  gunfighters 
walking away from one another.   Realizing that the graphics team has already implemented an entire  
library geared toward this, the gunfighter programmers import  graphicsutility.h into their project, write 
code using the graphics functions, and try to compile.  However, when they try to test their code, the linker  
reports errors to the effect of “error: function 'void Draw()' already defined.”

The problem is that the graphics and gunfighter modules each contain functions named Draw() with the 
same  signature and the compiler  can't  distinguish  between them.   It's  impractical  for  either  team  to  
rename their Draw function, both because the other programming teams expect them to provide functions 
named  Draw and because their code is already filled with calls to  Draw.  Fortunately, there's an elegant 
resolution to this  problem.   Enter  the  C++  namespace keyword.   A  namespace adds another  layer  of 
naming onto your functions and variables.  For example, if all of the gunfighter code was in the namespace 
“Gunfighter,” the function Draw would have the full name Gunfighter::Draw.  Similarly, if the graphics 
programmers put their code inside namespace “Graphics,” they would reference the function  Draw as 
Graphics::Draw.  If this is the case, there is no longer any ambiguity between the two functions, and the  
gunfighter development team can compile their code.

But there's still one problem – other programming teams expect to find functions named ClearScene and 
FaceFoe,  not  Graphics::ClearScene and  Gunfighter::FaceFoe.   Fortunately,  C++  allows  what's 
known as a using declaration that lets you ignore fully qualified names from a namespace and instead use 
the shorter names.

Back to the Hello, World example, reprinted here:
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    #include <iostream>
    using namespace std;

    int main() {
        cout << "Hello, World!" << endl;
        return 0;
    }

The statement “using namespace std;” following the #include directive tells the compiler that all of 
the functions and classes in the namespace std can be used without their fully-qualified names.  This “std” 
namespace  is  the  C++  standard  namespace that  includes  all  the  library  functions  and  classes  of  the 
standard library.  For example,  cout is truly named std::cout, and without the using declaration importing 
the std namespace, Hello, World would look something like this:

    #include <iostream>

    int main() {
std::cout << "Hello, World!" << std::endl;
return 0;

    }

While  some  programmers  prefer  to  use  the  fully-qualified  names  when  using  standard  library 
components,  repeatedly  writing std:: can be a  hassle.   To  eliminate  this  problem,  in  genlib.h,  we 
included the using declaration for you.  But now that we've taken the training wheels off and genlib.h is 
no more, you'll have to remember to include it yourself!

There's one more important part of  genlib.h, the  string type.  Unlike other programming languages, 
C++ lacks a primitive string type.*  Sure, there's the class string, but unlike int or double it's not a built-
in type and must be included with a  #include directive.   Specifically,  you'll  need to write  #include 
<string> at the top of any program that wants to use C++-style strings.   And don't  forget the  using 
declaration, or you'll need to write std::string every time you want to use C++ strings!

* Technically speaking there are primitive strings in C++, but they aren't objects.  See the chapter on C strings for  
more information.
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It's time to begin our serious foray into the magical world of C++ programming.  In this first chapter, we'll  
explore C++'s  streams library, a collection of functions that allow you to read and write formatted data 
from a variety of sources.  The streams library allows your program to print text to the user and read back 
responses.  It also lets you load persistent data from external files and to save custom information on-disk.  
As you continue your exploration of C++, you will use the contents of this chapter time and time again,  
whether for simple error-reporting or more complex data management.

Streams: An Overview

In the physical world, all interesting devices have some way of interacting with their environment.  Take a  
common alcohol thermometer, for example.  The thermometer has a liquid-filled bulb that is warmed up  
by the environment and a graduated meter which allows the user to read off the temperature near the 
bulb.   Or  consider  a car,  which has an accelerator,  brake,  gearbox,  and steering wheel  to control  the  
direction and speed of the vehicle and a dashboard which reports the current state of the automobile.  C+
+'s streams library is the primary means by which a C++ program can interact with its environment,  
namely the user and the file system.

The basic  unit  of  communication between a program and its environment is a  stream.   A stream is a 
channel  between  a  source and  a  destination which  allows  the  source  to  push  formatted  data  to  the 
destination.  The type of the source and the sink varies from stream to stream.  In some streams the source  
is the program itself and the destination is a file on disk, and the stream can be used to write persistent  
data to the user's hard drive.  In others, the source is the keyboard and the destination is the program, and 
the stream can be used to read user input from the physical world into the computer.

The use of the term “stream” in the context of the streams library is similar to the use of “stream” in the 
context  of  “streaming  video.”   When a  data  provider  (for  example,  YouTube)  streams video over  the 
Internet, the video is not sent all at once.  Instead, the program receiving the video continuously queries 
the server for more and more information, and the video is sent in fixed-size chunks and reassembled by 
the video player.  When using the streams library to read or write data, you do not need to read or write all  
of the data at once.  It's perfectly legal (and quite common) to read the data one piece at a time.  For  
example, if you want to read data from a file, instead of loading all of the file contents at once, you can read  
the  file  line-by-line,  or  character-by-character,  or  using  some  hybrid  approach.   This  gives  you  great 
flexibility,  since you can read different  pieces of  the file  in different  ways to get  the data in a format  
appropriate to your application.

To give you a better sense of how streams work in practice, let's consider an actual stream, cout.  cout 
(for  character  output) is a stream connected to the  console, a text window that displays plain text data. 
Any information pushed across  cout displays in the console, and so you can think of  cout as a way of 
displaying data to the user.  For example, here's a simple program which displays a message to the user 
and then quits:

    #include <iostream>
    using namespace std;

    int main() {
        cout << "I'm sorry Dave, I'm afraid I can't do that." << endl;
        return 0;
    }
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There's a lot of code here, so let's take a few minutes to dissect it.  The first line of the program, #include 
<iostream>,  instructs the C++ compiler to import the  cout stream into the program.  The line  using 
namespace std is covered in the previous chapter and makes the cout stream available.  Inside of main, 
we have the following line of code:

    cout << "I'm sorry Dave, I'm afraid I can't do that." << endl;

The special << operator is called the stream insertion operator and is a C++ operator that is used to push 
data into a stream object.  Here, we push the text string I'm sorry Dave, I'm afraid I can't do 
that into the cout stream.  This causes the this text to display on-screen.  Afterwards, we push the special  
object endl into the stream.  endl stands for “end line” and prints a newline character to the cout stream. 
This means that the next time we push text into cout, the text will display on the next line, rather than 
directly after the text string we just printed.  We'll discuss endl in more detail later in this chapter.

Streams are very versatile and you can write data of multiple types to stream objects.  In fact, you can push  
data of any primitive type into a stream.  For example, here's a program showing off the sorts of data that  
can move across a stream:

    #include <iostream>
    using namespace std;

    int main() {
        cout << "Streams can take in text." << endl;
        cout << 137 << endl;     // Streams can take in integers.
        cout << 2.71828 << endl; // Streams can take in real numbers.
        cout << "Here is text followed by a number: " << 31415 << endl;
        return 0;
    }

Running this program will produce the following output:

    Streams can take in text.
    137
    2.71828
    Here is text followed by a number: 31415

In the first line of this program, we sent a text string to the console.  In the second and third, we sent an  
integer and a natural number, respectively.  The last line is perhaps the most interesting.  In it, we push  
both a  string  and an integer  to the  console  by chaining  together  the  stream insertion operator.   The 
designers of the streams library were fairly clever, and so it's perfectly legal to chain together as many 
stream insertions as you'd like.

To give you a better feel for why each of the stream operations in the above program end by pushing endl 
into the stream, let's consider what would happen if this weren't the case.  Here's a revised version of the  
above program will all instances of endl removed:
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    #include <iostream>
    using namespace std;

    int main() {
        cout << "Streams can take in text.";
        cout << 137;
        cout << 2.71828;
        cout << "Here is text followed by a number: " << 31415;
        return 0;
    }

This produces the following output:

    Streams can take in text.1372.71828Here is text followed by a number: 31415

Notice that all of this text runs together.  C++ will not “automatically” insert newlines into any text you 
write, and when outputting data to the console you will need to manually insert line breaks.  As a general  
rule, most of the time that you use  cout to push data to the console, you will need to append  endl to 
ensure the output doesn't all run together.

All of the stream examples we have seen so far have revolved around  cout and pushing data from the 
program to the console.  To build a truly interactive program, however, we'll need to get input from the 
user.  In CS106B/X, we provide the  simpio.h header file, which exports the input functions  GetLine, 
GetInteger,  GetReal,  and  GetLong.   Though useful, these functions are not part of the C++ standard 
library and will not be available outside of CS106B/X.  Don't worry, though, because by the end of this  
chapter we'll see how to implement them using only standard C++.

The streams library exports another stream object called cin (character input) which lets you read values 
directly from the user.  To read a value from cin, you use the stream extraction operator >>.  Syntactically, 
the stream extraction operator mirrors the stream insertion operator.  For example, here's a code snippet  
to prompt the user for an integer.

    cout << "Please enter an integer: ";
    
    int myInteger;
    cin >> myInteger; // Value stored in myInteger

When the program encounters the highlighted line, it will pause and wait for the user to type in a number 
and  hit  enter.   Provided  that  the  user  actually  enters  an  integer,  its  value  will  be  stored  inside  the  
myInteger variable.  What happens if the user doesn't enter an integer is a bit more complicated, and we'll 
return to this later in the chapter.

You can also read multiple values from  cin by chaining together the stream extraction operator in the 
same way that you can write multiple values to cout by chaining the stream insertion operator:

    int myInteger;
    string myString;
    cin >> myInteger >> myString; // Read an integer and string from cin

This will pause until the user enters an integer, hits enter, then enters a string, then hits enter once more.  
These values will be stored in myInteger and myString, respectively.

Note that when using cin, you should not read into endl the way that you write endl when using cout. 
Hence the following code is illegal:
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    int myInteger;
    cin >> myInteger >> endl; // Error: Cannot read into endl.

Intuitively, this makes sense because endl means “print a newline.”  Reading a value into endl is therefore 
a nonsensical operation.

In practice, it is not a good idea to read values directly from cin.  Unlike  GetInteger and the like,  cin 
does not perform any safety checking of user input and if the user does not enter valid data, cin will begin 
behaving unusually.  Later in this chapter, we will see how the GetInteger function is implemented and 
you will be able to use the function in your own programs.  In the meantime, though, feel free to use cin, 
but make sure that you always type in input correctly!

Reading and Writing Files

So far, we have seen two examples of streams –  cout, which sends data to the console, and cin, which 
reads data from the keyboard.  In this next section we'll see two new kinds of streams – ifstreams and 
ofstreams – which can be used to read or write files on disk.  This will allow your program to save data 
indefinitely, or to read in configuration data from an external source.

C++ provides a header file  called  <fstream> (file  stream)  that exports the  ifstream and  ofstream 
types, streams that perform file I/O.  The naming convention is unfortunate – ifstream stands for input 
file stream (not “something that might be a stream”) and ofstream for output file stream.  There is also a 
generic fstream class which can do both input and output, but we will not cover it in this chapter.  Unlike 
cin and  cout, which are concrete stream objects,  ifstream and ofstream are  types.  To read or write 
from a file, you will create an object of type ifstream or ofstream, much in the same way that you would 
create an object of type string to store text data or a variable of type double to hold a real number.  Once 
you  have  created  the  file  stream  object,  you  can  read  or  write  to  it  using  the  stream  insertion  and 
extraction operators just as you would cin or cout.

To create an ifstream that reads from a file, you can use this syntax:

    ifstream myStream("myFile.txt");

This creates a new stream object named  myStream which reads from the file  myFile.txt, provided of 
course that the file exists.  We can then read data from myStream just as we would from cin, as shown 
here:

    ifstream myStream("myFile.txt");
    int myInteger;
    myStream >> myInteger; // Read an integer from myFile.txt

Notice that we wrote  myStream >> myInteger rather than ifstream >> myInteger.  When reading 
data from a file stream, you must read from the stream variable rather than the ifstream type.  If you 
read from  ifstream instead of your stream variable, the program will not compile and will give you a 
fairly cryptic error message.

You can also open a file by using the ifstream's open member function, as shown here:

    ifstream myStream;           // Note: did not specify the file
    myStream.open("myFile.txt"); // Now reading from myFile.txt

When opening a file using an  ifstream,  there is a chance that the specified file can't be opened.  The 
filename might not specify an actual file, you might not have permission to read the file, or perhaps the file  



Chapter 3: Streams - 29 -

is locked.  If you try reading data from an ifstream that is not associated with an open file, the read will 
fail and you will not get back meaningful data.  After trying to open a file, you should check if the stream is  
valid by using the .is_open() member function.  For example, here's code to open a file and report an 
error to the user if a problem occurred:

    ifstream input("myfile.txt");
    if(!input.is_open())
        cerr << "Couldn't open the file myfile.txt" << endl;

Notice that we report the error to the cerr stream.  cerr, like cout, is an output stream, but unlike cout, 
cerr is designed for error reporting and is sometimes handled differently by the operating system.

The output counterpart to ifstream is ofstream.  As with ifstream, you specify which file to write to 
either by using the .open() member function or by specifying the file when you create the ofstream, as 
shown below:

    ofstream myStream("myFile.txt"); // Write to myFile.txt

A word of warning: if you try writing to a nonexistent file with an ofstream, the ofstream will create the 
file for you.  However, if you open a file that already exists, the ofstream will overwrite all of the contents 
of the file.  Be careful not to write to important files without first backing them up!

The streams library is one of the older libraries in C++ and the  open functions on the  ifstream and 
ofstream classes predate the string type.  If you have the name of a file stored in a C++ string, you will 
need to convert the string into a C-style string (covered in the second half of this book) before passing it  
as a parameter to open.  This can be done using the .c_str() member function of the string class, as 
shown here:

    ifstream input(myString.c_str()); // Open the filename stored in myString

When a file stream object goes out of scope, C++ will automatically close the file for you so that other 
processes can read and write the file.  If you want to close the file prematurely, you can use the .close() 
member function.  After calling close, reading or writing to or from the file stream will fail.

As mentioned above in the section on  cin,  when reading from or writing to files you will  need to do 
extensive error checking to ensure that the operations succeed.  Again, we'll see how to do this later.

Stream Manipulators

Consider the following code that prints data to cout:

    cout << "This is a string!" << endl;

What exactly is endl?  It's an example of a stream manipulator, an object that can be inserted into a stream 
to change some sort of stream property.  endl is one of the most common stream manipulators, though 
others exist as well.  To motivate some of the more complex manipulators, let's suppose that we have a file  
called table-data.txt containing four lines of text, where each line consists of an integer value and a 
real number.  For example:
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File: table-data.txt
137     2.71828
42      3.14159
7897987 1.608
1337    .01101010001

We want to write a program which reads in this data and prints it out in a table, as shown here:

---------------------+----------------------+---------------------
                   1 |                  137 |              2.71828
                   2 |                   42 |              3.14159
                   3 |              7897987 |                1.608
                   4 |                 1337 |              0.01101

Here, the first column is the one-indexed line number, the second the integer values from the file, and the 
third the real-numbered values from the file.

Let's begin by defining a few constants to control what the output should look like.  Since there are four  
lines in the file, we can write

    const int NUM_LINES = 4;

And since there are three columns,

    const int NUM_COLUMNS = 3;

Next, we'll pick an arbitrary width for each column.  We'll choose twenty characters, though in principle 
we could pick any value as long as the data fit:

    const int COLUMN_WIDTH = 20;

Now, we need to read in the table data and print out the formatted table.  We'll decompose this problem  
into two smaller steps, resulting in the following source code:

    #include <iostream>
    #include <fstream>
    using namespace std;

    const int NUM_LINES = 4;
    const int NUM_COLUMNS = 3;
    const int COLUMN_WIDTH = 20;

    int main() {
        PrintTableHeader();        
        PrintTableBody();
        return 0;
    }

PrintTableHeader is responsible for printing out the top part of the table (the row of dashes and pluses) 
and PrintTableBody will load the contents of the file and print them to the console.

Despite  the  fact  that  PrintTableHeader precedes  PrintTableBody in  this  program,  we'll  begin  by 
implementing PrintTableBody as it illustrates exactly how much firepower we can get from the stream 
manipulators.  We know that we need to open the file table-data.txt and that we'll need to read four 
lines of data from it, so we can begin writing this function as follows:
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    void PrintTableBody() {
        ifstream input("table-data.txt");
        /* No error-checking here, but you should be sure to do this in any real
         * program.
         */

        /* Loop over the lines in the file reading data. */
        for(int k = 0; k < NUM_LINES; ++k) {
            /* ... process data ... */
        }
    }

You may have noticed that at the end of this  for loop I've written  ++k instead of  k++.  There's a slight 
difference between the two syntaxes, but in this context they are interchangeable.  When we talk about  
operator overloading in a later chapter we'll talk about why it's generally considered better practice to use 
the prefix increment operator instead of the postfix.

Now, we need to read data from the file and print it as a table.  We can start by actually reading the values  
from the file, as shown here:

    void PrintTableBody() {
        ifstream input("table-data.txt");
        /* No error-checking here, but you should be sure to do this in any real
         * program.
         */

        /* Loop over the lines in the file reading data. */
        for(int k = 0; k < NUM_LINES; ++k) {
            int intValue;
            double doubleValue;
            input >> intValue >> doubleValue;
        }
    }

Next,  we need to print out the table row.  This is where things get tricky.  If  you'll  recall,  the table is  
supposed to be printed as three columns, each a fixed width, that contain the relevant data.  How can we 
ensure that when we print the values to  cout that we put in the appropriate amount of whitespace? 
Manually writing space characters would be difficult,  so instead we'll  use a stream manipulator called 
setw (set width) to force cout to pad its output with the right number of spaces.  setw is defined in the 
<iomanip> header file and can be used as follows:

    cout << setw(10) << 137 << endl;

This tells cout that the next item it prints out should be padded with spaces so that it takes up at least ten  
characters.  Similarly,

    cout << setw(20) << "Hello there!" << endl;

Would print out Hello there! with sufficient leading whitespace.

By default setw pads the next operation with spaces on the left side.  You can customize this behavior with 
the left and right stream manipulators, as shown here:

    cout << '[' << left  << setw(10) << "Hello!" << ']' << endl;  // [     Hello!]
    cout << '[' << right << setw(10) << "Hello!" << ']' << endl;  // [Hello!     ]
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Back to our example.  We want to ensure that every table column is exactly COLUMN_WIDTH spaces across. 
Using setw, this is relatively straightforward and can be done as follows:

    void PrintTableBody() {
        ifstream input("table-data.txt");
        /* No error-checking here, but you should be sure to do this in any real
         * program.
         */
    
        /* Loop over the lines in the file reading data. */
        for(int k = 0; k < NUM_LINES; ++k) {
            int intValue;
            double doubleValue;
            input >> intValue >> doubleValue;
    
            cout << setw(COLUMN_WIDTH) << (k + 1) << " | ";
            cout << setw(COLUMN_WIDTH) << intValue << " | ";
            cout << setw(COLUMN_WIDTH) << doubleValue << endl;
        }
    }

This produces the following output when run on the input file described above:

                   1 |                  137 |              2.71828
                   2 |                   42 |              3.14159
                   3 |              7897987 |                1.608
                   4 |                 1337 |              0.01101

The body of the table looks great, and now we just need to print the table header, which looks like this:

---------------------+----------------------+---------------------

If you'll notice, this is formed by printing twenty dashes, then the pattern -+-, another twenty dashes, the 
pattern -+-, and finally another twenty dashes.  We could thus implement PrintTableHeader like this:

    void PrintTableHeader() {
        /* Print the ---...---+- pattern for all but the last column. */
        for(int column = 0; column < NUM_COLUMNS – 1; ++column) {
            for(int k = 0; k < COLUMN_WIDTH; ++k)
                cout << '-';
            cout << "-+-";
        }
    
        /* Now print the ---...--- pattern for the last column. */
        for(int k = 0; k < COLUMN_WIDTH; ++k)
            cout << '-';
    
        /* Print a newline... there's nothing else on this line. */
        cout << endl;
    }

As written there's nothing wrong with this code and the program will work just fine, but we can simplify 
the implementation by harnessing stream manipulators.  Notice that at two points we need to print out  
COLUMN_WIDTH copies of the dash character.  When printing out the table body, we were able to use the 
setw stream manipulator to print multiple copies of the space character; is there some way that we can  
use it here to print out multiple dashes?  The answer is yes, thanks to setfill.  The setfill manipulator 
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accepts a parameter indicating what character to use as a fill character for setw, then changes the stream 
such that all future calls to setw pad the stream with the specified character.  For example:

    cout << setfill('0') << setw(8) << 1000 << endl; // Prints 00001000
    cout << setw(8) << 1000 << endl; // Prints 00001000 because of last setfill

Note that setfill does not replace all space characters with instances of some other character.  It is only 
meaningful in conjunction with setw.  For example:

    cout << setfill('X') << "Some   Spaces" << endl; // Prints Some   Spaces

Using setfill and setw, we can print out COLUMN_WIDTH copies of the dash character as follows:

    cout << setfill('-') << setw(COLUMN_WIDTH) << "" << setfill(' ');

This code is dense, so let's walk through it one step at a time.  The first part, setfill('-'), tells cout to 
pad all output with dashes instead of spaces.  Next, we use setw to tell cout that the next operation should 
take up at least COLUMN_WIDTH characters.  The trick is the next step, printing the empty string.  Since the 
empty  string  has  length  zero  and  the  next  operation  will  always  print  out  at  least  COLUMN_WIDTH 
characters  padded  with  dashes,  this  code  prints  out  COLUMN_WIDTH dashes  in  a  row.   Finally,  since 
setfill permanently sets the fill character, we use setfill(' ') to undo the changes we made to cout.

Using this code, we can rewrite PrintTableHeader as follows:

    void PrintTableHeader() {
        /* Print the ---...---+- pattern for all but the last column. */
        for(int column = 0; column < NUM_COLUMNS – 1; ++column)
            cout << setfill('-') << setw(COLUMN_WIDTH) << "" << "-+-";
    
        /* Now print the ---...--- pattern for the last column and a newline. */
        cout << setw(COLUMN_WIDTH) << "" << setfill(' ') << endl;
    }

Notice that we only call setfill(' ') once, at the end of this function, since there's no reason to clear it at  
each step.  Also notice that we've reduced the length of this function dramatically by having the library take care  
of the heavy lifting for us.  The code to print out a table header is now three lines long!

There  are  many  stream  manipulators  available  in  C++.   The  following  table  lists  some  of  the  more 
commonly-used ones:

boolalpha cout << true << endl;                // Output: 1
cout << boolalpha << true << endl;   // Output: true

Determines whether or not the stream should output boolean values as 1 and 0 or 
as “true” and “false.”  The opposite manipulator is  noboolalpha,  which reverses 
this behavior.

setw(n) cout << 10 << endl;            // Output: 10
cout << setw(5) << 10 << endl; // Output:    10

Sets the minimum width of the output for the next stream operation.  If the data 
doesn't  meet  the  minimum  field  requirement,  it  is  padded  with  the  default  fill  
character until it is the proper size.
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Common stream manipulators, contd.
hex, dec, oct cout << 10 << endl;        // Output: 10

cout << dec << 10 << endl; // Output: 10
cout << oct << 10 << endl; // Output: 12
cout << hex << 10 << endl; // Output: a
cin >> hex >> x;           // Reads a hexadecimal value.

Sets  the  radix  on  the  stream  to  either  octal  (base  8),  decimal  (base  10),  or 
hexadecimal (base 16).  This can be used either to format output or change the base 
for input.

ws myStream >> ws >> value;

Skips  any  whitespace  stored  in  the  stream.   By  default  the  stream  extraction 
operator skips over whitespace, but other functions like  getline do not.  ws can 
sometimes be useful in conjunction with these other functions.

When Streams Go Bad

Because stream operations often involve transforming data from one form into another, stream operations 
are not always guaranteed to succeed.  For example, consider the following code snippet,  which reads 
integer values from a file:

    ifstream in("input.txt"); // Read from input.txt
    for(int i = 0; i < NUM_INTS; ++i) {
        int value;
        in >> value;
        /* ... process value here ... */
    }

If the file  input.txt contains  NUM_INTS consecutive integer values, then this code will work correctly. 
However, what happens if the file contains some other type of data, such as a string or a real number?

If you try to read stream data of one type into a variable of another type, rather than crashing the program 
or filling the variable with garbage data, the stream fails by entering an error state and the value of the 
variable will not change.  Once the stream is in this error state, any subsequent read or write operations  
will automatically and silently fail, which can be a serious problem.

You can check if a stream is in an error state with the  .fail() member function.  Don't let the name 
mislead you – fail checks if a stream is in an error state, rather than putting the stream into that state.  
For example, here's code to read input from cin and check if an error occurred:

    int myInteger;
    cin >> myInteger;
    if(cin.fail()) { /* ... error ... */ }

If a stream is in a fail state, you'll probably want to perform some special handling, possibly by reporting the 
error.   Once you've  fixed  any problems,  you  need to  tell  the  stream that  everything  is  okay by using the  
.clear() member function to bring the stream out of its error state.  Note that clear won't skip over the input 
that put the stream into an error state; you will need to extract this input manually.

Streams can also go into error states if a read operation fails because no data is available.  This occurs  
most  commonly  when  reading  data  from  a  file.   Let's  return  to  the  table-printing  example.   In  the  
PrintTableData function, we hardcoded the assumption that the file contains exactly four lines of data. 
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But what if we want to print out tables of arbitrary length?  In that case, we'd need to continuously read  
through the file extracting and printing numbers until we exhaust its contents.  We can tell when we've run 
out of data by checking the .fail() member function after performing a read.  If .fail() returns true, 
something prevented us from extracting data (either because the file was malformed or because there was  
no more data) and we can stop looping.

Recall that the original code for reading data looks like this:

    void PrintTableBody() {
        ifstream input("table-data.txt");
    
        /* Loop over the lines in the file reading data. */
        for(int k = 0; k < NUM_LINES; ++k) {
            int intValue;
            double doubleValue;
            input >> intValue >> doubleValue;
    
            cout << setw(COLUMN_WIDTH) << (k + 1) << " | ";
            cout << setw(COLUMN_WIDTH) << intValue << " | ";
            cout << setw(COLUMN_WIDTH) << doubleValue << endl;
        }
    }
    
The updated version of this code, which reads all of the contents of the file, is shown here:

    void PrintTableBody() {
        ifstream input("table-data.txt");
    
        /* Loop over the lines in the file reading data. */
        int rowNumber = 0;
        while(true) {
            int intValue;
            double doubleValue;
            input >> intValue >> doubleValue;
    
            if(input.fail()) break;
    
            cout << setw(COLUMN_WIDTH) << (rowNumber + 1) << " | ";
            cout << setw(COLUMN_WIDTH) << intValue << " | ";
            cout << setw(COLUMN_WIDTH) << doubleValue << endl;
    
            rowNumber++;
        }
    }

Notice that we put the main logic into a  while(true) loop that  breaks when  input.fail() returns 
true instead of a while(!input.fail()) loop.  These two structures may at first appear similar, but are 
quite different from one another.  In a while(!input.fail()) loop, we only check to see if the stream 
encountered an error after reading and processing the data in the body of the loop.  This means that the 
loop will execute once more than it should, because we don't notice that the stream malfunctioned until 
the top of the loop.  On the other hand, in the above loop structure (while(true) plus break), we stop 
looping as soon as the stream realizes that something has gone awry.  Confusing these two loop structures 
is a common error, so be sure that you understand why to use the “loop-and-a-half” idiom rather than a 
simple while loop.
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A Useful Shorthand

In the above code, we used the loop-and-a-half idiom to determine whether we should continue reading 
and printing data out of the file or whether we should stop looping.  The general pattern for this idiom is  
as follows:

    while(true) {
        int intValue;
        double doubleValue;
        input >> intValue >> doubleValue;

        if(input.fail()) break;

        /* ... process values here ... */
    }

This code is perfectly valid, but it's a bit clunky.  The outermost loop is a while(true) loop, which means 
“loop forever,” but in reality the idea we want to represent is “loop until there is no more available data.” 
The  designers  of  the  streams  library  anticipated  this  use  case  and  provided  a  remarkably  simple 
shorthand to alleviate this complexity.  The above code is entirely equivalent to

    int intValue;
    double doubleValue;

    while(input >> intValue >> doubleValue) {
        /* ... process values here ... */
    }

Notice that the condition of the while loop is now input >> intValue >> doubleValue.  Recall that in 
C++, any nonzero value is interpreted as “true” and any zero value is interpreted as “false.”  The streams 
library is configured so that most stream operations, including stream insertion and extraction, yield a  
nonzero value if the operation succeeds and zero otherwise.  This means that code such as the above, 
which uses the read operation as the looping condition, is perfectly valid.  One particular advantage of this  
approach is that while the syntax is considerably more dense, the code is more intuitive.  You can read this  
while loop as “while I can successfully read data into intValue and doubleValue, continue executing the 
loop.”  Compared to our original implementation, this is much cleaner.

This syntax shorthand is actually a special case of a more general technique.  In any circumstance where a 
boolean value is expected, it is legal to place a stream object or a stream read/write operation.  We will see  
this later in this chapter when we explore the getline function.

When Streams Do Too Much

Consider the following code snippet, which prompts a user for an age and hourly salary:

    int age;
    double hourlyWage;

    cout << "Please enter your age: ";
    cin >> age;

    cout << "Please enter your hourly wage: ";
    cin >> hourlyWage;
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As mentioned above, if the user enters a string or otherwise non-integer value when prompted for their 
age, the stream will enter an error state.  There is another edge case to consider.  Suppose the input is  
2.71828.  You would expect that, since this isn't an integer (it's a real number), the stream would go into  
an error state.  However, this isn't what happens.  The first call, cin >> age, will set age to 2.  The next 
call,   cin >> hourlyWage,  rather than prompting the user for a value,  will  find the  .71828 from the 
earlier input and fill in hourlyWage with that information.  Despite the fact that the input was malformed 
for the first prompt, the stream was able to partially interpret it and no error was signaled.

As  if  this  wasn't  bad  enough,  suppose  we  have  this  program  instead,  which  prompts  a  user  for  an  
administrator password and then asks whether the user wants to format her hard drive:

    string password;
    cout << "Enter administrator password: ";

    cin >> password;
    if(password == "password") { // Use a better password, by the way!
        cout << "Do you want to erase your hard drive (Y or N)? ";

        char yesOrNo;
        cin >> yesOrNo;

        if(yesOrNo == 'y')
            EraseHardDrive();
    }

What  happens  if  someone  enters  password y?   The  first  call,  cin >> password,  will  read  only 
password.  Once we reach the second cin read, it automatically fills in yesOrNo with the leftover y, and 
there goes our hard drive!  Clearly this is not what we intended.

As you can see, reading directly from cin is unsafe and poses more problems than it solves.  In CS106B/X 
we provide you with the simpio.h library primarily so you don't have to deal with these sorts of errors. 
In the next section, we'll explore an entirely different way of reading input that avoids the above problems.

An Alternative: getline

Up to this point, we have been reading data using the stream extraction operator, which, as you've seen, 
can be  dangerous.   However,  there  are  other  functions  that  read  data  from  a  stream.   One  of  these  
functions is getline, which reads characters from a stream until a newline character is encountered, then 
stores the read characters (minus the newline) in a string.  getline accepts two parameters, a stream to 
read from and a string to write to.  For example, to read a line of text from the console, you could use this 
code:

    string myStr;
    getline(cin, myStr);

No  matter  how  many  words  or  tokens  the  user  types  on  this  line,  because  getline reads  until  it 
encounters a newline, all of the data will be absorbed and stored in myStr.  Moreover, because any data 
the user types in can be expressed as a string, unless your input stream encounters a read error, getline 
will not put the stream into a fail state.  No longer do you need to worry about strange I/O edge cases!
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You may have noticed that the getline function acts similarly to the CS106B/X GetLine function.  This is 
no coincidence, and in fact the GetLine function from simpio.h is implemented as follows:*

    string GetLine() {
        string result;
        getline(cin, result);
        return result;
    }

At this point,  getline may seem like a silver-bullet solution to our input problems.  However,  getline 
has a small problem when mixed with the stream extraction operator.  When the user presses return after 
entering text in response to a  cin prompt,  the newline character is  stored in the  cin internal  buffer. 
Normally, whenever you try to extract data from a stream using the  >> operator, the stream skips over 
newline and whitespace characters before reading meaningful data.  This means that if you write code like  
this:

    int first, second;
    cin >> first;
    cin >> second;

The newline stored in cin after the user enters a value for first is eaten by cin before second is read. 
However, if we replace the second call to cin with a call to getline, as shown here:

    int dummyInt;
    string dummyString;
    cin >> dummyInt;
    getline(cin, dummyString);

getline will return an empty string.  Why?  Unlike the stream extraction operator, getline does not skip 
over the whitespace still remaining in the cin stream.  Consequently, as soon as getline is called, it will 
find the newline remaining from the previous  cin statement, assume the user has pressed return, and 
return the empty string.

To fix this problem, your best option is to replace all normal stream extraction operations with calls to 
library functions like  GetInteger and  GetLine that accomplish the same thing.  Fortunately, with the 
information in the next section, you'll be able to write  GetInteger and almost any  Get____ function 
you'd ever need to use.  When we cover templates and operator overloading in later chapters, you'll see  
how to build a generic read function that can parse any sort of data from the user.

Reading Files with getline

Our treatment of getline so far has only considered using getline to read data from cin, but getline 
is in fact much more general and can be used to read data from any stream object, including file streams.  
To give a better feel for how the getline function works in practice, let's go over a quick example of how 
to use  getline to read data from files.  In this example, we'll write a program that takes in a data file 
containing some useful information and display it in a nice,  pretty format.   In particular, we'll  write a  
program that reads a data file called world-capitals.txt containing a list of all the world's countries 
and their capitals, then displays them to the user.  We will assume that the world-capitals.txt file is 
formatted as follows:

* Technically, the implementation of GetLine from simpio.h is slightly different, as it checks to make sure that cin 
is not in an error state before reading.
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File: world-capitals.txt
Abu Dhabi
United Arab Emirates
Abuja
Nigeria
Accra
Ghana
Addis Ababa
Ethiopia
...

In this file, every pair of lines represents a capital city and the country of which it is the capital.   For  
example, the first two lines indicate that Abu Dhabi is the capital of the United Arab Emirates, the second 
two that Abuja is the capital of Nigeria, etc.  Our goal is to write a program that prints this data in the  
following format:

    Abu Dhabi is the capital of United Arab Emirates
    Abuja is the capital of Nigeria
    Accra is the capital of Ghana
    ...

How can we go about writing a program like this?  Well, we can start by opening the file and printing an  
error if we can't find it:

    int main() {
        ifstream capitals("world-capitals.txt")
        if (!capitals.is_open()) {
            cerr << "Cannot find the file world-capitals.txt" << endl;
            return -1;
        }
    
        /* ... */
    }

Now, we need to process pairs of lines in the file.  Using the concepts from this chapter, we have two  
general lines of attack to consider.  First, we could use the stream extraction operator >> to read the data 
from the file.   Second,  we could use the  getline function to read lines of  text  from the file.   In this 
particular  circumstance,  it  is  not  a  particularly  good  idea  to  use  the  stream  extraction  operator. 
Remember that the extraction operator reads data from files one token at a time, rather than one line at a 
time.  Not all world capitals are a single token long (for example, Abu Dhabi or Addis Ababa) nor are all 
countries one token long (for example, United Arab Emirates).  If we were to try to read the file data using  
the stream extraction operator, we would have no way of knowing when we had read in the complete 
name of a capital city or country, and it would be all but impossible to print the data out in a meaningful  
format.  However, getline does not have this problem, since getline blindly reads lines of text and has 
no notion  of  whitespace-delineated  tokens.   Thus  for  this  particular  program,  we'll  use  the  getline 
function to read file data.

As with most file reading operations, we will need to keep looping until we've exhausted all of the data in  
the file.  This can usually be done with the loop-and-a-half idiom.  In our case, one possible version of the 
code is as follows:



- 40 -  Chapter 3: Streams

    int main() {
        ifstream capitals("world-capitals.txt")
        if (!capitals.is_open()) {
            cerr << "Cannot find the file world-capitals.txt" << endl;
            return -1;
        }
    
        while (true) {
            string capital, country;
            getline(capitals, capital);
            getline(capitals, country);

            if (capitals.fail()) break;
     
            cout << capital << " is the capital of " << country << endl;
        }
    }

The above code creates two strings, capital and country, and populates them with data from the file.  It 
then checks whether the read succeeded, and, if so, prints out the formatted data string.

This code is perfectly correct, but it's clunky.  The loop-and-a-half idiom is never pretty, and there has to be 
a better way to structure this code.  Fortunately, there is a wonderful shorthand we can use to condense 
this code.  Recall that when using the stream extraction operator >>, we could write code to the following 
effect to read data from a file and continue looping while the read operation succeeds:

    while (myStream >> myValue) {
        /* ... process myValue here ... */
    }

We can use a similar trick with getline.  In particular, the getline function returns a nonzero value if 
data can be read from a file and a zero value otherwise.  Consequently, we can rewrite the above code as 
follows:

    int main()
    {
        ifstream capitals("world-capitals.txt")
        if (!capitals.is_open()) {
            cerr << "Cannot find the file world-capitals.txt" << endl;
            return -1;
        }
    
        string capital, country;
        while (getline(capitals, capital) && getline(capitals, country))
            cout << capital << " is the capital of " << country << endl;
    }

This  code  is  considerably  more  concise  than  our  original  version  and  arguably  easier  to  read.   The 
condition of the while loop now reads “while we can read a line from the file into capital and a line from 
the file into country, keep executing the loop.”  If you ever find yourself reading a file line-by-line, feel free 
to adapt this trick into your own code – you'll save yourself a great deal of typing if you do.
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A String Buffer: stringstream

Before we discuss writing GetInteger, we'll need to take a diversion to another type of C++ stream.

Often you will need to construct a string composed both of plain text and numeric or other data.  For  
example, suppose you wanted to call this hypothetical function:

   void MessageBoxAlert(string message);

and have it display a message box to the user informing her that the level number she wanted to warp to is  
out of bounds.  At first thought, you might try something like

    int levelNum = /* ... */;
    MessageBoxAlert("Level " + levelNum + " is out of bounds."); // Error

For those of you with Java experience this might seem natural, but in C++ this isn't legal because you can't  
add numbers to strings (and when you can, it's almost certainly won't do what you expected; see the  
chapter on C strings).

One solution to this problem is to use another kind of stream object known as a stringstream, exported 
by the <sstream> header.  Like console streams and file streams, stringstreams are stream objects and 
consequently  all  of  the  stream  operations  we've  covered  above  work  on  stringstreams.   However, 
instead of reading or writing data to an external source,  stringstreams store data in temporary string 
buffers.  In other words, you can view a  stringstream as a way to create and read string data using 
stream operations.

For example, here is a code snippet to create a stringstream and put text data into it:

    stringstream myStream;
    myStream << "Hello!" << 137;

Once you've put data into a stringstream, you can retrieve the string you've created using the .str() 
member function.  Continuing the above example, we can print out an error message as follows:

    int levelNum = /* ... */;
    stringstream messageText;

    messageText << "Level " << levelNum << " is out of bounds.";
    MessageBoxAlert(messageText.str());

stringstreams are an example of an iostream, a stream that can perform both input and output.  You 
can  both  insert  data  into  a  stringstream to  convert  the  data  to  a  string  and  extract  data  from  a 
stringstream to convert string data into a different format.  For example:

    stringstream myConverter;
    int myInt;
    string myString;
    double myDouble;

    myConverter << "137 Hello 2.71828";           // Insert string data
    myConverter >> myInt >> myString >> myDouble; // Extract mixed data
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The standard rules governing stream extraction operators still apply to stringstreams, so if you try to 
read data from a stringstream in one format that doesn't match the character data, the stream will fail. 
We'll exploit this functionality in the next section.

Putting it all together: Writing GetInteger

Using the techniques we covered in the previous sections, we can implement a set of robust user input 
functions along the lines of  those  provided by  simpio.h.   In  this  section we'll  explore  how to  write 
GetInteger, which prompts the user to enter an integer and returns only after the user enters valid input.

Recall from the above sections that reading an integer from cin can result in two types of problems.  First, 
the user could enter something that is not an integer, causing cin to fail.  Second, the user could enter too 
much input, such as 137 246 or Hello 37, in which case the operation succeeds but leaves extra data in 
cin that can garble future reads.  We can immediately eliminate these sorts of problems by using the 
getline function to read input, since getline cannot put cin into a fail state and grabs all of the user's 
data, rather than just the first token.

The main problem with getline is that the input is returned as a string, rather than as formatted data. 
Fortunately, using a stringstream, we can convert this text data into another format of our choice.  This 
suggests an implementation of GetInteger.  We read data from the console using getline and funnel it 
into  a  stringstream.   We  then  use  standard  stream  manipulations  to  extract  the  integer  from  the 
stringstream, reporting an error and reprompting if unable to do so.  We can start writing GetInteger 
as follows:

    int GetInteger() {
        while(true) { // Read input until user enters valid data
            stringstream converter;
            converter << GetLine();

            /* Process data here.  On error: */
            cout << "Retry: "
        }
    }

At this point, we've read in all of the data we need, and simply need to check that the data is in the proper  
format.  As mentioned above, there are two sorts of problems we might run into – either the data isn't an  
integer, or the data contains leftover information that isn't part of the integer.  We need to check for both 
cases.  Checking for the first turns out to be pretty simple – because stringstreams are stream objects, 
we can see if the data isn't an integer by extracting an integer from our stringstream and checking if this 
puts the stream into a fail state.  If so, we know the data is invalid and can alert the user to this effect.

The updated code for GetInteger is as follows:
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    int GetInteger() {
        while(true) { // Read input until user enters valid data
            stringstream converter;
            converter << GetLine();
     
            /* Try reading an int, continue if we succeeded. */
            int result;
            if(converter >> result) {
                /* ... check that there isn't any leftover data ... */
            } else
                cout << "Please enter an integer." << endl;

            cout << "Retry: "
        }
    }

Finally,  we need to check if there's any extra data left over.   If  so,  we need to report to the user that  
something is wrong with the input, and can otherwise return the value we read.  While there are several  
ways to check this, one simple method is to read in a single char from the stringstream.  If it is possible 
to do so, then we know that there must have been something in the input stream that wasn't picked up 
when we extracted an integer and consequently that the input is bad.  Otherwise, the stream must be out 
of data and will enter a fail state, signaling that the user's input was valid.  The final code for GetInteger, 
which uses this trick, is shown here:

    int GetInteger() {
        while(true) { // Read input until user enters valid data
            stringstream converter;
            converter << GetLine();

            /* Try reading an int, continue if we succeeded. */        
            int result;
            if(converter >> result) {
                char remaining;
                if(converter >> remaining) // Something's left, input is invalid
                    cout << "Unexpected character: " << remaining << endl;
                else 
                    return result; 
            } else
                cout << "Please enter an integer." << endl;

            cout << "Retry: "
        }
    }



- 44 -  Chapter 3: Streams

More To Explore

C++ streams are extremely powerful and encompass a huge amount of functionality.  While there are many 
more facets to explore, I highly recommend exploring some of these topics:

• Random Access: Most of the time, when performing I/O, you will access the data sequentially; 
that is, you will read in one piece of data, then the next, etc.  However, in some cases you might 
know in advance that you want to look up only a certain piece of data in a file without considering  
all of the data before it.  For example, a ZIP archive containing a directory structure most likely 
stores each compressed file at a different offset from the start of the file.  Thus, if you wanted to 
write a program capable of extracting a single file from the archive, you'd almost certainly need the 
ability to jump to arbitrary locations in a file.   C++ streams support this functionality with the 
seekg,  tellg,  seekp, and tellp functions (the first two for istreams, the latter for ostreams). 
Random access lets you quickly jump to single records in large data blocks and can be useful in  
data file design.

• read and write: When you write numeric data to a stream, you're actually converting them into 
sequences of characters that represent those numbers.  For example, when you print out the four-
byte value 78979871, you're using eight bytes to represent the data on screen or in a file – one for  
each character. These extra bytes can quickly add up, and it's actually possible to have on-disk  
representations of data that are more than twice as large as the data stored in memory.  To get 
around  this,  C++  streams  let  you  directly  write  data  from  memory  onto  disk  without  any 
formatting.  All ostreams support a write function that writes unformatted data to a stream, and 
istreams support read to read unformatted data from a stream into memory.  When used well,  
these  functions  can  cut  file  loading  times  and  reduce  disk  space  usage.   For  example,  The 
CS106B/X Lexicon class uses read to quickly load its data file into memory.

Practice Problems

Here are some questions to help you play around with the material from this chapter.  Try some of these  
out; you'll be a better coder for the effort.

1. How do you write data to a file in C++?
 

2. What does the setw manipulator do?  What does the setfill manipulator do?  How do you use 
them?
 

3. What is stream failure?  How do you check for it?
 

4. What is a stringstream?
 

5. Using a stringstream, write a function that converts an int into a string.

6. Modify the code for GetInteger to create a function GetReal that reads a real number from the 
user. How much did you need to modify to make this code work?

7. Using  the  code  for  GetInteger and  the  boolalpha stream  manipulator,  write  a  function 
GetBoolean that  waits  for  the  user  to  enter  “true”  or  “false”  and  returns  the  corresponding 
boolean value.
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8. In common usage, numbers are written in decimal or base 10.  This means that a string of digits is 
interpreted as a sum of multiples of powers of ten.  For example, the number 137 is 1·100 + 3·10 +  
7·1, which is the same as 1·102 + 3·101 + 7·100.  However, it is possible to write numbers in other 
bases as well.  For example,  octal, or base 8, encodes numbers as sums of multiples of powers of 
eight.   For example,  137 in octal  would be 1·82 + 3·81 + 7·80 = 64 + 24 + 7 = 95 in decimal.* 
Similarly, binary, or base 2, uses powers of two.
 
When working in a particular base, we only use digits from 0 up to that base.  Thus in base 10 we 
use the digits zero through nine, while in base five the only digits would be 0, 1, 2, 3, and 4.  This  
means that 57 is not a valid base-five number and 93 is not a valid octal number.  When working in  
bases numbered higher than ten, it is customary to use letters from the beginning of the alphabet  
as digits.  For example, in hexadecimal, or base 16, one counts 0, 1, 2, ..., 9, A, B, C, D, E, F, 10.  This  
means that 3D45E is a valid hexadecimal number, as is DEADBEEF or DEFACED.

Write a function  HasHexLetters that accepts an  int and returns whether or not that integer's 
hexadecimal representation contains letters.   (Hint:  you'll  need to use the  hex and  dec stream 
manipulators in conjunction with a stringstream.  Try to solve this problem without brute-forcing  
it: leverage off the streams library instead of using loops.) ♦

9. Although the console does not naturally lend itself to graphics programming, it is possible to draw 
rudimentary approximations of  polygons by printing out  multiple copies of  a  character  at the 
proper location. For example, we can draw a triangle by drawing a single character on one line, 
then three on the next, five on the line after that, etc.  For example:
 
     #
    ###
   #####
  #######
 #########

Using the setw and setfill stream manipulators, write a function DrawTriangle that takes in 
an int corresponding to the height of the triangle and a  char representing a character to print, 
then draws a triangle of the specified height using that character.  The triangle should be aligned so  
that the bottom row starts at the beginning of its line.

10. Write a function OpenFile that accepts as input an ifstream by reference and prompts the user 
for the name of a file.  If the file can be found, OpenFile should return with the ifstream opened 
to read that file.  Otherwise, OpenFile should print an error message and reprompt the user. 
(Hint: If you try to open a nonexistent file with an ifstream, the stream goes into a fail state and you  
will need to use .clear() to restore it before trying again).

* Why do programmers always confuse Halloween and Christmas?  Because 31 Oct = 25 Dec. ☺
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All of the programs we saw in the previous chapter were fairly short – the most complex of them ran at  
just under one hundred lines of code.  In industrial settings, though, programs are far bigger, and in fact it  
is common for programs to be tens of millions of lines of code.  When code becomes this long, it is simply  
infeasible to store all of the source code in a single file.  Were all the code to be stored in a single file, it 
would  be  next  to  impossible  to  find  a  particular  function  or  constant  declaration,  and  it  would  be 
incredibly difficult to discern any of the high-level structure of the program.  Consequently, most large 
programs are split across multiple files.

When splitting a program into multiple files, there are many considerations to take into account.  First,  
what  support  does  C++  have  for  partitioning  a  program  across  multiple  files?   That  is,  how  do  we 
communicate to the C++ compiler that several source files are all part of the same program?  Second, what  
is the best way to logically partition the program into multiple files?  In other words, of all of the many 
ways we could break the program apart, which is the most sensible?

In this chapter, we will address these questions, plus several related problems that arise.  First, we will talk 
about the C++ compilation model – the way that C++ source files are compiled and linked together.  Next, 
we will explore the most common means for splitting a project across files by seeing how to write custom 
header  and  implementation  files.   Finally,  we  will  see  how  header  files  work  by  discussing  the  
preprocessor, a program that assists the compiler in generating C++ code.

The C++ Compilation Model

C++ is a  compiled language, meaning that before a C++ program executes, a special program called the 
compiler converts the C++ program directly to machine code.  Once the program is compiled, the resulting 
executable can be run any number of times, even if the source code is nowhere to be found.

C++ compilation is a fairly complex process that involves numerous small steps.  However, it can generally 
be broken down into three larger processes:

• Preprocessing, in which code segments are spliced and inserted,
• Compilation, in which code is converted to object code, and
• Linking, in which compiled code is joined together into a final executable.

During the preprocessing step, a special program called the preprocessor scans over the C++ source code 
and applies various transformations to it.  For example, #include directives are resolved to make various 
libraries available, special tokens like __FILE__ and __LINE__ (covered later) are replaced by the file and 
line number in the source file, and #define-d constants and macros (also covered later) are replaced by 
their appropriate values.

In the compilation step, the C++ source file is read in by the compiler, optimized, and transformed into an 
object file.  These object files are machine-specific, but usually contain machine code which executes the 
instructions specified in the C++ file,  along with some extra information.  It's  at  this stage where the 
compiler will  report any syntax errors you make,  such as omitting semicolons,  referencing undefined 
variables, or passing arguments of the wrong types into functions.

Finally, in the linking phase, a program called the linker gathers together all of the object files necessary to 
build the final executable, bundles them together with OS-specific information, and finally produces an 
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executable file that you can run and distribute.  During this phase, the linker may report some final errors 
that  prevent  it  from  generating  a  working  C++  program.   For  example,  consider  the  following  C++ 
program:

    #include <iostream>
    using namespace std;

    int Factorial(int n); // Prototype for a function to compute n!

    int main() {
        cout << Factorial(10) << endl;
        return 0;
    }

This  program  prototypes  a  function called  Factorial,  calls  it  in  main,  but  never  actually  defines  it. 
Consequently,  this  program is erroneous and will  not run.   However,  the error is  not  detected by the 
compiler; rather, it shows up as a linker error.  During linking, the linker checks to see that every function 
that was prototyped and called has a corresponding implementation.  If it finds that some function has no 
implementation, it reports an error.  In order to understand why this is, consider the following diagram, 
which portrays the relationships between the three main phases of compilation:
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Notice that during compilation, each C++ source file is treated independently the others, but during linking 
all  of  the  files  are  glued together.   Consequently,  it's  possible  (and,  in fact,  extremely common) for  a  
function to be prototyped in one C++ file but implemented in another.  For this reason, if the compiler sees a 
prototype for a function but no implementation, it doesn't report an error – the definition might just be in  
a different file it hasn't seen yet.  Only when all of the files are pulled together by the linker is there an  
opportunity to check that all of the prototyped functions have some sort of implementation.

What does this mean for you as a C++ programmer?  In practice, this distinction usually only manifests 
itself  in the types of error messages you may get compilation.   In particular,  a  program may compile 
perfectly well but fail to link because you prototyped a function that was never defined.  Understanding 
the source of these errors and why they are reported during linking will help you diagnose these errors  
more handily.
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As an example, consider the following C++ program, which contains a subtle error:

    #include <iostream>
    #include <string>
    #include <cctype> // For tolower
    using namespace std;

    /* Prototype a function called ConvertToLowerCase, which returns a lower-case
     * version of the input string.
     */
    string ConvertToLowerCase(string input);

    int main() {
        string myString = "THIS IS A STRING!";
        cout << ConvertToLowerCase(myString);
    }

    /* Implementation of ConvertToLowerCase. */
    string ConvertToLowerCase(string& input) { // Error: Doesn't link; see below
        for (int k = 0; k < input.size(); ++k)
            input[k] = tolower(input[k]); // tolower converts a char to lower-case

        return input;
    }

If you compile this program in  g++,  the program compiles but the linker will  produce this mysterious 
error:

main.cpp:(.text+0x14d): undefined reference to
    `ConvertToLowerCase(std::basic_string<char, std::char_traits<char>, 
    std::allocator<char> >)'

If you compile this program in Microsoft Visual Studio 2005, it will similarly compile and produce this  
monstrosity of an error:

error LNK2019: unresolved external symbol "class std::basic_string<char,struct
     std::char_traits<char>,class std::allocator<char> > __cdecl 
     ConvertToLowerCase(class std::basic_string<char,struct     
     std::char_traits<char>,class std::allocator<char> >)"
     (?ConvertToLowerCase@@YA?AV?$
     basic_string@DU?$char_traits@D@std@@V?$allocator@D@2@@std@@V12@@Z) referenced
     in function _main

What's  going on here?  This error is  tricky to decipher,  but  as you can see from the highlighting has 
something to do with  ConvertToLowerCase.  Let's try to see if we can get to the root of the problem. 
Since  this  is  a  linker  error,  we can immediately rule out  any sort  of  syntax error.   If  we had made a 
syntactic mistake, the compiler, not the linker, would have caught it.  Moreover, since this is a linker error, it 
means that we somehow prototyped a function that we never got around to implementing.  This seems 
strange though – we prototyped the function ConvertToLowerCase and it seems like we implemented it 
later on in the program.  The problem, though, is that the function we implemented doesn't match the  
prototype.  Here are the prototype and the implementation, reprinted right next to each other: 
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    string ConvertToLowerCase(string input); // Prototype

    string ConvertToLowerCase(string& input) { // Implementation
        for (int k = 0; k < input.size(); ++k)
            input[k] = tolower(input[k]); // tolower converts a char to lower-case

        return input;
    }

Notice that the function we've prototyped takes in a  string as a parameter, while the implementation 
takes in a  string&.   That  is,  the  prototype  takes  its  argument  by  value,  and the  implementation by 
reference.   Because  these  are  different  parameter-passing  schemes,  the  compiler  treats  the 
implementation as a completely different function than the one we've prototyped.  Consequently, during  
linking, the linker can't locate an implementation of the prototyped function, which takes in a string by 
value.  Although the functions have the same name, their signatures are different, and they are treated as  
entirely different entities.

To  fix  this  problem,  we  must  either  update  the  prototype  to  match  the  implementation  or  the 
implementation to match the prototype.  In this case, we'll change the implementation so that it no longer  
takes in the parameter by reference.   This results in the following program, which compiles and links 
without error:

    #include <iostream>
    #include <string>
    #include <cctype> // For tolower
    using namespace std;

    /* Prototype a function called ConvertToLowerCase, which returns a lower-case
     * version of the input string.
     */
    string ConvertToLowerCase(string input);

    int main() {
        string myString = "THIS IS A STRING!";
        cout << ConvertToLowerCase(myString);
    }

    /* Implementation of ConvertToLowerCase. */
    string ConvertToLowerCase(string input) { // Now corrected.
        for (int k = 0; k < input.size(); ++k)
            input[k] = tolower(input[k]); // tolower converts a char to lower-case

        return input;
    }

Running this program produces the output

    this is a string!

If you ever write a program and discover that it produces a linker error, always check to make sure that 
you've  implemented  all  functions  you've  prototyped  and  that  those  implementations  match  the 
prototypes.  Otherwise, you might be directing your efforts toward catching a nonexistent syntax error.

Modularity and Abstraction
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Because compilation and linking are separate steps in C++, it is possible to split up a C++ program across  
multiple files.  To do so, we must first answer two questions:

1. How do you split a program up?  That is,  syntactically,  how do you communicate to the C++ 
compiler that you want to build a single program from a collection of files?

2. What is the best way to split a program up?  In other words, given how a single C++ program 
can be built from many files, what is the best way to logically partition the program code across 
those files?

To answer these questions, we first must take a minute to reflect on the structure of most C++ programs. * 
When writing a C++ program to perform a particular task or solve a particular problem, one usually begins  
by starting with a large, difficult problem and then solves that problem by breaking it down into smaller 
and smaller pieces.  For example, suppose we want to write a program that allows the user to send and 
receive emails.  Initially, we can think of this as one, enormous task:

Send/Receive
Email

How might we go about building such a program?  Well, we might begin by realizing that to write an email  
client, we will need to be able to communicate over a network, since we'll be transmitting and receiving  
data.  Also, we will need some way to store the emails we've received on the user's hard disk so that she 
can read messages while offline.  We'll also need to be able to display graphics contained in those emails,  
as well as create windows for displaying content.  Each one of these tasks is itself a fairly complex problem 
which needs to be solved, and so if we rethink our strategy for writing the email client, we might be able to 
visualize it as follows:

Send/Receive
Email

Networking Graphics Storage

Of course, these tasks in of themselves might have some related subproblems.  For example, when reading  
and writing from disk, we will  need some tools to allow us to read and write general data from disk,  
another set of libraries to structure the data stored on disk, another to recover gracefully from errors, etc.  
Here is one possible way of breaking each of the subproblems down into smaller units:

* In fact, programs in virtually any language will have the structure we're about to describe.
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Send/Receive
Email

Networking Graphics Storage

TCP/IP UDP Window
Mgmt User Input Disk

Storage
Error

Recovery

In  general,  we  write  programs  to  solve  large,  complicated  tasks  by  breaking  the  task  down  into 
successively smaller and smaller pieces, then combining all of those pieces back together into a coherent  
whole.*  When using this setup, though, one must be extremely careful.  Refer to the above diagram and 
notice  that  the  abstract  problem  at  the  top  depends  directly  on  three  subproblems.   Each  of  those 
subproblems depends in turn on even more subproblems, etc.  If the top-level program needed to explicitly 
know how each of  these  sub-subproblems were to  work,  it  would be all  but  impossible  to  write.   A  
programmer tasked with  designing the  email  program shouldn't  have to  understand exactly  how the 
networking module works, but should instead only need to know how to use it.  Similarly, in order to use 
the windowing module, the programmer shouldn't have to understand all of its internal workings.

In  order  for  each  part  of  the  program  to  use  its  subcomponents  without  getting  overwhelmed  by 
complexity, there must be some way to separate out how each subproblem is  solved from the way that 
each subproblem is used.  For example, think back to the streams library from the previous chapter.  As you 
saw,  you  can use  the  ifstream and  ofstream classes  to  read  and write  files.   But  how exactly  are 
ifstream and  ofstream put  together  behind  the  scenes?   Internally,  these  classes  are  incredibly 
complicated and are composed of numerous different pieces of C++ code that fit together in intricate ways.  
From your perspective,  though,  all  of  this detail  is irrelevant;  you only care about how you use these 
stream classes to do input and output.

This  distinction  between  the  inner  workings  of  a  module  (a  collection  of  source  code  that  solves  a 
problem)  and  the  way  in  which  a  client  use  it  is  an  example  of  abstraction.   An  abstraction  is  a 
simplification of a complex object – whether physical or in software – that allows it to be used without an  
understanding of its underlying mechanism.  For example, the iPhone is an incredibly complex piece of  
hardware with billions of transistors and gates.  Even the simplest of tasks, such as making a phone call or  
sending  email,   triggers  a  flurry  of  electrical  activity  in  the  underlying  device.   But  despite  the  
implementation complexity,  the iPhone is incredibly easy to use because the interface works at a high 
level,  with  tasks  like  “send  text  message”  or  “play  music.”   In  other  words,  the  complexity  of  the  
implementation is hidden behind a very simple interface.

When designing software, you should strive to structure your software in a similar manner.  Whenever you 
write  code  to  solve  a  particular  task,  you  should   try  to  package  that  code  so  that  it  communicates 
primarily what it does, rather than how it does it.  This has several advantages:

* For  those  of  you  familiar  with  recursion,  you  might  recognize  that  this  general  structure  follows  a  simple 
recursive formulation: if the problem is simple enough, solve it; otherwise break it down into smaller pieces, solve 
those pieces, and then glue them all together again.
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• Simplicity.  If you package your code by giving it a simple interface, you make it easier for yourself 
and other programmers to use.  Moreover, if you take a break from a project and then return to it  
later, it is significantly easier to resume if the interface clearly communicates its intention.

• Extensibility.  If you design a simple, elegant interface, then you can change the implementation as 
the program evolves over time without breaking client code.  We'll see examples of this later in the  
chapter.
 

• Reusability.  If your interface is sufficiently generic, then you may be able to reuse the code you've  
written in multiple projects.  As an example, the streams library is sufficiently flexible that you can 
use it to write both a simple “Hello, World!” and a complex program with detailed file-processing 
requirements.

A Sample Module: String Utilities

To give you a sense for how interfaces and implementations look in software, let's take a quick diversion to  
build a sample C++ module to simplify common string operations.  In particular, we'll write a collection of  
functions  that  simplify  conversion  of  several  common  types  to  strings  and  vice-versa,  along  with 
conversions to lower- and upper-case.*

In C++, to create a module, we create two files – a header file saying what functions and classes a module 
exports, and an implementation file containing the implementations of those functions and classes.  Header 
files usually have the extension .h, though the extension .hh is also sometimes used.  Implementation files 
are regular C++ files, so they often use the extensions .cpp, .cc, or (occasionally) .C or .cpp.  Traditionally, a  
header file and its associated implementation file will have the same name, ignoring the extension.  For  
example,  in  our  string  processing  library,  we  might  name  the  header  file  strutils.h and  the 
implementation file strutils.cpp.

To give you a sense for what a header file looks like, consider the following code for strutils.h:

File: strutils.h
#ifndef StrUtils_Included
#define StrUtils_Included

#include <string>
using namespace std;

string ConvertToUpperCase(string input);
string ConvertToLowerCase(string input);

string IntegerToString(int value);
string DoubleToString(double value);

#endif

Notice that the highlighted part of this file looks just like a regular C++ file.  There's a #include directive 
to import the string type, followed by several prototypes for functions.  However, none of these functions 
are implemented – the purpose of this file is simply to say what the module exports, not to provide the 
implementations of those functions.

However, this header file contains some code that you have not yet seen in C++ programs: the lines

* In other words, we'll be writing the strutils.h library from CS106B/X.



- 54 -  Chapter 4: Multi-File Programs, Abstraction, and the Preprocessor

    #ifndef StrUtils_Included
    #define StrUtils_Included

and the line

    #endif

These lines are called an include guard.  Later in this chapter, we will see exactly why they are necessary 
and how they work.  In the meantime, though, you should note that whenever you create a header file, you  
should surround that file using an include guard.  There are many ways to write include guards, but one 
simple approach is as follows.  When creating a file named file.h, you should surround the file with the 
lines

    #ifndef File_Included
    #define File_Included

    #endif

Now that you've seen how to write a header file, let's write the matching implementation file.  This is 
shown here:

File: strutils.cpp
#include "strutils.h"
#include <cctype>  // For tolower, toupper
#include <sstream> // For stringstream

string ConvertToUpperCase(string input) {
    for (size_t k = 0; k < input.size(); ++k)
        input[k] = toupper(input[k]);
    return input;
}

string ConvertToUpperCase(string input) {
    for (size_t k = 0; k < input.size(); ++k)
        input[k] = toupper(input[k]);
    return input;
}

string IntegerToString(int input) {
    stringstream converter;
    converter << input;
    return converter.str();
}

string DoubleToString(double input) {
    stringstream converter;
    converter << input;
    return converter.str();
}

This C++ source file does not contain any new language constructs – it's just your standard, run-of-the-mill  
C++ file.  However, do note that it provides an implementation of every file exported in the header file.  
Moreover, the file begins with the line

    #include "strutils.h"
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Traditionally,  an implementation file  #includes  its  corresponding header  file.   When we discuss  the 
preprocessor in the latter half of this chapter, the rationale behind this should become more clear.

Now that we've written the strutils.h/.cpp pair, we can use these functions in other C++ source files. 
For example, consider the following simple C++ program:

    #include <iostream>
    #include <string>
    #include "strutils.h"
    using namespace std;

    int main() {
        cout << ConvertToLowerCase("THIS IS A STRING!");
        return 0;
    }

This program produces the output

    this is a string!

Notice that nowhere in this file did we implement or define the ConvertToLowerCase function.  It suffices 
to #include "strutils.h" to gain access to this functionality.

Behind the Curtain: The Preprocessor

One of the most exciting parts of writing a C++ program is pressing the “compile” button and watching as  
your code transforms from static text into dynamic software.  As mentioned earlier, this process proceeds 
in several  steps.   One of  the  first  of  these  steps  is  preprocessing, where a  special  program called the 
preprocessor  reads in commands called  directives  and modifies your code before handing it  off  to  the 
compiler for further analysis.  You have already seen one of the more common preprocessor directives,  
#include,  which imports additional code into your program.  However, the preprocessor has far more 
functionality and is capable of working absolute wonders on your code.  But while the preprocessor is 
powerful, it is difficult to use correctly and can lead to subtle and complex bugs.  The rest of this chapter 
introduces  the  preprocessor,  highlights  potential  sources  of  error,  and  concludes  with  advanced 
preprocessor techniques.

A word of warning: the preprocessor was developed in the early days of the C programming language, 
before many of the more modern constructs of C and C++ had been developed.  Since then, both C and C++  
have introduced new language features that have obsoleted or superseded much of the preprocessor's 
functionality and consequently you should attempt to minimize your use of the preprocessor.  This is not 
to say, of course, that you should never use the preprocessor – there are times when it's an excellent tool  
for the job, as you'll see later in the chapter – but do consider other options before adding a hastily-crafted  
directive.

#include Explained

In both CS106B/X and CS106L, every program you've encountered has begun with several lines using the 
#include directive; for example,  #include <iostream> or  #include "genlib.h".  Intuitively, these 
directives tell the preprocessor to import library code into your programs.  Literally,  #include instructs 
the preprocessor to locate the specified file and to insert its contents in place of the directive itself.  Thus,  
when you write  #include "genlib.h" at the top of your CS106B/X assignments,  it  is as if  you had 
copied and pasted the contents of  genlib.h into your source file.   These header files usually contain 
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prototypes or implementations of the functions and classes they export,  which is why the directive is  
necessary to access other libraries.
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You may have noticed that when #include-ing CS106B/X-specific libraries, you've surrounded the name 
of the file in double quotes (e.g.  "genlib.h"), but when referencing C++ standard library components, 
you surround the header in angle brackets (e.g.  <iostream>).  These two different forms of  #include 
instruct the preprocessor where to look for the specified file.  If a filename is surrounded in angle brackets,  
the preprocessor searches for it a compiler-specific directory containing C++ standard library files.  When 
filenames are in quotes, the preprocessor will look in the current directory.

#include is a preprocessor directive,  not a C++ statement,  and is subject to a different set of  syntax 
restrictions than normal C++ code.  For example, to use #include (or any preprocessor directive, for that 
matter),  the directive must be the first  non-whitespace text on its line.   For example,  the following is  
illegal:

    cout << #include <iostream> << endl; // Error: #include must start a line.

Second,  because  #include is  a  preprocessor  directive,  not  a  C++ statement,  it  must  not  end with  a 
semicolon.  That is, #include <iostream>; will probably cause a compiler error or warning.  Finally, the 
entire #include directive must appear on a single line, so the following code will not compile:

    #include
    <iostream> // Error: Multi-line preprocessor directives are illegal.

The #define Directive

One of the most commonly used (and abused) preprocessor directives is  #define,  the equivalent of a 
“search and replace” operation on your C++ source files.  While #include splices new text into an existing 
C++ source file,  #define replaces certain text strings in your C++ file with other values.  The syntax for 
#define is 

    #define phrase replacement

After encountering a  #define directive, whenever the preprocessor find phrase in your source code, it 
will replace it with replacement.  For example, consider the following program:

    #define MY_CONSTANT 137

    int main() {
        int x = MY_CONSTANT - 3;
        return 0;
    }

The first  line of this program tells the preprocessor to replace all  instances of  MY_CONSTANT with the 
phrase 137.  Consequently, when the preprocessor encounters the line

    int x = MY_CONSTANT - 3;

It will transform it to read

     int x = 137 - 3;

So x will take the value 134.
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Because  #define is a preprocessor directive and not a C++ statement, its syntax can be confusing.  For 
example,  #define determines  the  stop  of  the  phrase portion  of  the  statement  and  the  start  of  the 
replacement  portion by the position of the first whitespace character.  Thus, if you write

    #define TWO WORDS 137

The preprocessor will interpret this as a directive to replace the phrase  TWO with  WORDS 137,  which is 
probably not what you intended.  The replacement portion of the #define directive consists of all text 
after phrase that precedes the newline character.  Consequently, it is legal to write statements of the form 
#define phrase without defining a replacement.  In that case, when the preprocessor encounters the 
specified phrase in your code, it will replace it with nothingness, effectively removing it.

Note that the preprocessor treats C++ source code as sequences of strings, rather than representations of 
higher-level C++ constructs.  For example, the preprocessor treats int x = 137 as the strings “int,” “x,” 
“=,” and “137” rather than a statement creating a variable  x with value 137.*  It may help to think of the 
preprocessor as a scanner that can read strings and recognize characters but which has no understanding  
whatsoever of their meanings, much in the same way a native English speaker might be able to split Czech 
text into individual words without comprehending the source material.

That  the preprocessor  works with  text  strings rather  than language concepts is  a  source of  potential 
problems.  For example, consider the following #define statements, which define margins on a page:

    #define LEFT_MARGIN 100
    #define RIGHT_MARGIN 100
    #define SCALE .5

    /* Total margin is the sum of the left and right margins, multiplied by some
     * scaling factor.
     */
    #define TOTAL_MARGIN LEFT_MARGIN * SCALE + RIGHT_MARGIN * SCALE

What happens if we write the following code?

    int x = 2 * TOTAL_MARGIN;

Intuitively, this should set  x to twice the value of  TOTAL_MARGIN, but unfortunately this is not the case. 
Let's trace through how the preprocessor will expand out this expression.  First, the preprocessor will 
expand TOTAL_MARGIN to LEFT_MARGIN * SCALE + RIGHT_MARGIN * SCALE, as shown here:

    int x = 2 * LEFT_MARGIN * SCALE + RIGHT_MARGIN * SCALE;

Initially, this may seem correct, but look closely at the operator precedence.  C++ interprets this statement 
as

    int x = (2 * LEFT_MARGIN * SCALE) + RIGHT_MARGIN * SCALE;

Rather the expected

    int x = 2 * (LEFT_MARGIN * SCALE + RIGHT_MARGIN * SCALE);

* Technically speaking, the preprocessor operates on “preprocessor tokens,” which are slightly different from the 
whitespace-differentiated pieces of your code.  For example,  the preprocessor treats string literals containing 
whitespace as a single object rather than as a collection of smaller pieces.
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And the computation will be incorrect.  The problem is that the preprocessor treats the replacement for 
TOTAL_MARGIN as a string, not a mathematical expression, and has no concept of operator precedence. 
This sort of error – where a #defined constant does not interact properly with arithmetic expressions – is 
a common mistake.  Fortunately, we can easily correct this error by adding additional parentheses to our  
#define.  Let's rewrite the #define statement as

    #define TOTAL_MARGIN (LEFT_MARGIN * SCALE + RIGHT_MARGIN * SCALE)

We've  surrounded  the  replacement  phrase  with  parentheses,  meaning  that  any  arithmetic  operators 
applied to the expression will treat the replacement string as a single mathematical value.  Now, if we  
write

    int x = 2 * TOTAL_MARGIN;

It expands out to

    int x = 2 * (LEFT_MARGIN * SCALE + RIGHT_MARGIN * SCALE);

Which is the computation we want.   In general,  if  you  #define a constant in terms of an expression 
applied to other #defined constants, make sure to surround the resulting expression in parentheses.

Although this expression is certainly more correct than the previous one, it too has its problems.  What if  
we redefine LEFT_MARGIN as shown below?

    #define LEFT_MARGIN 200 – 100

Now, if we write

    int x = 2 * TOTAL_MARGIN

It will expand out to

    int x = 2 * (LEFT_MARGIN * SCALE + RIGHT_MARGIN * SCALE);

Which in turn expands to

    int x = 2 * (200 – 100 * .5 + 100 * .5)

Which yields the incorrect result because (200 – 100 * .5 + 100 * .5) is interpreted as

    (200 – (100 * .5) + 100 * .5)

Rather than the expected

    ((200 – 100) * .5 + 100 * .5)

The problem is that the #defined statement itself has an operator precedence error.  As with last time, to 
fix this, we'll add some additional parentheses to the expression to yield

    #define TOTAL_MARGIN ((LEFT_MARGIN) * (SCALE) + (RIGHT_MARGIN) * (SCALE))

This corrects the problem by ensuring that each #defined subexpression is treated as a complete entity 
when used in arithmetic expressions.  When writing a  #define expression in terms of other  #defines, 
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make sure that you take this into account, or chances are that your constant will not have the correct  
value.

Another  potential  source  of  error  with  #define concerns  the  use  of  semicolons.   If  you terminate  a 
#define statement with a semicolon, the preprocessor will treat the semicolon as part of the replacement 
phrase, rather than as an “end of statement” declaration.  In some cases, this may be what you want, but 
most of the time it just leads to frustrating debugging errors.  For example, consider the following code  
snippet:

    #define MY_CONSTANT 137; // Oops-- unwanted semicolon!

    int x = MY_CONSTANT * 3;

During preprocessing, the preprocessor will convert the line int x = MY_CONSTANT * 3 to read

    int x = 137; * 3;

This is not legal C++ code and will cause a compile-time error.  However, because the problem is in the  
preprocessed code, rather than the original C++ code, it may be difficult to track down the source of the  
error.  Almost all C++ compilers will give you an error about the statement * 3 rather than a malformed 
#define.

As  you  can  tell,  using  #define to  define  constants  can  lead  to  subtle  and  difficult-to-track  bugs. 
Consequently, it's strongly preferred that you define constants using the  const keyword.  For example, 
consider the following const declarations:

    const int LEFT_MARGIN = 200 - 100;
    const int RIGHT_MARGIN = 100;
    const int SCALE = .5;
    const int TOTAL_MARGIN = LEFT_MARGIN * SCALE + RIGHT_MARGIN * SCALE;
    int x = 2 * TOTAL_MARGIN;

Even though we've used mathematical expressions inside the const declarations, this code will work as 
expected because it is interpreted by the C++ compiler rather than the preprocessor.  Since the compiler 
understands the meaning of the symbols 200 – 100, rather than just the characters themselves, you will 
not need to worry about strange operator precedence bugs.

Include Guards Explained

Earlier in this chapter when we covered header files, you saw that when creating a header file, you should 
surround the header file using an include guard.  What is the purpose of the include guard?  And how does 
it work?  To answer this question, let's see what happens when a header file lacks an include guard.

Suppose we make the following header file, mystruct.h, which defines a struct called MyStruct:

File: mystruct.h
struct MyStruct {
    int x;
    double y;
    char z;
};

What happens when we try to compile the following program?
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    #include "mystruct.h"
    #include "mystruct.h" // #include the same file twice

    int main() {
        return 0;
    }

This code looks innocuous, but produces a compile-time error complaining about a redefinition of struct 
MyStruct.  The reason is simple – when the preprocessor encounters each #include statement, it copies 
the contents of mystruct.h into the program without checking whether or not it has already included the 
file.  Consequently, it will copy the contents of  mystruct.h into the code  twice,  and the resulting code 
looks like this:

    struct MyStruct {
        int x;
        double y;
        char z;
    };
    struct MyStruct {// <-- Error occurs here
        int x;
        double y;
        char z;
    };

    int main() {
        return 0;
    }

The indicated line is the source of our compiler error – we've doubly-defined struct MyStruct.  To solve 
this problem, you might think that we should simply have a policy of not #include-ing the same file twice. 
In principle this may seem easy, but in a large project where several files each #include each other, it may 
be possible for  a  file  to indirectly  #include the same file  twice.   Somehow, we need to prevent this 
problem from happening.

The problem we're running into stems from the fact that the preprocessor has no memory about what it  
has done in the past.  Somehow, we need to give the preprocessor instructions of the form “if you haven't 
already done so, #include the contents of this file.”  For situations like these, the preprocessor supports  
conditional expressions.  Just as a C++ program can use  if ...  else if ...  else to change program flow 
based on variables, the preprocessor can use a set of preprocessor directives to conditionally include a 
section of code based on #defined values.

There are several conditional structures built into the preprocessor, the most versatile of which are #if, 
#elif, #else, and #endif.  As you might expect, you use these directives according to the pattern

    #if statement
        ...
    #elif another-statement
        ...
    #elif yet-another-statement
        ...
    #else
        ...
    #endif

There are two details we need to consider here.  First, what sorts of expressions can these preprocessor 
directives evaluate?  Because the preprocessor operates before the rest of the code has been compiled,  
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preprocessor directives can only refer to #defined constants, integer values, and arithmetic and logical 
expressions of those values.   Here are some examples,  supposing that some constant  MY_CONSTANT is 
defined to 42:

    #if MY_CONSTANT > 137               // Legal
    #if MY_CONSTANT * 42 == MY_CONSTANT // Legal
    #if sqrt(MY_CONSTANT) < 4           // Illegal, cannot call function sqrt
    #if MY_CONSTANT == 3.14             // Illegal, can only use integral values

In addition to the above expressions, you can use the defined predicate, which takes as a parameter the 
name of a value that may have previously been #defined.  If the constant has been #defined, defined 
evaluates to 1; otherwise it evaluates to 0.  For example, if  MY_CONSTANT has been previously #defined 
and OTHER_CONSTANT has not, then the following expressions are all legal:

    #if defined(MY_CONSTANT)    // Evaluates to true.
    #if defined(OTHER_CONSTANT) // Evaluates to false.
    #if !defined(MY_CONSTANT)   // Evaluates to false.

Now that we've seen what sorts of expressions we can use in preprocessor conditional expressions, what  
is the  effect of these constructs?  Unlike regular  if statements, which change control flow at execution, 
preprocessor  conditional  expressions determine whether  pieces of  code are  included in the  resulting 
source file.  For example, consider the following code:

    #if defined(A)
        cout << "A is defined." << endl;
    #elif defined(B)
        cout << "B is defined." << endl;
    #elif defined(C)
        cout << "C is defined." << endl;
    #else
        cout << "None of A, B, or C is defined." << endl;
    #endif

Here,  when  the  preprocessor  encounters  these  directives,  whichever  of  the  conditional  expressions 
evaluates to true will have its corresponding code block included in the final program, and the rest will be  
ignored.  For example, if A is defined, this entire code block will reduce down to

    cout << "A is defined." << endl;

And the rest of the code will be ignored.

One interesting use of the  #if ... #endif construct is  to comment out blocks of code.   Since C++ 
interprets all nonzero values as true and zero as false, surrounding a block of code in a #if 0 ... #endif 
block causes the preprocessor to eliminate that block.  Moreover, unlike the traditional /* ... */ comment 
type, preprocessor directives can be nested, so removing a block of code using #if 0 ... #endif doesn't 
run into the same problems as commenting the code out with /* ... */.

In  addition  to  the  above  conditional  directives,  C++  provides  two  shorthand  directives,  #ifdef and 
#ifndef.  #ifdef (if defined) is a directive that takes as an argument a symbol and evaluates to true if the 
symbol  has  been  #defined.  Thus  the  directive  #ifdef  symbol is  completely  equivalent  to 
#if defined(symbol).   C++  also  provides  #ifndef (if  not  defined),  which  acts  as  the  opposite  of 
#ifdef;  #ifndef  symbol is  equivalent  to  #if !defined(symbol).   Although  these  directives  are 
strictly weaker than the more generic #if, it is far more common in practice to see #ifdef and #ifndef 
rather than #if defined and #if !defined, primarily because they are more concise.
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Using the conditional preprocessor directives, we can solve the problem of double-including header files. 
Let's return to our example with #include "mystruct .h" appearing twice in one file.  Here is a slightly 
modified version of the mystruct.h file that introduces some conditional directives:

File: mystruct.h (version 2)
#ifndef MyStruct_Included
#define MyStruct_Included

struct MyStruct {
    int x;
    double y;
    char z;
};

#endif

Here, we've surrounded the entire file in a block #ifndef MyStruct_Included ... #endif.  The specific 
name  MyFile_Included is  not  particularly  important,  other  than  the  fact  that  it  is  unique  to  the 
myfile.h file.  We could have just as easily chosen something like  #ifndef sdf39527dkb2 or another 
unique name, but the custom is to choose a name determined by the file name.  Immediately after this  
#ifndef statement, we #define the constant we are considering inside the #ifndef.  To see exactly what 
effect this has on the code, let's return to our original source file, reprinted below:

    #include "mystruct.h"
    #include "mystruct.h" // #include the same file twice

    int main() {
        return 0;
    }

With the modified version of mystruct.h, this code expands out to

    #ifndef MyStruct_Included
    #define MyStruct_Included

    struct MyStruct {
        int x;
        double y;
        char z;
    };

    #endif
    #ifndef MyStruct_Included
    #define MyStruct_Included
    
    struct MyStruct {
         int x;
        double y;
        char z;
    };

    #endif
    int main() {
        return 0;
    }
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Now, as the preprocessor begins evaluating the  #ifndef statements, the first  #ifndef ...  #endif block 
from the header file will be included since the constant MyStruct_Included hasn't been defined yet.  The 
code then  #definesMyStruct_Included, so when the program encounters the second  #ifndef block, 
the code inside the  #ifndef ...  #endif block will  not be included.  Effectively, we've ensured that the 
contents of a file can only be #included once in a program.  The net program thus looks like this:

    struct MyStruct {
        int x;
        double y;
        char z;
    };
    int main() {
        return 0;
    }

Which  is  exactly  what  we  wanted.   This  technique,  known  as  an  include  guard,  is  used  throughout 
professional C++ code, and, in fact, the boilerplate  #ifndef /  #define /  #endif structure is found in 
virtually every header file in use today.  Whenever writing header files, be sure to surround them with the 
appropriate preprocessor directives.

Macros

One  of  the  most  common  and  complex  uses  of  the  preprocessor  is  to  define  macros,  compile-time 
functions that accepts parameters and output code.  Despite the surface similarity, however, preprocessor 
macros and C++ functions have little in common.  C++ functions represent code that executes at runtime to 
manipulate data, while macros expand out into newly-generated C++ code during preprocessing.

To create macros, you use an alternative syntax for #define that specifies a parameter list in addition to 
the constant name and expansion.  The syntax looks like this:

    #define macroname(parameter1, parameter2, ... , parameterN) macro-body*

Now, when the preprocessor encounters a call to a function named macroname, it will replace it with the 
text in macro-body.  For example, consider the following macro definition:

    #define PLUS_ONE(x) ((x) + 1)

Now, if we write

    int x = PLUS_ONE(137);

The preprocessor will expand this code out to

    int x = ((137) + 1);

So x will have the value 138.

If you'll notice, unlike C++ functions, preprocessor macros do not have a return value.  Macros expand out  
into C++ code, so the “return value” of a macro is the result of the expressions it creates.  In the case of  
PLUS_ONE,  this  is  the  value  of  the  parameter  plus  one  because  the  replacement  is  interpreted  as  a 

* Note that when using  #define,  the opening parenthesis that starts the argument list must not be preceded by 
whitespace.  Otherwise, the preprocessor will treat it as part of the replacement phrase for a #defined constant.
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mathematical expression.  However, macros need not act like C++ functions.  Consider, for example, the  
following macro:

    #define MAKE_FUNCTION(fnName) void fnName()

Now, if we write the following C++ code:

    MAKE_FUNCTION(MyFunction) {
        cout << "This is a function!" << endl;
    }

The MAKE_FUNCTION macro will convert it into the function definition

    void MyFunction() {
        cout << "This is a function!" << endl;
    }

As you can see, this is entirely different than the  PLUS_ONE macro demonstrated above.  In general, a 
macro can be expanded out to any text and that text will be treated as though it were part of the original  
C++ source file.   This is a mixed blessing.   In many cases,  as you'll  see later in the chapter,  it  can be  
exceptionally useful.  However, as with other uses of #define, macros can lead to incredibly subtle bugs 
that can be difficult to track down.  Perhaps the most famous example of macros gone wrong is this MAX 
macro:

    #define MAX(a, b) ((a) > (b) ? (a) : (b))

Here, the macro takes in two parameters and uses the  ?: operator to choose the larger of the two.  If 
you're not familiar with the ?: operator, the syntax is as follows:

    expression ? result-if-true : result-if-false

In our case, ((a) > (b) ? (a) : (b)) evaluates the expression (a) > (b).  If the statement is true, 
the value of the expression is (a); otherwise it is (b).

At first, this macro might seem innocuous and in fact will work in almost every situation.  For example:

    int x = MAX(100, 200);

Expands out to

    int x = ((100) > (200) ? (100) : (200));

Which assigns x the value 200.  However, what happens if we write the following?

    int x = MAX(MyFn1(), MyFn2());

This expands out to

    int x = ((MyFn1()) > (MyFn2()) ? (MyFn1()) : (MyFn2()));

While this will assign x the larger of MyFn1() and MyFn2(), it will not evaluate the parameters only once, 
as you would expect of a regular C++ function.  As you can see from the expansion of the MAX macro, the 
functions will be called once during the comparison and possibly twice in the second half of the statement.  
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If MyFn1() or MyFn2() are slow, this is inefficient, and if either of the two have side effects (for example,  
writing to disk or changing a global variable), the code will be incorrect.

The above example with  MAX illustrates an important point when working with the preprocessor – in 
general,  C++ functions are safer, less error-prone, and more readable than preprocessor macros.  If you 
ever find yourself wanting to write a macro, see if you can accomplish the task at hand with a regular C++  
function.  If you can, use the C++ function instead of the macro – you'll save yourself hours of debugging 
nightmares.

Inline Functions

One of  the  motivations behind macros in pure C was program efficiency from  inlining.   For  example, 
consider the MAX macro from earlier, which was defined as

    #define MAX(a, b) ((a) > (b) ? (a) : (b))
 
If we call this macro, then the code for selecting the maximum element is directly inserted at the spot 
where the macro is used.  For example, the following code:
 
    int myInt = MAX(one, two);
 
Expands out to
 
    int myInt = ((one) > (two) ? (one) : (two));
 
When the compiler sees this code, it will generate machine code that directly performs the test.  If we had 
instead written  MAX as a  regular function,  the compiler would probably implement the call  to  MAX as 
follows:
 

1. Call the function called MAX (which actually performs the comparison)
2. Store the result in the variable myInt.

 
This is considerably less efficient than the macro because of the time required to set up the function call.  
In computer science jargon, the macro is inlined because the compiler places the contents of the “function” 
at the call site instead of inserting an indirect jump to the code for the function.  Inlined functions can be  
considerably more efficient that their non-inline counterparts, and so for many years macros were the 
preferred means for writing utility routines.

Bjarne Stroustrup is particularly opposed to the preprocessor because of its idiosyncrasies and potential 
for  errors,  and to entice programmers to use safer language features developed the  inline keyword, 
which can be applied to functions to suggest that the compiler automatically inline them.  Inline functions 
are not treated like macros – they're actual functions and none of the edge cases of macros apply to them –  
but the compiler will try to safely inline them if at all possible.  For example, the following Max function is 
marked inline, so a reasonably good compiler should perform the same optimization on the Max function 
that it would on the MAX macro:
 
    inline int Max(int one, int two) {
        return one > two ? one : two;
    } 
 
The  inline keyword is only a suggestion to the compiler and may be ignored if the compiler deems it  
either too difficult or too costly to inline the function.  However, when writing short functions it sometimes 
helps to mark the function inline to improve performance.
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A #define Cautionary Tale

#define is a powerful directive that enables you to completely transform C++.  However, many C/C++ 
experts agree that you should not use #define unless it is absolutely necessary.  Preprocessor macros and 
constants obfuscate code and make it harder to debug, and with a few cryptic  #defines veteran C++ 
programmers will be at a loss to understand your programs.  As an example, consider the following code,  
which references an external file mydefines.h:

    #include "mydefines.h"

    Once upon a time a little boy took a walk in a park
    He (the child) found a small stone and threw it (the stone) in a pond
    The end

Surprisingly, and worryingly, it is possible to make this code compile and run, provided that mydefines.h 
contains the proper  #defines.  For example, here's one possible  mydefines.h file that makes the code 
compile:

File: mydefines.h
#ifndef mydefines_included
#define mydefines_included

#include <iostream>
using namespace std;

#define Once
#define upon
#define a
#define time upon
#define little
#define boy
#define took upon
#define walk
#define in walk
#define the
#define park a
#define He(n) n MyFunction(n x)
#define child int
#define found {
#define small return
#define stone x;
#define and in
#define threw }
#define it(n) int main() {
#define pond cout << MyFunction(137) << endl;
#define end return 0; }
#define The the

#endif

After preprocessing (and some whitespace formatting), this yields the program
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    #include <iostream>
    using namespace std;

    int MyFunction(int x) {
        return x;
    }

    int main() {
        cout << MyFunction(137) << endl;
        return 0;
    }

While this example is admittedly a degenerate case, it should indicate exactly how disastrous it can be for 
your programs to misuse #defined symbols.  Programmers expect certain structures when reading C++ 
code, and by obscuring those structures behind walls of  #defines you will confuse people who have to 
read your code.  Worse, if you step away from your code for a short time (say, a week or a month), you may  
very well return to it with absolutely no idea how your code operates.  Consequently, when working with  
#define, always be sure to ask yourself whether or not you are improving the readability of your code.

Advanced Preprocessor Techniques

The previous section ended on a rather grim note, giving an example of preprocessor usage gone awry. 
But to entirely eschew the preprocessor in favor of other language features would also be an error.  In  
several  circumstances,  the  preprocessor  can  perform  tasks  that  other  C++  language  features  cannot 
accomplish.  The remainder of this chapter explores where the preprocessor can be an invaluable tool for  
solving problems and points out several strengths and weaknesses of preprocessor-based approaches.

Special Preprocessor Values

The preprocessor has access to several special values that contain information about the state of the file  
currently being compiled.  The values act like  #defined constants in that they are replaced whenever 
encountered  in  a  program.   For  example,  the  values  __DATE__ and  __TIME__ contain  string 
representations  of  the  date  and  time  that  the  program  was  compiled.   Thus,  you  can  write  an 
automatically-generated “about this program” function using syntax similar to this:

    string GetAboutInformation() {
        stringstream result;
        result << "This program was compiled on " << __DATE__;
        result << " at time " << __TIME__;
        return result.str();
    }

Similarly, there are two other values,  __LINE__ and  __FILE__, which contain the current line number 
and the name of the file being compiled.  We'll see an example of where __LINE__ and __FILE__ can be 
useful later in this chapter.

String Manipulation Functions

While often dangerous, there are times where macros can be more powerful or more useful than regular  
C++ functions.  Since macros work with source-level text strings instead of at the C++ language level, some  
pieces of information are available to macros that are not accessible using other C++ techniques.  For  
example, let's return to the MAX macro we used in the previous chapter:

    #define MAX(a, b) ((a) > (b) ? (a) : (b))
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Here, the arguments a and b to MAX are passed by string – that is, the arguments are passed as the strings 
that compose them.  For example, MAX(10, 15) passes in the value 10 not as a numeric value ten, but as 
the  character  1 followed  by  the  character  0.   The  preprocessor  provides  two  different  operators  for 
manipulating the strings passed in as parameters.  First is the stringizing operator, represented by the # 
symbol,  which returns a quoted,  C string representation of  the parameter.   For example,  consider the 
following macro:

    #define PRINTOUT(n) cout << #n << " has value  " << (n) << endl

Here,  we  take  in  a  single  parameter,  n.   We  then  use  the  stringizing  operator  to  print  out  a  string 
representation of  n,  followed by the value of the expression  n.   For example,  given the following code 
snippet:

    int x = 137;
    PRINTOUT(x * 42);

After preprocessing, this yields the C++ code

    int x = 137;
    cout << "x * 42" << " has value " << (x * 42) << endl;

Note that  after  the  above program has been compiled from C++ to machine code,  any notions of  the  
original  variable  x or  the  individual  expressions  making  up  the  program  will  have  been  completely 
eliminated, since variables exist only at the C++ level.  However,  through the stringizing operator,  it is 
possible  to  preserve  a  string  version  of  portions  of  the  C++  source  code  in  the  final  program,  as 
demonstrated above.  This is useful when writing diagnostic functions, as you'll see later in this chapter.

The second preprocessor string manipulation operator is the string concatenation operator, also known as 
the  token-pasting operator.  This operator, represented by  ##, takes the string value of a parameter and 
concatenates it with another string.  For example, consider the following macro:

    #define DECLARE_MY_VAR(type) type my_##type

The purpose of this macro is to allow the user to specify a type (for example,  int), and to automatically 
generate a variable declaration of that type whose name is my_type, where type is the parameter type.  
Here, we use the ## operator to take the name of the type and concatenate it with the string my_.  Thus, 
given the following macro call:

    DECLARE_MY_VAR(int);

The preprocessor would replace it with the code

    int my_int;

Note that when working with the token-pasting operator, if the result of the concatenation does not form a  
single  C++  token  (a  valid  operator  or  name),  the  behavior  is  undefined.   For  example,  calling 
DECLARE_MY_VAR(const int) will  have undefined behavior,  since concatenating the strings  my_ and 
const int does not yield a single string (the result is const int my_const int).

Advanced Preprocessor Techniques: The X Macro Trick

Because  the preprocessor  gives  C++ programs access  to  their  own source code at  compile-time,  it  is 
possible to harness the preprocessor to do substantial code generation at compile-time.  One uncommon 
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programming technique that uses the preprocessor is known as the X Macro trick, a way to specify data in 
one format but have it available in several formats.

Before exploring the X Macro trick, we need to cover how to redefine a macro after it has been declared.  
Just as you can define a macro by using  #define,  you can also undefine a macro using  #undef.   The 
#undef preprocessor  directive  takes in  a  symbol  that  has  been previously  #defined and causes  the 
preprocessor to ignore the earlier definition.  If the symbol was not already defined, the #undef directive 
has no effect but is not an error.  For example, consider the following code snippet:

    #define MY_INT 137
    int x = MY_INT;   // MY_INT is replaced
    #undef MY_INT;
    int MY_INT = 42;  // MY_INT not replaced

The preprocessor will rewrite this code as

    int x = 137;
    int MY_INT = 42;

Although  MY_INT was  once  a  #defined  constant,  after  encountering  the  #undef statement,  the 
preprocessor stopped treating it as such.  Thus, when encountering int MY_INT = 42, the preprocessor 
made no replacements and the code compiled as written.

To introduce the X Macro trick, let's consider a common programming problem and see how we should go 
about solving it.  Suppose that we want to write a function that, given as an argument an enumerated type,  
returns the string representation of the enumerated value.  For example, given the enum

    enum Color {Red, Green, Blue, Cyan, Magenta, Yellow};

We want to write a function called ColorToString that returns a string representation of the color.  For 
example, passing in the constant Red should hand back the string "Red",  Blue should yield "Blue", etc. 
Since the names of enumerated types are lost during compilation, we would normally implement this 
function using code similar to the following:

    string ColorToString(Color c) {
        switch(c) {
            case Red: return "Red";
            case Blue: return "Blue";
            case Green: return "Green";
            case Cyan: return "Cyan";
            case Magenta: return "Magenta";
            case Yellow: return "Yellow";
            default: return "<unknown>";
        }
    }

Now, suppose that we want to write a function that, given a color, returns the opposite color. *  We'd need 
another function, like this one:

* For the purposes of this example, we'll work with additive colors.  Thus red is the opposite of cyan, yellow is the  
opposite of blue, etc.
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    Color GetOppositeColor(Color c) {
        switch(c) {
            case Red: return Cyan;
            case Blue: return Yellow;
            case Green: return Magenta;
            case Cyan: return Red;
            case Magenta: return Green;
            case Yellow: return Blue;
            default: return c; // Unknown color, undefined result
        }
    }

These two functions will work correctly, and there's nothing functionally wrong with them as written.  The 
problem, though, is that these functions are not scalable.  If we want to introduce new colors, say, White 
and Black, we'd need to change both ColorToString and GetOppositeColor to incorporate these new 
colors.  If we accidentally forget to change one of the functions, the compiler will give no warning that  
something is missing and we will only notice problems during debugging.  The problem is that a color  
encapsulates more information than can be expressed in an enumerated type.  Colors also have names and 
opposites,  but  the  C++  enum Color knows  only  a  unique  ID  for  each  color  and  relies  on  correct 
implementations of ColorToString and GetOppositeColor for the other two.  Somehow, we'd like to be 
able to group all of this information into one place.  While we might be able to accomplish this using a set  
of   C++ struct constants (e.g. defining a color struct and making const instances of these structs for 
each color), this approach can be bulky and tedious.  Instead, we'll choose a different approach by using X  
Macros.

The idea behind X Macros is that we can store all  of  the information needed above inside of calls  to  
preprocessor macros.  In the case of a color, we need to store a color's name and opposite.  Thus, let's  
suppose that we have some macro called DEFINE_COLOR that takes in two parameters corresponding to 
the name and opposite color.  We next create a new file, which we'll call color.h, and fill it with calls to 
this  DEFINE_COLOR macro that express all of the colors we know (let's ignore the fact that we haven't  
actually defined DEFINE_COLOR yet; we'll get there in a moment).  This file looks like this:

File: color.h
DEFINE_COLOR(Red, Cyan)
DEFINE_COLOR(Cyan, Red)
DEFINE_COLOR(Green, Magenta)
DEFINE_COLOR(Magenta, Green)
DEFINE_COLOR(Blue, Yellow)
DEFINE_COLOR(Yellow, Blue)

Two things about this file should jump out at you.  First, we haven't surrounded the file in the traditional  
#ifndef ...  #endif boilerplate,  so clients  can  #include this  file  multiple  times.   Second,  we haven't 
provided an implementation for DEFINE_COLOR, so if a caller does include this file, it will cause a compile-
time error.  For now, don't worry about these problems – you'll see why we've structured the file this way  
in a moment.

Let's see how we can use the X Macro trick to rewrite  GetOppositeColor,  which for convenience is 
reprinted below:
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    Color GetOppositeColor(Color c) {
        switch(c) {
            case Red: return Cyan;
            case Blue: return Yellow;
            case Green: return Magenta;
            case Cyan: return Red;
            case Magenta: return Green;
            case Yellow: return Blue;
            default: return c; // Unknown color, undefined result
        }
    }

Here, each one of the case labels in this switch statement is written as something of the form

    case color: return opposite;

Looking  back  at  our  color.h file,  notice  that  each  DEFINE_COLOR macro  has  the  form 
DEFINE_COLOR(color,  opposite).   This  suggests  that  we  could  somehow  convert  each  of  these 
DEFINE_COLOR statements into case labels by crafting the proper #define.  In our case, we'd want the 
#define to make the first parameter the argument of the case label and the second parameter the return 
value.  We can thus write this #define as

    #define DEFINE_COLOR(color, opposite) case color: return opposite;

Thus, we can rewrite GetOppositeColor using X Macros as

    Color GetOppositeColor(Color c) {
        switch(c) {
            #define DEFINE_COLOR(color, opposite) case color: return opposite;
            #include "color.h"
            #undef DEFINE_COLOR
            default: return c; // Unknown color, undefined result.
        }
    }

This is pretty cryptic, so let's walk through it one step at a time.  First, let's simulate the preprocessor by 
replacing the line #include "color.h" with the full contents of color.h:

    Color GetOppositeColor(Color c) {
        switch(c) {
            #define DEFINE_COLOR(color, opposite) case color: return opposite;
            DEFINE_COLOR(Red, Cyan)
            DEFINE_COLOR(Cyan, Red)
            DEFINE_COLOR(Green, Magenta)
            DEFINE_COLOR(Magenta, Green)
            DEFINE_COLOR(Blue, Yellow)
            DEFINE_COLOR(Yellow, Blue)
            #undef DEFINE_COLOR
            default: return c; // Unknown color, undefined result.
        }
    }

Now, we replace each DEFINE_COLOR by instantiating the macro, which yields the following:
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    Color GetOppositeColor(Color c) {
        switch(c) {
            case Red: return Cyan;
            case Blue: return Yellow;
            case Green: return Magenta;
            case Cyan: return Red;
            case Magenta: return Green;
            case Yellow: return Blue;
            #undef DEFINE_COLOR
            default: return c; // Unknown color, undefined result.
        }
    }

Finally, we  #undef the  DEFINE_COLOR macro, so that the next time we need to provide a definition for  
DEFINE_COLOR, we don't have to worry about conflicts with the existing declaration.  Thus, the final code 
for GetOppositeColor, after expanding out the macros, yields

    Color GetOppositeColor(Color c) {
        switch(c) {
            case Red: return Cyan;
            case Blue: return Yellow;
            case Green: return Magenta;
            case Cyan: return Red;
            case Magenta: return Green;
            case Yellow: return Blue;
            default: return c; // Unknown color, undefined result.
        }
    }

Which is exactly what we wanted.

The fundamental idea underlying the X Macros trick is that all of the information we can possibly need 
about a color is contained inside of the file  color.h.  To make that information available to the outside 
world, we embed all of this information into calls to some macro whose name and parameters are known.  
We do not,  however,  provide an implementation of  this macro inside of  color.h because we cannot 
anticipate every possible use of the information contained in this file.  Instead, we expect that if another  
part  of  the  code  wants  to  use  the  information,  it  will  provide  its  own  implementation  of  the 
DEFINE_COLOR macro  that  extracts  and  formats  the  information.   The  basic  idiom  for  accessing  the 
information from these macros looks like this:

    #define macroname(arguments) /* some use for the arguments */
    #include "filename"
    #undef macroname

Here, the first line defines the mechanism we will use to extract the data from the macros.  The second  
includes the file containing the macros, which supplies the macro the data it needs to operate.  The final  
step clears the macro so that the information is available to other callers.   If  you'll  notice,  the above  
technique for implementing GetOppositeColor follows this pattern precisely.

We  can  also  use  the  above  pattern  to  rewrite  the  ColorToString function.   Note  that  inside  of 
ColorToString,  while we can ignore the second parameter to  DEFINE_COLOR, the macro we define to 
extract the information still needs to have two parameters.  To see how to implement  ColorToString, 
let's first revisit our original implementation:
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    string ColorToString(Color c) {
        switch(c) {
            case Red: return "Red";
            case Blue: return "Blue";
            case Green: return "Green";
            case Cyan: return "Cyan";
            case Magenta: return "Magenta";
            case Yellow: return "Yellow";
            default: return "<unknown>";
        }
    }

If you'll notice, each of the case labels is written as

    case color: return "color";

Thus, using X Macros, we can write ColorToString as

    string ColorToString(Color c) {
        switch(c) {
            /* Convert something of the form DEFINE_COLOR(color, opposite)
             * into something of the form 'case color: return "color"';
             */
            #define DEFINE_COLOR(color, opposite) case color: return #color;
            #include "color.h"
            #undef DEFINE_COLOR
    
            default: return "<unknown>";
        }
    }

In this particular implementation of DEFINE_COLOR, we use the stringizing operator to convert the color 
parameter  into  a  string  for  the  return  value.   We've  used  the  preprocessor  to  generate  both 
GetOppositeColor and ColorToString!

There is one final step we need to take, and that's to rewrite the initial  enum Color using the X Macro 
trick.   Otherwise,  if  we make any changes to  color.h,  perhaps renaming a color or introducing new 
colors,  the  enum will  not  reflect  these  changes and might  result  in compile-time errors.   Let's  revisit 
enum Color, which is reprinted below:

    enum Color {Red, Green, Blue, Cyan, Magenta, Yellow};

While  in  the  previous  examples  of  ColorToString and  GetOppositeColor there  was  a  reasonably 
obvious mapping between DEFINE_COLOR macros and case statements, it is less obvious how to generate 
this enum using the X Macro trick.  However, if we rewrite this enum as follows:

    enum Color {
        Red, 
        Green, 
        Blue, 
        Cyan, 
        Magenta, 
        Yellow
    };
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It should be slightly easier to see how to write this enum in terms of X Macros.  For each DEFINE_COLOR 
macro we provide, we'll simply extract the first parameter (the color name) and append a comma.  In code,  
this looks like

    enum Color {
        #define DEFINE_COLOR(color, opposite) color, // Name followed by comma
        #include "color.h"
        #undef DEFINE_COLOR
    };

This, in turn, expands out to

    enum Color {
        #define DEFINE_COLOR(color, opposite) color,
        DEFINE_COLOR(Red, Cyan)
        DEFINE_COLOR(Cyan, Red)
        DEFINE_COLOR(Green, Magenta)
        DEFINE_COLOR(Magenta, Green)
        DEFINE_COLOR(Blue, Yellow)
        DEFINE_COLOR(Yellow, Blue)
        #undef DEFINE_COLOR
    };

Which in turn becomes

    enum Color {
        Red, 
        Green, 
        Blue, 
        Cyan, 
        Magenta, 
        Yellow,
    };

Which is exactly what we want.  You may have noticed that there is a trailing comma at after the final color  
(Yellow), but this is not a problem – it turns out that it's totally legal C++ code.

Analysis of the X Macro Trick

The X Macro-generated functions have several advantages over the hand-written versions.  First, the X 
macro trick makes the code considerably shorter.  By relying on the preprocessor to perform the necessary 
expansions, we can express all of the necessary information for an object inside of an X Macro file and only 
need to  write  the  syntax  necessary  to  perform  some  task  once.   Second,  and  more  importantly,  this  
approach  means  that  adding  or  removing  Color values  is  simple.   We  simply  need  to  add  another 
DEFINE_COLOR definition to  color.h and the changes will  automatically appear in all  of  the relevant 
functions.  Finally, if we need to incorporate more information into the  Color object, we can store that 
information in one location and let any callers that need it access it without accidentally leaving one out.

That said, X Macros are not a perfect technique.  The syntax is considerably trickier and denser than in the  
original implementation, and it's less clear to an outside reader how the code works.  Remember that 
readable  code is  just  as  important  as  correct  code,  and make sure that  you've considered all  of  your 
options before settling on X Macros.  If you're ever working in a group and plan on using the X Macro trick,  
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be sure that your other group members are up to speed on the technique and get their approval before 
using it.*

More to Explore / Practice Problems

I've combined the “More to Explore” and “Practice Problems” sections because many of the topics we 
didn't cover in great detail in this chapter are best understood by playing around with the material.  Here's 
a sampling of different preprocessor tricks and techniques, mixed in with some programming puzzles:

1. List  three  major  differences  between  #define and  the  const keyword  for  defining  named 
constants.

2. Give an example,  besides  preventing  problems from  #include-ing  the  same file  twice,  where 
#ifdef and #ifndef might be useful. (Hint: What if you're working on a project that must run on  
Windows, Mac OS X, and Linux and want to use platform-specific features of each?)

3. Write a regular C++ function called Max that returns the larger of two int values.  Explain why it 
does not have the same problems as the macro MAX covered earlier in this chapter.

4. Give one advantage of the macro  MAX over the function  Max you wrote in the previous problem. 
(Hint: What is the value of Max(1.37, 1.24)?  What is the value of MAX(1.37, 1.24)?)

5. The following C++ code is illegal because the #if directive cannot call functions:

    bool IsPositive(int x) {
        return x < 0;
    }
     
    #if IsPositive(MY_CONSTANT) // <-- Error occurs here
        #define result true
    #else
        #define result false
    #endif
 
Given your knowledge of how the preprocessor works, explain why this restriction exists. ♦

6. Compilers rarely inline recursive functions, even if they are explicitly marked inline.  Why do you 
think this is?

7. Most of  the STL algorithms are  inlined.   Considering the complexity of  the  implementation of  
accumulate from the chapter on STL algorithms, explain why this is.

8. Modify the earlier definition of  enum Color such that after all of the colors defined in color.h, 
there is a special value,  NOT_A_COLOR,  that specifies a nonexistent color.  (Hint: Do you actually  
need to change color.h to do this?) ♦

* The X Macro trick is a special case of a more general technique known as  preprocessor metaprogramming.  If 
you're  interested  in  learning  more  about  preprocessor  metaprogramming,  consider  looking  into  the  Boost 
Metaprogramming Library (MPL), a professional C++ package that simplifies common metaprogramming tasks.
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9. Using X  Macros,  write  a  function  StringToColor which  takes  as  a  parameter  a  string and 
returns the Color object whose name exactly matches the input string.  If there are no colors with 
that name, return  NOT_A_COLOR as a sentinel.  For example, calling  StringToColor("Green") 
would  return  the  value  Green,  but  calling  StringToColor("green") or 
StringToColor("Olive") should both return NOT_A_COLOR.

10. Suppose that you want to make sure that the enumerated values you've made for  Color do not 
conflict with other enumerated types that might be introduced into your program.  Modify the 
earlier  definition  of  DEFINE_COLOR used  to  define  enum Color so  that  all  of  the  colors  are 
prefaced  with  the  identifier  eColor_.   For  example,  the  old  value  Red should  change  to 
eColor_Red,  the old Blue would be eColor_Blue, etc.  Do not change the contents of  color.h. 
(Hint: Use one of the preprocessor string-manipulation operators) ♦

11. The  #error directive causes a compile-time error if  the preprocessor encounters it.   This may 
sound strange at first, but is an excellent way for detecting problems during preprocessing that 
might snowball into larger problems later in the code.  For example, if code uses compiler-specific  
features  (such  as  the  OpenMP  library),  it  might  add  a  check  to  see  that  a  compiler-specific 
#define is in place, using #error to report an error if it isn't.  The syntax for #error is #error 
message, where  message is a message to the user explaining the problem.  Modify  color.h so 
that  if  a  caller  #includes  the  file  without  first  #define-ing  the  DEFINE_COLOR macro,  the 
preprocessor reports an error containing a message about how to use the file.
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12. If you're up for a challenge, consider the following problem.  Below is a table summarizing various 
units of length:

Unit Name #meters / unit Suffix System

Meter 1.0 m Metric

Centimeter 0.01 cm Metric

Kilometer 1000.0 km Metric

Foot 0.3048 ft English

Inch 0.0254 in English

Mile 1609.344 mi English

Astronomical Unit 1.496 x 1011 AU Astronomical

Light Year 9.461 × 1015 ly Astronomical

Cubit* 0.55 cubit Archaic

 a) Create a file called units.h that uses the X macro trick to encode the above table as calls to a  
macro  DEFINE_UNIT.   For  example,  one  entry  might  be  DEFINE_UNIT(Meter, 1.0, m, 
Metric).

 b) Create  an  enumerated  type,  LengthUnit,  which  uses  the  suffix  of  the  unit,  preceded  by 
eLengthUnit_, as the name for the unit.  For example, a cubit is eLengthUnit_cubit, while a 
mile would be eLengthUnit_mi.  Also define an enumerated value eLengthUnit_ERROR that 
serves as a sentinel indicating that the value is invalid.

 c) Write a function called SuffixStringToLengthUnit that accepts a string representation of 
a suffix and returns the  LengthUnit corresponding to that string.   If the  string does not 
match the suffix, return eLengthUnit_ERROR.

 d) Create  a  struct,  Length,  that  stores  a  double and  a  LengthUnit.   Write  a  function 
ReadLength that prompts the user for a double and a string representing an amount and a 
unit suffix and stores data in a Length.  If the string does not correspond to a suffix, reprompt 
the user.  You can modify the code for  GetInteger from the chapter on streams to make an 
implementation of GetReal.

 e) Create a function, GetUnitType, that takes in a Length and returns the unit system in which it 
occurs (as a string)

 f) Create  a  function,  PrintLength,  that  prints  out  a  Length in  the  format 
amount suffix (amount unitnames).   For  example,  if  a  Length stores  104.2  miles,  it 
would print out 104.2mi (104.2 Miles)

 g) Create a function, ConvertToMeters, which takes in a Length and converts it to an equivalent 
length in meters.

Surprisingly,  this problem is not particularly long – the main challenge is the user input,  not the unit 
management!

* There is no agreed-upon standard for this unit, so this is an approximate average of the various lengths.
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In October of 1976 I observed that a certain algorithm – parallel reduction – was associated with  
monoids: collections of elements with an associative operation. That observation led me to believe  
that it is possible to associate every useful algorithm with a mathematical theory and that such  
association allows for both widest possible use and meaningful  taxonomy.  As mathematicians  
learned to lift theorems into their most general settings, so I wanted to lift algorithms and data  
structures.

– Alex Stepanov, inventor of the STL. [Ste07]

The Standard Template Library (STL) is a programmer's dream.  It offers efficient ways to store, access, 
manipulate, and view data and is designed for maximum extensibility.  Once you've gotten over the initial  
syntax hurdles, you will quickly learn to appreciate the STL's sheer power and flexibility.

To give a sense of exactly where we're going, here are a few quick examples of code using the STL:

• We can create a list of random numbers, sort it, and print it to the console in four lines of code!

   vector<int> myVector(NUM_INTS);
   generate(myVector.begin(), myVector.end(), rand);
   sort(myVector.begin(), myVector.end());
   copy(myVector.begin(), myVector.end(), ostream_iterator<int>(cout, "\n"));

• We can open a file and print its contents in two lines of code!

   ifstream input("my-file.txt");
   copy(istreambuf_iterator<char>(input), istreambuf_iterator<char>(),
        ostreambuf_iterator<char>(cout));
 

• We can convert a string to upper case in one line of code!

   transform(s.begin(), s.end(), s.begin(), ::toupper);

If  you aren't  already impressed by the possibilities this library entails,  keep reading.   You will  not be 
disappointed.

Overview of the STL

The STL is logically divided into six pieces, each consisting of generic components that interoperate with 
the rest of the library:

• Containers.  At the heart of the STL are a collection of container classes, standard C++'s analog to 
the CS106B/X ADTs.  For example, you can store an associative collection of key/value pairs in an 
STL map, or a growing list of elements in an STL vector.

• Iterators.   Each STL container exports iterators, objects that view and modify ranges of stored 
data.  Iterators have a common interface, allowing you to write code that operates on data stored 
in arbitrary containers.

• Algorithms.  STL algorithms are functions that operate over ranges of data specified by iterators. 
The  scope  of  the  STL  algorithms  is  staggering  –  there  are  algorithms  for  searching,  sorting, 
reordering, permuting, creating, and destroying sets of data.
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• Adapters.  STL adapters are objects which transform an object from one form into another.  For 
example,  the  stack adapter  transforms a  regular  vector or  list into  a  LIFO container,  while  the 
istream_iterator transforms a standard C++ stream into an STL iterator.

• Functors.  Because so much of the STL relies on user-defined callback functions, the STL provides 
facilities for creating and modifying functions at runtime.  We will defer our discussion of functors 
to much later in this text, as they require a fairly nuanced understanding of C++.

• Allocators.  The STL allows clients of the container classes to customize how memory is allocated 
and deallocated, either for diagnostic or performance reasons.   While allocators are fascinating 
and certainly worthy of discussion, they are beyond the scope of this text and we will not cover  
them here.

Diagrammatically, these pieces are related as follows:

Here, the containers rely on the allocators for memory and produce iterators.  Iterators can then be used 
in conjunction with the algorithms.  Functors provide special functions for the algorithms, and adapters  
can produce functors,  iterators,  and containers.   If  this seems a bit confusing now, don't  worry,  you'll 
understand this relationship well by the time you've finished the next few chapters.

Why the STL is Necessary

Up until this point, all of the programs you've encountered have declared a fixed number of variables that  
correspond to a fixed number of values.  If you declare an int, you get a single variable back.  If you need 
to create multiple different ints for some reason, you have to declare each of the variables independently.  
This has its drawbacks.  For starters, it means that you need to know how exactly how much data your  
program will be manipulating before the program begins running.  Here's a quick programming challenge 
for you:

Write a program that reads in three integers from the user, then prints them in sorted order.

How could you go about writing a program to do this?  There are two main technical hurdles to overcome. 
First, how would we store the numbers the user enters?  Second, how do we sort them?  Because we know  
that the user will be entering three distinct values, we could simply store each of them in their own int 
variable.  Thus the first step of writing code for this program might look like this:

ITERATORS

ALGORITHMS FUNCTORS

CONTAINERSALLOCATORS

ADAPTERS
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    #include <iostream>
    #include <sstream>
    #include <string>
    using namespace std;

    int GetInteger(); // From the streams chapter

    int main() {
        int val1 = GetInteger();
        int val2 = GetInteger();
        int val3 = GetInteger();
 
        /* Sort, then print out. */
    }

We now have our three values; how can we sort them?  It turns out that sorting a list of integers is a classic  
algorithms question and there are many elegant solutions to the problem.  Some algorithms like quicksort 
and  heapsort run extremely quickly,  but are rather difficult to implement.   Instead, we'll use a variant  
algorithm called  selection sort.  The idea behind selection sort is as follows.  If we want to sort a list of  
numbers, we can find the smallest element in the list, then move it to the front of the list.  We can then find  
the second-smallest value, then put it in the second position, find the third-smallest and put it in the third  
position, etc.  Amazingly, with just the tools we've seen so far this simple algorithm is extremely hard to 
implement.  Here's some code for the operation:

    int main() {
        int val1 = GetInteger();
        int val2 = GetInteger();
        int val3 = GetInteger();
 
        /* Three cases: Either val1 is the smallest, val2 is the smallest, or 
         * val3 is the smallest.  Whichever ends up being the case, we'll put
         * the smallest value into val1.  This uses the swap() function, which is
         * defined in the <algorithm> header and simply swaps the values of
         * two variables.
         */
        if (val2 <= val1 && val2 <= val3) // val2 is smallest
            swap (val1, val2);
        else if (val3 <= val1 && val3 <= val2) // val3 is smallest
            swap (val1, val3);
        // Otherwise, val1 is smallest, and can remain at the front.

        /* Now, sort val2 and val3.  Since there's just two elements, we can do a
         * simple comparison to determine which is the smaller of the two.
         */
        if (val3 <= val2) // val3 is smaller
           swap (val2, val3);
        // Otherwise, val2 is smallest and we don't need to do anything.

        cout << val1 << ' ' << val2 << ' ' << val3 << endl;
    }

This code is incredibly dense.  Don't panic if you don't understand it – part of the purpose of this example  
is to illustrate how difficult it can be to write good code for this problem without the STL!

But of course, there's another major problem with this code.  Let's modify the problem statement a bit by 
allowing the user to enter four numbers.  If we make this change, using just the techniques we've covered 
so far we'll be forced to write code along the following lines:
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    int main() {
        int val1 = GetInteger();
        int val2 = GetInteger();
        int val3 = GetInteger();
        int val4 = GetInteger();
 
        /* Find the smallest. */
        if (val2 <= val1 && val2 <= val3 && val2 <= val4) // val2 is smallest
            swap (val1, val2);
        else if (val3 <= val1 && val3 <= val2 && val3 <= val4) // val3 is smallest
            swap (val1, val3);
        else if (val4 <= val1 && val4 <= val2 && val4 <= val3) // val4 is smallest
            swap (val1, val4);
        // Otherwise, val1 is smallest, and can remain at the front.

        /* Find the second-smallest. */
        if (val3 <= val2 && val3 <= val4) // val3 is smallest
            swap (val2, val3);
        else if (val4 <= val2 && val4 <= val3) // val4 is smallest
            swap (val2, val4);
        // Otherwise, val2 is smallest, and can remain at the front.

        /* Find the third-smallest. */
        if (val4 <= val3) // val4 is smaller
           swap (val3, val4);
        // Otherwise, val3 is smallest and we don't need to do anything.

        cout << val1 << ' ' << val2 << ' ' << val3 << ' ' << val4 << endl;
}

This code is just downright awful!  It's cryptic, difficult to read, and not the sort of code you'd like to bring  
home to mom and dad.  Now imagine what the code would look like if we had five numbers instead of four. 
It will keep growing and growing, becoming progressively more impossible to read until eventually we'd 
give up in frustration.  What's worse, though, is that each of these programs is a special case of a general  
problem – read in n integers from the user and print them in sorted order – but the code for each case 
bears little to no resemblance to the code for each other case.

Introducing the vector

What's missing from our programming repertoire right now is the ability to create and access a variable  
number of  objects.   Right  now,  if  we  want  to  store  a  sequence  of  five  integers,  we  must  create  five 
independent integer variables and have no way of accessing them uniformly.  Fortunately, the STL provides 
us a versatile tool called the vector that allows us to store sequences of elements using a single variable. 
As you'll see, the vector is nothing short of extraordinary and will arise time and again throughout your 
programming career.

At a high level, a vector is an object that represents a sequence of elements.  This means that you can use 
a vector to store a grocery list, a list of Olympic figure skating scores, or a set of files to read.  The elements  
in a  vector are  indexed, meaning that they have a well-defined position in the sequence.  For example, 
given the sequence
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Value 137 42 2718 3141 410

Index 0 1 2 3 4

The first element (137) is at position zero, the second (42) at position one, etc.  Notice that elements in the 
sequence appear in the order 0, 1, 2, etc. rather than the more intuitive 1, 2, 3, ... .   You have seen this  
already in your exploration of the string class, so hopefully this notation isn't too startling.

The major difference between the  vector and the  string is  that the  vector can be configured to store 
elements of any type.  That is, you can have a vector of ints, a vector of strings, or even a vector of 
vectors of strings.  However, while the vector can store elements of any type, any single vector can 
only store elements of  a  single  type.   It  is  illegal  to create a  vector that  stores a sequence of  many 
different types of elements, meaning that you can't represent the list 0, Apple, 2.71828 because each of the 
list  elements  has  a  different  type.   This  may  seem  like  a  rather  arbitrary  restriction  –  theoretically 
speaking, there's no reason that you shouldn't be able to have lists of all sorts of elements – but fortunately 
in most cases this restriction does not pose too much of a problem.

Because vectors can only store elements of a fixed type, when you create a vector in your programs you 
will need to explicitly indicate to the compiler what type of elements you aim to store in the vector.  As an 
example, to create a vector of ints, you would write

    vector<int> myVector;

Here, we declare a local variable called  myVector that has type  vector<int>.   The type inside of the 
angle brackets is called a template argument and indicates to C++ what type of elements are stored in the 
vector.   Here,  the type is  int,  but it's  legal to put pretty much whatever type you would like in the 
brackets.  For example, all of the following declarations are legal:

    vector<int>    intVector;  // Stores ints
    vector<string> strVector;  // Stores strings
    vector<double> realVector; // Stores real numbers

It is also perfectly legal to store your own custom structs in a vector, as seen here:

    struct MyStruct {
        int myInt;
        double myDouble;
        string myString;
    };
    
    vector<MyStruct> myStructVector; // Stores MyStructs

In order to use the vector type, you will need to #include <vector> at the top of your program.  As we 
explore some of the other STL containers, this pattern will also apply.

We now know how to create vectors, but how do we use them?  To give you a feel for how the vector 
works, let's return to our previous example of reading in numbers and printing them out in sorted order. 
Using a vector, this can be accomplished very elegantly.  We'll begin by defining a constant, kNumValues, 
which will represent the number of elements to read in.  This is shown here:
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    #include <iostream>
    #include <vector>   // Necessary to use vector
    #include <string>
    #include <sstream>
    using namespace std;

    string GetLine(); // As defined in the previous chapter
    int GetInteger(); // As defined in the previous chapter

    const int kNumValues = 10;

    int main() {
        /* ... still more work to come ... */
    }

Now, we'll show to how to read in  kNumValues values from the user and store them inside a  vector. 
First, we'll have to create the vector, as shown here:

    int main() {
        vector<int> values;

        /* ... */
    }

A freshly-constructed  vector,  like a freshly-constructed  string,  is initially empty.  Consequently, we'll 
need to get some values from the user, then store them inside the  vector.  Reading the values is fairly 
easy; we simply sit in a for loop reading data from the user.  But how do we store them in the vector? 
There are several  ways to do this,  of  which the simplest is the  push_back function.  The  push_back 
function can be invoked on a vector to add a new element to the end of vector's sequence.  For example, 
given a vector managing the following sequence:

Value 1 2 6 10

Index 0 1 2 3

Then calling push_back on the vector to store the value fifteen would cause the vector to manage the new 
sequence

Value 1 2 6 10 15

Index 0 1 2 3 4

Syntactically, push_back can be used as follows:

    int main() {
        vector<int> values;

        for (int i = 0; i < kNumValues; ++i) {
            cout << "Enter another value: ";
            int val = GetInteger();

            values.push_back(val);
        }
    }
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Notice that we write values.push_back(val) to append the number val to the sequence stored inside 
the vector.

Now that we have read in our sequence of values, let's work on the next part of the program, sorting the  
elements in the vector and printing them to the user.  For this we'll still use the selection sort algorithm, but 
it will be miraculously easier to follow when implemented on top of the vector.  Recall that the general 
description of the selection sort algorithm is as follows:

• Find the smallest element of the list.
• Put that element at the front of the list.
• Repeat until all elements are in place.

Let's see how to implement this function.  We'll begin simply by writing out the function signature, which  
looks like this:

    void SelectionSort(vector<int>& v) {
        /* ... */
    }

This function is named SelectionSort and takes as a parameter a vector<int> by reference.  There are 
two key points to note here.  First, we still have to explicitly indicate what type of elements are stored in 
the vector parameter.  That is, it's illegal to write code of this sort:

    void SelectionSort(vector& v) { // Error:  What kind of vector?
        /* ... */
    }

As a general rule, you will never see vector unless it's immediately followed with a type in angle brackets. 
The reason is simple – every vector can only store one type of element, and unless you explicitly indicate 
what that type is the compiler will have no way of knowing.

The other important detail  about this function is that it takes its parameter by reference.   We will  be 
sorting the vector in-place, meaning that we will be reordering the elements of the vector rather than 
creating a new vector containing a sorted copy of the input.

We now have the function prototype set up, so let's get into the meat of the algorithm.  To implement 
selection sort, we'll need to find the smallest element and put it in front, the the second-smallest element  
and put it in the second position, etc.  The code for this is as follows:

    void SelectionSort(vector<int>& v) {
        for (size_t i = 0; i < v.size(); ++i) {
            size_t smallestIndex = GetSmallestIndex(v, i); // We'll write this
                                                           // function momentarily
            swap (v[i], v[smallestIndex]);
        }
    }

This code is fairly dense and introduces some syntax you have not yet seen before, so let's take a few 
moments to walk through exactly how it works.  The first detail that might have caught your eye is this 
one:

    for (size_t i = 0; i < v.size(); ++i)
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This for loop looks strange for two reasons.  First, instead of creating an int variable for the iteration, we 
create a variable of type size_t.  A size_t is a special type of variable that can hold values that represent 
sizes of things (size_t stands for “size type”).  In many aspects size_t is like a regular int – it holds an 
integer value, can be incremented with ++, compared using the relational operators, etc.  However, unlike 
regular ints, size_ts cannot store negative values.  The intuition behind this idea is that no collection of  
elements can have a negative size.  You may have a list of no elements, or a list of billions of elements, but  
you'll never encounter a list with -1 elements in it.  Consequently, when iterating over an STL container, it 
is  customary to  use  the  special  type  size_t to  explicitly  indicate  that  your  iteration variable  should 
always be nonnegative.  The other detail of this for loop is that the loop iterates from 0 to v.size().  The 
size() member function on the STL vector returns the number of elements stored in the sequence, just 
like the size() and length() functions on the standard string class.  In this particular case we could 
have iterated from 0 to kNumValues, since we're guaranteed that the main function will produce a vector 
of that many elements, but in general when iterating over a  vector it's probably a wise idea to use the 
vector's size as an upper bound so that the code works for vectors of arbitrarily many elements.

Let's continue onward through the code.  The body of the loop is this code here:

        size_t smallestIndex = GetSmallestIndex(v, i);
        swap (v[i], v[smallestIndex]);

This calls some function called  GetSmallestIndex (which we have not yet defined) which takes in the 
vector and the current index.  We will implement this function shortly, and its job will be to return the  
index of the smallest element in the  vector occurring no earlier than position  i.  We then use the  swap 
function to exchange the values stored in at positions i and smallestIndex of the vector.  Notice that, as 
with the standard string class, the syntax v[i] means “the element in vector v at position i.”  Let's take a 
minute to think about how this code works.  The variable i counts up from 0 to v.size() - 1 and visits 
every element of the vector exactly once.  On each iteration, the code finds the smallest element in the 
vector occurring no earlier than position i, then exchanges it with the element at position i.  This means 
that the code will

1. Find the smallest element of the vector and put it in position 0.
2. Find the smallest element of the remainder of the vector and put it in position 1.
3. Find the smallest element of the remainder of the vector and put it in position 2.

                                                       ...

This is precisely what we set out to do, and so the code will work marvelously.  Of course, this assumes  
that we have a function called GetSmallestIndex which returns the index of the smallest element in the 
vector occurring no earlier than position i.  To finalize our implementation of SelectionSort, let's go 
implement this function.  Again, we'll start with the prototype, which is shown here:

    size_t GetSmallestIndex(vector<int>& v, size_t startIndex) {
        /* ... */
    }

This function accepts as input a vector<int> by reference and a size_t containing the start index, then 
returns a  size_t containing the result.  There's an important but subtle detail to note here.  At a high 
level, the GetSmallestIndex function has no business modifying the vector it takes as input.  Its task is 
to  find  the  smallest  element  and  return  it,  no  more.   So  why  exactly  does  this  function  take  the 
vector<int> parameter by reference?  The answer is  efficiency.   In C++, if you pass a parameter to a 
function by value, then whenever that function is called C++ will make a full copy of the argument.  When 
working with the STL containers,  which can contain thousands (if not millions or tens of millions) of  
elements,  the  cost  of  copying  the  container  can  be  staggering.   Consequently,  it  is  considered  good  
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programming practice to pass STL containers into functions by reference rather than by value, since this  
avoids an expensive copy.*

The implementation of this function is rather straightforward:

    size_t GetSmallestIndex(vector<int>& v, size_t startIndex) {
        size_t bestIndex = startIndex;

        for (size_t i = startIndex; i < v.size(); ++i)
            if (v[i] < v[bestIndex])
                bestIndex = i;

        return bestIndex;
    }

This function iterates over the elements of the  vector starting with position  i,  checking whether the 
element at the current position is less than the smallest element we've seen so far.  If so, the function  
updates where in the vector that element appears.  At the end of the function, once we've looked at every 
element  in  range,  the  bestIndex variable  will  hold  the  index  of  the  smallest  element  in  vector v 
occurring  no  earlier  than  startIndex,  and  so  we  return  the  value.   We've  implemented  the 
GetSmallestIndex function, meaning that we have a working implementation of SelectionSort.

To finalize our program, let's update the main function to print out the sorted vector.  This is shown here:

    int main() {
        vector<int> values;  
  
        for (int i = 0; i < kNumValues; ++i) {
            cout << "Enter another value: ";
            int val = GetInteger();
            values.push_back(val);
        }
    
        SelectionSort(values);
     
        for (size_t i = 0; i < kNumValues; ++i)
            cout << values[i] << endl;
    }

Compare this implementation of the program to the previous version, which did not have the luxury of  
using vector.  As you can see, the code in this program is significantly clearer than before.  Moreover, it's  
much more scalable.  If we want to read in a different number of values from the user, we can do so simply 
by adjusting the value of the kNumValues constant, and the rest of the code will update automatically.

An Alternative Implementation

In the previous section, we wrote a program which reads in some number of values from the user, sorts 
them, and then prints them out.  Of course, the program we wrote was just one method for solving the 
problem.  In particular, there is another implementation strategy we could have considered that lends 
itself to a substantially shorter implementation.  Notice that in the above program, we read in a list of 
values from the user and blindly added them to the end of the list we wanted to sort.  These values weren't  
necessarily in sorted order, and so we had to run a postprocessing step to sort the vector before displaying 

* In  practice  you  would  almost  certainly  pass  the  parameter  by  reference-to-const,  which  indicates  that  the 
parameter cannot be modified.  We will take this issue up in a later chapter, but for now pass-by-reference should  
be good enough for our purposes.
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it to the user.  But what if we opt for a different approach?  In particular, suppose that whenever we read a  
value from the user, instead of putting that value at the end of the sequence, we find where in the vector the 
element should go, then insert the value at that point?  For example, suppose that the user has entered the  
following four values:

Value 100 200 300 400

Index 0 1 2 3

Now suppose that she enters the number 137.  If we append 137 to the vector, then the numbers will not 
all be in sorted order.  Instead, we'll find the location where 137 should go in the sorted  vector,  then 
insert it directly into that location.  This is shown here:

Value 100 137 200 300 400

Index 0 1 2 3 4

This  strategy ends up being  a bit  simpler  to  implement than our  previous program,  which relied on  
selection sort.  Of course, to implement the program using the above strategy, we need to answer two  
questions.  First, how do we find out where in the vector the user's element should go?  Second, how do 
we insert an element into a vector directly at that position?  This first question is algorithmic; the second 
is simply a question of what operations are legal on the vector.  Consequently, we'll begin our discussion 
with how to find the insertion point, and will then see how to add an element to a vector at a particular 
point.

Suppose that we are given a sorted list of integers and some value to insert into the list.  We are curious to  
find at what index the new value should go.  This is an interesting algorithmic challenge, since there are 
many valid solutions.  However, there's one particular simple way to find where the element should go.  In  
order for a list to be in sorted order, every element has to be smaller than the element that comes one  
position after it.  Therefore, if we find the first element in the vector that is bigger than the element we 
want to insert, we know that the element we want to insert must come directly before that element.  This  
suggests the following algorithm:

    /* Watch out!  This code contains a bug! */
    size_t InsertionIndex(vector<int>& v, int toInsert) {
        for(size_t i = 0; i < v.size(); ++i)
            if (toInsert < v[i])
                return i;
    }

This  code is  mostly correct,  but  contains  a  pretty  significant  flaw.   In particular,  what  happens  if  the 
element we want to insert is bigger than every element in the vector?  In that case, the if statement inside 
of the for loop will never evaluate to true, and so the function will not return a value.  If a function finishes  
without returning a value, the program has undefined behavior.  This means that the function might return 
zero, it might return garbage, or your program might immediately crash outright.  This certainly isn't what 
we want to have happen, so how can we go about fixing it?  Notice that the only way that the above 
function never returns a value is if the element to be inserted is at least as big as every element in the  
vector.  In that case, the correct behavior should be to put the element on the end of the vector.  We'll 
signal this by having the function return  v.size() if the element is bigger than every element in the 
sequence.  This is shown here:
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    size_t InsertionIndex(vector<int>& v, int toInsert) {
        for(size_t i = 0; i < v.size(); ++i)
            if (toInsert < v[i])
                return i;
        return v.size();
    }

All that's left to do now is use this function to build a sleek implementation of the program.  But before we 
can do that, we have to see how to insert an element into a  vector at an arbitrary position.  The good 
news is that the  vector supports this operation naturally, and in fact you can insert an element into a 
vector at any position.  The bad news is that the syntax for doing so is nothing short of cryptic and 
without an understanding of STL iterators will look entirely alien.  We'll talk about iterators more next 
chapter, but in the meantime you can just take it for granted that the following syntax is legal.  Given a 
vector v and an element e, to insert e into v at position n, we use the syntax

    v.insert(v.begin() + n, e);

For example, to insert the element 137 at position zero in the vector, you would write

    v.insert(v.begin(), 137);

Similarly, to insert the element 42 at position five, we could write

    v.insert(v.begin() + 5, 42);

One of the trickier parts of the insert function is determining exactly where the element will be inserted. 
Recall that vectors are zero-indexed, the above statement will insert the number 42 as the sixth element 
of the sequence, not the fifth.  When an element is inserted at a position, all of the elements after it are  
shuffled down one spot to make room, so calling insert will never overwrite a value.

Given this syntax and the above implementation of InsertionIndex, we can write a program to read in a 
list of values and print them out in sorted order as follows:

    int main() {
        vector<int> values;
 
        /* Read the values. */
        for (int i = 0; i < kNumValues; ++i) {
            cout << "Enter an integer: ";
            int val = GetInteger();

            /* Insert the element at the correct position. */
            values.insert(values.begin() + InsertionIndex(values, val), val);
        }
 
        /* Print out the sorted list. */
        for (size_t i = 0; i < values.size(); ++i)
            cout << values[i] << endl;
    }

This code is much shorter than before, even when you factor in the code for InsertionIndex.
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Additional vector Operations

The previous section on sorting numbers with the  vector showcased many of operations that can be 
performed on a vector, but was by no means a complete survey of what the vector can do.  While some 
vector operations require a nuanced understanding of iterators, which we will cover next chapter, there 
are a few common operations on the vector that we will address in this section before moving on to other 
container classes.

One of the key distinctions between the vector and other data types we've seen so far is that the vector 
has a variable size.  It can contain no elements, dozens of elements, or even millions of elements.  In the 
preceding examples, we explored two ways to change the number of elements in the vector: push_back, 
which appends new elements to the  back of  the  vector,  and  insert,  which adds an element to the 
vector at an arbitrary position.  However, there are several more ways to add and remove elements from 
the vector, some of which are discussed here.

When creating a new  vector to represent a list of values, by default C++ will make the  vector store an 
empty list.  That is, a newly-created  vector is by default empty.  However, at times you might want to 
initialize the  vector to a certain size.  C++ allows you to do this by specifying the starting size of the 
vector at the point where the vector is created.  For example, to create a vector of integers that initially 
holds fifteen elements, you could write this as

    vector<int> myVector(15);

That is, you declare the vector as normal, and put the default size in parentheses afterwards.  Note that 
this only changes the starting size of  the  vector,  and you are free to add additional elements to the 
vector later in your program.

When creating a vector that holds primitive types, such as int or  double, the elements in the vector 
will default to zero (or false in the case of bools).  This means that the above line of code means “create a 
vector of integers called myVector that initially holds fifteen entries, all zero.”  Similarly, this line of code:

    vector<string> myStringVector(10);

Will create a vector of strings that initially holds ten copies of the empty string.

In some cases, you may want to initialize the vector to a certain size where each element holds a value 
other than zero.  You may wish, for example, to construct a  vector<string> holding five copies of the 
string “(none),” or a  vector<double> holding twenty copies of the value 137.  In these cases, C++ lets 
you specify both the number and default value for the elements in the vector using the following syntax:

    vector<double> myReals(20, 137.0);
    vector<string> myStrings(5, "(none)");

Notice that we've enclosed in parentheses both the number of starting elements in the vector and the value 
of these starting elements.  

An important  detail  is  that this syntax is only legal  when initially creating a  vector.   If  you have an 
existing vector and try to use this syntax, you will get a compile-time error.  That is, the following code is 
illegal:

    vector<double> myReals;
    myReals(20, 137.0); // Error: Only legal to do this when the object is created
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If you want to change the number of elements in a  vector after it has already been created, you can 
always use the  push_back and  insert member functions.   However,  if  you'd like to make an abrupt 
change  in  the  number of  elements  in the  vector (perhaps  by  adding or  deleting  a  large number  of 
elements all at once), you can use the  vector's  resize member function.  The resize function is very 
similar to the syntax we've just encountered: you can specify either a number of elements or a number of  
elements and a value,  and the  vector will  be resized to hold that many elements.   However,  resize 
behaves somewhat differently from the previous construct because when using resize, the vector might 
already contain elements.  Consequently, resize works by adding or removing elements from the end of 
the vector until the desired size is reached.  To get a better feel for how resize works, let's suppose that 
we have a function called PrintVector that looks like this:

    void PrintVector(vector<int>& elems) {
        for (size_t i = 0; i < elems.size(); ++i)
            cout << elems[i] << ' ';
        cout << endl;
    }

This function takes in a vector<int>, then prints out the elements in the vector one at a time, followed 
by a newline.  Given this function, consider the following code snippet:

    vector<int> myVector; // Defaults to empty vector
    PrintVector(myVector); // Output: [nothing]

    myVector.resize(10); // Grow the vector, setting new elements to 0
    PrintVector(myVector); // Output: 0 0 0 0 0 0 0 0 0 0

    myVector.resize(5); // Shrink the vector
    PrintVector(myVector); // Output: 0 0 0 0 0

    myVector.resize(7, 1); // Grow the vector, setting new elements to 1
    PrintVector(myVector); // Output: 0 0 0 0 0 1 1

    myVector.resize(1, 7); // The second parameter is effectively ignored.
    PrintVector(myVector); // Output: 0

In  the  first  line,  we  construct  a  new  vector,  which  is  by  default  empty.   Consequently,  the  call  to 
PrintVector will produce no output.  We then invoke resize to add ten elements to the vector.  These 
elements are added to the end of the  vector,  and because we did not specify a default  value are all 
initialized to zero.  On our next call to resize, we shrink the vector down to five elements.  Next, we use 
resize to expand the  vector to hold seven elements.  Because we specified a default value, the newly-
created elements default to 1, and so the sequence is now 0, 0, 0, 0, 0, 1, 1.  Finally, we use resize to trim 
the sequence.  Because the second argument to resize is only considered if new elements are added, it is 
effectively ignored.

We've  seen several  vector operations  so  far,  but  there  is  a  wide  class  of  operations  we  have  not  yet  
considered –  operations  which  remove  elements  from  the  vector.   As  you  saw,  the  push_back and 
insert functions can be used to splice new elements into the  vector's sequence.  These two functions 
are  balanced  by  the  pop_back and  erase functions.   pop_back is  the  opposite  of  push_back,  and 
removes the last element from the vector's sequence.  erase is the deletion counterpart to  insert, and 
removes an element at a particular position from the vector.  As with insert, the syntax for erase is a 
bit tricky.  To remove a single element from a random point in a vector, use the erase method as follows:

    myVector.erase(myVector.begin() + n);
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where n represents the index of the element to erase.

In some cases, you may feel compelled to completely erase the contents of the vector.  In that case, you 
can use the  clear function,  which completely erases the  vector contents.   clear can be invoked as 
follows:

    myVector.clear();

Summary of vector

The following table lists some of the more common operations that you can perform on a  vector.  We 
have not talked about iterators or the const keyword yet, so don't worry if you're confused by those 
terms.  This table is designed as a reference for any point in your programming career, so feel free to skip  
over entries that look too intimidating.

Constructor: vector<T> () vector<int> myVector;

Constructs an empty vector.

Constructor: vector<T> (size_type size) vector<int> myVector(10);

Constructs a vector of the specified size where all elements 
use their default values (for integral types, this is zero).

Constructor: vector<T> (size_type size,
                       const T& default)

vector<string> myVector(5, "blank");

Constructs  a  vector  of  the  specified  size  where  each 
element is equal to the specified default value.

size_type size() const; for(int i = 0; i < myVector.size(); ++i) { ... }

Returns the number of elements in the vector.

bool empty() const; while(!myVector.empty()) { ... }

Returns whether the vector is empty.

void clear(); myVector.clear();

Erases all the elements in the vector and sets the size to 
zero.

      T& operator [] (size_type position);
const T& operator [] (size_type position) const;

      T& at(size_type position);
const T& at(size_type position) const;

myVector[0] = 100;
int x = myVector[0];
myVector.at(0) = 100;
int x = myVector.at(0);

Returns a reference to the element at the specified position. 
The bracket notation [] does not do any bounds checking 
and has undefined behavior past the end of the data.  The at 

member  function  will  throw  an  exception  if  you  try  to 
access  data  beyond  the  end.   We  will  cover  exception 
handling in a later chapter.
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void resize(size_type newSize);
void resize(size_type newSize, T fill);

myVector.resize(10);
myVector.resize(10, "default");

Resizes the vector so that it's guaranteed to be the specified 
size.   In  the  second  version,  the  vector elements  are 
initialized to the value specified by the second parameter. 
Elements are added to and removed from the end of the 
vector, so you can't use resize to add elements to or remove 
elements from the start of the vector.

void push_back(); myVector.push_back(100);

Appends an element to the vector.

      T& back();
const T& back() const;

myVector.back() = 5;
int lastElem = myVector.back();

Returns a reference to the last element in the vector.

      T& front();
const T& front() const;

myVector.front() = 0;
int firstElem = myVector.front();

Returns a reference to the first element in the vector.

void pop_back(); myVector.pop_back();

Removes the last element from the vector.

iterator begin();
const_iterator begin() const;

vector<int>::iterator itr = myVector.begin();

Returns an iterator that points to the first element in the 
vector.

iterator end();
const_iterator end() const;

while(itr != myVector.end());

Returns  an  iterator  to  the  element  after the  last.   The 
iterator returned by end does not point to an element in the 
vector.

iterator insert(iterator position, 
                const T& value);
void insert(iterator start, 
            size_type numCopies, 
            const T& value);

myVector.insert(myVector.begin() + 4, "Hello");
myVector.insert(myVector.begin(), 2, "Yo!");

The first version inserts the specified value into the vector, 
and the second inserts  numCopies copies of the value into 
the vector.  Both calls invalidate all outstanding iterators for 
the vector.

iterator erase(iterator position);
iterator erase(iterator start,
               iterator end);

myVector.erase(myVector.begin());
myVector.erase(startItr, endItr);

The first version erases the element at the position pointed 
to by position.  The second version erases all elements in the 
range [startItr, endItr).   Note that this does  not erase 
the element pointed to by  endItr.   All  iterators after the 
remove  point  are  invalidated.   If  using  this  member 
function  on  a  deque (see  below),  all  iterators  are 
invalidated.

deque: A New Kind of Sequence

For most applications where you need to represent a sequence of elements, the vector is an ideal tool.  It 
is fast, lightweight, and intuitive.  However, there are several aspects of the vector that can be troublesome 
in  certain  applications.   In  particular,  the  vector is  only  designed  to  grow  in  one  direction;  calling 



- 94 -  Chapter 5: STL Sequence Containers

push_back inserts elements at the end of the  vector,  and  resize always appends elements to the end. 
While it's possible to insert elements into other positions of the vector using the insert function, doing 
so is fairly inefficient and relying on this functionality can cause a marked slowdown in your program's 
performance.  For most applications, this is not a problem, but in some situations you will need to manage  
a list of elements that will grow and shrink on both ends.  Doing this with a vector would be prohibitively 
costly, and we will need to introduce a new container class: the deque.

deque is a strange entity.  It is pronounced “deck,” as in a deck of cards, and is named as a contraction of  
“double-ended queue.”  It is similar to the vector in almost every way, but supports a few operations that 
the  vector has trouble with.   Because of its similarity to  vector,  many C++ programmers don't even 
know that the deque exists.  In fact, of all of the standard STL containers, deque is probably the least-used. 
But this is not to say that it is not useful.  The deque packs significant firepower, and in this next section 
we'll see some of the basic operations that you can perform on it.

What's  interesting  about  the  deque is  that  all  operations  supported by  vector are  also  provided by 
deque.   Thus we can  resize a  deque,  use the bracket syntax to access individual elements, and erase 
elements at arbitrary positions.  In fact, we can rewrite the number-sorting program to use a deque simply 
by replacing all instances of vector with deque.  For example:

    int main() {
        deque<int> values; // Use deque instead of vector
 
        /* Read the values. */
        for (int i = 0; i < kNumValues; ++i)
        {
            cout << "Enter an integer: ";
            int val = GetInteger();

            /* Insert the element at the correct position. */
            values.insert(values.begin() + InsertionIndex(values, val), val);
        }
 
        /* Print out the sorted list. */
        for (size_t i = 0; i < values.size(); ++i)
            cout << values[i] << endl;
    }

However,  deques also support two more functions,  push_front and  pop_front,  which work like the 
vector's  push_back and  pop_back except  that  they insert  and remove elements at  the  front  of  the 
deque.  But this raises an interesting question: if deque has strictly more functionality than vector, why 
use  vector?  The main reason is speed.  deques and  vectors are implemented in two different ways. 
Typically,  a  vector stores its elements in contiguous memory addresses.   deques,  on the other hand, 
maintain a list of different “pages” that store information.  This is shown here:
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These different implementations impact the efficiency of the vector and deque operations.  In a vector, 
because all elements are stored in consecutive locations, it is possible to locate elements through simple  
arithmetic: to look up the nth element of a vector, find the address of the first element in the vector, then 
jump forward n positions.  In a deque this lookup is more complex: the deque has to figure out which page 
the element  will  be  stored in,  then has to  search that  page for  the  proper  item.   However,  inserting  
elements at the front of a vector requires the vector to shuffle all existing elements down to make room 
for the new element (slow), while doing the same in the  deque only requires the  deque to rearrange 
elements in a single page (fast).

If  you're  debating  about  whether  to  use  a  vector or  a  deque in  a  particular  application,  you might 
appreciate this advice from the C++ ISO Standard (section 23.1.1.2):

vector is the type of sequence that should be used by default...  deque is the data structure of  
choice  when most  insertions  and  deletions  take  place  at  the  beginning or  at  the  end  of  the  
sequence.

If you ever find yourself about to use a  vector,  check to see what you're doing with it.   If  you need to 
optimize for fast access, keep using a vector.  If you're going to be inserting or deleting elements at the 
beginning or end of the container frequently, consider using a deque instead.

Extended Example: Snake

Few computer games can boast the longevity or addictive power of Snake.  Regardless of your background, 
chances are that you have played Snake or one of its many variants.  The rules are simple – you control a  
snake on a two-dimensional grid and try to eat food pellets scattered around the grid.  You lose if you crash 
into the walls or into your own body.  True to Newton's laws, the snake continues moving in a single 
direction until you explicitly change its bearing by ninety degrees.  Every time the snake eats food, a new 
piece of food is randomly placed on the grid and the snake's length increases.  Over time, the snake's body 
grows so long that it becomes an obstacle, and if the snake collides with itself the player loses.

Here's  a  screenshot from QBasic  Nibbles,  a  Microsoft  implementation of  Snake released with  MS-DOS 
version 5.0.  The snake is the long yellow string, and the number 8 is the food:

vector deque
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Because the rules of Snake are so simple, it's possible to implement the entire game in only a few hundred  
lines of C++ code.  In this extended example, we'll write a Snake program in which the computer controls 
the snake according to a simple AI.  In the process, we'll gain experience with the STL vector and deque, 
the streams library, and a sprinkling of C library functions.  Once we've finished, we'll have a rather snazzy 
program that can serve as a launching point for further C++ exploration.

Our Version of Snake

There are many variants of Snake, so to avoid confusion we'll explicitly spell out the rules of the game 
we're implementing:

1. The snake moves by extending its head in the direction it's moving and pulling its tail in one space.
2. The snake wins if it eats twenty pieces of food.
3. The snake loses if it crashes into itself or into a wall.
4. If the snake eats a piece of food, its length grows by one and a new piece of food is randomly 

placed.
5. There is only one level, the starting level.

While traditionally Snake is played by a human, our Snake will be computer-controlled so that we can 
explore some important pieces of the C runtime library.  We'll discuss the AI we'll use when we begin 
implementing it.

Representing the World

In order to represent the Snake world, we need to keep track of the following information:
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1. The size and layout of the world.
2. The location of the snake.
3. How many pieces of food we've consumed.

Let's consider this information one piece at a time.  First, how should we represent the world?  The world  
is  two-dimensional,  but  all  of  the  STL  containers  we've  seen  so  far  only  represent  lists,  which  are 
inherently one-dimensional.   Unfortunately,  the STL doesn't have a container class that encapsulates a 
multidimensional  array,  but  we  can emulate  this  functionality  with  an STL  vector of  vectors.   For 
example,  if  we  represent  each  square  with  an  object  of  type  WorldTile,  we  could  use  a 
vector<vector<WorldTile> >.  Note that there is a space between the two closing angle brackets – this 
is deliberate and is an unfortunate bug in the C++ specification.  If we omit the space, C++ would interpret 
the closing braces on vector<vector<WorldTile>> as the stream extraction operator >>, as in cin >> 
myValue.   Although  most  compilers  will  accept  code  that  uses  two  adjacent  closing  braces,  it's  bad 
practice to write it this way.

While we could use a vector<vector<WorldTile> >, there's actually a simpler option.  Since we need to 
be able to display the world to the user, we can instead store the world as a vector<string> where each 
string encodes one row of the board.  This also simplifies displaying the world; given a vector<string> 
representing all the world information, we can draw the board by outputting each string on its own line. 
Moreover, since we can use the bracket operator [] on both vector and string, we can use the familiar 
syntax  world[row][col] to select individual locations.  The first brackets select the  string out of the 
vector and the second the character out of the string.

We'll use the following characters to encode game information:

• A space character (' ') represents an empty tile.
• A pound sign ('#') represents a wall.
• A dollar sign ('$') represents food.
• An asterisk ('*') represents a tile occupied by a snake.

For simplicity, we'll bundle all the game data into a single struct called gameT.  This will allow us to pass all 
the game information to functions as a single parameter.  Based on the above information, we can begin 
writing this struct as follows:

    struct gameT {
        vector<string> world;
    };

We also will need quick access to the dimensions of the playing field, since we will need to be able to check  
whether the snake is out of bounds.  While we could access this information by checking the dimensions of 
the vector and the strings stored in it, for simplicity we'll store this information explicitly in the gameT 
struct, as shown here:

    struct gameT {
        vector<string> world;
        int numRows, numCols;
    };

For consistency, we'll access elements in the vector<string> treating the first index as the row and the 
second as the column.  Thus world[3][5] is row three, column five (where indices are zero-indexed).
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Now, we need to settle on a representation for the snake.  The snake lives on a two-dimensional grid and  
moves at a certain velocity.  Because the grid is discrete, we can represent the snake as a collection of its 
points along with its velocity vector.  For example, we can represent the following snake:

As the points (2, 0), (2, 1), (2, 2), (3, 2), (4, 2), (4, 3) and the velocity vector (-1, 0).

The points comprising the snake body are ordered to determine how the snake moves.  When the snake  
moves, the first point (the head) moves one step in the direction of the velocity vector.  The second piece 
then moves into the gap left by the first, the third moves into the gap left by the second piece, etc.  This  
leaves a gap where the tail used to be.  For example, after moving one step, the above snake looks like this:

To represent the snake in memory, we thus need to keep track of its velocity and an ordered list of the  
points comprising it.  The former can be represented using two ints, one for the Δx component and one 
for the Δy component.  But how should we represent the latter?  We've just learned about the vector and 
deque, each of which could represent the snake.  To see what the best option is, let's think about how we  
might implement snake motion.  We can think of snake motion in one of two ways – first, as the head  
moving forward a step and the rest of the points shifting down one spot, and second as the snake getting a  
new point in front of its current head and losing its tail.  The first approach requires us to update every 
element in the body and is not particularly efficient.  The second approach can easily be implemented with  
a deque through an appropriate combination of push_front and pop_back.  We will thus use a deque to 
encode the snake body.

If we want to have a deque of points, we'll first need some way of encoding a point.  This can be done with 
this struct:
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    struct pointT {
        int row, col;
    };

Taking these new considerations into account, our new gameT struct looks like this:

    struct gameT {
        vector<string> world;
        int numRows, numCols;

        deque<pointT> snake;
        int dx, dy;
    };

Finally, we need to keep track of how many pieces of food we've munched so far.  That can easily be stored  
in an int, yielding this final version of gameT:

    struct gameT {
        vector<string> world;
        int numRows, numCols;
    
        deque<pointT> snake;
        int dx, dy;
    
        int numEaten;
    };

The Skeleton Implementation

Now that we've settled on a representation for our game, we can start thinking about how to organize the 
program.   There  are  two  logical  steps  –  setup  and  gameplay  –  leading  to  the  following  skeleton 
implementation:
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    #include <iostream>
    #include <string>
    #include <deque>
    #include <vector>
    using namespace std;

    /* Number of food pellets that must be eaten to win. */
    const int kMaxFood = 20;

    /* Constants for the different tile types. */
    const char kEmptyTile = ' ';
    const char kWallTile  = '#';
    const char kFoodTile  = '$';
    const char kSnakeTile = '*';

    /* A struct encoding a point in a two-dimensional grid. */
    struct pointT {
        int row, col;
    };
    
    /* A struct containing relevant game information. */
    struct gameT {
        vector<string> world; // The playing field
        int numRows, numCols; // Size of the playing field
    
        deque<pointT> snake;  // The snake body
        int dx, dy;           // The snake direction
    
        int numEaten;         // How much food we've eaten.
    };
    
    /* The main program.  Initializes the world, then runs the simulation. */
    int main() {
        gameT game;
        InitializeGame(game);
        RunSimulation(game);
        return 0;
    }

Atop this program are the necessary #includes for the functions and objects we're using, followed by a 
list of constants for the game.  The pointT and gameT structs are identical to those described above.  main 
creates  a  gameT object,  passes  it  into  InitializeGame for  initialization,  and  finally  hands  it  to 
RunSimulation to play the game.

We'll begin by writing InitializeGame so that we can get a valid gameT for RunSimulation.  But how 
should we initialize the game board?  Should we use the same board every time, or let the user specify a  
level of their choosing?  Both of these are resaonable, but for the this extended example we'll choose the 
latter.  In particular, we'll specify a level file format, then let the user specify which file to load at runtime.

There are many possible file formats to choose from, but each must contain at least enough information to  
populate a  gameT struct; that is, we need the world dimensions and layout, the starting position of the 
snake, and the direction of the snake.  While I encourage you to experiment with different structures, we'll  
use a simple file format that encodes the world as a list of strings and the rest of the data as integers in a 
particular order.  Here is one possible file:
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File: level.txt
15 15
1 0
###############
#$           $#
#   #     #   #
#   #     #   #
#   #  $  #   #
#   #     #   #
#   #     #   #
#      *      #
#   #     #   #
#   #     #   #
#   #  $  #   #
#   #     #   #
#   #     #   #
#$           $#
###############

The first two numbers encode the number of rows and columns in the file, respectively.  The next line 
contains the initial snake velocity as Δx, Δy.  The remaining lines encode the game board, using the same  
characters we settled on for the world vector.  We'll assume that the snake is initially of length one and its 
position is given by a * character.

There are two steps necessary to let the user choose the level layout.  First, we need to prompt the user for  
the name of the file to open, reprompting until she chooses an actual file.  Second, we need to parse the 
contents of the file into a gameT struct.  In this example we won't check that the file is formatted correctly, 
though in professional code we would certainly need to check this.  If you'd like some additional practice 
with the streams library, this would be an excellent exercise.

Let's start writing the function responsible for loading the file from disk, InitializeGame.  Since we need 
to prompt the user for a filename until she enters a valid file, we'll begin writing:

    void InitializeGame(gameT& game) {
        ifstream input;
        while(true) {
            cout << "Enter filename: ";
            string filename = GetLine();
    
            /* ... */
        }
        /* ... */
    }

The while(true) loop will continuously prompt the user until she enters a valid file.  Here, we assume 
that  GetLine() is  the  version  defined  in  the  chapter  on  streams.   Also,  since  we're  now  using  the 
ifstream type, we'll need to #include <fstream> at the top of our program.

Now that the user has given us the a filename, we'll try opening it using the .open() member function.  If 
the file opens successfully, we'll break out of the loop and start reading level data:
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    void InitializeGame(gameT& game) {
        ifstream input;
        while(true) {
            cout << "Enter filename: ";
            string filename = GetLine();
    
            input.open(filename.c_str()); // See Chapter 3 for info on .c_str().
            if(input.is_open()) break;
    
            /* ... */
        }
        /* ... */
    }

If the file did not open, however, we need to report this to the user.  Additionally, we have to make sure to  
reset the stream's error state, since opening a nonexistent file causes the stream to fail.  Code for this is  
shown here:

    void InitializeGame(gameT& game) {
        ifstream input;
        while(true) {
            cout << "Enter filename: ";
            string filename = GetLine();
    
            input.open(filename.c_str()); // See Chapter 3 for info on .c_str().
            if(input.is_open()) break;
    
            cout << "Sorry, I can't find the file " << filename << endl;
            input.clear();
        }
        /* ... */
    }

Now we need to parse the file data into a gameT struct.  Since this is rather involved, we'll decompose it 
into a helper function called LoadWorld, then finish InitializeGame as follows:

    void InitializeGame(gameT& game) {
        ifstream input;
        while(true) {
            cout << "Enter filename: ";
            string filename = GetLine();
    
            input.open(filename.c_str()); // See Chapter 3 for info on .c_str().
            if(input.is_open()) break;

            cout << "Sorry, I can't find the file " << filename << endl;
            input.clear();
        }
        LoadWorld(game, input);
    }

Notice that except for the call to LoadWorld, nothing in the code for InitializeGame actually pertains to 
our Snake game.  In fact, the code we've written is a generic routine for opening a file specified by the user.  
We'll thus break this function down into two functions –  OpenUserFile, which prompts the user for a 
filename, and InitializeGame, which opens the specified file, then hands it off to  LoadWorld.  This is 
shown here:
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    void OpenUserFile(ifstream& input) {
        while(true) {
            cout << "Enter filename: ";
            string filename = GetLine();
    
            input.open(filename.c_str()); // See Chapter 3 for .c_str().
            if(input.is_open()) return;
    
            cout << "Sorry, I can't find the file " << filename << endl;
            input.clear();
        }
    }

    void InitializeGame(gameT& game) {
        ifstream input;
        OpenUserFile(input);
        LoadWorld(game, input);
    }

Let's begin working on  LoadWorld.   The first line of our file format encodes the number of rows and 
columns in the world, and we can read this data directly into the gameT struct, as seen here:

    void LoadWorld(gameT& game, ifstream& input) {
        input >> game.numRows >> game.numCols;
        game.world.resize(game.numRows);
    
        /* ... */
    }

We've also resized the vector to hold game.numRows strings, guaranteeing that we have enough strings 
to store the entire world.  This simplifies the implementation, as you'll see momentarily.

Next, we'll read the starting velocity for the snake, as shown here:

    void LoadWorld(gameT& game, ifstream& input) {
        input >> game.numRows >> game.numCols;
        game.world.resize(game.numRows);

        input >> game.dx >> game.dy;

        /* ... */
    }

At this point, we've read in the parameters of the world, and need to start reading in the actual world data.  
Since  each  line  of  the  file  contains  one  row  of  the  grid,  we'll  use  getline for  the  remaining  read 
operations.  There's a catch, however.  Recall that getline does not mix well with the stream extraction 
operator (>>), which we've used exclusively so far.  In particular, the first call to getline after using the 
stream extraction operator will return the empty string because the newline character delimiting the data  
is still waiting to be read.  To prevent this from gumming up the rest of our input operations, we'll call  
getline here on a dummy string to flush out the remaining newline:
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    void LoadWorld(gameT& game, ifstream& input) {
        input >> game.numRows >> game.numCols;
        game.world.resize(game.numRows);

        input >> game.dx >> game.dy;

        string dummy;
        getline(input, dummy);

        /* ... */
    }

Now we're ready to start reading in world data.  We'll read in game.numRows lines from the file directly 
into the game.world vector.  Since earlier we resized the vector, there already are enough strings to 
hold all the data we'll read.  The reading code is shown below:

    void LoadWorld(gameT& game, ifstream& input) {
        input >> game.numRows >> game.numCols;
        game.world.resize(game.numRows);
    
        input >> game.dx >> game.dy;
    
        string dummy;
        getline(input, dummy);
    
        for(int row = 0; row < game.numRows; ++row) {
            getline(input, game.world[row]);
            /* ... */
        }
    
        /* ... */
    }

Recall that somewhere in the level file is a single * character indicating where the snake begins.  To make 
sure that we set up the snake correctly, after reading in a line of the world data we'll check to see if it  
contains  a  star  and,  if  so,  we'll  populate  the  game.snake deque appropriately.   Using  the  .find() 
member function on the string simplifies this task, as shown here:
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    void LoadWorld(gameT& game, ifstream& input) {
        input >> game.numRows >> game.numCols;
        game.world.resize(game.numRows);
    
        input >> game.dx >> game.dy;
    
        string dummy;
        getline(input, dummy);
    
        for(int row = 0; row < game.numRows; ++row) {
            getline(input, game.world[row]);
            int col = game.world[row].find(kSnakeTile);
            if(col != string::npos) {
                pointT head;
                head.row = row;
                head.col = col;
                game.snake.push_back(head);
            }
        }
    
        /* ... */
    }

The syntax for creating and filling in the pointT data is a bit bulky here.  When we cover classes in the 
second half of this course you'll see a much better way of creating this pointT.  In the meantime, we can 
write a helper function to clean this code up, as shown here:

    pointT MakePoint(int row, int col) {
        pointT result;
        result.row = row;
        result.col = col;
        return result;
    }

    void LoadWorld(gameT& game, ifstream& input) {
        input >> game.numRows >> game.numCols;
        game.world.resize(game.numRows);

        input >> game.dx >> game.dy;

        string dummy;
        getline(input, dummy);

        for(int row = 0; row < game.numRows; ++row) {
            getline(input, game.world[row]);
            int col = game.world[row].find(kSnakeTile);
            if(col != string::npos)
                game.snake.push_back(MakePoint(row, col));
        }

        /* ... */
    }

There's one last step to take care of, and that's to ensure that we set the numEaten field to zero.  This edit 
completes LoadWorld and the final version of the code is shown here:
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    void LoadWorld(gameT& game, ifstream& input) {
        input >> game.numRows >> game.numCols;
        game.world.resize(game.numRows);
    
        input >> game.dx >> game.dy;
    
        string dummy;
        getline(input, dummy);
    
        for(int row = 0; row < game.numRows; ++row) {
            getline(input, game.world[row]);
            int col = game.world[row].find(kSnakeTile);
            if(col != string::npos)
                game.snake.push_back(MakePoint(row, col));
        }
    
        game.numEaten = 0;
    }

Great!  We've just finished setup and it's now time to code up the actual game.  We'll begin by coding a 
skeleton of  RunSimulation which displays the current state of the game, runs the AI,  and moves the 
snake:

    void RunSimulation(gameT& game) {
        /* Keep looping while we haven't eaten too much. */
        while(game.numEaten < kMaxFood) {
            PrintWorld(game);    // Display the board
            PerformAI(game);     // Have the AI choose an action
    
            if(!MoveSnake(game)) // Move the snake and stop if we crashed.
                break;
    
            Pause();             // Pause so we can see what's going on.
        }
        DisplayResult(game);     // Tell the user what happened
    }

We'll implement the functions referenced here out of order, starting with the simplest and moving to the 
most difficult.  First, we'll begin by writing Pause, which stops for a short period of time to make the game 
seem more fluid.  The particular implementation of Pause we'll use is a busy loop, a while loop that does 
nothing until enough time has elapsed.  Busy loops are frowned upon in professional code because they  
waste CPU power, but for our purposes are perfectly acceptable.

The <ctime> header exports a function called clock() that returns the number of “clock ticks” that have 
elapsed since the program began.   The duration of a clock tick varies from system to system, so C++ 
provides the constant CLOCKS_PER_SEC to convert clock ticks to seconds.  We can use clock to implement 
a busy loop as follows:

1. Call clock() to get the current time in clock ticks and store the result.
2. Continuously call  clock() and compare the result against the cached value.  If enough time has 

passed, stop looping.

This can be coded as follows:
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    const double kWaitTime = 0.1; // Pause 0.1 seconds between frames
    void Pause() {
        clock_t startTime = clock(); // clock_t is a type which holds clock ticks.
    
        /* This loop does nothing except loop and check how much time is left.  
         * Note that we have to typecast startTime from clock_t to double so
         * that the division is correct.  The static_cast<double>(...) syntax
         * is the preferred C++ way of performing a typecast of this sort;
         * see the chapter on
         * inheritance for more information.
         */
        while(static_cast<double>(clock() - startTime) / CLOCKS_PER_SEC <
                  kWaitTime);
    }

Next, let's implement the PrintWorld function, which displays the current state of the world.  We chose to 
represent the world as a vector<string> to simplify this code, and as you can see this design decision 
pays off well:

    void PrintWorld(gameT& game) {
        for(int row = 0; row < game.numRows; ++row)
            cout << game.world[row] << endl;
        cout << "Food eaten: " << game.numEaten << endl;
    }

This implementation of  PrintWorld is fine, but every time it executes it adds more text to the console 
instead of clearing what's already there.  This makes it tricky to see what's happening.  Unfortunately,  
standard  C++ does not  export  a  set  of  routines  for  manipulating the  console.   However,  every major  
operating system exports its own console manipulation routines, primarily for developers working on a 
command line.  For example, on a Linux system, typing clear into the console will clear its contents, while 
on Windows the command is CLS.

C++  absorbed  C's  standard  library,  including  the  system function  (header  file  <cstdlib>).   system 
executes an operating system-specific instruction as if you had typed it into your system's command line.  
This function can be very dangerous if used incorrectly,* but also greatly expands the power of C++.  We 
will not cover how to use  system in detail since it is platform-specific, but one particular application of 
system is to call the appropriate operating system function to clear the console.  We can thus upgrade our 
implementation of PrintWorld as follows:

    /* The string used to clear the display before printing the game board. 
     * Windows systems should use "CLS"; Mac OS X or Linux users should use
     * "clear" instead.
     */
    const string kClearCommand = "CLS";

    void PrintWorld(gameT& game) {
        system(kClearCommand.c_str());
        for(int row = 0; row < game.numRows; ++row)
            cout << game.world[row] << endl;
        cout << "Food eaten: " << game.numEaten << endl;
    }

Because system is from the days of pure C, we have to use .c_str() to convert the string parameter into a 
C-style string before we can pass it into the function.

* In particular, calling  system without checking that the parameters have been sanitized can let malicious users 
completely compromise your system.  Take CS155 for more information on what sorts of attacks are possible.
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The final quick function we'll write is DisplayResult, which is called after the game has ended to report 
whether the computer won or lost.  This function is shown here:

    void DisplayResult(gameT& game) {
        PrintWorld(game);
        if(game.numEaten == kMaxFood)
            cout << "The snake ate enough food and wins!" << endl;
        else
            cout << "Oh no!  The snake crashed!" << endl;
    }

Now,  on  to  the  two  tricky  functions  –  PerformAI,  which  determines  the  snake's  next  move,  and 
MoveSnake, which moves the snake and processes collisions.  We'll begin with PerformAI.

Designing an AI that plays Snake intelligently is far beyond the scope of this class.  However, it is feasible to 
build a rudimentary AI that plays reasonably well.  Our particular AI works as follows: if the snake is about  
to collide with an object, the AI will turn the snake out of danger.  Otherwise, the snake will continue on its  
current path, but has a percent chance to randomly change direction.

Let's begin by writing the code to check whether the snake will turn; that is, whether we're about to hit a  
wall or if the snake randomly decides to veer in a direction.  We'll write a skeletal implementation of this  
code, then will implement the requisite functions.  Our initial code is

    const double kTurnRate = 0.2; // 20% chance to turn each step.
    void PerformAI(gameT& game) {
        /* Figure out where we will be after we move this turn. */
        pointT nextHead = GetNextPosition(game);

        /* If that hits a wall or we randomly decide to, turn the snake. */
        if(Crashed(nextHead, game) || RandomChance(kTurnRate)) {
            /* ... */
        }
    }

Here  we're  calling  three  functions  we  haven't  written  yet  –  GetNextPosition,  which  computes  the 
position of the head on the next iteration;  Crashed, which returns whether the snake would crash if its 
head was in the given position;  and  RandomChance;  which returns true with probability equal  to the 
parameter.  Before implementing the rest of PerformAI, let's knock these functions out so we can focus on 
the rest of the task at hand.  We begin by implementing GetNextPosition.  This function accepts as input 
the game state and returns the point that we will occupy on the next frame if we continue moving in our  
current direction.  This function isn't particularly complex and is shown here:

    pointT GetNextPosition(gameT& game) {
        /* Get the head position. */
        pointT result = game.snake.front();
    
        /* Increment the head position by the current direction. */
        result.row += game.dy;
        result.col += game.dx;
        return result;
    }

The implementation of Crashed is similarly straightforward.  The snake has crashed if it has gone out of  
bounds or if its head is on top of a wall or another part of the snake:



Chapter 5: STL Sequence Containers - 109 -

    bool Crashed(pointT headPos, gameT& game) {
        return !InWorld(headPos, game) ||
               game.world[headPos.row][headPos.col] == kSnakeTile ||
             game.world[headPos.row][headPos.col] == kWallTile;
    }

Here, InWorld returns whether the point is in bounds and is defined as

    bool InWorld(pointT& pt, gameT& game) {
        return pt.col >= 0 &&
               pt.row >= 0 &&
               pt.col < game.numCols &&
               pt.row < game.numRows;
    }

Next, we need to implement RandomChance.  In CS106B/X we provide you a header file,  random.h, that 
exports this function.  However,  random.h is not a standard C++ header file and thus we will not use it  
here.  Instead, we will use C++'s  rand and  srand functions, also exported by  <cstdlib>, to implement 
RandomChance.  rand() returns a pseudorandom number in the range [0, RAND_MAX], where RAND_MAX is 
usually 215 – 1.  srand seeds the random number generator with a value that determines which values are 
returned by rand.  One common technique is to use the time function, which returns the current system 
time,  as  the  seed  for  srand since  different  runs  of  the  program  will  yield  different  random  seeds. 
Traditionally,  you  will  only  call  srand once  per  program,  preferably  during  initialization.   We'll  thus 
modify InitializeGame so that it calls srand in addition to its other functionality:

    void InitializeGame(gameT& game) {
        /* Seed the randomizer.  The static_cast converts the result of time(NULL)
         * from time_t to the unsigned int required by srand.  This line is
         * idiomatic C++.
         */
        srand(static_cast<unsigned int>(time(NULL)));
     
        ifstream input;
        OpenUserFile(input);
        LoadWorld(game, input);
    }

Now, let's implement RandomChance.  To write this function, we'll call rand to obtain a value in the range 
[0, RAND_MAX], then divide it by RAND_MAX + 1.0 to get a value in the range [0, 1).  We can then return 
whether this value is less than the input probability.  This yields true with the specified probability; try  
convincing yourself that this works if it doesn't immediately seem obvious.  This is a common technique 
and in fact is how the CS106B/X RandomChance function is implemented.

RandomChance is shown here:

    bool RandomChance(double probability) {
        return (rand() / (RAND_MAX + 1.0)) < probability;
    }

Notice that we added 1.0 to RAND_MAX.  This both adds the +1 necessary from the above discussion and 
implicitly converts the denominator into a double, which is necessary to avoid integer truncation.

Phew!  Apologies for the lengthy detour – let's get back to writing the AI!  Recall that we've written this  
code so far:
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    void PerformAI(gameT& game) {
        /* Figure out where we will be after we move this turn. */
        pointT nextHead = GetNextPosition(game);
    
        /* If that puts us into a wall or we randomly decide to, turn the snake. */
        if(Crashed(nextHead, game) || RandomChance(kTurnRate)) {
            /* ... */
        }
    }

We now need to implement the logic for turning the snake left or right.  First, we'll figure out in what  
positions the snake's head would be if we turned left or right.  Then, based on which of these positions are  
safe,  we'll  pick  a  direction  to  turn.   To  avoid  code  duplication,  we'll  modify  our  implementation  of 
GetNextPosition so  that  the  caller  can specify  the  direction  of  motion,  rather  than  relying  on  the  
gameT's stored direction.  The modified version of GetNextPosition is shown here:

    pointT GetNextPosition(gameT& game, int dx, int dy) {
        /* Get the head position. */
        gameT result = game.snake.front();

        /* Increment the head position by the specified direction. */
        result.row += dy;
        result.col += dx;
        return result;
    }

We'll need to modify PerformAI to pass in the proper parameters to GetNextPosition, as shown here:

    void PerformAI(gameT& game) {
        /* Figure out where we will be after we move this turn. */
        pointT nextHead = GetNextPosition(game, game.dx, game.dy);
    
        /* If that puts us into a wall or we randomly decide to, turn the snake. */
        if(Crashed(nextHead, game) || RandomChance(kTurnRate)) {
            /* ... */
        }
    }

Now,  let's  write  the  rest  of  this  code.   Given  that  the  snake's  velocity  is  (game.dx,  game.dy),  what 
velocities would we move at if we were heading ninety degrees to the left or right?  Using some basic  
linear algebra,* if our current heading is along dx and dy, then the headings after turning left and right 
from our current heading are be given by

dxleft = -dy
dyleft = dx

dxright = dy
dyright = -dx

Using these equalities, we can write the following code, which determines what bearings are available and 
whether it's safe to turn left or right:

* This is the result of multiplying the vector (dx, dy)T by a rotation matrix for either +π/2 or -π/2 radians.
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    void PerformAI(gameT& game) {
        /* Figure out where we will be after we move this turn. */
        pointT nextHead = GetNextPosition(game, game.dx, game.dy);
    
        /* If that puts us into a wall or we randomly decide to, turn the snake. */
        if(Crashed(nextHead, game) || RandomChance(kTurnRate)) {
            int leftDx = -game.dy;
            int leftDy =  game.dx;
    
            int rightDx =  game.dy;
            int rightDy = -game.dx;
    
            /* Check if turning left or right will cause us to crash. */
            bool canLeft  = !Crashed(GetNextPosition(game, leftDx,  leftDy),
                                     game);
            bool canRight = !Crashed(GetNextPosition(game, rightDx, rightDy),
                                     game);     
    
            /* ... */
        }
    }

Now, we'll decide which direction to turn.  If we can only turn one direction, we will choose that direction. 
If we can't turn at all, we will do nothing.  Finally, if we can turn either direction, we'll pick a direction  
randomly.  We will store which direction to turn in a boolean variable called willTurnLeft which is true 
if we will turn left and false if we will turn right.  This is shown here:

    void PerformAI(gameT& game) {
        /* Figure out where we will be after we move this turn. */
        pointT nextHead = GetNextPosition(game, game.dx, game.dy);

        /* If that puts us into a wall or we randomly decide to, turn the snake. */
        if(Crashed(nextHead, game) || RandomChance(kTurnRate)) {
            int leftDx = -game.dy;
            int leftDy =  game.dx;
    
            int rightDx =  game.dy;
            int rightDy = -game.dx;

            /* Check if turning left or right will cause us to crash. */
            bool canLeft  = !Crashed(GetNextPosition(game, leftDx,  leftDy),
                                     game);
            bool canRight = !Crashed(GetNextPosition(game, rightDx, rightDy),
                                     game);     

            bool willTurnLeft = false;
            if(!canLeft && !canRight)
                return; // If we can't turn, don't turn.
            else if(canLeft && !canRight)
                willTurnLeft = true; // If we must turn left, do so.
            else if(!canLeft && canRight)
                willTurnLeft = false; // If we must turn right, do so.
            else
                willTurnLeft = RandomChance(0.5); // Else pick randomly
    
            /* ... */
        }
    }
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Finally, we'll update our direction vector based on our choice:

    void PerformAI(gameT& game) {
        /* Figure out where we will be after we move this turn. */
        pointT nextHead = GetNextPosition(game, game.dx, game.dy);
    
        /* If that puts us into a wall or we randomly decide to, turn the snake. */
        if(Crashed(nextHead, game) || RandomChance(kTurnRate)) {
            int leftDx = -game.dy;
            int leftDy =  game.dx;
    
            int rightDx =  game.dy;
            int rightDy = -game.dx;
    
            /* Check if turning left or right will cause us to crash. */
            bool canLeft  = !Crashed(GetNextPosition(game, leftDx,  leftDy),
                                     game);
            bool canRight = !Crashed(GetNextPosition(game, rightDx, rightDy),
                                     game);     
    
            bool willTurnLeft = false;
            if(!canLeft && !canRight)
                return; // If we can't turn, don't turn.
            else if(canLeft && !canRight)
                willTurnLeft = true; // If we must turn left, do so.
            else if(!canLeft && canRight)
                willTurnLeft = false; // If we must turn right, do so.
            else
                willTurnLeft = RandomChance(0.5); // Else pick randomly
    
            game.dx = willTurnLeft? leftDx : rightDx;
            game.dy = willTurnLeft? leftDy : rightDy;
        }
    }

If you're not familiar with the ?: operator, the syntax is as follows:

    expression ? result-if-true : result-if-false

Here, this means that we'll set game.dx to leftDx if willTurnLeft is true and to rightDx otherwise.

We now have a working version of  PerformAI.  Our resulting implementation is not particularly dense, 
and most of the work is factored out into the helper functions.

There is  one task left  – implementing  MoveSnake.   Recall  that  MoveSnake moves the  snake one step 
forward on its path.  If the snake crashes, the function returns  false to indicate that the game is over. 
Otherwise, the function returns true.

The first thing to do in  MoveSnake is to figure out where the snake's head will be after taking a step. 
Thanks to GetNextPosition, this has already been taken care of for us:

    bool MoveSnake(gameT& game) {
        pointT nextHead = GetNextPosition(game, game.dx, game.dy);
        /* ... */
    }
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Now, if we crashed into something (either by falling off the map or by hitting an object), we'll return false 
so that the main loop can terminate:

    bool MoveSnake(gameT& game) {
        pointT nextHead = GetNextPosition(game, game.dx, game.dy);
        if(Crashed(nextHead, game))
            return false;

        /* ... */
    }

Next, we need to check to see if we ate some food.  We'll store this in a bool variable for now, since the 
logic for processing food will come a bit later:

    bool MoveSnake(gameT& game) {
        pointT nextHead = GetNextPosition(game, game.dx, game.dy);
        if(Crashed(nextHead, game))
            return false;
    
        bool isFood = (game.world[nextHead.row][nextHead.col] == kFoodTile);
    
        /* ... */
    }

Now, let's update the snake's head.  We need to update the world vector so that the user can see that the 
snake's head is in a new square, and also need to update the snake deque so that the snake's head is now 
given by the new position.  This is shown here:

    bool MoveSnake(gameT& game) {
        pointT nextHead = GetNextPosition(game, game.dx, game.dy);
        if(Crashed(nextHead, game))
            return false;
    
        bool isFood = (game.world[nextHead.row][nextHead.col] == kFoodTile);
    
        game.world[nextHead.row][nextHead.col] = kSnakeTile;
        game.snake.push_front(nextHead);
    
        /* ... */
    }

Finally, it's time to move the snake's tail forward one step.  However, if we've eaten any food, we will leave  
the tail as-is so that the snake grows by one tile.  We'll also put food someplace else on the map so the  
snake has a new objective.  The code for this is shown here:
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    bool MoveSnake(gameT& game) {
        pointT nextHead = GetNextPosition(game, game.dx, game.dy);
        if(Crashed(nextHead, game))
            return false;
    
        bool isFood = (game.world[nextHead.row][nextHead.col] == kFoodTile);
    
        game.world[nextHead.row][nextHead.col] = kSnakeTile;
        game.snake.push_front(nextHead);
    
        if(!isFood) {
            game.world[game.snake.back().row][game.snake.back().col] = kEmptyTile;
            game.snake.pop_back();
        } else {
            ++game.numEaten;
            PlaceFood(game);
        }
        return true;
    }

We're nearing the home stretch – all that's left to do is to implement  PlaceFood and we're done!  This 
function is simple – we'll just sit in a loop picking random locations on the board until we find an empty 
spot, then will put a piece of food there.  To generate a random location on the board, we'll scale rand() 
down to the proper range using the modulus (%) operator.  For example, on a world with four rows and ten 
columns, we'd pick as a row  rand() % 4 and as a column  col() % 10.  The code for this function is 
shown here:

    void PlaceFood(gameT& game) {
        while(true) {
            int row = rand() % game.numRows;
            int col = rand() % game.numCols;
    
            /* If the specified position is empty, place the food there. */
            if(game.world[row][col] == kEmptyTile) {
                game.world[row][col] = kFoodTile;
                return;
            }
        }
    }
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More To Explore

There's so much to explore with the STL that we could easily fill the rest of the course reader with STL  
content.  If you're interested in some more advanced topics relating to this material and the STL in general, 
consider reading on these topics:

1. stack and queue: The vector and deque pack a lot of firepower and can solve a wide array of 
problems.  However, in some cases, you may want to use a container with a more restricted set of  
operations.  For these purposes,  the STL exports two  container adapters,  containers that export 
functionality similar to a vector or deque but with a slight reduction in power.  The first of these 
is the  stack, which only lets you view the final element of a sequence; the second is the queue, 
which is similar to line at a ticket counter.  If you plan on pursuing C++ more seriously, you should 
take the time to look over what these container adapters have to offer.

2. valarray:  The valarray class is similar to a vector in that it's a managed array that can hold 
elements of any type.  However, unlike vector, valarray is designed for numerical computations. 
valarrays are fixed-size and have intrinsic support for mathematical operators.  For example, you 
can use the syntax myValArray *= 2 to multiply all of the entries in a valarray by two.  If you're 
interested in numeric or computational programming, consider looking into the valarray.

3. There's  an  excellent  article  online  comparing  the  performances  of  the  vector and  deque 
containers.  If you're interested, you can see it at
http://www.codeproject.com/vcpp/stl/vector_vs_deque.asp.

Practice Problems

1.  List two differences between the vector's push_back and resize member functions.

2. What header files do you need to #include to use vector?  deque?

3. How do you tell how many elements are in a vector?  In a deque?
 

4. How do you remove the first element from a vector?  From a deque?
 

5. Write a function called LinesFromFile which takes in a string containing a filename and returns a 
vector<string> containing all of the lines of text in the file in the order in which they appear.  If 
the file does not exist, you can return an empty  vector.  (Hint: look at the code for reading the  
world file in the Snake example and see if you can modify it appropriately)
 

6. Update the code for the sorting program so that it sorts elements in descending order instead of 
ascending order.
 

7. One use for the  deque container is to create a  ring buffer.  Unlike the linear  vector and  deque 
containers you saw in this chapter, a ring buffer is circular.  Here's an illustration of a ring buffer:

http://www.codeproject.com/vcpp/stl/vector_vs_deque.asp
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A ring buffer consists of a circular ring of elements with a  cursor which selects some particular 
element out of the buffer.  The four main operations on a ring buffer are as follows:
 
◦ Rotate the ring clockwise
◦ Rotate the ring counterclockwise
◦ Read the value at the cursor.
◦ Write the value at the cursor.
 
For example, given the above ring buffer, the result of rotating the ring clockwise would be
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 If we then wrote the value 5 to the location specified by the cursor, the buffer would look like this:
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There is a particularly elegant construction which enables us to build a ring buffer out of a deque. 
The basic idea is to “unroll”  the ring buffer into a linear sequence,  then use a combination of  
push_front,  pop_front,  push_back, and pop_back to simulate moving the cursor to the left or 
to  the  right.   This  technique  of  simulating  one  data  structure  using  another  is  ubiquitous  in 
computer science, and many important results in computability theory use constructions of this 
form.
 
To see exactly how the construction works, suppose that we have the following ring buffer: 
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 We can then represent this using a deque as follows:
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That is, the first element of the deque is the element under the cursor, and the rest of the elements 
in the  deque are the elements in the ring buffer formed by walking clockwise around the ring 
buffer.  Given this construction, we can simulate rotating the ring one position clockwise by moving 
the last element of the deque onto the front, as shown here:
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Similarly, to move the cursor one step counterclockwise, we move the element at the end of the 
deque onto the front, as shown here:
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Write  a  pair  of  functions  CursorClockwise and  CursorCounterClockwise which  take  in  a 
deque representing a ring buffer and update the  deque by simulating a cursor move in either 
direction.  Then write functions CursorRead and CursorWrite which read and write the element 
stored at the cursor.  You've just shown how to represent one data structure using another!
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8. As mentioned earlier, the deque outperforms the vector when inserting and removing elements at 
the end of the container.  However, the vector has a useful member function called reserve that 
can be used to increase its performance against the deque in certain circumstances.  The reserve 
function accepts an integer as a parameter and acts as a sort of “size hint” to the vector.  Behind 
the  scenes,  reserve works  by  allocating  additional  storage  space  for  the  vector elements, 
reducing the number of times that the vector has to ask for more storage space.  Once you have 
called  reserve, as long as the size of the  vector is less than the number of elements you have 
reserved, calls to push_back and insert on the vector will execute more quickly than normal. 
Once the vector hits the size you reserved, these operations revert to their original speed.*

 
Write a program that uses  push_back to insert a large number of  strings into two different 
vectors – one which has had reserve called on it and one which hasn't – as well as a deque.  The 
exact number and content of strings is up to you, but large numbers of long strings will give the 
most impressive results. Use the clock() function exported by <ctime> to compute how long it 
takes  to  finish  inserting  the  strings.   Now  repeat  this  trial,  but  insert  the  elements  at  the 
beginning of the container rather than the end.  Did calling  reserve help to make the  vector 
more competitive against the deque?
 

9. In this next problem we'll explore a simple encryption algorithm called the  Vigenère cipher and 
how to implement it using the STL containers.
 
One  of  the  oldest  known ciphers  is  the  Caesar  cipher,  named for  Julius  Caesar,  who allegedly 
employed it.   The idea is simple.   We pick a secret number between 1 and 26, inclusive,  then 
encrypt the input string by replacing each letter with the letter that comes that many spaces after 
it.  If this pushes us off the end of the alphabet, we wrap around to the start of the alphabet.  For  
example, if we were given the string “The cookies are in the fridge” and picked the number 1, we 
would end up with the resulting string “Uif dppljft bsf jo uif gsjehf.”  To decrypt the string, we  
simply need to push each letter backwards by one spot.
 
The Caesar cipher is an extremely weak form of encryption; it was broken in the ninth century by  
the Arab polymath al-Kindi.  The problem is that the cipher preserves the relative frequencies of 
each of the letters in the source text.  Not all letters appear in English with equal frequency – e and  
t are far more common than q or w, for example – and by looking at the relative letter frequencies 
in the encrypted text it is possible to determine which letter in the encrypted text corresponds to a  
letter in the source text and to recover the key.

The problem with the Caesar cipher is that it preserves letter frequencies because each letter is  
transformed using the same key.  But what if we were to use  multiple keys while encrypting the 
message? That is, we might encrypt the first letter with one key, the second with another, the third 
with yet another, etc.  One way of doing this is to pick a sequence of numbers, then cycle through 
them while encrypting the text.  For example, let's suppose that we want to encrypt the above 
message using the key string 1, 3, 7.  Then we would do the following:
 

T H E C O O K I E S A R E I N T H E F R I D G E

1 3 7 1 3 7 1 3 7 1 3 7 1 3 7 1 3 7 1 3 7 1 3 7

U K L D R V L L L T D Y F L U U K L G U P E J L

 
Notice that the letters KIE from COOKIES are all mapped to the letter L, making cryptanalysis much 
more difficult.  This particular encryption system is the Vigenère cipher. 

* Calling  push_back n times always takes O(n) time, whether or not you call  reserve.   However,  calling  reserve 
reduces the constant term in the big-O to a smaller value, meaning that the overall execution time is lower.
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Now, let's consider what would happen if we wanted to implement this algorithm in C++ to work 
on arbitrary strings.  Strings in C++ are composed of individual chars, which can take on (typically) 
one of 256 different values.  If we had a list of integer keys, we could encrypt a string using the 
Vigenère cipher by simply cycling through those keys and incrementing the appropriate letters of 
the string.  In fact, the algorithm is quite simple.  We iterate over the characters of the string, at 
each point incrementing the character by the current key and then rotating the keys one cycle.

a. Suppose that we want to represent a list of integer keys that can easily be cycled; that is, we  
want to efficiently support moving the first element of the list to the back.  Of the containers 
covered in this chapter (vector and deque), which have the best support for this operation? ♦

b. Based on your decision, implement a function  VigenereEncrypt that accepts a  string and a 
list  of  int keys stored in the  container  of  your  choice,  then encrypts  the  string using  the 
Vigenère cipher. ♦
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In the previous chapter, we explored two of the STL's sequence containers, the vector and deque.  These 
containers are ideally suited for situations where we need to keep track of an ordered list of elements,  
such as an itinerary, shopping list, or mathematical vector.  However, representing data in ordered lists is 
not optimal in many applications.   For example,  when keeping track of what merchandise is sold in a  
particular store, it does not make sense to think of the products as an ordered list.  Storing merchandise in  
a list would imply that the merchandise could be ordered as “this is the first item being sold, this is the  
second item being sold, etc.”  Instead, it makes more sense to treat the collection of merchandise as an 
unordered collection, where membership rather than ordering is the defining characteristic.  That is, we are 
more interested in answers to the question “is item X being sold here?” than answers to the question 
“where in the sequence is the element X?”  Another scenario in which ordered lists are suboptimal arises  
when trying to represent  relationships between sets  of  data.   For example,  we may want to encode a 
mapping from street addresses to buildings, or from email addresses to names.  In this setup, the main 
question we are interested in answering is “what value is associated with X?,” not “where in the sequence  
is element X?”

In this chapter, we will explore four new STL container classes – map, set, multimap, and multiset – that 
provide new abstractions  for  storing data.   These containers  will  represent  allow us to  ask different  
questions of  our data sets and will  make it possible to write programs to solve increasingly complex 
problems.  As we explore those containers, we will introduce STL iterators, tools that will pave the way for 
more advanced STL techniques.

Storing Unordered Collections with set

To motivate the STL set container, let's consider a simple probability question.  Recall from last chapter's 
Snake example that the C++ rand() function can be used to generate a pseudorandom integer in the range 
[0,  RAND_MAX].  (Recall that the notation [a,  b] represents all real numbers between  a and  b, inclusive). 
Commonly, we are interested not in values from zero to RAND_MAX, but instead values from 0 to some set 
upper bound k.  To get values in this range, we can use the value of

    rand() % (k + 1)

This computes the remainder when dividing rand() by k + 1, which must be in the range [0, k].*

Now, consider the following question.  Suppose that we have a six-sided die.  We roll the die, then record  
what  number  we  rolled.   We then keep rolling  the  die  and record  what  number came  up,  and keep  
repeating this process.  The question is as follows: how many times, on average, will we roll the die before  
the  same number comes up twice?  This  is  actually  a  special  case  of  a  more general  problem: if  we  
continuously  generate  random  integers  in  the  range  [0,  k],  how  many numbers  should  we expect  to 
generate before we generate some number twice?  With some fairly advanced probability theory,  this 
value can be calculated exactly.  However, this is a textbook on C++ programming, not probability theory, 
and so we'll write a short program that will simulate this process and report the average number of die  
rolls.

* This process will not always yield uniformly-distributed values, because RAND_MAX will not always be a multiple 
of k.  For a fun math exercise, think about why this is.
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There are many ways that we can write this program.  In the interest of simplicity, we'll break the program  
into two separate tasks.  First, we'll write a function that rolls the die over and over again, then reports  
how many die rolls occurred before some number came up twice.  Second, we'll write our main function to 
call this function multiple times to get a good sample, then will have it print out the average.

Let's think about how we can write a function that rolls a die until the same number comes up twice.  At a  
high  level,  this  function  needs  to  generate  a  random  number  from  1  to  6,  then check  if  it  has  been  
generated  before.   If  so,  it  should  stop  and  report  the  number  of  dice  rolled.   Otherwise,  it  should 
remember that this number has been rolled, then generate a new number.  A key step of this process is  
remembering what numbers have come up before, and using the techniques we've covered so far we could 
do this using either a vector or a deque.  For simplicity, we'll use a vector.  One implementation of this 
function looks like this:

    /* Rolls a six-sided die and returns the number that came up. */
    int DieRoll() {
        /* rand() % 6 gives back a value between 0 and 5, inclusive.  Adding one to
         * this gives us a valid number for a die roll.
         */
        return (rand() % 6) + 1;
    }

    /* Rolls the dice until a number appears twice, then reports the number of die
     * rolls.
     */
    size_t RunProcess() {
        vector<int> generated;

        while (true) {
            /* Roll the die. */
            int nextValue = DieRoll();

            /* See if this value has come up before.  If so, return the number of
             * rolls required.  This is equal to the number of dice that have been
             * rolled up to this point, plus one for this new roll.
             */
            for (size_t k = 0; k < generated.size(); ++k)
                if (generated[k] == nextValue)
                    return generated.size() + 1;

            /* Otherwise, remember this die roll. */
            generated.push_back(nextValue);
        }
    }

Now that we have the RunProcess function written, we can run through one simulation of this process. 
However, it would be silly to give an estimate based on just one iteration.  To get a good estimate, we'll  
need to  run this  process  multiple  times  to  control  for  randomness.   Consequently,  we  can write  the  
following main function, which runs the process multiple times and reports the average value:
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    const size_t kNumIterations = 10000; // Number of iterations to run

    int main() {
        /* Seed the randomizer.  See the last chapter for more information on this
         * line.
         */
        srand(static_cast<unsigned>(time(NULL)));

        size_t total = 0; // Total number of dice rolled

        /* Run the process kNumIterations times, accumulating the result into
         * total.
         */
        for (size_t k = 0; k < kNumIterations; ++k)
            total += RunProcess();

        /* Finally, report the result. */
        cout << "Average number of steps: " 
             << double(total) / kNumIterations << endl;
    }

If you compile and run this program, you'll see output that looks something like this:

    Average number of steps: 3.7873

You might see a different number displayed on your system, since the program involves a fundamentally 
random process.

Now, let's make a small tweak to this program.  Suppose that instead of rolling a six-sided die, we roll a 
twenty-sided die.*  How many steps should we expect this to take now?  If we change our implementation 
of DieRoll to the following:

    int DieRoll() {
        return (rand() % 20) + 1;
    }

Then running the program will produce output along the following lines:

    Average number of steps: 6.2806

This is interesting – we more than tripled the number of sides on the die (from six to twenty), but the total  
number of expected rolls increased by less than a factor of two!  Is this a coincidence, or is there some  
fundamental law of probability at work here?  To find out, let's assume that we're now rolling a die with  
365 sides (i.e. one side for every day of the year).  This means our new implementation of DieRoll is 

    int DieRoll() {
        return (rand() % 365) + 1;
    }

Running this program produces output that looks like this:

    Average number of steps: 24.6795

* If you haven't seen a twenty-sided die (or D20 in gamer-speak), you're really missing out.  They're very fun to play 
with.
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Now that's weird!  In increasing the number of sides on the die from 20 to 365, we increased the number 
of sides on the die by a factor of (roughly) eighteen.  However, the number of expected rolls went up only  
by a factor of four!  But more importantly, think about what this result means.  If you have a roomful of  
people with twenty-five people, then you should expect at least two people in that room to have the same  
birthday!  This is sometimes called the birthday paradox, since it seems counterintuitive that such a small 
sample of people would cause this to occur.  The more general result, for those of you who are interested,  
is that you will need to roll an n sided die roughly n  times before the same number will come up twice.

This has been a fun diversion into the realm of probability theory, but what does it have to do with C++  
programming?  The answer lies in the implementation of the  RunProcess function.  The heart of this 
function is a for loop that checks whether a particular value is contained inside of a vector.  This loop is 
reprinted here for simplicity:

    for (size_t k = 0; k < generated.size(); ++k)
        if (generated[k] == nextValue)
            return generated.size() + 1;

Notice that there is a disparity between the high-level operation being modeled here (“check if the number  
has already been generated”) and the actual implementation (“loop over the  vector, checking, for each 
element, whether that element is equal to the most-recently generated number”).  There is a tension here 
between what the code accomplishes and the way in which it accomplishes it.  The reason for this is that  
we're using the wrong abstraction.  Intuitively, a vector maintains an ordered sequence of elements.  The 
main  operations  on  a  vector maintain  that  sequence  by  adding  and  removing  elements  from  that 
sequence, looking up elements at particular positions in that sequence, etc.  For this application, we want  
to store a collection of numbers that is  unordered.  We don't care when the elements were added to the 
vector or what position they occupy.  Instead, we are interested what elements are in the vector, and in 
particular whether a given element is in the vector at all.

For situations like these, where the contents of a collection of elements are more important than the actual 
sequence those elements are in, the STL provides a special container called the set.  The set container 
represents  an  arbitrary,  unordered  collection  of  elements  and  has  good  support  for  the  following 
operations:

• Adding elements to the collection.
• Removing elements from the collection.
• Determining whether a particular element is in the collection.

To see the set in action, let's consider a modified version of the RunProcess function which uses a set 
instead of a  vector to store its elements.   This code is shown here (though you'll  need to  #include 
<set> for it to compile):

    size_t RunProcess() {
        set<int> generated;

        while (true) {
            int nextValue = DieRoll();
    
            /* Check if this value has been rolled before. */
            if (generated.count(nextValue)) return generated.size() + 1;
    
            /* Otherwise, add this value to the set. */
            generated.insert(nextValue);
        }
    }
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Take a look at the changes we made to this code.  To determine whether the most-recently-generated 
number has already been produced, we can use the simple syntax generated.count(nextValue) rather 
than the clunkier for loop from before.  Also notice that to insert the new element into the set, we used 
the insert function rather than push_back.

The names of the functions on the set are indicative of the differences between the set and the vector 
and deque.  When inserting an element into a vector or deque, we needed to specify where to put that 
element: at the end using  push_back, at the beginning with  push_front, or at some arbitrary position 
using insert.  The set has only one function for adding elements – insert – which does not require us to 
specify  where  in  the  set the  element  should  go.   This  makes  sense,  since  the  set is  an  inherently 
unordered collection of elements.  Additionally, the set has no way to query elements at specific positions, 
since the elements of a set don't have positions.  However, we can check whether an element exists in a 
set very simply using the count function, which returns true if the element exists and false otherwise.*

If you rerun this program using the updated code, you'll find that the program produces almost identical 
output (the randomness will mean that you're unlikely to get the same output twice).  The only difference 
between the old code and the new code is the internal structure.  Using the set, the code is easier to read 
and understand.  In the next section, we'll probe the set in more detail and explore some of its other uses.

A Primer on set

The STL set container represents an unordered collection of elements that does not permit duplicates. 
Logically, a set is a collection of unique values that efficiently supports inserting and removing elements, 
as well as checking whether a particular element is contained in the set.  Like the vector and deque, the 
set is a parameterized class.  Thus we can speak of a set<int>, a set<double>,  set<string>, etc.  As 
with vector and deque, sets can only hold one type of element, so you cannot have a set that mixes and 
matches between  ints and strings, for example.  However, unlike the  vector or  deque,  set can only 
store objects that can be compared using the < operator.  This means that you can store all primitive types 
in a set, along with strings and other STL containers.  However, you cannot store custom structs inside 
of an STL set.  For example, the following is illegal:

    struct Point {
        double x, y;
    };

    set<Point> mySet; // Illegal, Point cannot be compared with <

This may seem like a somewhat arbitrary restriction.  Logically, we could be able to gather up anything  
into an unordered collection.  Why does it matter that those elements be comparable using <?  The answer 
has to do with how the set is implemented behind the scenes.  Internally, the set is layered on top of a 
balanced binary tree, a special data structure that naturally supports the set's main operations.  However, 
balanced binary trees can only be constructed on data sets  where elements can be compared to one  
another,  hence  the  restriction.   Later  in  this  text  we'll  see  how  to  use  a  technique  called  operator 
overloading to make it possible to store objects of any type in an STL set, but for now you will need to 
confine yourself to primitives and other STL containers.

As we saw in the previous example, one of the most basic  set operations is insertion using the insert 
function.  Unlike the  deque and vector insert functions, you do not need to specify a location for the 
new element.  After all, a set represents an unordered collection, and specifying where an element should 
go in a set does not make any sense.  Here is some sample code using insert:

* Technically speaking, count returns 1 if the element exists and 0 otherwise.  For most purposes, though, it's safe 
to treat the function as though it returns a boolean true or false.
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    set<int> mySet;
    mySet.insert(137);  // Now contains: 137
    mySet.insert(42);   // Now contains: 42 137
    mySet.insert(137);  // Now contains: 42 137

Notice in this last line that inserting a second copy of 137 into the set did not change the contents of the 
set.  sets do not allow for duplicate elements.

To check whether a particular element is contained in an STL set, you can also use the count function, 
which returns 1 if the element is contained in the set and 0 otherwise.  Using C++'s automatic conversion 
of nonzero values into true and zero values to false, you usually do not need to explicitly check whether 
count yields a one or zero and can rely on implicit conversions instead.  For example:

    if(mySet.count(137))
        cout << "137 is in the set." << endl;  // Printed
    if(!mySet.count(500))
        cout << "500 is not in the set." << endl; // Printed

To remove an element from a set, you use the erase function.  erase is a mirror to insert, and the two 
have very similar syntax.  For example:

mySet.erase(137); // Removes 137, if it exists.

The STL set also supports several operations common to all STL containers.  You can remove all elements 
from a  set using  clear, check how many elements are present using  size, etc.  A full table of all  set 
operations is presented later in this chapter.

Traversing Containers with Iterators

One of  the most common operations we've seen in the course of working with the STL containers is 
iteration, traversing the contents of a container and performing some task on every element.  For example, 
the following loop iterates over the contents of a vector, printing each element:

    for (size_t h = 0; h < myVector.size(); ++h)
        cout << myVector[h] << endl;

We can similarly iterate over a deque as follows:

    for (size_t h = 0; h < myDeque.size(); ++h)
        cout << myDeque[h] << endl;

The reason that we can use this convenient syntax to traverse the contents of the  vector and deque is 
because the vector and deque represent linear sequences, and so it is possible to enumerate all possible 
indices in the container using the standard for loop.  That is, we can iterate so easily over a vector or 
deque because  we  can  look  up  the  zeroth  element,  then  the  first  element,  then  the  second,  etc.  
Unfortunately, this logic does not work on the STL set.  Because the set does not have an ordering on its 
elements, it does not make sense to speak of the “zeroth element of a set,” nor the “first element of a set,”  
etc.  To traverse the elements of a set, we will need to use a new concept, the iterator.

Every STL container presents a different  means of  storing data.   vector and  deque store  data in an 
ordered list.  set stores its data as an unordered collection.  As you'll soon see,  map encodes data as a 
collection of key/value pairs.  But while each container stores its data in a different format, fundamentally, 
each container still stores data.  Iterators provide a clean, consistent mechanism for accessing data stored 
in containers, irrespective of how that data may be stored.  That is, the syntax for looking at vector data 
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with iterators is almost identical to the syntax for examining set and deque data with iterators.  This fact 
is extremely important.  For starters, it implies that once you've learned how to use iterators to traverse 
any container,  you can use  them to traverse  all containers.   Also,  as  you'll  see,  because iterators can 
traverse data stored in any container, they can be used to specify a collection of values in a way that masks  
how those values are stored behind-the-scenes.

So what exactly is an iterator?  At a high level, an iterator is like a cursor in a text editor.  Like a cursor, an 
iterator has a well-defined position inside a container, and can move from one character to the next.  Also 
like a cursor, an iterator can be used to read or write a range of data one element at a time.

It's difficult to get a good feel for how iterators work without having a sense of how all the pieces fit  
together.  Therefore, we'll get our first taste of iterators by jumping head-first into the idiomatic “loop over  
the elements of a container” for loop, then will clarify all of the pieces individually.  Here is a sample piece 
of code that will traverse the elements of a vector<int>, printing each element out on its own line:

    vector<int> myVector = /* ... some initialization ... */
    for (vector<int>::iterator itr = myVector.begin(); 
         itr != myVector.end(); ++itr)
        cout << *itr << endl;

This code is perhaps the densest C++ we've encountered yet, so let's take a few minutes to dissect exactly  
what's going on here.  The first part of the for loop is the statement

    vector<int>::iterator itr = myVector.begin();

This line of code creates an object of type vector<int>::iterator, an iterator variable named itr that 
can traverse a vector<int>.  Note that a vector<int>::iterator can only iterate over a vector<int>. 
If we wanted to iterate over a vector<string>, we would need to use a vector<string>::iterator, 
and  if  we  wanted to  traverse  a  set<int> we would  have  to  use  a  set<int>::iterator.   We  then 
initialize  the  iterator  to  myVector.begin().   Every  STL  container  class  exports  a  member  function 
begin() which yields an iterator pointing to the first element of that container.  By initializing the iterator 
to myVector.begin(), we indicate to the C++ compiler that the itr iterator will be traversing elements 
of the container myVector.

Inside the body of the for loop, we have the line

    cout << *itr << endl;

The  strange-looking  entity  *itr is  known  as  an  iterator  dereference and  means  “the  element  being 
iterated over by itr.”  As itr traverses the elements of the vector, it will proceed from one element to 
the next in sequence until all of the elements of the vector have been visited.  At each step, the element 
being iterated over can be yielded by prepending a star to the name of the iterator.  In the above context,  
we dereference the iterator to yield the current element of  myVector being traversed, then print it out. 
We will discuss the nuances of iterator dereferences in more detail shortly.

Returning up to the for loop itself, notice that after each iteration we execute

    ++itr;

When applied to ints, the ++ operator is the increment operator; writing ++myInt means “increment the 
value of the myInt variable.”  When applied to iterators, the ++ operator means “advance the iterator one 
step forward.”  Because the step condition of the for loop is ++itr, this means that each iteration of the 
for loop will advance the iterator to the next element in the container, and eventually all elements will be 
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visited.  Of course, at some point, we will have visited all of the elements in the vector and will need to 
stop iterating.  To detect when an iterator has visited all of the elements, we loop on the condition that

    itr != myVector.end();

Each STL container exports a special function called end() that returns an iterator to the element one past  
the end of the container.  For example, consider the following vector:

137 42 2718 3141 6266 6023

In this case, the iterators returned by that  vector's  begin() and  end() functions would point to the 
following locations:

begin() end()

↓ ↓

137 42 2718 3141 6266 6023

Notice that the begin() iterator points to the first element of the vector, while the end() iterator points 
to the slot one position past the end of the  vector.   This may seem strange at first, but is actually an 
excellent design decision.  Recall the for loop from above, which iterates over the elements of a vector. 
This is reprinted below:

    for (vector<int>::iterator itr = myVector.begin();
         itr != myVector.end(); ++itr)
        cout << *itr << endl;

Compare this to the more traditional loop you're used to, which also iterates over a vector:

    for (size_t h = 0; h < myVector.size(); ++h)
        cout << myVector[h] << endl;

Because  the  vector is  zero-indexed,  if  you  were  to  look  up  the  element  in  the  vector at  position 
myVector.size(), you would be reading a value not actually contained in the vector.  For example, in a 
vector of five elements, the elements are stored at positions 0, 1, 2, 3, and 4.  There is no element at  
position five, and trying to read an element there will result in undefined behavior.  However, in the for 
loop to iterate over the contents of the vector, we still use the value of myVector.size() as the upper 
bound  for  the  iteration,  since  the  loop  will  cut  off  as  soon  as  the  iteration  index  reaches  the  value 
myVector.size().  This is identical to the behavior of the end() iterator in the iterator-based for loop. 
myVector.end() is never a valid iterator, but we use it as the loop upper bound because as soon as the 
itr iterator reaches myVector.end() the loop will terminate.

Part of the beauty of iterators is that the above for loop for iterating over the contents of a vector can 
trivially be adapted to iterate over just about any STL container class.  For instance, if we want to iterate  
over the contents of a deque<int>, we could do so as follows:

    deque<int> myDeque = /* ... some initialization ... */
    for (deque<int>::iterator itr = myDeque.begin(); itr != myDeque.end(); ++itr)
        cout << *itr << endl;



Chapter 6: STL Associative Containers and Iterators - 129 -

This  is  exactly the  same  loop  structure,  though  some  of  the  types  have  changed (i.e.  we've  replaced 
vector<int>::iterator with deque<int>::iterator).  However, the behavior is identical.  This loop 
will traverse the contents of the deque in sequence, printing each element out as it goes.

Of course, at this point iterators may seem like a mere curiosity.  Sure, we can use them to iterate over a 
vector or deque, but we already could do that using a more standard for loop.  The beauty of iterators is 
that they work on any STL container, including the set.  If we have a set of elements we wish to traverse, 
we can do so using the following syntax:

    set<int> mySet = /* ... some initialization ... */
    for (set<int>::iterator itr = mySet.begin(); itr != mySet.end(); ++itr)
        cout << *itr << endl;

Again, notice that the structure of the loop is the same as before.  Only the types have changed.

One crucial detail we've ignored up to this point is in what order the elements of a set will be traversed. 
When using the vector or deque there is a natural iteration order (from the start of the sequence to the 
end), but when using the STL set the idea of ordering is a bit more vague.  However, iteration order over a 
set is well-specified.  When traversing set elements via an iterator, the elements will be visited in sorted 
order, starting with the smallest element and ending with the largest.  This is in part why the STL set can 
only  store  elements  comparable  using  the  less-than  operator:  there  is  no  well-defined  “smallest”  or 
“biggest”  element  of  a  set if  the  elements  cannot  be  compared.   To  see  this  in  action,  consider  the 
following code snippet:

    /* Generate ten random numbers */
    set<int> randomNumbers;
    for (size_t k = 0; k < 10; ++k)
        randomNumbers.insert(rand());

    /* Print them in sorted order. */
    for (set<int>::iterator itr = randomNumbers.begin(); 
         itr != randomNumbers.end(); ++itr)
        cout << *itr << endl;

This will print different outputs on each run, since the program generates and stores random numbers.  
However, the values will always be in sorted order.  For example:

    137 2718 3141 4103 5422 6321 8938 10299 12003 16554

Spotlight on Iterators

As you just saw, there are three major operations on iterators:

• Dereferencing the iterator to read a value.
• Advancing the iterator from one position to the next.
• Comparing two iterators for equality.

Iterator dereferencing is a particularly important operation, and so before moving on we'll  take a few 
minutes to explore this in more detail.

As you've seen so far, iterators can be used to read the values of a container indirectly.  However, iterators 
can also be used to write the values of a container indirectly as well.  For example, here is a simple for 
loop to set all of the elements of a vector<int> to 137:
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    for (vector<int>::iterator itr = myVector.begin(); 
         itr != myVector.end(); ++itr)
        *itr = 137;

This is your first glimpse of the true power of iterators.  Because iterators give a means for reading and 
writing  container  elements  indirectly,  it  is  possible  to  write  functions  that  operate  on data  from any 
container  class  by  manipulating  iterators  from  that  container  class.   These  functions  are  called  STL 
algorithms and will be discussed in more detail next chapter.

Up to this point, when working with iterators, we have restricted ourselves to STL containers that hold 
primitive types.  That is, we've talked about vector<int> and set<int>, but not, say, vector<string>. 
All  of  the  syntax  that  we  have  seen  so  far  for  containers  holding  primitive  types  are  applicable  to  
containers  holding  objects.   For  example,  this  loop  will  correctly  print  out  all  of  the  strings  in  a 
set<string>:

    for (set<string>::iterator itr = mySet.begin(); itr != mySet.end(); ++itr)
        cout << *itr << endl;

However,  let's  suppose  that  we  want  to  iterate  over  a  set<string> printing  out  the  lengths of  the 
strings in that set.  Unfortunately, the following syntax will not work:

    for (set<string>::iterator itr = mySet.begin(); itr != mySet.end(); ++itr)
        cout << *itr.length() << endl; // Error: Incorrect syntax!

The problem with this code is that the C++ compiler interprets it as

    *(itr.length())

Instead of

    (*itr).length()

That is, the compiler tries to call the nonexistent  length() function on the iterator and to dereference 
that,  rather than dereferencing the iterator and then invoking the  length() function on the resulting 
value.  This is a subtle yet important difference, so make sure that you take some time to think it through 
before moving on.

To fix this problem, all STL iterators support and operator called the  arrow operator that allows you to 
invoke member functions on the element currently being iterated over.   For example,  to print out the  
lengths of all of the strings in a set<string>, the proper syntax is

    for (set<string>::iterator itr = mySet.begin(); itr != mySet.end(); ++itr)
        cout << itr->length() << endl;

We will certainly encounter the arrow operator more as we continue our treatment of the material, so 
make sure that you understand its usage before moving on.

Defining Ranges with Iterators

Recall for a moment the standard “loop over a container” for loop:

    set<int> mySet = /* ... some initialization ... */
    for (set<int>::iterator itr = mySet.begin(); itr != mySet.end(); ++itr)
        cout << *itr << endl;
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If you'll notice, this loop is bounded by two iterators – mySet.begin(), which specifies the first element 
to iterate over, and mySet.end(), which defines the element one past the end of the iteration range.  This 
raises an interesting point about the duality of iterators.  A single iterator points to a single position in a 
container class and represents a way to read or write that value indirectly.  A pair of iterators defines two 
positions and consequently defines a range of elements.  In particular, given two iterators start and stop, 
these iterators define the range of elements beginning with start and ending one position before stop. 
Using mathematical notation, the range of elements defined by start and stop spans [start, stop).

So far, the only ranges we've considered have been those of the form [begin(), end()) consisting of all of 
the  elements  of  a  container.   However,  as  we  begin  moving  on  to  progressively  more  complicated 
programs, we will frequently work on ranges that do not span all of a container.  For example, we might be  
interested in iterating  over  only  the  first  half  of  a  container,  or  perhaps just  a  slice  of  elements in a 
container meeting some property.

If you'll recall, the STL set stores its elements in sorted order, a property that guarantees efficient lookup 
and insertion.  Serendipitously, this allows us to efficiently iterate over a slice out of a set whose values 
are  bounded  between  some  known  limits.   The  set exports  two  functions,  lower_bound and 
upper_bound,  that can be used to iterate over the elements in a  set that are within a certain range. 
lower_bound accepts a value, then returns an iterator to the first element in the set greater than or equal 
to that value.  upper_bound similarly accepts a value and returns an iterator to the first element in the 
set that is strictly greater than the specified element.  Given a closed range [lower, upper], we can iterate 
over that range by using  lower_bound to get an iterator to the first  element no less than  lower and 
iterating until we reach the value returned by upper_bound, the first element strictly greater than upper. 
For example, the following loop iterates over all elements in the set in the range [10, 100]:

    set<int>::iterator stop = mySet.upper_bound(100);
    for(set<int>::iterator itr = mySet.lower_bound(10); itr != stop; ++itr)
         /* ... perform tasks... */

Part of  the beauty of  upper_bound and  lower_bound is  that it  doesn't  matter whether the elements 
specified as arguments to the functions actually exist in the set.  For example, suppose that we run the 
above for loop on a set containing all the odd numbers between 3 and 137.  In this case, neither 10 nor 
100 are contained in the  set.   However,  the code will  still  work correctly.   The  lower_bound function 
returns an iterator to the first element at least as large as its argument, and in the  set of odd numbers 
would  return  an  iterator  to  the  element  11.   Similarly,  upper_bound returns  an iterator  to  the  first 
element strictly greater than its argument, and so would return an iterator to the element 101.

Summary of set

The following table lists some of the most important set functions.  Again, we haven't covered const yet, 
so for now it's safe to ignore it.  We also haven't covered const_iterators, but for now you can just treat 
them as iterators that can't write any values.

Constructor: set<T>() set<int> mySet;

Constructs an empty set.

Constructor: set<T>(const set<T>& other) set<int> myOtherSet = mySet;

Constructs a set that's a copy of another set.
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Constructor: set<T>(InputIterator start,
                 InputIterator stop)

set<int> mySet(myVec.begin(), myVec.end());

Constructs a  set containing copies of the elements in the range 
[start, stop).  Any duplicates are discarded, and the elements 
are sorted.   Note  that  this function accepts iterators  from any 
source.

size_type size() const int numEntries = mySet.size();

Returns the number of elements contained in the set.

bool empty() const if(mySet.empty()) { ... }

Returns whether the set is empty.

void clear() mySet.clear();

Removes all elements from the set.

iterator begin()
const_iterator begin() const

set<int>::iterator itr = mySet.begin();

Returns  an  iterator  to  the  start  of  the  set.   Be  careful  when 
modifying elements in-place.

iterator end()
const_iterator end()

while(itr != mySet.end()) { ... }

Returns an iterator to the element one past the end of the final 
element of the set.

pair<iterator, bool>
     insert(const T& value)
void insert(InputIterator begin,
            InputIterator end)

mySet.insert(4);
mySet.insert(myVec.begin(), myVec.end());

The first  version inserts the specified value into the  set.   The 
return type is a pair containing an iterator to the element and a 
bool indicating whether the element was inserted successfully 
(true)  or  if  it  already  existed  (false).   The  second  version 
inserts  the  specified  range  of  elements  into  the  set,  ignoring 
duplicates.

iterator find(const T& element)
const_iterator
   find(const T& element) const

if(mySet.find(0) != mySet.end()) { ... }

Returns an iterator to the specified element if it exists, and end 
otherwise.

size_type count(const T& item) const if(mySet.count(0)) { ... }

Returns 1 if the specified element is contained in the set, and 0 
otherwise.

size_type erase(const T& element)
void erase(iterator itr);
void erase(iterator start,
           iterator stop);

if(mySet.erase(0)) {...} // 0 was erased
mySet.erase(mySet.begin());
mySet.erase(mySet.begin(), mySet.end());

Removes  an  element  from  the  set.   In  the  first  version,  the 
specified element is removed if found, and the function returns 1 
if the element was removed and 0 if it wasn't in the  set.   The 
second version removes the element pointed to by itr.  The final 
version erases elements in the range [start, stop).
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iterator lower_bound(const T& value) itr = mySet.lower_bound(5);

Returns an iterator to the first  element that is greater than or 
equal to the specified value.  This function is useful for obtaining 
iterators to a range of elements,  especially in conjunction with 
upper_bound.

iterator upper_bound(const T& value) itr = mySet.upper_bound(100);

Returns an iterator to the first element that is greater than the 
specified value.   Because this  element  must  be strictly  greater 
than the specified value,  you can iterate over a range until the 
iterator is equal to upper_bound to obtain all elements less than 
or equal to the parameter.

A Useful Helper: pair

We have just finished our treatment of the set and are about to move on to one of the STL's most useful 
containers, the  map.   However,  before we can cover the  map in any detail,  we must first make a quick 
diversion to a useful helper class, the pair.

pair is a parameterized class that simply holds two values of arbitrary type.  pair, defined in <utility>, 
accepts two template arguments and is declared as

    pair<TypeOne, TypeTwo>

pair has two fields, named first and  second, which store the values of the two elements of the pair; 
first is a variable of type TypeOne, second of type TypeTwo.  For example, to make a pair that can hold 
an int and a string, we could write

    pair<int, string> myPair;

We could then access the pair's contents as follows

    pair<int, string> myPair;
    myPair.first  =  137;
    myPair.second = "C++ is awesome!";

In some instances, you will need to create a pair on-the-fly to pass as a parameter (especially to the map's 
insert).  You can therefore use the make_pair function as follows:

    pair<int, string> myPair = make_pair(137, "string!");

Interestingly, even though we didn't specify what type of pair to create, the make_pair function was able 
to deduce the type of the  pair from the types of the elements.  This has to do with how C++ handles 
function templates and we'll explore this in more detail later.

Representing Relationships with map

One of the most important data structures in modern computer programming is the map, a way of tagging 
information with some other piece of data.  The inherent idea of a mapping should not come as a surprise 
to you.  Almost any entity in the real world has extra information associated with it.  For example, days of  
the year have associated events, items in your refrigerator have associated expiration dates, and people 
you know have associated titles and nicknames.  The map STL container manages a relationship between a 
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set of keys and a set of values.  For example, the keys in the map might be email addresses, and the values 
the  names  of  the  people  who  own  those  email  addresses.   Alternatively,  the  keys  might  be 
longitude/latitude pairs, and the values the name of the city that resides at those coordinates.  

Data in a map is stored in key/value pairs.  Like the set, these elements are unordered.  Also like the set, it 
is possible to query the map for whether a particular key exists in the map (note that the check is “does key 
X exist?” rather than “does key/value pair X exist?”).  Unlike the set, however, the map also allows clients to 
ask “what is the value associated with key X?”  For example, in a map from longitude/latitude pairs to city 
names, it is possible to give a properly-constructed pair of coordinates to the map, then get back which 
city is at the indicated location (if such a city exists).

The  map is  unusual  as  an  STL  container  because  unlike  the  vector,  deque,  and  set,  the  map is 
parameterized over two types, the type of the key and the type of the value.  For example, to create a map 
from strings to ints, you would use the syntax 

    map<string, int> myMap;

Like the STL set, behind the scenes the map is implemented using a balanced binary tree.  This means that 
the keys in the map must be comparable using the less-than operator.  Consequently, you won't be able to 
use  your  own  custom  structs  as  keys  in  an  STL  map.   However,  the  values in  the  map  needn't  be 
comparable, so it's perfectly fine to map from  strings to custom struct types.  Again, when we cover 
operator overloading later in this text, you will see how to store arbitrary types as keys in an STL map.

The map supports many different operations, of which four are key:

• Inserting a new key/value pair.
• Checking whether a particular key exists.
• Querying which value is associated with a given key.
• Removing an existing key/value pair.

We will address each of these in turn.

In order for a map to be useful, we will need to populate it with a collection of key/value pairs.  There are 
two ways to insert key/value pairs into the map.  The simplest way to insert key/value pairs into a map is 
to user the element selection operator (square brackets) to implicitly add the pair, as shown here:

    map<string, int> numberMap;
    numberMap["zero"] = 0;
    numberMap["one"] = 1;
    numberMap["two"] = 2;
    /* ... etc. ... */

This code creates a new  map from  strings to  ints.  It then inserts the key  "zero" which maps to the 
number zero, the key "one" which maps to the number one, etc.  Notice that this is a major way in which  
the map differs from the vector.  Indexing into a vector into a nonexistent position will cause undefined 
behavior,  likely a full  program crash.   Indexing into a  map into  a  nonexistent  key implicitly  creates a 
key/value pair.

The square brackets can be used both to insert new elements into the map and to query the map for the 
values associated with a particular key.  For example, assuming that  numberMap has been populated as 
above, consider the following code snippet:
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    cout << numberMap["zero"] << endl;
    cout << numberMap["two"] * numberMap["two"] << endl;

The output of this program is

    0
    4

On the first line, we query the numberMap map for the value associated with the key "zero", which is the 
number zero.  The second line looks up the value associated with the key  "two" and multiplies it with 
itself.  Since "two" maps to the number two, the output is four.

Because the square brackets both query and create key/value pairs, you should use care when looking  
values up with square brackets.  For example, given the above number map, consider this code:

    cout << numberMap["xyzzy"] << endl;

Because "xyzzy" is not a key in the map, this implicitly creates a key/value pair with "xyzzy" as the key 
and zero as the value. (Like the vector and deque, the map will zero-initialize any primitive types used as 
values).  Consequently, this code will output

    0

and will  change the  numberMap map so that it  now has  "xyzzy" as a  key.   If  you want to look up a 
key/value pair without accidentally adding a new key/value pair to the map, you can use the map's  find 
member function.  find takes in a key, then returns an iterator that points to the key/value pair that has 
the specified key.   If  the key does not exist,  find returns the  map's  end() iterator as a sentinel.   For 
example:

    map<string, int>::iterator itr = numberMap.find("xyzzy");
    if (itr == numberMap.end())
        cout << "Key does not exist." << endl;
    else
        /* ... */

When working with an STL  vector,  deque,  or  set,  iterators simply iterated over the contents of  the 
container.   That  is,  a  vector<int>::iterator can  be  dereferenced  to  yield  an  int,  while  a 
set<string>::iterator dereferences to a string.  map iterators are slightly more complicated because 
they dereference to a key/value pair.  In particular, if you have a  map<KeyType, ValueType>, then the 
iterator will dereference to a value of type

    pair<const KeyType, ValueType>

This is a pair of an immutable key and a mutable value.  We have not talked about the const keyword yet, 
but it means that keys in a map cannot be changed after they are set (though they can be removed).  The 
values associated with a key, on the other hand, can be modified.

Because  map iterators dereference to a  pair,  you can access the  keys and values from an iterator as 
follows:
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    map<string, int>::iterator itr = numberMap.find("xyzzy");
    if (itr == numberMap.end())
        cout << "Key does not exist." << endl;
    else
        cout << "Key " << itr->first << " has value " << itr->second << endl;

That is, to access the key from a map iterator, you use the arrow operator to select the first field of the 
pair.  The value is stored in the second field.  This naturally segues into the stereotypical “iterate over the 
elements of a map loop,” which looks like this:

    for (map<string, int>::iterator itr = myMap.begin(); itr != myMap.end(); ++itr)
        cout << itr->first << ": " << itr->second << endl;

When iterating over a map, the key/value pairs will be produced sorted by key from lowest to highest.  This 
means that if we were to iterate over the  numberMap map from above printing out key/value pairs, the 
output would be

    one: 1
    two: 2
    zero: 0

Since the keys are strings which are sorted in alphabetical order.

You've now seen how to insert, query, and iterate over key/value pairs.  Removing key/value pairs from a 
map is also fairly straightforward.  To do so, you use the erase function as follows:

    myMap.erase("key");

That is, the erase function accepts a key, then removes the key/value pair from the map that has that key (if 
it exists).

As with all  STL containers,  you can remove all  key/value pairs  from a  map using the  clear function, 
determine  the  number  of  key/value  pairs  using  the  size function,  etc.   There  are  a  few  additional 
operations on a map beyond these basic operations, some of which are covered in the next section.

insert and How to Avoid It

As seen above, you can use the square brackets operator to insert and update key/value pairs in the map. 
However,  there  is  another  mechanism  for  inserting  key/value  pairs:  insert.   Like  the  set's  insert 
function,  you need only specify what to insert,  since the  map,  like the  set,  does not store values in a 
particular order.   However,  because the  map stores elements as key/value pairs,  the parameter to the 
insert function should be a  pair object containing the key and the value.  For example, the following 
code is an alternative means of populating the numberMap map:

    map<string, int> numberMap;
    numberMap.insert(make_pair("zero", 0));
    numberMap.insert(make_pair("one", 1));
    numberMap.insert(make_pair("two", 2));
    /* ... */

There is one key difference between the insert function and the square brackets.  Consider the following 
two code snippets:
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    /* Populate a map using [ ] */
    map<string, string> one;
    one["C++"] = "sad";
    one["C++"] = "happy";

    /* Populate a map using insert */
    map<string, string> two;
    two.insert(make_pair("C++", "sad"));
    two.insert(make_pair("C++", "happy"));

In the first code snippet, we create a map from strings to strings called one.  We first create a key/value 
pair mapping "C++" to "sad", and then overwrite the value associated with "C++" to "happy".  After this 
code executes, the map will map the key "C++" to the value "happy", since in the second line the value was 
overwritten.  In the second code snippet, we call  insert twice, once inserting the key  "C++" with the 
value "sad" and once inserting the key "C++" with the value "happy".  When this code executes, the map 
will end up holding one key/value pair: "C++" mapping to "sad".  Why is this the case?

Like the STL set, the  map stores a unique set of keys.  While multiple keys may map to the same value, 
there can only be one key/value pair for any given key.  When inserting and updating keys with the square 
brackets, any updates made to the map are persistent; writing code to the effect of myMap[key] = value 
ensures that the map contains the key key mapping to value value.  However, the insert function is not 
as forgiving.  If you try to insert a key/value pair into a map using the insert function and the key already 
exists, the map will not insert the key/value pair, nor will it update the value associated with the existing 
key.  To mitigate this, the  map's  insert function returns a value of type  pair<iterator, bool>.  The 
bool value in the pair indicates whether the insert operation succeeded; a result of  true means that 
the key/value pair was added, while a result of false means that the key already existed.  The iterator 
returned by the insert function points to the key/value pair in the map.  If the key/value pair was newly-
added, this iterator points to the newly-inserted value, and if a key/value pair already exists the iterator 
points to the existing key/value pair that prevented the operation from succeeding.  If you want to use 
insert to insert key/value pairs, you can write code to the following effect:

    /* Try to insert normally. */
    pair<map<string, int>::iterator, bool> result = 
        myMap.insert(make_pair("STL", 137));

    /* If insertion failed, manually set the value. */
    if(!result.second)
        result.first->second = 137;

In  the  last  line,  the  expression  result.first->second is  the  value  of  the  existing  entry,  since 
result.first yields an iterator pointing to the entry, so result.first->second is the value field of the 
iterator to the entry.  As you can see, the pair can make for tricky, unintuitive code.

If insert is so inconvenient, why even bother with it?  Usually, you won't, and will use the square brackets 
operator instead.  However, when working on an existing codebase, you are extremely likely to run into the 
insert function, and being aware of its somewhat counterintuitive semantics will save you many hours of 
frustrating debugging.
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map Summary

The following table summarizes the most important functions on the STL  map container.   Feel  free to 
ignore const and const_iterators; we haven't covered them yet.

Constructor: map<K, V>() map<int, string> myMap;

Constructs an empty map.

Constructor: map<K, V>(const map<K, V>& other) map<int, string> myOtherMap = myMap;

Constructs a map that's a copy of another map.

Constructor: map<K, V>(InputIterator start,
                    InputIterator stop)

map<string, int> myMap(myVec.begin(),
                       myVec.end());

Constructs a  map containing copies of the elements in the 
range  [start, stop).   Any duplicates  are  discarded,  and 
the elements are sorted.  Note that this function accepts 
iterators from any source, but they must be iterators over 
pairs of keys and values.

size_type size() const int numEntries = myMap.size();

Returns the number of elements contained in the map.

bool empty() const if(myMap.empty()) { ... }

Returns whether the map is empty.

void clear() myMap.clear();

Removes all elements from the map.

iterator begin()
const_iterator begin() const

map<int>::iterator itr = myMap.begin();

Returns an iterator to the start of the map.  Remember that 
iterators iterate over pairs of keys and values.

iterator end()
const_iterator end()

while(itr != myMap.end()) { ... }

Returns an iterator to the element one past the end of the 
final element of the map.

pair<iterator, bool>
     insert(const pair<const K, V>& value)
void insert(InputIterator begin,
            InputIterator end)

myMap.insert(make_pair("STL", 137));
myMap.insert(myVec.begin(), myVec.end());

The first version inserts the specified key/value pair into 
the map.  The return type is a pair containing an iterator 
to the element and a bool indicating whether the element 
was  inserted successfully  (true)  or  if  it  already existed 
(false).  The second version inserts the specified range of 
elements into the map, ignoring duplicates.

V& operator[] (const K& key) myMap["STL"] = "is awesome";

Returns the value associated with the specified key, if it exists. 
If  not,  a  new key/value  pair  will  be  created  and  the  value 
initialized to zero (if it is a primitive type) or the default value 
(for non-primitive types).
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      iterator find(const K& element)
const_iterator find(const K& element) const

if(myMap.find(0) != myMap.end()) { ... }

Returns  an  iterator  to  the  key/value  pair  having  the 
specified key if it exists, and end otherwise.

size_type count(const K& item) const if(myMap.count(0)) { ... }

Returns 1 if some key/value pair in the map has specified 
key and 0 otherwise.

size_type erase(const K& element)
void erase(iterator itr);
void erase(iterator start,
           iterator stop);

if(myMap .erase(0)) {...}
myMap.erase(myMap.begin());
myMap.erase(myMap.begin(), myMap.end());

Removes  a  key/value  pair  from  the  map.   In  the  first 
version,  the  key/value  pair  having  the  specified  key  is 
removed if found, and the function returns 1 if a pair was 
removed and 0 otherwise.   The second version removes 
the element pointed to by  itr.   The final version erases 
elements in the range [start, stop).

iterator lower_bound(const K& value) itr = myMap.lower_bound(5);

Returns an iterator to the first key/value pair whose key is 
greater than or equal to the specified value.  This function 
is  useful  for  obtaining  iterators  to  a  range  of  elements, 
especially in conjunction with upper_bound.

iterator upper_bound(const K& value) itr = myMap.upper_bound(100);

Returns an iterator to the first key/value pair whose key is 
greater  than  the  specified  value.   Because  this  element 
must be strictly greater than the specified value, you can 
iterate  over  a  range  until  the  iterator  is  equal  to 
upper_bound to obtain all elements less than or equal to 
the parameter.

Extended Example: Keyword Counter

To give you a better sense for how map and set can be used in practice, let's build a simple application that 
brings them together: a  keyword counter.  C++, like most programming languages, has a set of reserved  
words, keywords that have a specific meaning to the compiler.  For example, the keywords for the primitive 
types int and double are reserved words, as are the switch, for, while, do, and if keywords used for 
control flow.  For your edification, here's a complete list of the reserved words in C++:

and
and_eq
asm
auto
bitand
bitor
bool
break
case
catch
char
class
compl
const

const_cast

continue
default
delete

do
double

dynamic_cast
else
enum

explicit
export
extern
false
float
for

friend

goto
if

inline
int
long

mutable
namespace

new
not

not_eq
operator

or
or_eq

private
protected

public
register

reinterpret_cast
return
short
signed
sizeof
static

static_cast
struct
switch
template

this
throw
true

try
typedef
typeid

typename
union

unsigned
using

virtual
void

volatile
wchar_t
while
xor

xor_eq
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We are interested in answering the following question: given a C++ source file, how many times does each 
reserved word come up?  This by itself  might not  be particularly enlightening,  but in some cases it's 
interesting to see how often (or infrequently) the keywords come up in production code.

We will suppose that we are given a file called keywords.txt containing all of C++'s reserved words.  This 
file is structured such that every line of the file contains one of C++'s reserved words.  Here's the first few  
lines:

File: keywords.txt
and
and_eq
asm
auto
bitand
bitor
bool
break
...

Given this file, let's write a program that prompts the user for a filename, loads the file, then reports the  
frequency of each keyword in that file.  For readability, we'll only print out a report on the keywords that 
actually occurred in the file.   To avoid a major parsing headache, we'll count keywords wherever they 
appear, even if they're in comments or contained inside of a string.

Let's  begin  writing  this  program.   We'll  use  a  top-down approach,  breaking the  task  up into  smaller  
subtasks which we will implement later on.  Here is one possible implementation of the main function:

    #include <iostream>
    #include <string>
    #include <fstream>
    #include <map>
    using namespace std;

    /* Function: OpenUserFile(ifstream& fileStream);
     * Usage: OpenUserFile(myStream);
     * -------------------------------------------------
     * Prompts the user for a filename until a valid filename
     * is entered, then sets fileStream to read from that file.
     */
    void OpenUserFile(ifstream& fileStream);

    /* Function: GetFileContents(ifstream& file);
     * Usage: string contents = GetFileContents(ifstream& file);
     * -------------------------------------------------
     * Returns a string containing the contents of the file passed
     * in as a parameter.
     */
    string GetFileContents(ifstream& file);

    /* Function: GenerateKeywordReport(string text);
     * Usage: map<string, size_t> keywords = GenerateKeywordReport(contents);
     * -------------------------------------------------
     * Returns a map from keywords to the frequency at which those keywords
     * appear in the input text string.  Keywords not contained in the text will
     * not appear in the map.
     */
    map<string, size_t> GenerateKeywordReport(string contents);
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    int main() {
        /* Prompt the user for a valid file and open it as a stream. */
        ifstream input;
        OpenUserFile(input);
    
        /* Generate the report based on the contents of the file. */
        map<string, size_t> report = GenerateKeywordReport(GetFileContents(input));

        /* Print a summary. */
        for (map<string, size_t>::iterator itr = report.begin(); 
             itr != report.end(); ++itr)
            cout << "Keyword " << itr->first << " occurred " 
                 << itr->second << " times." << endl;
}

The breakdown of this program is as follows.  First, we prompt the user for a file using the OpenUserFile 
function.  We then obtain the file contents as a string and pass it into  GenerateKeywordReport, which 
builds us a map from strings of the keywords to size_ts representing the frequencies.  Finally, we print 
out the contents of the map in a human-readable format.  Of course, we haven't implemented any of the 
major functions that this program will use, so this program won't link, but at least it gives a sense of where  
the program is going.

Let's begin implementing this code by writing the  OpenUserFile function.  Fortunately, we've already 
written this function last chapter in the Snake example.  The code for this function is reprinted below:

    void OpenUserFile(ifstream& input) {
        while(true) {
            cout << "Enter filename: ";
            string filename = GetLine();
    
            input.open(filename.c_str()); // See Chapter 3 for .c_str().
            if(input.is_open()) return;
    
            cout << "Sorry, I can't find the file " << filename << endl;
            input.clear();
        }
    }

Here, the GetLine() function is from the chapter on streams, and is implemented as

    string GetLine() {
        string line;
        getline(input, line);
        return line;
    }

Let's move on to the next task, reading the file contents into a string.  This can be done in a few lines of 
code using the streams library.   The idea is simple:  we'll  maintain a  string containing all  of  the file 
contents encountered so far, and continuously concatenate on the next line of the file (which we'll read 
with the streams library's handy getline function).  This is shown here:
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    string GetFileContents(ifstream& input) {
        /* String which will hold the file contents. */
        string result;

        /* Keep reading a line of the file until no data remains. *
        string line;
        while (getline(input, line))
            result += line + "\n"; // Add the newline character; getline removes it

        return result;
    }

All that remains at this point is the GenerateKeywordReport function, which ends up being most of the 
work.  The basic idea behind this function is as follows:

• Load in the list of keywords.
• For each word in the file:

◦ If it's a keyword, increment the keyword count appropriately.
◦ Otherwise, ignore it.

We'll take this one step at a time.  First, let's load in the list of keywords.  But how should we store those  
keywords?  We'll be iterating over words from the user's file, checking at each step whether the given  
word is a keyword.  This means that we will want to store the keywords in a way where we can easily  
query whether a string is or is not contained in the list of keywords.  This is an ideal spot for a set, which 
is  optimized for these operations.   We can therefore  write  a function that  looks like this  to read the  
reserved words list into a set:

    set<string> LoadKeywords() {
        ifstream input("keywords.txt"); // No error checking for brevity's sake
        set<string> result;

        /* Keep reading strings out of the file until we cannot read any more. 
         * After reading each string, store it in the result set.  We can either
         * use getline or the stream extraction operator here, but the stream
         * extraction operator is a bit more general.
         */
        string keyword;
        while (input >> keyword)
            result.insert(keyword);

        return result;
    }

We now have a way to read in the set of keywords, and can move on to our next task: reading all of the 
words out of the file and checking whether any of them are reserved words.  This is surprisingly tricky.  We 
are given a string, a continuous sequence of characters, and from this string want to identify where each  
“word” is.  How are we to do this?  There are many options at our disposal (we'll see a heavy-duty way to  
do this at the end of the chapter), but one particularly elegant method is to harness a stringstream.  If 
you'll recall, the  stringstream class is a stream object that can build and parse strings using standard 
stream  operations.   Further  recall  that  when  reading  string  data  out  of  a  stream  using  the  stream  
extraction operator, the read operation will proceed up until it encounters whitespace or the end of the 
stream.  That is, if we had a stream containing the text

This, dear reader, is a string.
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If we were to read data from the stream one string at a time, we would get back the strings

    This,
    dear
    reader,
    is
    a
    string.

In that  order.   As you can see,  the input is  broken apart at whitespace boundaries,  rather than word 
boundaries.  However, whenever we encounter a word that does not have punctuation immediately on 
either side, the string is parsed correctly.  This suggests a particularly clever trick.  We will modify the full  
text of the file by replacing all punctuation characters with whitespace characters.  Having performed this 
manipulation, if we parse the file contents using a stringstream, each string handed back to us will be a 
complete word.

Let's write a function, PreprocessString, which accepts as input a string by reference, then replaces 
all punctuation characters in that string with the space character.  To help us out, we have the <cctype> 
header, which exports the ispunct function.  ispunct takes in a single character, then returns whether or 
not it is a punctuation character.  Unfortunately,  ispunct treats underscores as punctuation, which will 
cause problems for some reserved words (for example, static_cast), and so we'll need to special-case it. 
The PreprocessString function is as follows:

    void PreprocessString(string& text) {
        for (size_t k = 0; k < text.size(); ++k)
            if (ispunct(text[k]) && text[k] != '_') // If we need to change it...
                text[k] = ' '; // ... replace it with a space.
    }

Combining  this  function  with  LoadKeywords gives  us  this  partial  implementation  of 
GenerateKeywordReport:

    map<string, size_t> GenerateKeywordReport(string fileContents) {
        /* Load the set of keywords from disk. */
        set<string> keywords = LoadKeywords();
    
        /* Preprocess the string to allow for easier parsing. */
        PreprocessString(fileContents);
    
        /* ... need to fill this in ... */
    }

All that's left to do now is tokenize the string into individual words, then build up a frequency map of each 
keyword.   To  do  this,  we'll  funnel  the  preprocessed  file  contents  into  a  stringstream and  use  the 
prototypical stream reading loop to break it apart into individual words.  This can be done as follows:
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    map<string, size_t> GenerateKeywordReport(string fileContents) {
        /* Load the set of keywords from disk. */
        set<string> keywords = LoadKeywords();
    
        /* Preprocess the string to allow for easier parsing. */
        PreprocessString(fileContents);
    
        /* Populate a stringstream with the file contents. */
        stringstream tokenizer;
        tokenizer << fileContents;
    
        /* Loop over the words in the file, building up the report. */
        map<string, size_t> result;
    
        string word;
        while (tokenizer >> word)
            /* ... process word here ... */
    }

Now that we have a loop for extracting single words from the input, we simply need to check whether each 
word is a reserved word and, if so, to make a note of it.  This is done here:

    map<string, size_t> GenerateKeywordReport(string fileContents) {
        /* Load the set of keywords from disk. */
        set<string> keywords = LoadKeywords();

        /* Preprocess the string to allow for easier parsing. */
        PreprocessString(fileContents);

        /* Populate a stringstream with the file contents. */
        stringstream tokenizer;
        tokenizer << fileContents;

        /* Loop over the words in the file, building up the report. */
        map<string, size_t> result;

        string word;
        while (tokenizer >> word)
            if (keywords.count(word))
                ++ result[word];
    
        return result;
    }

Let's take a closer look at what this code is doing.  First, we check whether the current word is a keyword 
by using the set's  count function.  If so, we increment the count of that keyword in the file by writing
++result[word].   This is  a  surprisingly compact line of code.   If  the keyword has not been counted 
before, then ++result[word] will implicitly create a new key/value pair using that keyword as the key 
and initializing the associated value to zero.  The ++ operator then kicks in, incrementing the value by one. 
Otherwise, if the key already existed in the map, the line of code will retrieve the value, then increment it 
by one.  Either way, the count is updated appropriately, and the map will be populated correctly.

We now have a working implementation of the  GenerateKeywordReport function, and, combined with 
the rest  of  the code we've written,  we now have a working implementation of  the keyword counting  
program.  As an amusing test, the result of running this program on itself is as follows:
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    Keyword for occurred 3 times.
    Keyword if occurred 3 times.
    Keyword int occurred 1 times.
    Keyword namespace occurred 1 times.
    Keyword return occurred 6 times.
    Keyword true occurred 1 times.
    Keyword using occurred 1 times.
    Keyword void occurred 2 times.
    Keyword while occurred 4 times.

How does this compare to production code?  For reference, here is the output of the program when run on  
the  monster  source  file  nsCSSFrameConstructor.cpp,  an  11,000+ line  file  from  the  Mozilla  Firefox 
source code:*

    Keyword and occurred 268 times.
    Keyword auto occurred 2 times.
    Keyword break occurred 58 times.
    Keyword case occurred 66 times.
    Keyword catch occurred 2 times.
    Keyword char occurred 4 times.
    Keyword class occurred 10 times.
    Keyword const occurred 149 times.
    Keyword continue occurred 11 times.
    Keyword default occurred 8 times.
    Keyword delete occurred 6 times.
    Keyword do occurred 99 times.
    Keyword else occurred 135 times.
    Keyword enum occurred 1 times.
    Keyword explicit occurred 4 times.
    Keyword extern occurred 4 times.
    Keyword false occurred 12 times.
    Keyword float occurred 15 times.
    Keyword for occurred 292 times.
    Keyword friend occurred 3 times.
    Keyword if occurred 983 times.
    Keyword inline occurred 86 times.
    Keyword long occurred 5 times.
    Keyword namespace occurred 5 times.
    Keyword new occurred 59 times.
    Keyword not occurred 145 times.
    Keyword operator occurred 1 times.
    Keyword or occurred 108 times.
    Keyword private occurred 2 times.
    Keyword protected occurred 1 times.
    Keyword public occurred 5 times.
    Keyword return occurred 452 times.
    Keyword sizeof occurred 3 times.
    Keyword static occurred 118 times.
    Keyword static_cast occurred 20 times.
    Keyword struct occurred 8 times.
    Keyword switch occurred 4 times.
    Keyword this occurred 205 times.
    Keyword true occurred 14 times.
    Keyword try occurred 10 times.
    Keyword using occurred 6 times.
    Keyword virtual occurred 1 times.
    Keyword void occurred 82 times.
    Keyword while occurred 53 times.

As you can see, we have quite a lot of C++ ground to cover – just look at all those keywords we haven't  
covered yet!

* As of April 12, 2010
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Multicontainers

The STL provides two special “multicontainer” classes,  multimap and  multiset,  that act as  maps and 
sets except that the values and keys they store are not necessarily unique.  That is, a  multiset could 
contain several copies of the same value, while a  multimap might have duplicate keys associated with 
different values.

multimap and  multiset (declared in  <map> and  <set>, respectively) have identical syntax to  map and 
set,  except that some of the functions work slightly differently.  For example,  the  count function will 
return the number of copies of an element an a multicontainer, not just a binary zero or one.  Also, while 
find will still return an iterator to an element if it exists, the element it points to is not guaranteed to be  
the only copy of that element in the multicontainer.  Finally, the erase function will erase all copies of the 
specified key or element, not just the first it encounters.

One important distinction between the  multimap and regular  map is the lack of square brackets.  On a 
standard STL  map,  you can use the syntax  myMap[key] = value to  add or update a key/value pair. 
However, this operation only makes sense because keys in a map are unique.  When writing myMap[key], 
there is only one possible key/value pair that could be meant.  However, in a multimap this is not the case, 
because there may be multiple key/value pairs with the same key.  Consequently, to insert key/value pairs  
into a multimap, you will need to use the insert function.  Fortunately, the semantics of the multimap 
insert function  are  much  simpler  than  the  map's  insert function,  since  insertions  never  fail  in  a 
multimap.  If you try to insert a key/value pair into a multimap for which the key already exists in the 
multimap, the new key/value pair will be inserted without any fuss.  After all,  multimap exists to allow 
single keys to map to multiple values!

One  function  that's  quite  useful  for  the  multicontainers  is  equal_range.   equal_range returns  a 
pair<iterator, iterator> that  represents  the  span  of  entries  equal  to  the  specified  value.   For 
example, given a  multimap<string, int>, you could use the following code to iterate over all entries 
with key “STL”:

    /* Store the result of the equal_range */
    pair<multimap<string, int>::iterator, multimap<string, int>::iterator>
       myPair = myMultiMap.equal_range("STL");

    /* Iterate over it! */
    for(multimap<string, int>::iterator itr = myPair.first;
        itr != myPair.second; ++itr)
       cout << itr->first << ": " << itr->second << endl;

The multicontainers are fairly uncommon in practice partially because they can easily be emulated using  
the regular map or set.  For example, a multimap<string, int> behaves similarly to a map<string, 
vector<int> > since both act as a map from strings to some number of ints.  However, in many cases 
the multicontainers are exactly the tool for the job; we'll see them used later in this chapter.

Extended Example: Finite Automata

Computer  science  is  often  equated  with  programming  and  software  engineering.   Many  a  computer 
science student has to deal with the occasional “Oh, you're a computer science major!  Can you make me a  
website?”  or  “Computer  science,  eh?   Why  isn't  my  Internet  working?”   This  is  hardly  the  case  and  
computer  science  is  a  much  broader  discipline  that  encompasses  many  fields,  such  as  artificial 
intelligence, graphics, and biocomputation.
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One particular subdiscipline of computer science is computability theory.  Since computer science involves 
so much programming, a good question is exactly what we can command a computer to do.  What sorts of 
problems can we solve?  How efficiently?  What problems can't we solve and why not?  Many of the most 
important  results  in  computer  science,  such  as  the  undecidability  of  the  halting  problem,  arise  from  
computability theory.

But  how exactly  can we determine what can be computed with  a  computer?  Modern computers are 
phenomenally complex machines.  For example, here is a high-level model of the chipset for a mobile Intel  
processor: [Intel]

Modeling each of these components is exceptionally tricky, and trying to devise any sort of proof about the 
capabilities  of  such  a  machine  would  be  all  but  impossible.   Instead,  one  approach  is  to  work  with 
automata, abstract mathematical models of computing machines (the singular of automata is the plural of 
automaton).  Some types of automata are realizable in the physical world (for example, deterministic and 
nondeterministic  finite automata,  as you'll  see below), while others are not.   For example,  the  Turing 
machine, which computer scientists use as an overapproximation of modern computers, requires infinite 
storage space, as does the weaker pushdown automaton.

Although  much  of  automata  theory  is  purely  theoretical,  many  automata  have  direct  applications  to 
software engineering.  For example, most production compilers simulate two particular types of automata  
(called pushdown automata and nondeterministic finite automata) to analyze and convert source code into 
a form readable by the compiler's semantic analyzer and code generator.  Regular expression matchers, 
which search through text strings in search of patterned input, are also frequently implemented using an 
automaton called a deterministic finite automaton.

In  this  extended example,  we will  introduce two types of  automata,  deterministic  finite  automata and 
nondeterministic finite automata, then explore how to represent them in C++.  We'll also explore how these 
automata can be used to simplify difficult string-matching problems.
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Deterministic Finite Automata

Perhaps the simplest form of an automaton is a deterministic finite automaton, or DFA.  At a high-level, a 
DFA is similar to a flowchart – it has a collection of states joined by various transitions that represent how 
the DFA should react to a given input.  For example, consider the following DFA:

This DFA has four states, labeled q0, q1, q2, and q3, and a set of labeled transitions between those states.  For 
example, the state q0 has a transition labeled 0 to q1 and a transition labeled  1 to q2.  Some states have 
transitions to themselves; for example, q2 transitions to itself on a 1, while q3 transitions to itself on either 
a 0 or 1.  Note that as shorthand, the transition labeled 0, 1 indicates two different transitions, one labeled 
with a 0 and one labeled with a 1.  The DFA has a designated state state, in this case q0, which is indicated 
by the arrow labeled start.

Notice that the state q3 has two rings around it.  This indicates that q3 is an accepting state, which will have 
significance in a moment when we discuss how the DFA processes input.

Since all of the transitions in this DFA are labeled either 0 or 1, this DFA is said to have an alphabet of {0, 
1}.  A DFA can use any nonempty set of symbols as an alphabet; for example, the Latin or Greek alphabets  
are perfectly acceptable for use as alphabets in a DFA, as is the set of integers between 42 and 137.  By 
definition,  every state  in a DFA is required to have a transition for each symbol  in its  alphabet.   For 
example, in the above DFA, each state has exactly two transitions, one labeled with a 0 and the other with a 
1.  Notice that state q3 has only one transition explicitly drawn, but because the transition is labeled with 
two symbols we treat it as two different transitions.

The DFA is a  simple  computing machine that accepts  as  input a string of  characters formed from its  
alphabet, processes the string, and then halts by either accepting the string or rejecting it.  In essence, the 
DFA is a device for discriminating between two types of input – input for which some criterion is true and 
input for which it is false.  The DFA starts in its designated start state, then processes its input character-
by-character by transitioning from its current state to the state indicated by the transition.  Once the DFA 
has finished consuming its input, it accepts the string if it ends in an accepting state; otherwise it rejects 
the input.

To see exactly how a DFA processes input, let us consider the above DFA simulated on the input  0011. 
Initially, we begin in the start state, as shown here:
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Since the first character of our string is a 0, we follow the transition to state q1, as shown here:
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The second character of input is also a 0, so we follow the transition labeled with a 0 and end up back in 
state q1, leaving us in this state:
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Next, we consume the next input character, a 1, which causes us to follow the transition labeled 1 to state 
q3:

The final character of input is also a 1, so we follow the transition labeled 1 and end back up in q3:
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We are now done with our input, and since we have ended in an accepting state, the DFA accepts this  
input.

We can similarly consider the action of this DFA on the string 111.  Initially the machine will start in state 
q0, then transition to state q2 on the first input.  The next two inputs each cause the DFA to transition back 
to state q2, so once the input is exhausted the DFA ends in state q2, so the DFA rejects the input.  We will 
not prove it here, but this DFA accepts all strings that have at least one 0 and at least one 1.

Two important  details  regarding DFAs deserve some mention.   First,  it  is  possible  for  a  DFA to have 
multiple accepting states, as is the case in this DFA:

As with the previous DFA, this DFA has four states, but notice that three of them are marked as accepting.  
This leads into the second important detail regarding DFAs – the DFA only accepts its input if the DFA ends 
in an accepting state when it runs out of input.  Simply transitioning into an accepting state does not cause 
the DFA to accept.  For example, consider the effect of running this DFA on the input 0101.  We begin in the 
start state, as shown here:
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We first consume a 0, sending us to state q1:
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Next, we read a 1, sending us to state q3:
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The next input is a 0, sending us to q2:

Finally, we read in a 1, sending us back to q0:
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Since we are out of input and are not in an accepting state, this DFA rejects its input, even though we 
transitioned through every single accepting state.  If you want a fun challenge, convince yourself that this  
DFA accepts all strings that contain an odd number of 0s or an odd number of 1s (inclusive OR).

Representing a DFA



Chapter 6: STL Associative Containers and Iterators - 151 -

A DFA is a simple model of computation that can easily be implemented in software or hardware.  For any 
DFA, we need to store five pieces of information:*

1. The set of states used by the DFA.
2. The DFA's alphabet.
3. The start state.
4. The state transitions.
5. The set of accepting states.

Of these five, the one that deserves the most attention is the fourth, the set of state transitions.  Visually,  
we have displayed these transitions as arrows between circles in the graph.  However, another way to treat 
state transitions is as a table with states along one axis and symbols of the alphabet along the other.  For  
example, here is a transition table for the DFA described above:

State 0 1

q0 q1 q2

q1 q0 q3

q2 q3 q0

q3 q2 q1

To determine the state to transition to given a current state and an input symbol, we look up the row for 
the current state, then look at the state specified in the column for the current input.

If we want to implement a program that simulates a DFA, we can represent almost all of the necessary 
information simply by storing the transition table.  The two axes encode all of the states and alphabet  
symbols, and the entries of the table represent the transitions.  The information not stored in this table is  
the set of accepting states and the designated start state, so provided that we bundle this information with  
the table we have a full description of a DFA.

To concretely model a DFA using the STL, we must think of an optimal way to model the transition table. 
Since transitions are associated with pairs of states and symbols, one option would be to model the table 
as an STL map mapping a state-symbol pair to a new state.  If we represent each symbol as a char and each 
state as an int (i.e. q0 is 0, q1 is 1, etc.), this leads to a state transition table stored as a map<pair<int, 
char>, int>.  If we also track the set of accepting states as a set<int>, we can encode a DFA as follows:

    struct DFA {
        map<pair<int, char>, int> transitions;
        set<int> acceptingStates;
        int startState;
    };

For the purposes of this example, assume that we have a function which fills this DFA struct will relevant 
data.  Now, let's think about how we might go about simulating the DFA.  To do this, we'll write a function  
SimulateDFA which accepts as input a DFA struct and a string representing the input, simulates the DFA 
when run on the given input, and then returns whether the input was accepted.  We'll begin with the 
following:

    bool SimulateDFA(DFA& d, string input) {

* In formal literature, a DFA is often characterized as a quintuple (Q, Σ, q0,  δ, F) of the states, alphabet, start state, 
transition table, and set of accepting states, respectively.  Take CS154 if you're interested in learning more about  
these wonderful automata, or CS143 if you're interested in their applications.
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        /* ... */
    }

We need to maintain the state we're currently in, which we can do by storing it in an int.  We'll initialize 
the current state to the starting state, as shown here:

    bool SimulateDFA(DFA& d, string input) {
        int currState = d.startState;
        /* ... */
    }

Now, we need to iterate over the string, following transitions from state to state.  Since the transition table  
is represented as a map from pair<int, char>s, we can look up the next state by using make_pair to 
construct a pair of the current state and the next input, then looking up its corresponding value in the map. 
As a simplifying assumption, we'll assume that the input string is composed only of characters from the  
DFA's alphabet.

This leads to the following code:

    bool SimulateDFA(DFA& d, string input) {
        int currState = d.startState;
        for(string::iterator itr = input.begin(); itr != input.end(); ++itr)
            currState = d.transitions[make_pair(currState, *itr)];
        /* ... */
    }

You may be wondering how we're iterating over the contents of a string using iterators.  Surprisingly, the 
string is specially designed like the STL container classes, and so it's possible to use all of the iterator 
tricks you've learned on the STL containers directly on the string.

Once we've consumed all the input, we need to check whether we ended in an accepting state.  We can do 
this by looking up whether the currState variable is contained in the acceptingStates set in the DFA 
struct, as shown here:
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    bool SimulateDFA(DFA& d, string input) {
        int currState = d.startState;
        for(string::iterator itr = input.begin(); itr != input.end(); ++itr)
            currState = d.transitions[make_pair(currState, *itr)];
        return d.acceptingStates.find(currState) != d.acceptingStates.end();
    }

This function is remarkably simple but correctly simulates the DFA run on some input.  As you'll see in the 
next section on applications of DFAs, the simplicity of this implementation lets us harness DFAs to solve a 
suite of problems surprisingly efficiently.

Applications of DFAs

The  C++  string class  exports  a  handful  of  searching  functions  (find,  find_first_of, 
find_last_not_of,  etc.)  that  are  useful  for  locating  specific  strings  or  characters.   However,  it's  
surprisingly tricky to search strings for specific patterns of characters.  The canonical example is searching 
for email addresses in a string of text.  All email addresses have the same structure – a name field followed  
by  an  at  sign  (@)  and  a  domain  name.   For  example,  htiek@cs.stanford.edu  and 
this.is.not.my.real.address@example.com  are  valid  email  addresses.   In  general,  we  can  specify  the 
formatting of an email address as follows:*

• The name field, which consists of nonempty alphanumeric strings separated by periods.  Periods 
can  only  occur  between  alphanumeric  strings,  never  before  or  after.   Thus 
hello.world@example.com and cpp.is.really.cool@example.com are legal but .oops@example.com, 
oops.@example.com, and oops..oops@example.com are not.

• The host field, which is structured similarly to the above except that there must be at least two 
sequences separated by a dot.

Now, suppose that we want to determine whether a string is a valid email address.  Using the searching  
functions exported by  the  string class this would be difficult, but the problem is easily solved using a 
DFA.  In particular, we can design a DFA over a suitable alphabet that accepts a string if and only if the  
string has the above formatting.

The first question to consider is what alphabet this DFA should be over.  While we could potentially have  
the DFA operate over the entire ASCII alphabet, it's easier if we instead group together related characters 
and use a simplified alphabet.  For example, since email addresses don't distinguish between letters and 
numbers,  we can have a single symbol in our alphabet that encodes any alphanumeric character.   We 
would need to maintain the period and at-sign in the alphabet since they have semantic significance.  Thus 
our alphabet will be {a, ., @}, where a represents alphanumeric characters, . is the period character, and @ 
is an at-sign.

Given this alphabet, we can represent all email addresses using the following DFA:

* This is a simplified version of the formatting of email addresses.  For a full specification, refer to RFCs 5321 and  
5322.
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This DFA is considerably trickier than the ones we've encountered previously, so let's take some time to go 
over what's happening here.  The machine starts in state q0,  which represents the beginning of input. 
Since all email addresses have to have a nonempty name field, this state represents the beginning of the 
first string in the name.  The first character of an email address must be an alphanumeric character, which  
if read in state q0 cause us to transition to state q1.  States q1 and q2 check that the start of the input is 
something  appropriately  formed  from  alphanumeric  characters  separated  by  periods.   Reading  an 
alphanumeric character while in state q1 keeps the machine there (this represents a continuation of the 
current word), and reading a dot transitions the machine to q2.   In q2,  reading anything other than an 
alphanumeric character puts the machine into the “trap state,” state q7, which represents that the input is 
invalid.  Note that once the machine reaches state q7 no input can get the machine out of that state and that 
q7 isn't accepting.  Thus any input that gets the machine into state q7 will be rejected.

State q3 represents the state of having read the at-sign in the email address.  Here reading anything other  
than an alphanumeric character causes the machine to enter the trap state.

States q4 and q5 are designed to help catch the name of the destination server.  Like q1, q4 represents a state 
where we're reading a “word” of alphanumeric characters and q5 is the state transitioned to on a dot. 
Finally, state q6 represents the state where we've read at least one word followed by a dot, which is the 
accepting state.  As an exercise, trace the action of this machine on the inputs valid.address@email.com 
and invalid@not.com@ouch.

Now, how can we use this DFA in code?  Suppose that we have some way to populate a DFA struct with the 
information for this DFA.  Then we could check if a string contains an email address by converting each  
character in the string into its appropriate character in the DFA alphabet, then simulating the DFA on the  
input.  If the DFA rejects the input or the string contains an invalid character, we can signal that the string 
is invalid, but otherwise the string is a valid email address.

This can be implemented as follows:
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    bool IsEmailAddress(string input) {
        DFA emailChecker = LoadEmailDFA(); // Implemented elsewhere
    
        /* Transform the string one character at a time. */
        for(string::iterator itr = input.begin(); itr != input.end(); ++itr) {
            /* isalnum is exported by <cctype> and checks if the input is an
             * alphanumeric character.
             */
            if(isalnum(*itr))
                *itr = 'a';
            /* If we don't have alphanumeric data, we have to be a dot or at-sign
             * or the input is invalid.
             */
            else if(*itr != '.' && *itr != '@')
                return false;
        }
        return SimulateDFA(emailChecker, input);
    }

This code is remarkably concise,  and provided that we have an implementation of  LoadEmailDFA the 
function  will  work  correctly.   I've  left  out  the  implementation of  LoadEmailDFA since  it's  somewhat 
tedious, but if you're determined to see that this actually works feel free to try your hand at implementing  
it.

Nondeterministic Finite Automata

A generalization of the DFA is the  nondeterministic finite automaton, or NFA.  At a high level, DFAs and 
NFAs are quite similar – they both consist of a set of states connected by labeled transitions, of which some 
states are designated as accepting and others as rejecting.  However, NFAs differ from DFAs in that a state 
in an NFA can have any number of transitions on a given input, including zero.  For example, consider the  
following NFA:

Here,  the  start  state  is  q0 and  accepting  states  are  q2 and q4.   Notice  that  the  start  state  q0 has two 
transitions on 0 – one to q1 and one to itself – and two transitions on 1.  Also, note that q3 has no defined 
transitions on 0, and states q2 and q4 have no transitions at all.

There are several ways to interpret a state having multiple transitions.  The first is to view the automaton  
as choosing one of the paths nondeterministically (hence the name), then accepting the input if some set of 
choices results in the automaton ending in an accepting state.  Another, more intuitive way for modeling  
multiple transitions is to view the NFA as being in several different states simultaneously, at each step  
following every transition with the appropriate label in each of its current states.  To see this, let's consider 
what happens when we run the above NFA on the input 0011.  As with a DFA, we begin in the start state, 
as shown here:
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We now process the first character of input (0) and find that there are two transitions to follow – the first 
to q0 and the second to q1.  The NFA thus ends up in both of these states simultaneously, as shown here:
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Next, we process the second character (0).  From state q0, we transition into q0 and q1, and from state q1 we 
transition into q2.  We thus end up in states q0, q1, and q2, as shown here:
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We now process the third character of input, which is a 1.  From state q0 we transition to states q0 and q3. 
We are also currently in states q1 and q2, but neither of these states has a transition on a  1.  When this 
happens, we simply drop the states from the set of current states.  Consequently, we end up in states q0 

and q3, leaving us in the following configuration:
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Finally, we process the last character, a 1.  State q0 transitions to q0 and q1, and state q1 transitions to state 
q4.  We thus end up in this final configuration:
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Since the NFA ends in a configuration where at least one of the active states is an accepting state (q 4), the 
NFA accepts this input.  Again as an exercise, you might want to convince yourself that this NFA accepts all  
and only the strings that end in either 00 or 11.

Implementing an NFA

Recall from above the definition of the DFA struct:

    struct DFA {
        map<pair<int, char>, int> transitions;
        set<int> acceptingStates;
        int startState;
    };
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Here, the transition table was encoded as a map<pair<int, char>, int> since for every combination of 
a state and an alphabet symbol there was exactly one transition.  To generalize this to represent an NFA,  
we need to be able to associate an arbitrary number of possible transitions.  This is an ideal spot for an  
STL multimap, which allows for duplicate key/value pairs.  This leaves us with the following definition for  
an NFA type:

    struct NFA {
        multimap<pair<int, char>, int> transitions;
        set<int> acceptingStates;
        int startState;
    };

How would we go about simulating this NFA?  At any given time, we need to track the set of states that we  
are currently in, and on each input need to transition from the current set of states to some other set of  
states.  A natural representation of the current set of states is (hopefully unsurprisingly) as a set<int>. 
Initially, we start with this set of states just containing the start state.  This is shown here:

    bool SimulateNFA(NFA& nfa, string input) {
        /* Track our set of states.  We begin in the start state. */
        set<int> currStates;
        currStates.insert(nfa.startState);
    
        /* ... */
    }

Next, we need to iterate over the string we've received as input, following transitions where appropriate.  
This at least requires a simple for loop, which we'll write here:

    bool SimulateNFA(NFA& nfa, string input) {
        /* Track our set of states.  We begin in the start state. */
        set<int> currStates;
        currStates.insert(nfa.startState);

        for(string::iterator itr = input.begin(); itr != input.end(); ++itr) {
            /* ... */
        }
    
        /* ... */
    }

Now, for each character of input in the string, we need to compute the set of next states (if any) to which  
we should transition.  To simplify the implementation of this function, we'll create a second  set<int> 
corresponding to the next set of states the machine will be in.  This eliminates problems caused by adding  
elements to our set of states as we're iterating over the set and updating it.  We thus have

    bool SimulateNFA(NFA& nfa, string input) {
        /* Track our set of states.  We begin in the start state. */
        set<int> currStates;
        currStates.insert(nfa.startState);
    
        for(string::iterator itr = input.begin(); itr != input.end(); ++itr) {
            set<int> nextStates;
            /* ... */
        }
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        /* ... */
    }

Now that we have space to put  the next  set  of  machine states,  we need to figure  out  what states to  
transition to.  Since we may be in multiple different states, we need to iterate over the set of current states,  
computing which states they transition into.  This is shown here:

    bool SimulateNFA(NFA& nfa, string input) {
        /* Track our set of states.  We begin in the start state. */
        set<int> currStates;
        currStates.insert(nfa.startState);
    
        for(string::iterator itr = input.begin(); itr != input.end(); ++itr) {
            set<int> nextStates;
            for(set<int>::iterator state = currStates.begin();
                state != currStates.end(); ++state) {
                /* ... */
            }
        }
    
        /* ... */
    }

Given the state being iterated over by state and the current input character, we now want to transition to 
each state indicated by the multimap stored in the NFA struct.  If you'll recall, the STL multimap exports a 
function called equal_range which returns a pair of iterators into the multimap that delineate the range 
of elements with the specified key.  This function is exactly what we need to determine the set of new 
states we'll be entering for each given state – we simply query the multimap for all elements whose key is 
the pair of the specified state and the current input, then add all of the destination states to our next set of 
states.  This is shown here:
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    bool SimulateNFA(NFA& nfa, string input) {
        /* Track our set of states.  We begin in the start state. */
        set<int> currStates;
        currStates.insert(nfa.startState);
    
        for(string::iterator itr = input.begin(); itr != input.end(); ++itr) {
            set<int> nextStates;
            for(set<int>::iterator state = currStates.begin();
                state != currStates.end(); ++state) {
                /* Get all states that we transition to from this current state. */
                pair<multimap<pair<int, char>, int>::iterator,
                     multimap<pair<int, char>, int>::iterator>
                transitions = nfa.transitions.equal_range(make_pair(*state, *itr));
    
                /* Add these new states to the nextStates set. */
                for(; transitions.first != transitions.second; ++transitions.first)
                    /* transitions.first is the current iterator, and its second
                     * field is the value (new state) in the STL multimap.
                     */
                    nextStates.insert(transitions.first->second);
            }
        }
    
        /* ... */
    }

Finally, once we've consumed all input, we need to check whether the set of states contains any states that  
are also in the set of accepting states.  We can do this by simply iterating over the set of current states, then 
checking if any of them are in the accepting set.  This is shown here and completes the implementation of  
the function:
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    bool SimulateNFA(NFA& nfa, string input) {
        /* Track our set of states.  We begin in the start state. */
        set<int> currStates;
        currStates.insert(nfa.startState);

        for(string::iterator itr = input.begin(); itr != input.end(); ++itr) {
            set<int> nextStates;
            for(set<int>::iterator state = currStates.begin();
                state != currStates.end(); ++state) {
                /* Get all states that we transition to from this current state. */
                pair<multimap<pair<int, char>, int>::iterator,
                     multimap<pair<int, char>, int>::iterator>
                transitions = nfa.transitions.equal_range(make_pair(*state, *itr));
    
                /* Add these new states to the nextStates set. */
                for(; transitions.first != transitions.second; ++transitions.first)
                    /* transitions.first is the current iterator, and its second
                     * field is the value (new state) in the STL multimap.
                     */
                    nextStates.insert(transitions.first->second);
            }
        }
    
        for(set<int>::iterator itr = currStates.begin();
            itr != currStates.end(); ++itr)
            if(nfa.acceptingStates.count(*itr)) return true;
        return false;
    }

Compare this function to the implementation of the DFA simulation.  There is substantially more code  
here, since we have to track multiple different states rather than just a single state.  However, this extra 
complexity is counterbalanced by the simplicity of designing NFAs compared to DFAs.  Building a DFA to  
match a given pattern can be much trickier than building an equivalent NFA because it's difficult to model  
“guessing”  behavior with a DFA.   However,  both functions are a useful  addition to your programming 
arsenal, so it's good to see how they're implemented.

More to Explore

In this chapter we covered map and set, which combined with vector and deque are the most commonly-
used STL containers.  However, there are several others we didn't cover, a few of which might be worth 
looking into.  Here are some topics you might want to read up on:

1. list: vector and deque are sequential containers that mimic built-in arrays.  The list container, 
however, models a sequence of elements without indices.  list supports several nifty operations, 
such as merging,  sorting,  and splicing,  and has quick insertions at almost any point.   If  you're  
planning on using a linked list for an operation, the list container is perfect for you.

2. The  Boost  Containers:   The  Boost  C++  Libraries  are  a  collection  of  functions  and  classes 
developed to augment C++'s native library support.  Boost offers several new container classes 
that might be worth looking into.  For example,  multi_array is a container class that acts as a 
Grid in  any  number  of  dimensions.   Also,  the  unordered_set and  unordered_map act  as 
replacements to the set and map that use hashing instead of tree structures to store their data.  If  
you're interested in exploring these containers, head on over to www.boost.org.

http://www.boost.org/
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Practice Problems

1. How do you check whether an element is contained in an STL set?
 

2. What is the restriction on what types can be stored in an STL set?  Do the vector or deque have 
this restriction?
 

3. How do you insert an element into a set?  How do you remove an element from a set?
 

4. How many copies of a single element can exist in a set?  How about a multiset?
 

5. How do you iterate over the contents of a set?
 

6. How do you check whether a key is contained in an STL map?
 

7. List two ways that you can insert key/value pairs into an STL map.
 

8. What happens if you look up the value associated with a nonexistent key in an STL  map using 
square brackets?  What if you use the find function?
 

9. Recall that when iterating over the contents of an STL multiset, the elements will be visited in 
sorted  order.   Using  this  property,  rewrite  the  program  from  last  chapter  that  reads  a  list  of  
numbers from the user, then prints them in sorted order.  Why is it necessary to use a multiset 
instead of a regular set?
 

10. The  union of  two sets is the collection of elements contained in at least one of the  sets.   For 
example, the union of {1, 2, 3, 5, 8} and {2, 3, 5, 7, 11} is {1, 2, 3, 5, 7, 8, 11}.  Write a function Union 
which takes in two set<int>s and returns their union.
 

11. The  intersection of  two sets  is  the  collection  of  elements  contained in  both of  the  sets.   For 
example,  the  intersection of  {1,  2,  3,  5,  8}  and {2,  3,  5,  7,  11}  is  {2,  3,  5}.   Write  a  function  
Intersection that takes in two set<int>s and returns their intersection.
 

12. Earlier in this chapter,  we wrote a program that rolled dice until  the same number was rolled 
twice, then printed out the number of rolls made.  Rewrite this program so that the same number  
must be rolled  three times before the process terminates.  How many times do you expect this 
process to take when rolling twenty-sided dice? (Hint: you will probably want to switch from using  
a set to using a multiset. Also, remember the difference between the set's count function and the  
multiset's count function).
 

13. As mentioned in this chapter, you can use a combination of  lower_bound and  upper_bound to 
iterate over elements in the closed interval [min, max].  What combination of these two functions 
could you use to iterate over the interval [min, max)?  What about (min, max] and (min, max)?

14. Write a function NumberDuplicateEntries that accepts a  map<string, string> and returns 
the number of duplicate values in the map (that is, the number of key/value pairs in the map with 
the same value).
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15. Write  a  function  InvertMap that  accepts  as  input  a  map<string, string> and  returns  a 
multimap<string, string> where each pair (key, value) in the source map is represented by 
(value, key) in the generated multimap.  Why is it necessary to use a multimap here?  How could 
you  use  the  NumberDuplicateEntries function  from  the  previous  question  to  determine 
whether it is possible to invert the map into another map?  
 

16. Suppose  that  we  have  two  map<string, string>s  called  one and  two.   We  can define  the 
composition of one and two (denoted two ○ one) as follows: for any string r, if  one[r] is s and 
two[s] is t, then (two ○ one)[r] = t.  That is, looking up an element x in the composition of 
the maps is equivalent to looking up the value associated with  x in  one and then looking up its 
associated value in two.  If one does not contain r as a key or if one[r] is not a key in two, then 
(two ○ one)[r] is undefined.

Write  a  function  ComposeMaps that  takes  in  two  map<string,  string>s  and  returns  a 
map<string, string> containing their composition.
 

17. (Challenge problem!) Write a function PrintMatchingPrefixes that accepts a set<string> and 
a string containing a prefix and prints out all of the entries of the set that begin with that prefix. 
Your function should only iterate over the entires it finally prints out.  You can assume the prefix is  
nonempty,  consists  only of  alphanumeric characters,  and should treat  prefixes case-sensitively.  
(Hint: In a set<string>, strings are sorted lexicographically, so all strings that start with “abc” will  
come before all strings that start with “abd.”)
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Consider the following problem: suppose that we want to write a program that reads in a list of integers 
from a file (perhaps representing grades on an assignment), then prints out the average of those values.  
For simplicity, let's assume that this data is stored in a file called data.txt with one integer per line.  For 
example:

File: data.txt
100
95
92
98
87
88
100
...

Here  is  one simple  program  that  reads  in  the  contents  of  the  file,  stores  them in  an STL  multiset, 
computes the average, then prints it out:

    #include <iostream>
    #include <fstream>
    #include <set>
    using namespace std;

    int main() {
        ifstream input("data.txt");
        multiset<int> values;

        /* Read the data from the file. */
        int currValue;
        while (input >> currValue)
            values.insert(currValue);

        /* Compute the average. */
        double total = 0.0;
        for (multiset<int>::iterator itr = values.begin(); 
             itr != values.end(); ++itr)
            total += *itr;
        cout << "Average is: " << total / values.size() << endl;
    }

As written, this code is perfectly legal and will work as intended.  However, there's something slightly odd 
about it.  If you were to describe what this program needs to do in plain English, it would probably be 
something like this:

1. Read the contents of the file.
2. Add the values together.
3. Divide by the number of elements.
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In some sense, the above code matches this template.  The first loop of the program reads in the contents 
of the file, the second loop sums together the values, and the last line divides by the number of elements.  
However, the code we've written is somewhat unsatisfactory.  Consider this first loop:

    int currValue;
    while (input >> currValue)
        values.insert(currValue);

Although the intuition behind this loop is “read the contents of the file into the  multiset,” the way the 
code is actually written is “create an integer, and then while it's possible to read another element out of the 
file, do so and insert it into the multiset.”  This is a very mechanical means for inserting the values into 
the multiset.  Our English description of this process is “read the file contents into the multiset,” but 
the actual code is a step-by-step process for extracting data from the file one step at a time and inserting it  
into the multiset.

Similarly, consider this second loop, which sums together the elements of the multiset:

    double total = 0.0;
    for (multiset<int>::iterator itr = values.begin(); itr != values.end(); ++itr)
        total += *itr;

Again, we find ourselves taking a very mechanical view of the operation.  Our English description “sum the  
elements together” is realized here as “initialize the total to zero, then iterate over the elements of the  
multiset, increasing the total by the value of the current element at each step.”

The reason that we must issue commands to the computer in this mechanical fashion is precisely because  
the  computer  is mechanical  –  it's  a  machine  for  efficiently  computing  functions.   The  challenge  of 
programming  is  finding  a  way  to  translate  a  high-level  set  of  commands  into  a  series  of  low-level 
instructions that control  the machine.   This  is  often a chore,  as the basic  operations exported by the  
computer are fairly limited.  But programming doesn't have to be this difficult.  As you've seen, we can 
define new functions in terms of old ones, and can build complex programs out of these increasingly more 
powerful  subroutines.   In  theory,  you  could  compile  an  enormous  library  containing  solutions  to  all  
nontrivial  programming problems.   With this  library in tow,  you could easily  write  programs by just  
stitching together these prewritten components.

Unfortunately, there is no one library with the solutions to every programming problem.  However, this 
hasn't stopped the designers of the STL from trying their best to build one.  These are the STL algorithms,  
a library of incredibly powerful routines for processing data.  The STL algorithms can't do everything, but  
what they can do they do fantastically.  In fact, using the STL algorithms, it will be possible to rewrite the 
program that averages numbers in four lines of code.  This chapter details many common STL algorithms, 
along with applications.  Once you've finished this chapter, you'll have one of the most powerful standard 
libraries of any programming language at your disposal, and you'll be ready to take on increasingly bigger  
and more impressive software projects.

Your First Algorithm: accumulate

Let's begin our tour of the STL algorithms by jumping in head-first.  If you'll recall, the second loop from  
the averaging program looks like this:

    double total = 0.0;
    for (multiset<int>::iterator itr = values.begin(); itr != values.end(); ++itr)
        total += *itr;
    cout << "Average is: " << total / values.size() << endl;
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This code is entirely equivalent to the following:

    cout << accumulate(values.begin(), values.end(), 0.0) / values.size() << endl;

We've replaced the entire for loop with a single call to accumulate, eliminating about a third of the code 
from our original program.

The accumulate function, defined in the <numeric> header, takes three parameters – two iterators that 
define a range of elements, and an initial value to use in the summation.  It then computes the sum of all of 
the elements contained in the range of iterators, plus the base value.*  What's beautiful about accumulate 
(and the STL algorithms in general) is that accumulate can take in iterators of any type.  That is, we can 
sum up iterators from a multiset, a vector, or deque.  This means that if you ever find yourself needing 
to  compute the sum of  the  elements contained in a  container,  you can pass  the  begin() and  end() 
iterators of that container into accumulate to get the sum.  Moreover, accumulate can accept any valid 
iterator range, not just an iterator range spanning an entire container.  For example, if we want to compute  
the sum of the elements of the multiset that are between 42 and 137, inclusive, we could write

    accumulate(values.lower_bound(42), values.upper_bound(137), 0);

Behind the scenes,  accumulate is implemented as a template function that accepts two iterators and 
simply uses a loop to sum together the values.  Here's one possible implementation of accumulate:

    template <typename InputIterator, typename Type> inline
    Type accumulate(InputIterator start, InputIterator stop, Type initial) {
        while(start != stop) {
            initial += *start;
            ++start;
        }
        return initial;
    }

While some of the syntax specifics might be a bit confusing (notably the template header and the inline 
keyword), you can still see that the heart of the code is just a standard iterator loop that continuously 
advances  the  start  iterator  forward  until  it  reaches  the  destination.   There's  nothing  magic  about 
accumulate, and the fact that the function call is a single line of code doesn't change that it still uses a 
loop to sum all the values together.

If STL algorithms are just functions that use loops behind the scenes, why even bother with them?  There  
are several reasons, the first of which is simplicity.  With STL algorithms, you can leverage off of code that's 
already been written for you rather than reinventing the code from scratch.  This can be a great time-saver  
and also leads into the second reason,  correctness.  If you had to rewrite all the algorithms from scratch 
every time you needed to use them, odds are that at some point you'd slip up and make a mistake.  You  
might, for example, write a sorting routine that accidentally uses < when you meant > and consequently 
does not work at all.   Not so with the STL algorithms – they've been thoroughly tested and will  work 
correctly for any given input.  The third reason to use algorithms is speed.  In general, you can assume that 
if there's an STL algorithm that performs a task, it's going to be faster than most code you could write by  
hand.  Through advanced techniques like template specialization and template metaprogramming, STL 
algorithms are transparently optimized to work as fast as possible.  Finally, STL algorithms offer  clarity. 
With algorithms, you can immediately tell that a call to accumulate adds up numbers in a range.  With a 
for loop that sums up values, you'd have to read each line in the loop before you understood what the code 
did.

* There is also a version of accumulate that accepts four parameters, as you'll see in the chapter on functors.
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Algorithm Naming Conventions

There are over fifty STL algorithms (defined either in <algorithm> or in <numeric>), and memorizing 
them all would be a chore, to say the least.  Fortunately, many of them have common naming conventions 
so you can recognize algorithms even if you've never encountered them before.

The suffix _if on an algorithm (replace_if, count_if, etc.) means the algorithm will perform a task on 
elements only if they meet a certain criterion.  Functions ending in _if require you to pass in a predicate 
function that accepts an element and returns a bool indicating whether the element matches the criterion. 
For  example  consider  the  count algorithm and its  counterpart  count_if.   count accepts  a  range of 
iterators and a value, then returns the number of times that the value appears in that range.  If we have a  
vector<int> of several integer values, we could print out the number of copies of the number 137 in that  
vector as follows:

    cout << count(myVec.begin(), myVec.end(), 137) << endl;

count_if,  on the other hand,  accepts  a range of  iterators and a predicate  function,  then returns the 
number of times the predicate evaluates to true in that range.  If we were interested in how number of 
even numbers are contained in a vector<int>, we could could obtain the value as follows.  First, we write 
a predicate function that takes in an int and returns whether it's even, as shown here:

    bool IsEven(int value) {
        return value % 2 == 0;
    }

We could then use count_if as follows:

    cout << count_if(myVec.begin(), myVec.end(), IsEven) << endl;

Algorithms containing the word copy (remove_copy,  partial_sort_copy, etc.) will perform some task 
on a range of data and store the result in the location pointed at by an extra iterator parameter.  With copy 
functions, you'll specify all the normal data for the algorithm plus an extra iterator specifying a destination 
for the result.  We'll cover what this means from a practical standpoint later.

If an algorithm ends in _n (generate_n, search_n, etc), then it will perform a certain operation n times. 
These functions are useful for cases where the number of times you perform an operation is meaningful,  
rather than the range over which you perform it.  To give you a better feel for what this means, consider  
the  fill and  fill_n algorithms.  Each of these algorithms sets a range of elements to some specified 
value.  For example, we could use fill as follows to set every element in a deque to have value 0:

    fill(myDeque.begin(), myDeque.end(), 0);

The fill_n algorithm is similar to fill, except that instead of accepting a range of iterators, it takes in a 
start iterator and a number of elements to write.  For instance, we could set the first ten elements of a 
deque to be zero by calling

    fill_n(myDeque.begin(), 10, 0);

Iterator Categories

If you'll recall from the discussion of the vector and deque insert functions, to specify an iterator to the 
nth element of a  vector, we used the syntax myVector.begin() + n.  Although this syntax is legal in 
conjunction with vector and deque, it is illegal to use + operator with iterators for other container classes 
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like map and set.  At first this may seem strange – after all, there's nothing intuitively wrong with moving a  
set iterator  forward multiple  steps,  but  when you consider  how the  set is  internally  structured the 
reasons become more obvious.  Unlike  vector and  deque, the elements in a  map or  set are not stored 
sequentially (usually they're kept in a balanced binary tree).  Consequently, to advance an iterator n steps 
forward,  the  map or  set iterator  must  take  n individual  steps  forward.   Contrast  this  with  a  vector 
iterator,  where advancing forward  n steps is a simple addition (since all  of the  vector's elements are 
stored contiguously).  Since the runtime complexity of advancing a map or set iterator forward n steps is 
linear in the size of the jump, whereas advancing a vector iterator is a constant-time operation, the STL 
disallows the + operator for map and set iterators to prevent subtle sources of inefficiency.

Because not all STL iterators can efficiently or legally perform all of the functions of every other iterator, 
STL iterators are categorized based on their relative power.  At the high end are random-access iterators 
that can perform all of the possible iterator functions, and at the bottom are the input and output iterators 
which guarantee only a minimum of functionality.  There are five different types of iterators, each of which 
is discussed in short detail below.

• Output Iterators.  Output iterators are one of the two weakest types of iterators.  With an output  
iterator,  you can write values using the syntax  *myItr = value and can advance the iterator 
forward one step using the ++ operator.  However, you cannot read a value from an output iterator 
using the syntax value = *myItr, nor can you use the += or – operators.

• Input Iterators.  Input iterators are similar to output iterators except that they read values instead 
of  writing  them.   That  is,  you  can  write  code  along  the  lines  of  value = *myItr,  but  not 
*myItr = value.  Moreover, input iterators cannot iterate over the same range twice.

• Forward Iterators.  Forward iterators combine the functionality of input and output iterators so 
that  most  intuitive  operations  are  well-defined.   With  a  forward  iterator,  you  can  write  both 
*myItr = value and  value = *myItr.   Forward iterators,  as their  name suggests,  can only 
move forward.  Thus ++myItr is legal, but --myItr is not.

• Bidirectional Iterators.   Bidirectional iterators are the iterators exposed by  map and  set and 
encompass all of the functionality of forward iterators.  Additionally, they can move backwards 
with the decrement operator.  Thus it's possible to write --myItr to go back to the last element 
you visited,  or even to traverse a list  in reverse order.   However,  bidirectional iterators cannot 
respond to the + or += operators.

• Random-Access Iterators.   Don't  get tripped up by the name – random-access iterators don't 
move  around  randomly.   Random-access  iterators  get  their  name  from  their  ability  to  move 
forward and backward by arbitrary amounts at any point.  These are the iterators employed by 
vector and  deque and represent the maximum possible functionality,  including iterator-from-
iterator subtraction, bracket syntax, and incrementation with + and +=.

If you'll notice, each class of iterators is progressively more powerful than the previous one – that is, the 
iterators form a functionality hierarchy.  This means that when a library function requires a certain class of  
iterator, you can provide it any iterator that's at least as powerful.  For example, if a function requires a  
forward iterator, you can provide either a forward, bidirectional, or random-access iterator.  The iterator 
hierarchy is illustrated below:
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Random-Access Iterators

itr += distance;  itr + distance;
itr1 < itr2;  itr[myIndex];

Bidirectional Iterators

--itr;

Forward Iterators

Input Iterators

val = *itr;
++itr;

Output Iterators

*itr = val;
++itr;

Why categorize iterators this way?  Why not make them all equally powerful?  There are several reasons.  
First, in some cases, certain iterator operations cannot be performed efficiently.  For instance, the STL map 
and set are layered on top of balanced binary trees, a structure in which it is simple to move from one  
element to the next but significantly more complex to jump from one position to another arbitrarily.  By 
disallowing  the  + operator  on  map and  set iterators,  the  STL  designers  prevent  subtle  sources  of 
inefficiency where simple code like itr + 5 is unreasonably inefficient.  Second, iterator categorization 
allows for better classification of the STL algorithms.  For example, suppose that an algorithm takes as  
input a pair of input iterators.  From this, we can tell that the algorithm will not modify the elements being 
iterated  over,  and so  can  feel  free  to  pass  in  iterators  to  data  that  must  not  be  modified  under  any 
circumstance.  Similarly, if an algorithm has a parameter that is labeled as an output iterator, it should be 
clear from context that the iterator parameter defines where data generated by the algorithm should be 
written.

Reordering Algorithms

There are a large assortment of STL algorithms at your disposal, so for this chapter it's useful to discuss  
the different algorithms in terms of their basic functionality.  The first major grouping of algorithms we'll  
talk about are the reordering algorithms, algorithms that reorder but preserve the elements in a container.

Perhaps  the  most  useful  of  the  reordering  algorithms  is  sort,  which  sorts  elements  in  a  range  in 
ascending order.  For example, the following code will sort a vector<int> from lowest to highest:

    sort(myVector.begin(), myVector.end());

sort requires that the iterators you pass in be random-access iterators, so you cannot use sort to sort a 
map or set.  However, since map and set are always stored in sorted order, this shouldn't be a problem.

By default, sort uses the < operator for whatever element types it's sorting, but you can specify a different 
comparison function if you wish.  Whenever you write a comparison function for an STL algorithm, it  
should  accept  two  parameters  representing  the  elements  to  compare  and  return  a  bool indicating 
whether the first element is strictly less than the second element.  In other words, your callback should 
mimic the < operator.  For example, suppose we had a vector<placeT>, where placeT was defined as

    struct placeT {
        int x;
        int y;
    };
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Then we could sort the vector only if we wrote a comparison function for placeTs.*  For example:

    bool ComparePlaces(placeT one, placeT two) {
        if(one.x != two.x)
            return one.x < two.x;
        return one.y < two.y;
    }

    sort(myPlaceVector.begin(), myPlaceVector.end(), ComparePlaces);

You can also use custom comparison functions even if a default already exists.  For example, here is some 
code that sorts a vector<string> by length, ignoring whether the strings are in alphabetical order:

    bool CompareStringLength(string one, string two) {
        return one.length() < two.length();
    }

    sort(myVector.begin(), myVector.end(), CompareStringLength);

One last note on comparison functions is that they should either accept the parameters by value or by  
“reference to  const.”   Since we haven't covered  const yet, for now your comparison functions should 
accept their parameters by value.  Otherwise you can get some pretty ferocious compiler errors.

Another useful  reordering function is  random_shuffle,  which randomly scrambles the elements of  a 
container.  Because the scrambling is random, there's no need to pass in a comparison function.  Here's 
some code that uses random_shuffle to scramble a vector's elements:

    random_shuffle(myVector.begin(), myVector.end());

As with  sort, the iterators must be random-access iterators, so you can't scramble a set or  map.  Then 
again, since they're sorted containers, you shouldn't want to do this in the first place.

Internally, random_shuffle uses the built-in rand() function to generate random numbers.  Accordingly, 
you should use the srand function to seed the randomizer before using random_shuffle.

The  last  major  algorithm  in  this  category  is  rotate,  which  cycles  the  elements  in  a  container.   For 
example, given the input container (0, 1, 2, 3, 4, 5), rotating the container around position 3 would result  
in the container (2, 3, 4, 5, 0, 1).  The syntax for  rotate is anomalous in that it accepts three iterators 
delineating the range and the new front, but in the order  begin,  middle,  end.   For example, to rotate a 
vector around its third position, we would write

    rotate(v.begin(), v.begin() + 2, v.end());

Searching Algorithms

Commonly you're interested in checking membership in a container.  For example, given a  vector, you 
might want to know whether or not it  contains a specific  element.   While the  map and  set naturally 
support  find,  vectors and  deques lack this functionality.  Fortunately, you can use STL algorithms to 
correct this problem.

* When we cover operator overloading in the second half of this text, you'll see how to create functions that sort 
will use automatically.
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To search for  an element  in a  container,  you can use  the  find function.   find accepts  two iterators 
delineating a range and a value, then returns an iterator to the first element in the range with that value.  If  
nothing in the range matches, find returns the second iterator as a sentinel.  For example:

    if(find(myVector.begin(), myVector.end(), 137) != myVector.end())
        /* ... vector contains 137 ... */

Although you can legally pass map and set iterators as parameters to find, you should avoid doing so.  If a 
container class  has a member function with the same name as an STL algorithm, you should use the 
member  function instead of  the  algorithm  because  member  functions  can use  information  about  the 
container's internal data representation to work much more quickly.  Algorithms, however, must work for  
all iterators and thus can't make any optimizations.  As an example, with a  set containing one million 
elements,  the  set's  find member  function can locate  elements  in  around twenty  steps  using  binary 
search, while the STL find function could take up to one million steps to linearly iterate over the entire 
container.  That's a staggering difference and really should hit home how important it is to use member 
functions over STL algorithms.

Just as a sorted map and set can use binary search to outperform the linear STL find algorithm, if you 
have  a  sorted  linear  container  (for  example,  a  sorted  vector),  you  can  use  the  STL  algorithm 
binary_search to perform the search in a fraction of the time.  For example:

    /* Assume myVector is sorted. */
    if (binary_search(myVector.begin(), myVector.end(), 137)) { 
       /* ... Found 137 ... */ 
    }

Also,  as  with  sort,  if  the  container  is  sorted using  a  special  comparison function,  you can pass  that 
function  in  as  a  parameter  to  binary_search.   However,  make  sure  you're  consistent  about  what 
comparison function you use, because if you mix them up binary_search might not work correctly.

Note that binary_search doesn't return an iterator to the element – it simply checks to see if it's in the 
container.  If you want to do a binary search in order to get an iterator to an element, you can use the 
lower_bound algorithm which, like the  map and  set lower_bound functions, returns an iterator to the 
first element greater than or equal to the specified value.  Note that  lower_bound might hand back an 
iterator to a different element than the one you searched for if the element isn't in the range, so be sure to 
check the return value before using it.  As with binary_search, the container must be in sorted order for 
lower_bound algorithm to work correctly.

Iterator Adaptors

The algorithms that we've encountered so far do not produce any new data ranges.  The sort algorithm 
rearranges data without generating new values.  binary_search and accumulate scan over data ranges, 
but yield only a single value.  However, there are a great many STL algorithms that take in ranges of data  
and produce new data ranges at output.  As a simple example, consider the  copy algorithm.  At a high 
level,  copy takes  in  a  range  of  data,  then  duplicates  the  values  in  that  range  at  another  location. 
Concretely, copy takes in three parameters – two input iterators defining a range of values to copy, and an 
output iterator indicating where the data should be written.  For example, given the following setup:
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start stop

↓ ↓

0 1 2 3 4 5 6

result

↓

0 0 0 0 0 0 0

After calling copy(start, stop, result), the result is as follows:

start stop

↓ ↓

0 1 2 3 4 5 6

result

↓

0 1 2 3 4 5 6

When using algorithms like copy that generate a range of data, you must make sure that the destination 
has enough space to hold the result.  Algorithms that generate data ranges work by overwriting elements 
in the range beginning with the specified iterator, and if your output iterator points to a range that doesn't  
have enough space the algorithms will write off past the end of the range, resulting in undefined behavior.  
But here we reach a wonderful paradox.  When running an algorithm that generates a range of data, you 
must make sure that sufficient space exists to hold the result.  However, in some cases you can't tell how  
much data is going to be generated until you actually run the algorithm.  That is, the only way to determine 
how much space you'll need is to run the algorithm, which might result in undefined behavior because you  
didn't allocate enough space.

To break this cycle, we'll need a special set of tools called iterator adaptors.  Iterator adaptors (defined in 
the <iterator> header) are objects that act like iterators – they can be dereferenced with * and advanced 
forward with ++ – but which don't actually point to elements of a container.  To give a concrete example,  
let's consider the  ostream_iterator.  ostream_iterators are objects that look like output iterators. 
That is, you can dereference them using the * operator, advance them forward with the ++ operator, etc. 
However, ostream_iterators don't actually point to elements in a container.  Whenever you dereference 
an ostream_iterator and assign a value to it, that value is printed to a specified output stream, such as 
cout or  an  ofstream.   Here's  some code showing off  an  ostream_iterator;  the  paragraph after  it 
explores how it works in a bit more detail:

    /* Declare an ostream_iterator that writes ints to cout. */
    ostream_iterator<int> myItr(cout, " ");

    /* Write values to the iterator.  These values will be printed to cout. */
    *myItr = 137; // Prints 137 to cout
    ++myItr;

    *myItr = 42;  // Prints 42 to cout
    ++myItr

If you compile and run this code, you will notice that the numbers 137 and 42 get written to the console,  
separated by spaces.  Although it looks like you're manipulating the contents of a container, you're actually 
writing characters to the cout stream.
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Let's consider this code in a bit  more detail.   If  you'll  notice,  we declared the  ostream_iterator by 
writing

    ostream_iterator<int> myItr(cout, " ");

There are three important pieces of  data in this line of code.   First,  notice that  ostream_iterator is  a 
parameterized  type,  much  like  the  vector or  set.   In  the  case  of  ostream_iterator,  the  template 
argument  indicates  what  sorts  of  value  will  be  written  to  this  iterator.   That  is,  an 
ostream_iterator<int> writes ints into a stream, while an ostream_iterator<string> would write 
strings.   Second,  notice  that  when  we  created  the  ostream_iterator,  we  passed  it  two  pieces  of 
information.  First, we gave the ostream_iterator a stream to write to, in this case cout.  Second, we 
gave it a separator string, in our case a string holding a single space.  Whenever a value is written to an 
ostream_iterator, that value is pushed into the specified stream, followed by the separator string.

At  this  point,  iterator  adaptors  might  seem  like  little  more  than  a  curiosity.   Sure,  we  can  use  an 
ostream_iterator to write values to  cout, but we could already do that directly with  cout.  So what 
makes the iterator adaptors so useful?  The key point is that iterator adaptors are iterators, and so they can 
be used in conjunction with the STL algorithms.  Whenever an STL algorithm expects a regular iterator, 
you can supply an iterator adaptor instead to “trick” the algorithm into performing some complex task 
when it believes it's just writing values to a range.  For example, let's revisit the copy algorithm now that 
we have  ostream_iterators.   What  happens  if  we use  copy to  copy values from a  container  to  an 
ostream_iterator?  That is, what is the output of the following code:

    copy(myVector.begin(), myVector.end(), ostream_iterator<int>(cout, " "));

This  code  copies  all  of  the  elements  from  the  myVector container  to  the  range  specified  by  the 
ostream_iterator.  Normally, copy would duplicate the values from myVector at another location, but 
since we've written the values to an ostream_iterator, this code will instead print all of the values from 
the vector to cout, separated by spaces.  This means that this single line of code prints out myVector!

Of course, this is just one of many iterator adaptors.  We initially discussed iterator adaptors as a way to 
break the “vicious cycle”  where algorithms need space to hold their  results,  but the amount of space  
needed can only  be  calculated  by  running the  algorithm.   To  resolve  this  issue,  the  standard  library 
provides a collection of special iterator adapters called  insert iterators.  These are output iterators that, 
when written to, insert the value into a container using one of the  insert,  push_back, or  push_front 
functions.  As a simple example, let's consider the back_insert_iterator.  back_insert_iterator is 
an iterator that, when written to, calls push_back on a specified STL sequence containers (i.e. vector or 
deque) to store the value.  For example, consider the following code snippet:

    vector<int> myVector; /* Initially empty */

    /* Create a back_insert_iterator that inserts values into myVector. */
    back_insert_iterator< vector<int> > itr(myVector);

    for (int i = 0; i < 10; ++i) {
        *itr = i; // "Write" to the back_insert_iterator, appending the value.
        ++itr;
    }

    /* Print the vector contents; this displays 0 1 2 3 4 5 6 7 8 9 */
    copy(myVector.begin(), myVector.end(), ostream_iterator<int>(cout, " "));

This code is fairly dense, so let's go over it in some more detail.  The first line simply creates an empty  
vector<int>.  The next line is
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    back_insert_iterator< vector<int> > itr(myVector);

This code creates a back_insert_iterator which inserts into a vector<int>.  This syntax might be a 
bit strange, since the iterator type is parameterized over the type of the container it inserts into, not the 
type of the elements stored in that container.  Moreover, notice that we indicated to the iterator that it  
should insert into the myVector container by surrounding the container name in parentheses.  From this 
point,  any values written to the  back_insert_iterator will be stored inside of  myVector by calling 
push_back.

We then have the following loop, which indirectly adds elements to the vector:

    for (int i = 0; i < 10; ++i) {
        *itr = i; // "Write" to the back_insert_iterator, appending the value.
        ++itr;
    }

Here, the line  *itr = i will implicitly call  myVector.push_back(i), adding the value to the  vector. 
Thus, when we encounter the final line:

    copy(myVector.begin(), myVector.end(), ostream_iterator<int>(cout, " "));

the call to copy will print out the numbers 0 through 9, inclusive, since they've been stored in the vector.

In  practice,  it  is  rare  to  see  back_insert_iterator used  like  this.   This  type  of  iterator  is  almost 
exclusively used as a  parameter  to  STL algorithms that  need a  place  to  store  a result.   For  example,  
consider the reverse_copy algorithm.  Like copy, reverse_copy takes in three iterators, two delineating 
an input range and one specifying a destination, then copies the elements from the input range to the  
destination.  However, unlike the regular copy algorithm, reverse_copy copies the elements in reverse 
order.  For example, using reverse_copy to copy the sequence 0, 1, 2, 3, 4 to a destination would cause 
the destination range to hold the sequence 4,  3,  2,  1,  0.   Suppose that we are interested in using the  
reverse_copy algorithm to make a copy of a vector with the elements in reverse order as the original. 
Then we could do so as follows:

    vector<int> original = /* ... */
    vector<int> destination;
    reverse_copy(original.begin(), original.end(), 
                 back_insert_iterator< vector<int> >(destination));

The syntax back_insert_iterator<vector<int> > is admittedly bit clunky, and fortunately there's a 
shorthand.  To create a back_insert_iterator that inserts elements into a particular container, you can 
write

    back_inserter(container);

Thus the above code with reverse_copy could be rewritten as

    vector<int> original = /* ... */
    vector<int> destination;
    reverse_copy(original.begin(), original.end(), back_inserter(destination));

This is much cleaner than the original and is likely to be what you'll see in practice.

The back_inserter is a particularly useful container when you wish to store the result of an operation in 
a vector or deque, but cannot be used in conjunction with map or set because those containers do not 
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support  the  push_back member  function.   For  those  containers,  you  can  use  the  more  general 
insert_iterator,  which insert  elements into arbitrary positions in a container.   A great example of  
insert_iterator in action arises when computing the union, intersection, or  difference of two sets.  
Mathematically speaking, the  union of two sets is the set of elements contained in either of the sets, the 
intersection of two sets is the set of elements contained in both of the sets, and the difference of two sets is 
the set of elements contained in the first set but not in the second.  These operations are exported by the  
STL algorithms as set_union, set_intersection, and set_difference.  These algorithms take in five 
parameters – two pairs of iterator ranges defining what ranges to use as the input sets, along with one  
final iterator indicating where the result should be written.  As with all STL algorithms, the set algorithms 
assume that the destination range has enough space to store the result of the operation, and again we run 
into a problem because we cannot tell how many elements will be produced by the algorithm.  This is an 
ideal spot for an insert_iterator.  Given two sets one and two, we can compute the union of those two 
sets as follows:

    set<int> result;
    set_union(setOne.begin(), setOne.end(),      // All of the elements in setOne
              setTwo.begin(), setTwo.end(),      // All of the elements in setTwo
              inserter(result, result.begin())); // Store in result.

Notice that the last parameter is inserter(result, result.begin()).  This is an insert iterator that 
inserts its elements into the result set.  For somewhat technical reasons, when inserting elements into a 
set, you must specify both the container and the container's  begin iterator as parameters, though the 
generated elements will be stored in sorted order.

All of the iterator adaptors we've encountered so far have been used to channel the output of an algorithm 
to a location other than an existing range of elements.   ostream_iterator writes values to streams, 
back_insert_iterator invokes  push_back to make space for its elements,  etc.   However,  there is a 
particularly  useful  iterator  adapter,  the  istream_iterator,  which  is  an  input iterator.   That  is, 
istream_iterators can be used to provide data as inputs to particular STL algorithms.  As its name 
suggests,  istream_iterator can be  used to  read  values  from  a  stream  as  if  it  were  a  container  of 
elements.  To illustrate istream_iterator, let's return to the example from the start of this chapter.  If 
you'll recall, we wrote a program that read in a list of numbers from a file, then computed their average.  In 
this program, we read in the list of numbers using the following while loop:

    int currValue;
    while (input >> currValue)
        values.insert(currValue);

Here,  values is a  multiset<int>.   This code is equivalent to the following, which uses the STL  copy 
algorithm in conjunction with an inserter and two istream_iterators:

    copy(istream_iterator<int>(input), istream_iterator<int>(), 
         inserter(values, values.begin());

This is perhaps the densest single line of code we've encountered yet, so let's dissect it to see how it works. 
Recall  that the  copy algorithm copies the values from an iterator range and stores them in the range 
specified by the destination iterator.  Here, our destination is an  inserter that adds elements into the 
values multiset.  Our input is the pair of iterators

    istream_iterator<int>(input), istream_iterator<int>()

What exactly does this mean?  Whenever a value is read from an istream_iterator, the iterator uses the 
stream extraction operator  >> to read a value of the proper type from the input stream, then returns it.  
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Consequently, the iterator istream_iterator<int>(input) is an iterator that reads int values out of 
the stream input.  The second iterator,  istream_iterator<int>(), is a bit stranger.  This is a special 
istream_iterator called  the  end-of-stream iterator.   When defining  ranges  with  STL iterators,  it  is 
always necessary to specify two iterators, one for the beginning of the range and one that is one past the  
end of it.  When working with STL containers this is perfectly fine, since the size of the container is known.  
However, when working with streams, it's unclear exactly how many elements that stream will contain.  If  
the stream is an ifstream, the number of elements that can be read depends on the contents of the file.  If 
the stream is cin, the number of elements that can be read depends on how many values the user decides 
to enter.  To get around this, the STL designers used a bit of a hack.  When reading values from a stream 
with an istream_iterator, whenever no more data is available in the stream (either because the stream 
entered a fail state, or because the end of the file was reached), the istream_iterator takes on a special 
value which indicates “there is no more data in the stream.”  This value can be formed by constructing an 
istream_iterator without specifying what stream to read from.  Thus in the code

    copy(istream_iterator<int>(input), istream_iterator<int>(),
         inserter(values, values.begin());

the two istream_iterators define the range from the beginning of the input stream up until no more 
values can be read from the stream.

The following table lists some of the more common iterator adapters and provides some useful context.  
You'll likely refer to this table most when writing code that uses algorithms.

back_insert_iterator<Container> back_insert_iterator<vector<int> >
    itr(myVector);
back_insert_iterator<deque<char> > itr = 
    back_inserter(myDeque);

An  output  iterator  that  stores  elements  by  calling  push_back on  the 
specified container.  You can declare back_insert_iterators explicitly, 
or can create them with the function back_inserter.

front_insert_iterator<Container> front_insert_iterator<deque<int> >
    itr(myIntDeque);
front_insert_iterator<deque<char> > itr = 
    front_inserter(myDeque);

An output iterator that stores elements by calling  push_front on the 
specified  container.   Since  the  container  must  have  a  push_front 
member function,  you cannot  use a  front_insert_iterator with  a 
vector.   As  with  back_insert_iterator,  you  can  create 
front_insert_iterators with the the front_inserter function.

insert_iterator<Container> insert_iterator<set<int> >
    itr(mySet, mySet.begin());
insert_iterator<set<int> > itr =
    inserter(mySet, mySet.begin());

An  output  iterator  that  stores  its  elements  by  calling  insert on  the 
specified container to insert elements at the indicated position.  You can 
use this iterator type to insert into any container, especially  set.   The 
special function inserter generates insert_iterators for you. 
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ostream_iterator<Type> ostream_iterator<int> itr(cout, " ");
ostream_iterator<char> itr(cout);
ostream_iterator<double> itr(myStream, "\n");

An output iterator that writes elements into an output stream.  In the 
constructor,  you must initialize the  ostream_iterator to point to an 
ostream,  and  can  optionally  provide  a  separator  string  written  after 
every element.

istream_iterator<Type> istream_iterator<int> itr(cin);  // Reads from cin
istream_iterator<int> endItr;    // Special end value

An input  iterator that  reads values from the specified  istream when 
dereferenced.  When istream_iterators reach the end of their streams 
(for example,  when reading from a file),  they take on a  special  “end” 
value  that  you  can  get  by  creating  an  istream_iterator with  no 
parameters.  istream_iterators are susceptible to stream failures and 
should be used with care.

ostreambuf_iterator<char> ostreambuf_iterator<char> itr(cout); // Write to cout

An output iterator that writes raw character data to an output stream.  Unlike 
ostream_iterator,  which  can  print  values  of  any  type, 
ostreambuf_iterator can  only  write  individual  characters. 
ostreambuf_iterator is  usually  used  in  conjunction  with 
istreambuf_iterator.

istreambuf_iterator<char> istreambuf_iterator<char> itr(cin); // Read data from cin
istreambuf_iterator<char> endItr;   // Special end value

An  input  iterator  that  reads  unformatted  data  from  an  input  stream. 
istreambuf_iterator always reads in character data and will  not  skip 
over  whitespace.   Like  istream_iterator,  istreambuf_iterators 
have a special iterator constructed with no parameters which indicates “end 
of stream.”  istreambuf_iterator is used primarily to read raw data from 
a file for processing with the STL algorithms.

Removal Algorithms

The  STL  provides  several  algorithms  for  removing  elements  from  containers.   However,  removal 
algorithms have some idiosyncrasies that can take some time to adjust to.

Despite  their  name,  removal  algorithms  do  not actually  remove  elements  from  containers.   This  is 
somewhat counterintuitive but makes sense when you think about how algorithms work.   Algorithms 
accept iterators, not containers, and thus do not know how to erase elements from containers.  Removal 
functions work by shuffling down the contents of the container to overwrite all elements that need to be  
erased.  Once finished, they return iterators to the first element not in the modified range.  So for example,  
if you have a  vector initialized to 0, 1, 2, 3, 3, 3, 4 and then  remove all instances of the number 3, the 
resulting vector will contain 0, 1, 2, 4, 3, 3, 4 and the function will return an iterator to one spot past the 
first 4.  If you'll notice, the elements in the iterator range starting at begin and ending with the element 
one past the four are the sequence 0, 1, 2, 4 – exactly the range we wanted.

To truly remove elements from a container with the removal algorithms, you can use the container class 
member function erase to erase the range of values that aren't in the result.  For example, here's a code 
snippet that removes all copies of the number 137 from a vector:

    myVector.erase(remove(myVector.begin(), myVector.end(), 137), myVector.end());
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Note that we're erasing elements in the range [*,  end),  where  * is the value returned by the  remove 
algorithm.

There is another useful removal function,  remove_if,  that removes all elements from a container that 
satisfy a condition specified as the final parameter.  For example, using the  ispunct function from the 
header file <cctype>, we can write a StripPunctuation function that returns a copy of a string with all 
the punctuation removed:*

    string StripPunctuation(string input) {
        input.erase(remove_if(input.begin(), input.end(), ispunct), input.end());
        return input;
    }

(Isn't  it  amazing  how  much  you  can  do  with  a  single  line  of  code?   That's  the  real  beauty  of  STL  
algorithms.)

If you're shaky about how to actually remove elements in a container using  remove, you might want to 
consider the remove_copy and remove_copy_if algorithms.  These algorithms act just like remove and 
remove_if, except that instead of modifying the original range of elements, they copy the elements that  
aren't removed into another container.  While this can be a bit less memory efficient, in some cases it's 
exactly what you're looking for.

Other Noteworthy Algorithms

The past few sections have focused on common genera of algorithms, picking out representatives that 
illustrate the behavior of particular algorithm classes.  However, there are many noteworthy algorithms 
that we have not discussed yet.  This section covers several of these algorithms, including useful examples.

A surprisingly useful algorithm is transform, which applies a function to a range of elements and stores 
the result in the specified destination.  transform accepts four parameters – two iterators delineating an 
input range, an output iterator specifying a destination, and a callback function, then stores in the output 
destination  the  result  of  applying  the  function  to  each  element  in  the  input  range.   As  with  other  
algorithms,  transform assumes that  there  is  sufficient  storage space in  the  range  pointed  at  by  the 
destination iterator, so make sure that you have sufficient space before transforming a range.

transform is particularly elegant when combined with functors, but even without them is useful for a 
whole range of tasks.  For example, consider the  tolower function, a C library function declared in the 
header  <cctype> that  accepts  a  char and  returns  the  lowercase  representation  of  that  character. 
Combined with  transform,  this lets us write  ConvertToLowerCase from  strutils.h in two lines of 
code, one of which is a return statement:

    string ConvertToLowerCase(string text) {
        transform(text.begin(), text.end(), text.begin(), tolower);
        return text;
    }

Note that after specifying the range text.begin(), text.end() we have another call to text.begin(). 
This is because we need to provide an iterator that tells  transform where to put its output.  Since we 
want  to  overwrite  the  old contents  of  our  container  with  the  new values,  we specify  text.begin() 
another time to indicate that transform should start writing elements to the beginning of the string as it  
generates them.

* On some compilers, this code will not compile as written.  See the later section on compatibility issues for more 
information.
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There is no requirement that the function you pass to  transform return elements of the same type as 
those stored in the container.  It's legal to transform a set of strings into a set of doubles, for example.

Most of the algorithms we've seen so far operate on entire ranges of data, but not all algorithms have this  
property.   One of  the  most  useful  (and innocuous-seeming)  algorithms is  swap,  which  exchanges  the 
values of two variables.  We first encountered swap two chapters ago when discussing sorting algorithms, 
but it's worth repeating.  Several advanced C++ techniques hinge on swap's existence, and you will almost 
certainly encounter it in your day-to-day programming even if you eschew the rest of the STL.

Two  last  algorithms  worthy  of  mention  are  the  min_element and  max_element algorithms.   These 
algorithms accept as input a range of iterators and return an iterator to the largest element in the range. 
As  with  other  algorithms,  by  default  the  elements  are  compared by  <,  but  you  can provide  a  binary 
comparison function to the algorithms as a final parameter to change the default comparison order.

The following table lists some of the more common STL algorithms.  It's by no means an exhaustive list, 
and you should consult a reference to get a complete list of all the algorithms available to you.

Type accumulate(InputItr start,
                InputItr stop,
                Type value)

Returns the sum of the elements in the range [start, stop) plus 
the value of value.

bool binary_search(RandomItr start,
                   RandomItr stop,
                   const Type& value)

Performs  binary  search  on  the  sorted  range  specified  by 
[start, stop) and returns whether it finds the element value.  If 
the elements are sorted using a special comparison function, you 
must specify the function as the final parameter.

OutItr copy(InputItr start,
            InputItr stop,
            OutItr outputStart)

Copies  the elements  in  the  range [start, stop)  into  the  output 
range starting at  outputStart.   copy returns an iterator to one 
past the end of the range written to.

size_t count(InputItr start,
             InputItr end,
             const Type& value)

Returns the number of elements in the range [start, stop) equal 
to value.

size_t count_if(InputItr start,
                InputItr end,
                PredicateFunction fn)

Returns  the  number  of  elements  in  the  range  [start, stop)  for 
which fn returns true.  Useful for determining how many elements 
have a certain property.

bool equal(InputItr start1,
           InputItr stop1,
           InputItr start2)

Returns  whether  elements  contained  in  the  range  defined  by 
[start1, stop1) and the range beginning with start2 are equal.  If 
you have a special comparison function to compare two elements, 
you can specify it as the final parameter.

pair<RandomItr, RandomItr>
    equal_range(RandomItr start,
                RandomItr stop,
                const Type& value)

Returns  two  iterators  as  a  pair that  defines  the  sub-range  of 
elements  in  the  sorted  range  [start, stop)  that  are  equal  to 
value.  In other words, every element in the range defined by the 
returned iterators  is  equal  to  value.   You can  specify  a  special 
comparison function as a final parameter.

void fill(ForwardItr start,
          ForwardItr stop,
          const Type& value)

Sets every element in the range [start, stop) to value.

void fill_n(ForwardItr start,
            size_t num,
            const Type& value)

Sets the first num elements, starting at start, to value.

InputItr find(InputItr start,
              InputItr stop,
              const Type& value)

Returns  an iterator to  the first  element  in  [start, stop)  that  is 
equal to value, or stop if the value isn't found.  The range doesn't 
need to be sorted.
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InputItr find_if(InputItr start,
                 InputItr stop,
                 PredicateFunc fn)

Returns an iterator to the first element in [start, stop) for which 
fn is true, or stop otherwise.

Function for_each(InputItr start,
                  InputItr stop,
                  Function fn)

Calls the function fn on each element in the range [start, stop).

void generate(ForwardItr start,
              ForwardItr stop,
              Generator fn);

Calls the zero-parameter function fn once for each element in the 
range [start, stop), storing the return values in the range.

void generate_n(OutputItr start,
                size_t n,
                Generator fn);

Calls the zero-parameter function fn n times, storing the results in 
the range beginning with start.

bool includes(InputItr start1,
              InputItr stop1,
              InputItr start2,
              InputItr stop2)

Returns  whether  every  element  in  the  sorted  range 
[start2, stop2) is also in [start1, stop1).  If you need to use a 
special  comparison  function,  you  can  specify  it  as  the  final 
parameter.

Type inner_product(InputItr start1,
                   InputItr stop1,
                   InputItr start2,
                   Type initialValue)

Computes  the  inner  product  of  the  values  in  the  range  [start1, 
stop1) and [start2, start2 + (stop1 – start1)).  The inner product is  

the  value  ∑
i=1

n

ai biinitialValue ,  where  ai and  bi denote  the  ith 

elements of the first and second range.

bool
lexicographical_compare(InputItr s1,
                        InputItr s2,
                        InputItr t1,
                        InputItr t2)

Returns  whether  the  range  of  elements  defined  by  [s1,  s2)  is 
lexicographically  less  than  [t1,  t2);  that  is,  if  the  first  range 
precedes the second in a “dictionary ordering.”

InputItr
lower_bound(InputItr start,
            InputItr stop,
            const Type& elem) 

Returns an iterator to the first element greater than or equal to the 
element elem in the sorted range [start, stop).  If you need to use 
a  special  comparison  function,  you  can  specify  it  as  the  final 
parameter.

InputItr max_element(InputItr start,
                     InputItr stop)

Returns an iterator to the largest value in the range [start, stop). 
If you need to use a special comparison function, you can specify it  
as the final parameter.

InputItr min_element(InputItr start,
                     InputItr stop)

Returns  an  iterator  to  the  smallest  value  in  the  range 
[start, stop).  If you need to use a special comparison function, 
you can specify it as the final parameter.

bool next_permutation(BidirItr start,
                      BidirItr stop)

Given  a  range  of  elements  [start, stop),  modifies  the  range  to 
contain  the  next  lexicographically  higher  permutation  of  those 
elements. The function then returns whether such a permutation 
could be found. It is common to use this algorithm in a  do ... 
while loop to iterate over all permutations of a range of data, as 
shown here:

sort(range.begin(), range.end());
do {
    /* ... process ... */
}while(next_permutation(range.begin(), range.end()));

bool prev_permutation(BidirItr start,
                      BidirItr stop)

Given  a  range  of  elements  [start, stop),  modifies  the  range  to 
contain  the  next  lexicographically  lower permutation  of  those 
elements. The function then returns whether such a permutation 
could be found.

void random_shuffle(RandomItr start,
                    RandomItr stop)

Randomly reorders the elements in the range [start, stop).
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ForwardItr remove(ForwardItr start,
                  ForwardItr stop,
                  const Type& value)

Removes all elements in the range [start, stop) that are equal to 
value.   This function will  not remove elements from a container. 
To shrink the container, use the container's erase function to erase 
all values in the range [retValue, end()), where retValue is the 
return value of remove.

ForwardItr 
remove_if(ForwardItr start,
          ForwardItr stop,
          PredicateFunc fn)

Removes  all  elements  in  the  range  [start, stop)  for  which  fn 
returns true.  See  remove for information about how to actually 
remove elements from the container.

void replace(ForwardItr start,
             ForwardItr stop,
             const Type& toReplace,
             const Type& replaceWith)

Replaces all  values in  the range [start, stop)  that  are  equal  to 
toReplace with replaceWith.

void replace_if(ForwardItr start,
                ForwardItr stop,
                PredicateFunction fn,
                const Type& with)

Replaces  all  elements  in  the  range  [start, stop)  for  which  fn 
returns true with the value with.

ForwardItr rotate(ForwardItr start,
                  ForwardItr middle,
                  ForwardItr stop)

Rotates  the  elements  of  the  container  such  that  the  sequence 
[middle, stop) is at the front and the range [start, middle) goes 
from the new middle to the end.  rotate returns an iterator to the 
new position of start.

ForwardItr search(ForwardItr start1,
                  ForwardItr stop1,
                  ForwardItr start2,
                  ForwardItr stop2)

Returns whether the sequence [start2,  stop2) is a subsequence 
of the range [start1,  stop1).  To compare elements by a special 
comparison function, specify it as a final parameter.

InputItr set_difference(
                InputItr start1,
                InputItr stop1,
                InputItr start2,
                InputItr stop2,
                OutItr dest)

Stores all elements that are in the sorted range [start1, stop1) 
but  not  in  the  sorted  range  [start2, stop2)  in  the  destination 
pointed  to  by  dest.   If  the  elements  are  sorted  according  to  a 
special  comparison function,  you can specify the function as the 
final parameter.

InputItr set_intersection(
                InputItr start1,
                InputItr stop1,
                InputItr start2,
                InputItr stop2,
                OutItr dest)

Stores  all  elements  that  are  in  both  the  sorted  range 
[start1, stop1)  and  the  sorted  range  [start2, stop2)  in  the 
destination  pointed  to  by  dest.   If  the  elements  are  sorted 
according to  a  special  comparison  function,  you can specify  the 
function as the final parameter.

InputItr set_union(
                InputItr start1,
                InputItr stop1,
                InputItr start2,
                InputItr stop2,
                OutItr dest)

Stores  all  elements  that  are  in  either  the  sorted  range 
[start1, stop1)  or  in  the  sorted  range  [start2, stop2)  in  the 
destination  pointed  to  by  dest.   If  the  elements  are  sorted 
according to  a  special  comparison  function,  you can specify  the 
function as the final parameter.

InputItr set_symmetric_difference(
                InputItr start1,
                InputItr stop1,
                InputItr start2,
                InputItr stop2,
                OutItr dest)

Stores all elements that are in the sorted range [start1, stop1) or 
in  the  sorted  range  [start2, stop2),  but  not  both,  in  the 
destination  pointed  to  by  dest.   If  the  elements  are  sorted 
according to  a  special  comparison  function,  you can specify  the 
function as the final parameter.

void swap(Value& one, Value& two) Swaps the values of one and two.

ForwardItr
swap_ranges(ForwardItr start1,
            ForwardItr stop1,
            ForwardItr start2)
                   

Swaps  each  element  in  the  range  [start1,   stop1)  with  the 
correspond elements in the range starting with start2.
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OutputItr transform(InputItr start,
                    InputItr stop,
                    OutputItr dest,
                    Function fn)

Applies  the  function  fn to  all  of  the  elements  in  the  range 
[start, stop) and stores the result  in  the range beginning with 
dest.  The return value is an iterator one past the end of the last 
value written.

RandomItr
         upper_bound(RandomItr start,
                     RandomItr stop,
                     const Type& val)

Returns  an  iterator  to  the  first  element  in  the  sorted  range 
[start, stop) that is  strictly  greater than the value  val.   If  you 
need to specify a special comparison function, you can do so as the 
final parameter.

A Word on Compatibility

The  STL  is  ISO-standardized  along  with  the  rest  of  C++.   Ideally,  this  would  mean  that  all  STL 
implementations are uniform and that C++ code that works on one compiler should work on any other  
compiler.  Unfortunately, this is not the case.  No compilers on the market fully adhere to the standard, and 
almost universally compiler writers will make minor changes to the standard that decrease portability.

Consider, for example, the ConvertToLowerCase function from earlier in the section:

    string ConvertToLowerCase(string text) {
        transform(text.begin(), text.end(), text.begin(), tolower);
        return text;
    }

This code will compile in Microsoft Visual Studio, but not in Xcode or the popular Linux compiler g++.  The 
reason is that there are two tolower functions – the original C tolower function exported by <cctype> 
and a more modern tolower function exported by the <locale> header.  Unfortunately, Xcode and g++ 
cannot differentiate between the two functions, so the call to transform will result in a compiler error.  To 
fix the problem, you must explicitly tell C++ which version of tolower you want to call as follows:

    string ConvertToLowerCase(string text) {
        transform(text.begin(), text.end(), text.begin(), ::tolower);
        return text;
    }

Here,  the  strange-looking  :: syntax  is  the  scope-resolution  operator  and  tells  C++  that  the  tolower 
function is the original C function rather than the one exported by the <locale> header.  Thus, if you're 
using Xcode or   g++ and want to use the functions from <cctype>, you'll need to add the ::.

Another spot where compatibility issues can lead to trouble arises when using STL algorithms with the 
STL set.  Consider the following code snippet, which uses fill to overwrite all of the elements in an STL 
set with the value 137:

    fill(mySet.begin(), mySet.end(), 137);

This code will compile in Visual Studio, but will not under g++.  Recall from the second chapter on STL  
containers that manipulating the contents of an STL set in-place can destroy the set's internal ordering. 
Visual Studio's implementation of set will nonetheless let you modify set contents, even in situations like 
the above where doing so is unsafe.  g++, however, uses an STL implementation that treats all set iterators 
as  read-only.   Consequently,  this  code  won't  compile,  and  in  fact  will  cause  some  particularly  nasty 
compiler errors.

When porting C++ code from one compiler to another, you might end up with inexplicable compiler errors.  
If you find some interesting C++ code online that doesn't work on your compiler, it doesn't necessarily  
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mean that the code is invalid; rather, you might have an overly strict compiler or the online code might use  
an overly lenient one.

Extended Example: Palindromes

A man, a plan, a caret, a ban, a myriad, a sum, a lac, a liar, a hoop, a pint, a catalpa, a gas, an oil, a  
bird, a yell, a vat, a caw, a pax, a wag, a tax, a nay, a ram, a cap, a yam, a gay, a tsar, a wall, a car,  
a luger, a ward, a bin, a woman, a vassal, a wolf, a tuna, a nit, a pall, a fret, a watt, a bay, a daub, a  
tan, a cab, a datum, a gall, a hat, a tag, a zap, a say, a jaw, a lay, a wet, a gallop, a tug, a trot, a  
trap, a tram, a torr, a caper, a top, a tonk, a toll, a ball, a fair, a sax, a minim, a tenor, a bass, a  
passer, a capital, a rut, an amen, a ted, a cabal, a tang, a sun, an ass, a maw, a sag, a jam, a dam, a  
sub, a salt, an axon, a sail, an ad, a wadi, a radian, a room, a rood, a rip, a tad, a pariah, a revel, a  
reel, a reed, a pool, a plug, a pin, a peek, a parabola, a dog, a pat, a cud, a nu, a fan, a pal, a rum, a  
nod, an eta, a lag, an eel, a batik, a mug, a mot, a nap, a maxim, a mood, a leek, a grub, a gob, a  
gel, a drab, a citadel, a total, a cedar, a tap, a gag, a rat, a manor, a bar, a gal, a cola, a pap, a yaw,  
a tab, a raj, a gab, a nag, a pagan, a bag, a jar, a bat, a way, a papa, a local, a gar, a baron, a mat,  
a rag, a gap, a tar, a decal, a tot, a led, a tic, a bard, a leg, a bog, a burg, a keel, a doom, a mix, a  
map, an atom, a gum, a kit, a baleen, a gala, a ten, a don, a mural, a pan, a faun, a ducat, a  
pagoda, a lob, a rap, a keep, a nip, a gulp, a loop, a deer, a leer, a lever, a hair, a pad, a tapir, a  
door, a moor, an aid, a raid, a wad, an alias, an ox, an atlas, a bus, a madam, a jag, a saw, a mass,  
an anus, a gnat, a lab, a cadet, an em, a natural, a tip, a caress, a pass, a baronet, a minimax, a  
sari, a fall, a ballot, a knot, a pot, a rep, a carrot, a mart, a part, a tort, a gut, a poll, a gateway, a  
law, a jay, a sap, a zag, a tat, a hall, a gamut, a dab, a can, a tabu, a day, a batt, a waterfall, a  
patina, a nut, a flow, a lass, a van, a mow, a nib, a draw, a regular, a call, a war, a stay, a gam, a  
yap, a cam, a ray, an ax, a tag, a wax, a paw, a cat, a valley, a drib, a lion, a saga, a plat, a catnip, a  
pooh, a rail, a calamus, a dairyman, a bater, a canal – Panama!

 – Dan Hoey [Pic96]

It is fitting to conclude our whirlwind tour of the STL with an example showcasing exactly how concise and 
powerful well-written STL code can be.  This example is shorter than the others in this book, but should 
nonetheless illustrate how the different library pieces all fit together.  Once you've finished reading this  
chapter, you should have a solid understanding of how the STL and streams libraries can come together 
beautifully to elegantly solve a problem.

Palindromes

A palindrome is a word or phrase that is the same when read forwards or backwards, such as “racecar ” or 
“Malayalam.”  It is customary to ignore spaces, punctuation, and capitalization when reading palindromes,  
so the phrase “Mr. Owl ate my metal worm” would count as a palindrome, as would “Go hang a salami!  I'm 
a lasagna hog.”

Suppose that we want to write a function IsPalindrome that accepts a string and returns whether or 
not the string is a palindrome.  Initially, we'll assume that spaces, punctuation, and capitalization are all 
significant in the string, so “Party trap” would not be considered a palindrome, though “Part y traP” would.  
Don't worry – we'll loosen this restriction in a bit.  Now, we want to verify that the string is the same when 
read forwards and backwards.  There are many possible ways to do this.  Prior to learning the STL, we 
might have written this function as follows:
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    bool IsPalindrome(string input) {
        for(int k = 0; k < input.size() / 2; ++k)
            if(input[k] != input[input.length() - 1 – k])
                return false;
        return true;
    }

That is, we simply iterate over the first half of the string checking to see if each character is equal to its  
respective character on the other half of the string.  There's nothing wrong with the approach, but it feels 
too  mechanical.  The high-level operation we're modeling asks whether the first half of the string is the 
same forwards as the second half is backwards.  The code we've written accomplishes this task, but has to  
explicitly walk over the characters from start to finish, manually checking each pair.  Using the STL, we can 
accomplish the same result  as  above without explicitly  spelling out  the  details  of  how to check each  
character.

There are several ways we can harness the STL to solve this problem.  For example, we could use the STL  
reverse algorithm to create a copy of the string in reverse order, then check if the string is equal to its  
reverse.  This is shown here:

    bool IsPalindrome(string input) {
        string reversed = input;
        reverse(input.begin(), input.end());
        return reversed == input;
    }

This approach works, but requires us to create a copy of the string and is therefore less efficient than our 
original  implementation.  Can  we  somehow  emulate  the  functionality  of  the  initial  for loop  using 
iterators?  The answer is yes, thanks to  reverse_iterators.  Every STL container class exports a type 
reverse_iterator which is similar to an iterator except that it traverses the container backwards.  Just  
as the begin and end functions define an iterator range over a container, the rbegin and rend functions 
define a reverse_iterator range spanning a container.

Let's also consider the the STL equal algorithm.  equal accepts three inputs – two iterators delineating a 
range and a third iterator indicating the start of a second range – then returns whether the two ranges are  
equal.   Combined  with  reverse_iterators,  this  yields  the  following  one-line implementation of 
IsPalindrome:

    bool IsPalindrome(string input) {
        return equal(input.begin(), input.begin() + input.size() / 2,
                     input.rbegin());
    }

This is a remarkably simple approach that is identical to what we've written earlier but much less verbose. 
Of course, it doesn't correctly handle capitalization, spaces, or punctuation, but we can take care of that 
with only a few more lines of code.  Let's begin by stripping out everything from the string except for 
alphabetic characters.  For this task, we can use the STL remove_if algorithm, which accepts as input a 
range  of  iterators  and  a  predicate,  then  modifies  the  range  by  removing  all  elements  for  which  the 
predicate  returns  true.   Like  its  partner  algorithm  remove,  remove_if doesn't  actually  remove  the 
elements from the sequence (see the last chapter for more details), so we'll need to erase the remaining 
elements afterwards. 

Because we want to eliminate all characters from the string that are not alphabetic, we need to create a 
predicate  function  that  accepts  a  character  and  returns  whether  it  is  not  a  letter.   The  header  file 
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<cctype> exports a helpful function called isalpha that returns whether a character is  a letter.  This is 
the opposite what we want, so we'll create our own function which returns the negation of isalpha:*

    bool IsNotAlpha(char ch) {
        return !isalpha(ch);
    }

We can now strip out nonalphabetic characters from our input string as follows:

    bool IsPalindrome(string input) {
        input.erase(remove_if(input.begin(), input.end(), IsNotAlpha),
                    input.end());
        return equal(input.begin(), input.begin() + input.size() / 2,
                     input.rbegin());
    }

Finally, we need to make sure that the string is treated case-insensitively, so inputs like “RACEcar” are  
accepted as palindromes.  Using the code developed in the chapter on algorithms, we can convert the 
string  to  uppercase  after  stripping  out  everything  except  characters,  yielding  this  final  version  of 
IsPalindrome:

    bool IsPalindrome(string input) {
        input.erase(remove_if(input.begin(), input.end(), IsNotAlpha), 
                    input.end());
        transform(input.begin(), input.end(), input.begin(), ::toupper);
        return equal(input.begin(), input.begin() + input.size() / 2,
                     input.rbegin());
    }

This function is remarkable in its elegance and terseness.  In three lines of code we've stripped out all of the 
characters in a string that aren't letters, converted what's left to upper case, and returned whether the  
string is the same forwards and backwards.  This is the STL in action, and I hope that you're beginning to  
appreciate the power of the techniques you've learned over the past few chapters.

Before concluding this example, let's consider a variant on a palindrome where we check whether the 
words in a phrase are the same forwards and backwards.  For example, “Did mom pop?  Mom did!” is a  
palindrome both  with respect to its letters and its words, while “This is this” is a phrase that is not a 
palindrome but is a word-palindrome.  As with regular palindromes, we'll ignore spaces and punctuation, 
so “It's an its” counts as a word-palindrome even though it uses two different forms of the word its/it's.  
The machinery we've developed above works well for entire strings; can we modify it to work on a word-
by-word basis?

In some aspects this new problem is similar to the original.  We still to ignore spaces, punctuation, and  
capitalization,  but  now need to treat words rather  than letters  as  meaningful  units.   There are many 
possible algorithms for checking this property, but one solution stands out as particularly good.  The idea 
is as follows:

1. Clean up the input: strip out everything except letters and spaces, then convert the result to upper 
case.

2. Break up the input into a list of words.
3. Return whether the list is the same forwards and backwards.

* When we cover the <functional> library in the second half of this book, you'll see a simpler way to do this.
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In the first step, it's important that we preserve the spaces in the original input so that we don't lose track  
of word boundaries.  For example, we would convert the string “Hello?  Hello!?  HELLO?” into “HELLO 
HELLO HELLO” instead of  “HELLOHELLOHELLO” so  that  we can recover  the  individual  words  in  the  
second step.  Using a combination of the isalpha and isspace functions from <cctype> and the convert-
to-upper-case code used above, we can preprocess the input as shown here:

    bool IsNotAlphaOrSpace(char ch) {
        return !isalpha(ch) && !isspace(ch);
    }

    bool IsWordPalindrome(string input) {
        input.erase(remove_if(input.begin(), input.end(), IsNotAlphaOrSpace),
                    input.end());
        transform(input.begin(), input.end(), input.begin(), ::toupper);
        /* ... */
    }

At this point the string input consists of whitespace-delimited strings of uniform capitalization.  We now 
need to tokenize the input into individual words.  This would be tricky were it not for  stringstream. 
Recall that when reading a string out of a stream using the stream extraction operator (>>), the stream 
treats whitespace as a delimiter.  Thus if we funnel our string into a stringstream and then read back 
individual  strings,  we'll  end up with a tokenized version of the input.   Since we'll  be dealing with an 
arbitrarily-long list of strings, we'll store the resulting list in a vector<string>, as shown here:

    bool IsWordPalindrome(string input) {
        input.erase(remove_if(input.begin(), input.end(), IsNotAlphaOrSpace),
                    input.end());
        transform(input.begin(), input.end(), input.begin(), ::toupper);
    
        stringstream tokenizer(input);
        vector<string> tokens;
    
        /* ... */
    }

Now, what is the easiest way to read strings out of the stream until no strings remain?  We could do this 
manually, as shown here:

    bool IsWordPalindrome(string input) {
        input.erase(remove_if(input.begin(), input.end(), IsNotAlphaOrSpace),
                    input.end());
        transform(input.begin(), input.end(), input.begin(), ::toupper);
    
        stringstream tokenizer(input);
        vector<string> tokens;
    
        string token;
        while(tokenizer >> token)
            tokens.push_back(token);
    }

This code is correct, but it's bulky and unsightly.  The problem is that it's just too mechanical.  We want to 
insert all of the tokens from the stringstream into the vector, but as written it's not clear that this is 
what's  happening.   Fortunately,  there  is  a  much,  much easier  way  to  solve  this  problem  thanks  to 
istream_iterator.  Recall that  istream_iterator is an iterator adapter that lets you iterate over an 
input stream as if it were a range of data.  Using istream_iterator to wrap the stream operations and 



- 186 -  Chapter 7: STL Algorithms

the  vector's  insert function to insert a range of data, we can rewrite this entire loop in one line as  
follows:

    bool IsWordPalindrome(string input) {
        input.erase(remove_if(input.begin(), input.end(), IsNotAlphaOrSpace),
                    input.end());
        transform(input.begin(), input.end(), input.begin(), ::toupper);
    
        stringstream tokenizer(input);
        vector<string> tokens;
    
        tokens.insert(tokens.begin(),                    
                      istream_iterator<string>(tokenizer),
                      istream_iterator<string>());
    }

Recall  that two  istream_iterators are necessary to define a range, and that an  istream_iterator 
constructed with no arguments is a special “end of stream” iterator.  This one line of code replaces the 
entire loop from the previous implementation, and provided that you have some familiarity with the STL 
this second version is also easier to read.

The last step in this process is to check if the sequence of strings is the same forwards and backwards.  But  
we already know how to do this – we just use equal and a reverse_iterator.  Even though the original 
implementation  applied  this  technique  to  a  string,  we  can  use  the  same  pattern  here  on  a 
vector<string> because all the container classes are designed with a similar interface.  Remarkable, 
isn't it?

The final version of IsWordPalindrome is shown here:

    bool IsWordPalindrome(string input) {
        input.erase(remove_if(input.begin(), input.end(), IsNotAlphaOrSpace),
                    input.end());
        transform(input.begin(), input.end(), input.begin(), ::toupper);
    
        stringstream tokenizer(input);
        vector<string> tokens;
    
        tokens.insert(tokens.begin(),
                      istream_iterator<string>(tokenizer),
                      istream_iterator<string>());
        return equal(tokens.begin(), tokens.begin() + tokens.size() / 2,
                     tokens.rbegin());
    }

More to Explore

While this chapter lists some of the more common algorithms, there are many others that are useful in a 
variety  of  contexts.   Additionally,  there  are  some  useful  C/C++ library  functions  that  work  well  with  
algorithms.  If you're interested in maximizing your algorithmic firepower, consider looking into some of 
these topics:

1. <cctype>: This chapter briefly mentioned the <cctype> header, the C runtime library's character 
type library.   <cctype> include  support  for  categorizing  characters  (for  example,  isalpha to 
return if a character is a letter and isxdigit to return if a character is a valid hexadecimal digit) 
and formatting conversions (toupper and tolower).
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2. <cmath>:  The  C  mathematics  library  has  all  sorts  of  nifty  functions  that  perform  arithmetic 
operations like  sin,  sqrt,  and  exp.   Consider looking into these functions if  you want to use 
transform on your containers.

3. Boost Algorithms:  As with most  of  the C++ Standard Library,  the Boost C++ Libraries have a 
whole host of useful STL algorithms ready for you to use.  One of the more useful Boost algorithm  
sets is the string algorithms, which extend the functionality of the find and replace algorithms 
on strings from dealing with single characters to dealing with entire strings.

Practice Problems

Algorithms are ideally suited for solving a wide variety of problems in a small space.  Most of the following  
programming problems have short solutions – see if you can whittle down the space and let the algorithms 
do the work for you!

1. Give three reasons why STL algorithms are preferable over hand-written loops.
 

2. What does the _if suffix on an STL algorithm indicate?  What about _n?
 

3. What are the five iterator categories?
 

4. Can an input iterator be used wherever a forward iterator is expected?  That is, if an algorithm  
requires a forward iterator, is it legal to provide it an input iterator instead?  What about the other 
way around?
 

5. Why do we need back_insert_iterator and the like?  That is, what would happen with the STL 
algorithms if these iterator adaptors didn't exist?
 

6. The distance function, defined in the <iterator> header, takes in two iterators and returns the 
number of elements spanned by that iterator range.  For example, given a vector<int>, calling
 
    distance(v.begin(), v.end());
 
returns the number of elements in the container.
 
Modify the code from this chapter that prints the average of the values in a file so that it instead 
prints the average of the values in the file between 25 and 75.  If no elements are in this range, you 
should print a message to this effect.  You will need to use a combination of  accumulate and 
distance.
 

7. Using  remove_if and  a  custom  callback  function,  write  a  function  RemoveShortWords that 
accepts a vector<string> and removes all strings of length 3 or less from it.  This function can be 
written in two lines of code if you harness the algorithms correctly.

8. In  n-dimensional  space,  the  distance  from  a  point  (x1,  x2,  x3,  ...,  xn)  to  the  origin  is 

 x1
2
 x2

2
x3

2
...xn

2 . Write  a  function  DistanceToOrigin that  accepts  a  vector<double> 
representing a point in space and returns the distance from that point to the origin.  Do not use any 
loops – let the algorithms do the heavy lifting for you. (Hint: Use the inner_product algorithm to  
compute the expression under the square root.)
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9. Write a function BiasedSort that accepts a vector<string> by reference and sorts the vector 
lexicographically, except that if the vector contains the string “Me First,” that string is always at 
the  front  of  the  sorted  list.   This  may  seem  like  a  silly  problem,  but  can  come  up  in  some 
circumstances.  For example, if you have a list of songs in a music library, you might want songs 
with the title “Untitled” to always appear at the top.

10. Write a function CriticsPick that accepts a map<string, double> of movies and their ratings 
(between 0.0 and 10.0) and returns a set<string> of the names of the top ten movies in the map. 
If there are fewer than ten elements in the map, then the resulting set should contain every string 
in the map. (Hint: Remember that all elements in a map<string, double> are stored internally as  
pair<string, double>)

11. Implement  the  count algorithm  for  vector<int>s.   Your  function should have  the  prototype 
int count(vector<int>::iterator  start,  vector<int>::iterator  stop,  int 
element) and should return the number of elements in the range [start, stop) that are equal to 
element.

12. Using the generate_n algorithm, the rand function, and a back_insert_iterator, show how to 
populate a vector with a specified number of random values.  Then use accumulate to compute 
the average of the range.

13. The median of a range of data is the value that is bigger than half the elements in the range and 
smaller than half the elements in a range.  For data sets with odd numbers of elements, this is the 
middle element when the elements are sorted, and for data sets with an even number of elements  
it is the average of the two middle elements.  Using the nth_element algorithm, write a function 
that computes the median of a set of data.

14. Show how to use a combination of copy, istreambuf_iterator, and ostreambuf_iterator to 
open a file and print its contents to cout.
 

15. Show how to use a combination of  copy and iterator adapters to write the contents of an STL 
container to a file, where each element is stored on its own line.
 

16. Suppose that you are given two vector<int>s with their elements stored in sorted order.  Show 
how to  print  out  the  elements  those  vectors  have in  common in  one  line  of  code using  the 
set_intersection algorithm and an appropriate iterator adaptor.

17. A monoalphabetic substitution cipher is a simple form of encryption.  We begin with the letters of 
the alphabet, as shown here:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

We then scramble these letters randomly, yielding a new ordering of the alphabet.  One possibility  
is as follows:
  
K V D Q J W A Y N E F C L R H U X I O G T Z P M S B

 
This new ordering thus defines a mapping from each letter in the alphabet to some other letter in  
the alphabet, as shown here:
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A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

K V D Q J W A Y N E F C L R H U X I O G T Z P M S B

To encrypt a source string, we simply replace each character in the string with its corresponding 
encrypted character.  For example, the string “The cookies are in the fridge” would be encoded as 
follows:
 
T H E C O O K I E S A R E I N T H E F R I D G E

G Y J D H H F N J O K I J N R G Y J W I N Q A J

 
Monoalphabetic  substitution  ciphers  are  surprisingly  easy  to  break  –  in  fact,  most  daily 
newspapers include a daily puzzle that involves deciphering a monoalphabetic substitution cipher 
–  but  they are  still  useful  for  low-level  encryption  tasks  such  as  posting  spoilers  to  websites 
(where viewing the spoiler explicitly requires the reader to decrypt the text).
 
Using  the  random_shuffle algorithm,  implement  a  function 
MonoalphabeticSubstitutionEncrypt that  accepts  a  source  string  and  encrypts  it  with  a 
random monoalphabetic substitution cipher.



Part Two
Data Abstraction

It's all just bits and bytes.

Everything on your machine, whether it's your tax return, a picture from a trip, a web page, or a web 
browser, is stored in memory as a series of ones and zeros encoded as magnetic, optical,  or electrical  
signals.  How, then, can a computer do word processing?  Or view images?  Or check your email?  All of this  
data  has  structure –  text  documents  store  words  and  fonts,  images  vivid  color  pictures,  and email  a 
mixture of text, headers, and contacts.  
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Software keeps getting bigger.  Society keeps digitizing and automating more and more aspects of life, and  
the scope and complexity of  software systems are ever increasing.   For computer  scientists,  this is  a  
thrilling prospect:  even after decades of  booming growth,  the field is  still  expanding and applications 
abound.  But for software engineers - the brave souls who actually write the code – this can be daunting.

In the early days of programming, software was considerably less complicated because the tasks we used  
to ask of computers are nowhere near as complex as those we ask today.  Operating systems worked on  
less powerful hardware and with considerably fewer peripherals.  The earliest web browsers didn't need 
to support a wide array of HTML, CSS, JavaScript, XML, SVG, and RSS formats.  Video games didn't need to  
take advantage of the latest-and-greatest 3D hardware and weren't criticized for not having the most up-
to-date  shading  engine.   But  nowadays,  the  expectations  are  higher,  and  software  is  growing  more 
complicated.

Unfortunately,  increasing the size  of  a  software system greatly increases the system's complexity and 
opens  all  sorts  of  avenues  for  failure.   Combating  software  complexity  is  therefore  extraordinarily 
important as it allows software systems to grow robustly.  This section of this book is dedicated entirely to  
techniques for combating complexity through a particular technique called abstraction.  Abstraction is a 
subtle  but  important  aspect  of  software  design,  and  in  many  ways  the  difference  between  good 
programmers and excellent  programmers  is  the  ability  to  design robust  and intuitive  abstractions  in 
software.

Many textbooks jump directly into a discussion of what abstraction is all about and how to represent it in 
software, but I feel that doing so obscures the fundamental reasons underlying abstraction.  This chapter 
discusses  how  software  engineering  is  different  from  other  engineering  disciplines,  why  software 
complexity is particularly dangerous, and how abstraction can dramatically reduce the complexity of a 
software system.  It  then introduces the  class keyword and how to represent abstraction directly in 
source code.

The Complexity of Software

What exactly does it mean to talk about the complexity of a software system?  One of the first metrics that  
may come to mind is the number of lines of code in the program.  This is akin to measuring the complexity 
of a chip by the number of transistors on it or a bridge by the number of welds required: while in general  
system complexity rises with lines of code, a program with ten thousand lines of code is not necessarily 
ten times more complicated than a system with one thousand lines of code.  However, number of lines of 
code is  still  a  reasonable  metric  of  software complexity.   To give  you a  sense  for  how massive  some  
projects can be, here is a list of various software projects and the number of lines of code they contain:
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1 – 10 Hello, World!

10 – 100 Most implementation of the STL stack or queue.

100 – 1,000 Most of the worked examples in this book.

1,000 – 10,000 Intensive team project in a typical computer science curriculum.

10,000 – 100,000 Most Linux command-line utilities.

100,000 – 1,000,000 Linux g++ Compiler

1,000,000 – 10,000,000 Mozilla Firefox

10,000,000 – 100,000,000 Microsoft Windows 2000 Kernel

100,000,000 - 1,000,000,000 Debian Linux Operating System

The number of lines of code in each of these entries is ten times more than in the previous example.  This  
means that there are ten times as many lines of code in Firefox than in g++, for example.  And yes, you did 
read this correctly – there are many, many projects that clock in at over a million lines of code.  The Debian 
Linux kernel is roughly 230 million lines of code as of this writing.  It's generally accepted that no single 
programmer can truly understand more than fifty thousand lines of code, which means that in all but the 
simplest of programs, no one programmer understands how the entire system works.

So software is complex – so what?  That is, why does it matter that modern software systems are getting 
bigger and more complicated? There are many reasons, of which two specifically stand out.

Every Bit Counts

In a software system, a single incorrect bit can spell disaster for the entire program. For example, suppose 
you are designing a system that controls a nuclear reactor core.  At some point in your program, you have  
the following control logic:

    if (MeltdownInProgress()) {
       SetReactorPower(0);
       EmergencyShutoff();
    }

Let's  suppose that  MeltdownInProgress returns  a  bool that  signals  whether  the  reactor  is  melting 
down.  On most systems,  bools are represented as a sequence of ones and zeros called  bits.  The value 
false is represented by those bits all being zero, and true represented by any of the bits being nonzero. 
For example, the value  00010000 would be interpreted as  true, while  00000000 would be  false. This 
means that the difference between true and false is a single bit.  In the above example, this means that 
the difference between shutting down the reactor in an emergency and continuing normal operation is a 
single bit in memory.

In the above example, our “single incorrect bit” was the difference between the boolean values true and 
false, but in most systems the “single incorrect bit” will be something else.  It might, for example, be an  
negative integer where a positive integer was expected, an iterator that is past the end of a container, or an 
unsorted  vector when the data was expected to be sorted.  In each of these cases, the erroneous data is 
likely to be only a handful of bits off from a meaningful piece of data, but the result will be the same – the  
program won't work as expected.
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Interactions Grow Exponentially

Suppose you have a program with  n lines of  code. Let's consider an “interaction” to be where data is 
manipulated by two different lines of code.  For example, one interaction might be creating an int in one 
line and then printing it to the console in the next, or a function passing one of its parameters into another  
function.  Since every line of code might potentially manipulate data created by any of the other n lines of 
code, if you sum up this count for all  n lines of code there are roughly n2 pairs of interacting lines.  This 
which means that the number of possible interactions in a software project increases, in the worst case, as  
the square of the number of lines of code.

Let's consider a slightly different take on this. Suppose you are working on a software project with n lines 
of code and you're interested in adding a new feature. As mentioned above, any changes you make might 
interact with any of the existing n lines of code, and those n lines of code might interact with all of your 
new lines of code.  If the changes you make somehow violate an assumption that exists in some other 
module, then changes in your relatively isolated region of the code base might cause catastrophic failures 
in entirely different parts of the code base.

However,  the situation is far  worse than this.   In this  example we considered an interaction to be an 
interaction between two lines of code.  A more realistic model of interactions would consider interactions 
between  arbitrarily many lines of code, since changes made in several different points might converge 
together in a point to form a result not possible if a single one of the changes didn't occur.  In this case, if  
the code base has n lines of code, the maximum number of interactions (sets of two or more lines of code) 
is roughly 2n.  That's a staggeringly huge number.  In fact, if we make the liberal assumption that there are 
10100 atoms in the universe (most estimates put the figure at much less than this), then even a comparably 
small software system (say, three thousand lines of code) has more possible interactions than there are  
atoms in the universe.

In  short,  the  larger  a  software  system  gets,  the  greater  the  likelihood  than  an  error  occurs  and,  
consequently, the more difficult it is to make changes.  In short, software is chaotic, and even minuscule 
changes to a code base can completely cripple the system.

Abstraction

One of the most powerful techniques available to combat complexity is abstraction, a means of simplifying 
a  complex program to a  manageable  level.   Rather  than jumping headfirst  into a full-on definition of  
abstraction with examples, let's look at abstraction by means of an example. Consider a standard, run-of-
the-mill stapler. Certainly you understand how to use a stapler: you place the papers to staple under the 
arm of the stapler, then depress the handle to staple the pages together. You've undoubtedly encountered 
more than one stapler in your life, yet (barring unfortunate circumstances) you've probably figured out 
how to work all of them without much trouble.  Staplers come in all shapes and sizes, and consequently  
have many different internal mechanisms, yet switching from one type of stapler to another poses little to 
no problem to you.  In fact, you probably don't think much about staplers, even when you're using them.

Now consider the companies that make staplers – Swingline or McGill,  for example.  These companies  
expend millions of dollars designing progressively better staplers.   They consider all sorts of tradeoffs 
between different types of springs and different construction materials.  In fact, they probably expend  
more effort in a single day designing staplers than you will ever spend thinking about staplers in your  
entire  life.   But  nonetheless,  at  the  end of  the  day,  staplers  are  simple  and easy  to  use  and bear  no  
markings  to  indicate  the  painstaking  labor  that  has  gone  into  perfecting  them.   This  setup,  where  a 
dedicated manufacturer designs a complex but easy-to-use product, is the heart of abstraction.
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Formally speaking, an abstraction is a description of an object that omits all but a few salient details.  For 
example, suppose we want to describe a particular coffee mug.  Here are several different descriptions of  
the coffee mug, each at different levels of abstraction:

• Matter.
• An object.
• A beverage container.
• A coffee mug.
• A white coffee mug.
• A white ceramic coffee mug.
• A white ceramic coffee mug with a small crack in the handle.
• A  white  ceramic  coffee  mug  with  a  small  crack  in  the  handle  whose  manufacturer's  logo  is 

emblazoned on the bottom.

Notice how these descriptions move from least specific (matter) to most specific (A white ceramic coffee 
mug with a small crack in the handle whose manufacturer's logo is emblazoned on the bottom).  Each of  
the descriptions describe the same coffee mug, but each does so at a different level of detail.  Depending on 
the circumstance, different levels  of detail might be appropriate.   For example, if  you were a physicist 
interested in modeling universal  gravitation,  the fact that  the coffee mug is made of matter might be  
sufficient for your purposes. However, if you wanted to paint a picture of the mug, you would probably  
want to pick the last description, since it offers the most detail.  If you'll notice, as the descriptions become  
more and more detailed, more and more information is revealed about the object.  Starting from the first  
of  these  descriptions  and  moving  downward,  the  picture  of  the  coffee  mug  becomes  more  clear.  
Describing the coffee mug as “matter” hardly helps you picture the mug, but as you go down the list you  
begin to notice that the mug is white, has a small crack, and has a logo printed on the bottom.

What does this have to do with our previous discussion on staplers?  The answer is simple: the reason that  
staplers are so easy to use despite the complex mechanisms that make them work is because the very  
notion of a stapler is an abstraction.  There are many ways to build a stapler, some of which have handles  
to  staple  documents,  and others  which  use  proximity  sensors  to  detect  paper  and insert  the  staples 
automatically.  Although these devices have little mechanism or structure in common, we would consider 
both of them staplers because they staple paper.  In other words, what is important to us as stapler users 
is the fact that staplers fasten paper together, not their inner workings.  This may seem like a strange line  
of reasoning, but it's one of the single most important concepts to grasp as a computer scientist.  The rest  
of this chapter is dedicated to exploring what abstraction means from a programming perspective and 
how abstraction can combat complexity.  But first,  let's discuss some of the major concepts and terms 
pertaining to abstraction at a high level.

The Wall of Abstraction

In our previous example with staplers, there was a clear separation of complexity between the stapler  
manufacturer and the end user.  The manufacturer took painstaking care to ensure that the stapler works 
correctly, and end users just press a handle or feed paper near a sensor.  This separation is fundamental to  
combating complexity, and is given an appropriately impressive name: the wall of abstraction.

The wall of abstraction is the information barrier between a device and how it works.  On one side of the 
wall is the manufacturer, whose task is to provide a device capable of meeting certain requirements.  To 
the manufacturer, the single most important task is producing a device that works correctly and reliably.  
On the other side of the wall of abstraction is the end user, who is interested in using the device but who, 
unless curious, does not particularly care how the device works.  In computer science, we refer to these 
two roles as the  client,  who uses the device,  and the  implementer,  who is tasked with making it work 
correctly.
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When using a stapler, you don't care how the stapler works because it's an unnecessary mental burden. 
You shouldn't need to know what type of metal the casing is made from, nor should you have to worry 
about what type of spring pushes the staples up to the front of the stapler.  The same is true of almost 
every device and appliance in use today.  Do you know exactly how a microwave works?  How about an  
internal combustion engine?  What about an iPhone?  Each of these devices is extraordinarily complicated  
and works on nuanced principles of physics, materials science, chemical engineering, and in some cases 
electrical and software engineering.  The magic of all of these devices is that we don't need to know how  
they work.   We can trust that a team of dedicated engineers understand their inner workings, and can 
focus instead on using them.

The fact that the wall of abstraction separates the implementer in the client necessarily means that an 
abstraction shields clients from unnecessary implementation details.  In that sense, the wall of abstraction 
is a barrier that prevents information about the device's internals from leaking outside.  That the wall of 
abstraction is an information barrier has profound consequences for software design.  Before we discuss 
how abstraction can reduce system complexity, let us focus on this aspect in more detail.

Abstractions are Imprecise

Earlier in this chapter we discussed abstraction in the context of a coffee mug by exploring descriptions of  
a cof fee mug at various levels of abstraction.  Suppose that we have an actual coffee mug we are interested 
in designing an abstraction for; for example, this mug here:

The highest-level description of a coffee mug in the original list was the extraordinarily vague “matter.”  
That is, all of the properties of the coffee mug are ignored except for the fact that it is matter.  This means  
the implementer (us) holds a coffee mug, but the client (the person reading the description “matter”) 
knows only that our object is composed of matter.  Because the wall of abstraction prevents information 
from leaking to the client, that our object is made of matter is the only information the client has about the  
coffee mug.  This means that the client can't tell if our object is a coffee mug, Jupiter's moon Ganymede, or  
a fried egg.  In other words, our description was so vague that the client knows nothing about what object  
we have.

Let's now move to a lower level of abstraction, the description that the mug is “a beverage container.”  The 
client can now tell that our mug is not Ganymede, nor is it a fried egg, but we haven't yet excluded other 
possibilities. Many things are beverage containers – punch bowls, wine glasses, thermoses, etc. – and the 
client cannot figure out from our limited description that the object is a coffee mug.  However, without  
knowing that the object is a coffee mug, at this level of abstraction the client could safely assume that our  
object could store water.
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Now let's consider an even more precise description: we describe the coffee mug as “a coffee mug.”  Now  
what can the client infer about our mug?  Because we have said that the object is a mug, they know that it's  
a coffee mug, true, but there are many properties of the object that they don't know.  For example, how big 
is the mug? What color is it?  What design, if any, adorns the mug?  A client on the other side of the wall of  
abstraction still can't paint a particularly vivid picture of the mug we're describing, but they now know a 
good deal more about the mug than they did with either of the two previous descriptions.

This above discussion hits on a major point: abstractions are imprecise.  When describing the coffee mug 
at various levels of detail, we always truthfully represented our coffee mug, but our descriptions never  
were sufficient to unambiguously convince the client of what object we were describing.  In fact, if we had  
instead been describing a different coffee mug, like this one here:

then all of our descriptions would still have been perfectly honest.

Abstractions, by their very nature, make it impossible for the client to know exactly what object is being 
described.  This is an incredible blessing.  Suppose, for example, that you bring your car in for routine 
maintenance.  The mechanic informs you that your radiator is nearing the end of its lifespan, so you pay 
for a replacement.  Once the mechanic replaces the radiator and you drive off into the sunset, the car that 
you are driving is not the same car that you drove in with.  One of its fundamental components has been 
replaced, and so an integral part of the car's system is not the same as it used to be.  However, you feel like 
you are driving the same car when you leave because from your perspective, nothing has changed.  The 
accelerator and brakes still work as they used to, the car handles like it used to, and in fact almost every  
maneuver you perform with the car will execute exactly the same way that the car used to.  Viewing this  
idea through the lens of abstraction, the reason for this is that your conception of the car has to do with its 
observable behavior.  The car you are now driving has a different “implementation” than the original car, 
but  it  adheres to  the  same abstraction as  the  old car  and is  consequently indistinguishable  from the 
original car.  Without looking under the hood (breaking the wall of abstraction), you wouldn't be able to 
notice the difference.

Interfaces

The wall of abstraction sits at the boundary between two worlds – the world of the implementer, where  
the workings of the mechanism are of paramount importance,  and the world of the client,  where the 
observable behavior is all that matters.  As mentioned earlier, the wall of abstraction is an information 
barrier that prevents implementation details and usage information from crossing between the client and 
implementer.  But if the client is unaware of the implementation of the particular device, how can she 
possibly use it?  That is, if there is a logical barrier between the two parties, how can the client actually use  
the implementer's device?
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One typical way to provide the client access to the implementation is via an interface.  An interface is a set 
of commands and queries that can be executed on the device, and is the way that the client interacts with  
the object.  For example, an interface might let the client learn some properties of the object in question, or 
might allow the client to ask the device to perform some task.   In software engineering,  an interface 
typically consists of a set of attributes (also called properties) that the object is required to have, along  
with a set of actions that the object can perform. For example, here's one possible interface for a stapler:

• Attributes:
◦ Number of staples left.
◦ Size of staples being used.
◦ How many sheets of paper are in the stapler.
◦ The maximum number of sheets of paper that the stapler can staple.

• Actions:
◦ Add more staples.
◦ Put paper into the stapler.
◦ Staple the papers together.

Interfaces are fascinating because they provide a particularly elegant means for a implementer to expose 
an object to a client.  The implementer is free to build the device in question as she sees fit, provided that 
all of the operations specified in the interface work correctly.  That is, someone implementing a stapler  
that adheres to the above interface can use whatever sort of mechanism they feel like to build the stapler, 
so long as it is possible to look up how many staples are left,  to add more staples to the stapler,  etc.  
Similarly, the client needs only learn the operations in the interface and should (theoretically) be able to 
use any device that conforms to that interface.   In software engineering terminology,  we say that the  
implementer  implements the interface by providing a means of transforming any request given to the 
interface to a request to the underlying device.  For example, if the Swingline corporation decided to create 
a new stapler, they might build a concrete stapler and then implement the interface for staplers as follows:

• Attributes:
◦ Number of staples left: Open the cover and count the number of staples.
◦ Size of staples being used: Open the cover and look at the size of the staples.
◦ How many sheets of paper are in the stapler: Count the sheets of paper on the base plate.
◦ The maximum number of sheets of paper that the stapler can staple: 25

• Actions:
◦ Add more staples: Open the cover and insert more staples.
◦ Put paper into the stapler: Place the paper over the base plate.
◦ Staple the papers together: Depress the handle until it clicks, then release the handle.

However, we could also implement the stapler inteface in a different way if we were using an electronic 
stapler:

• Attributes:
◦ Number of staples left: Read the digital display.
◦ Size of staples being used: Read the digital display.
◦ How many sheets of paper are in the stapler: Read the digital display.
◦ The maximum number of sheets of paper that the stapler can staple: 75

• Actions:
◦ Add more staples: Open the cover and snap the new roll of staples in place.
◦ Put paper into the stapler: Place the paper into the loading assembly.
◦ Staple the papers together: Press the “staple” button.
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Notice that these two staplers have the same interface but entirely different actions associated with each  
item in the interface.   This is a concrete example of abstraction in action - because the interface only 
describes some specific attributes and actions associated with the stapler, anything that can make these 
actions  work  correctly  can  be  treated  as  a  stapler.   The  actual  means  by  which  the  interface  is 
implemented may be different, but the general principle is the same.

An extremely important point to note is the relation between interfaces and abstractions.  Abstraction is a 
general  term  that  describes  how  to  simplify  systems  by  separating  the  role  of  the  client  and  the 
implementer.  Interfaces are the means by which abstractions are actually modeled in software systems. 
Whenever one speaks of abstraction in programming, it usually refers to designing an interface.  In other 
words, an object's interface is a concrete description of the abstraction provided for that object.

Encapsulation

When working with interfaces and abstractions, we build a wall of abstraction to prevent implementation 
details about an object from leaking to the client.  This means that the client does not necessarily need to  
know how the particular object is implemented, and can just rely on the fact that some implementer has 
implemented the interface correctly.  But while an interface captures the idea that a client doesn't have to 
know the particular implementation details, it does not express the idea that a client shouldn't know the 
particular implementation details.  To understand this, let's return to our discussion of staplers.  If an 
implementer provides a particular stapler that implements the stapler interface, then anyone using that 
stapler can just use the interface to the stapler to get all of their required functionality.  However, there's  
nothing stopping them from disassembling the stapler, looking at its component parts, etc.  In fact, given a 
physical stapler, it's possible to do things with that stapler that weren't initially anticipated.  You could, for  
example, replace the stapler handle with a pneumatic compressor to build a stapler gun, which might 
make the stapler more efficient in a particular application.  However, you could also remove the spring  
inside the stapler which forces the staples to the front of the staple tray, rendering the stapler useless.

In general, allowing clients to bypass interfaces and directly modify the object described by that interface 
is dangerous.   The entire purpose of an interface is to let  implementers build arbitrarily complicated 
systems that can be operated simply, and if a client bypasses the interface he'll be dealing with an object  
whose workings could easily be far beyond his comprehension.  In the case of a stapler, bypassing the  
interface and looking at the stapler internals isn't likely to cause any problems, but you would certainly be  
asking for trouble if you were to start poking around the internals of the Space Shuttle.  This violation,  
where a client bypasses an interface, is called breaking the wall of abstraction.

The above examples have hinted at why breaking the wall of abstraction is a bad idea, but we haven't  
explicitly spelled out any reasons why in general it can be dangerous.  Let us do this now. First, breaking 
the wall of abstraction allows clients to severely hurt themselves by tweaking a complex system.  In a 
complex system like a car engine, certain assumptions have to hold about the relationship between the 
parts of the car in order for the car to work correctly.  That is, fuel shouldn't be injected into the engine 
except in certain parts of the cycle, the transmission shouldn't try shifting gears until the clutch has been  
released, etc.  Consequently, most cars provide an interface into the engine that consists of a gas and brake  
pedal, whose operation controls all of the relevant parts of the engine.  If you were to ignore these controls  
and instead try to drive the car by manually adjusting fuel intake and the brake pressure, barring special 
training,  you  would  almost  certainly  either  cause  an  explosion  or  irreversibly  destroy  the  engine. 
Remember that abstraction protects both the client and the implementer – the client doesn't need to know 
about the inner workings of the object, and the implementer doesn't need to worry that the client can 
make  arbitrary  changes  to  the  object;  all  operations  on  the  object  must  come  through  the  interface. 
Breaking the wall of abstraction violates both these assumptions and can hurt both parties.

The second major  reason against  breaking the wall  of  abstraction is  to  ensure system flexibility.   As  
mentioned earlier, abstractions are by nature imprecise,  and multiple different implementations might 
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satisfy  a  particular  interface.   If  the  client  is  allowed to  break  the  wall  of  abstraction  and look  at  a  
particular  part  of  the  implementation,  then  that  implementation  is  in  essence  “locked  in  place.”  For  
example, suppose that you provide a traditional stapler to a client.  That client then decides to use the  
stapler in a context where the exact position and orientation of the stapler hinge is important; perhaps the  
client has trained a robot to use the stapler by learning to feed paper into the stapler whenever the hinge  
is at a particular angle.  Earlier in this chapter, we discussed how interfaces make it possible to change an 
object's implementation without befuddling the user.  That is, if the client only uses the operations listed in 
an interface,  then any object  implementing  that  interface  should be substitutable  for  any other.   The 
problem with breaking the wall of abstraction is that this is no longer possible. Consider, for example,  
what happens if we try to replace the mechanical stapler from this setup with an electric stapler.  Electric  
staplers tend not to have hinges, and so if we swapped staplers the robot designed to feed paper into the 
stapler would no longer be able to insert paper.  In other words, because the robot assumed that some  
property  held  true  of  the  implementation that  was  documented nowhere  in  the  interface,  it  became 
impossible to ever change the implementation.

To summarize – peering behind an interface and looking at the underlying implementation is a bad idea.  It 
allows  clients  to  poke  systems  in  ways  that  were  never  intended,  and  it  locks  the  particular  
implementation in place.

If  an  abstraction  does  not  allow  clients  to  look  at  the  implementation  under  any circumstance,  that 
abstraction is said to be encapsulated.  In other words, it is as though the actual implementation is trapped 
inside a giant capsule, and the only way to access the object is by issuing queries and commands specified  
by the interface.  Encapsulation is uncommon in the real world, but some analogies exist.  For example, if 
you visit a rare book collection, you cannot just go in and take any book off the shelf.  Instead, you have to  
talk to a librarian who will then get the book for you.  You have no idea where the book comes from – 
perhaps it's sitting on a shelf in the back, or perhaps the librarian has to get a courier to fetch it from some  
special vault – but this doesn't concern you because at the end of the day you (hopefully) have the book 
anyway.

Encapsulated interfaces are extraordinarily important in software because they represent a means for 
entirely containing complexity.  The immense amount of implementation detail that might be necessary to  
implement an interface is abstracted away into a small set of commands that can be executed on that 
interface,  and encapsulation prevents other  parts  of  the program from inadvertently (or  deliberately) 
modifying the implementation in unexpected ways.  Later in this chapter, when we discuss classes, you 
will see how C++ allows you to build encapsulated interfaces.

The Math: Why Abstraction Works

We've talked about abstraction and how it lets clients operate with complex objects without knowing their 
full implementation.  The implicit claim throughout this chapter has been that this greatly reduces the  
complexity of software systems.  Amazingly, given a suitable definition of system complexity, we can prove 
that  increasing  the level  of  abstraction in a  system reduces the  maximum complexity  possible  in the  
system.

In this discussion, we'll need to settle on a definition of a system's complexity.  If a system consists of 
different interfaces, we will define the maximum complexity of that system to be the maximum number of 
interactions between these interfaces.  For our purposes, we'll consider an interaction between interfaces 
to be a set of  two or more interfaces.  It can be shown that there are 2 n –  n – 1 possible interactions 
between interfaces, which is an absolutely huge number. In fact, in a system with ten interfaces, there are  
1,013 possible interactions between those interfaces. The reason for this is the first term in this quantity  
(2n), which grows extremely fast. It grows so quickly that we can ignore the last two terms in the sum and 
approximate the maximum complexity of a system as 2n.
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Now,  suppose  that  we  introduce  a  new  abstraction  into  a  system  that  reduces  the  total  number  of 
interfaces in the system by 10. This means that the new system has n - 10 interfaces, and consequently its 
maximum complexity is 2n - 10. If we take the ratio of the maximum complexity of the new system to the 
maximum complexity of the old system, we get 2 -10, which is just under one one-thousandth.  That is, the 
maximum complexity of the new system will be roughly one one-thousandth that of the original system. 
This result has extremely important implications for software design.  It is possible to build reasonably 
simple software systems that are hundreds of millions of lines of code simply by minimizing the number of  
interfaces present in the software system.  This caps the maximum complexity of the system by limiting 
the number of possible interactions.

But the above logic is terribly misleading. In practice, software systems rarely get even close to reaching 
the maximum number of possible interactions.  Maximum complexity only occurs if every combination of  
objects has a well-defined interaction, and this is rarely the case.  For example, in a simulation with a 
stapler, pen, and pencil sharpener, you are unlikely to ever have the stapler and pencil sharpener interact, 
and if you do it is extremely unlikely that you will have all three objects have some specific behavior when 
interacting all at the same time. A more realistic measure of complexity is the number of ways in which  
pairs of objects can interact.  This is a desirable choice for several reasons.  First, it corresponds to an 
elegant  graphical  measure of  complexity.   If  we list  all  of  the  components in a  system and add lines 
between pairs of objects that interact with each other, the complexity of that system is then the number of  
lines in the picture.   For example,  here are two diagrams of ways that common office supplies might  
interact with one another. The first system is clearly more complex than the second since there are more  
interactions defined between the components.

Paper Stapler

SharpenerPencil

Paper Stapler

SharpenerPencil

Setup one: Everything interacts 
with everything else.

Setup two: Only meaningful 
interactions defined.

Second, in practice, interactions between two or more objects can usually be simplified down into multiple 
instances of interactions between pairs of objects.  For example, if three billiard balls all collide, we could 
consider the interaction between the three balls as three separate interactions of the pairs of balls.  Only in 
unusual circumstances is such a decomposition not possible.  Finally, considering interactions only of pairs 
rather than of triples or quadruples tends to correspond more accurately to how systems are actually 
built.  It is conceptually simpler to think about how a single piece of a system interacts with each of its  
neighbors  in  isolation  than  it  is  to  think  about  how  that  pieces  interacts  with  all  of  its  neighbors 
simultaneously.

Even with this more restrictive definition of complexity, reducing the number of interfaces in a system still  
produces larger reductions in complexity.  It can be shown that the number of possible pairs of interacting  
objects is slightly less than n2. This means that if we make a linear reduction in the number of objects in 
the system, we get a quadratic decrease in the maximum complexity in that system. That is, removing ten 
interfaces isn't  going to drop the maximum complexity by ten interactions – it  will  be a considerably 
bigger number.
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Classes

The single most important difference between C++ and its predecessor C is the notion of a class. Classes 
are C++'s mechanism for encoding and representing abstraction, pairing interfaces with implementations, 
and enforcing encapsulation.  The entire remainder of this book will be dedicated to exploring how to 
create, modify, maintain, use, and refine classes and class definitions.

In  the  previous  discussion  on  abstraction,  we  discussed  abstractly  the  notions  of  interfaces  and 
encapsulation. Before we discuss the class mechanism, let's consider an extended example that illustrates 
exactly why abstraction and interfaces are so important.  In particular, we will explore how one might  
represent an FM radio tuner in C++ code. We won't actually create a working FM radio in software – that 
would require specialized hardware – but  the example should demonstrate many of the reasons why 
classes are so important.

Designing an FM Radio

In our  example,  we will  create  a data  structure that  stores information about an FM radio.  Since the 
properties of an FM radio can't be represented with a single variable, we'll create a struct called FMRadio 
which will hold all of our data.  What should this struct contain?  At a bare minimum, we will need to 
know what frequency the radio is tuned in to.  We also probably want to specify a volume control, so that  
listeners can turn up high-energy music or turn down shouting news pundits.   We can represent this  
information as follows:

    struct FMRadio {
        double frequency;
        int    volume;
    };

Here, the frequency field stores the frequency in MHz. For example, if you were listening to 88.5 KQED San 
Francisco, this field would have the value 88.5. Similarly, listening to 107.9 The End Sacramento would 
have the field hold 107.9.  I've arbitrarily chosen to store the volume as an int that holds a value between 0 
and 10, inclusive.  Volume zero completely mutes the radio, while volume ten is as much power as the 
speaker can deliver.  This means that if I wanted to configure my radio to listen to “This American Life” at a  
reasonably quiet level, I could write

    FMRadio myRadio;
    myRadio.frequency = 88.5; // 88.5 MHz (KQED)
    myRadio.volume    = 3;    // Reasonably quiet

Now, let's consider one more extension to the radio.  Most radios these days let the user configure up to six 
different “presets,” saved stations that listeners can adjust the radio to quickly.  Most car radios have this 
feature, although older FM radios do not.  The presets are numbered one through six, and at any time a 
particular preset might be empty (the listener hasn't programmed this preset yet) or set to a particular 
frequency.  As an example, I frequently commute between Palo Alto and Sacramento, and enjoy listening to 
NPR on the drive.  Both Sacramento and San Francisco have stations that broadcast NPR content,  and 
about halfway between Palo Alto and Sacramento one of the stations fades out dramatically while the 
other one comes in much more strongly.  To make it easier to switch between the stations, I programmed  
my  car  radio's  presets  so  that  preset  one  is  the  San  Francisco  station  (88.5)  and  preset  two  is  the  
Sacramento station (89.3).

We'd like to add this functionality to FMRadio, but what's the best way to do so?  If we want to store a list  
of six different settings, we could do so with a vector, but run into a problem because a vector always 
enforces the restriction that there must be an element at every position.  Because some of the presets  
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might not be configured, we might run into trouble if we stored the elements in a vector because it would 
be difficult to determine whether a particular position in the  vector was empty or filled with a valid 
station.  Instead, we'll  implement the  FMRadio using a  map that maps from the preset number to the 
station at the preset.  If a particular value between 1 and 6 is not a key in the map, then the preset has not 
been configured; if it is a key, then its value is the preset. This leads to the following version of FMRadio:

    struct FMRadio {
        double frequency;
        int    volume;
        map<int, double> presets;
    };

If I then wanted to program my radio as described above, I would do so as follows:

    FMRadio myRadio;
    myRadio.presets[1] = 88.5;
    myRadio.presets[2] = 89.3;

Abusing the FM Radio

The  definition  of  FMRadio from  above  seems  reasonably  straightforward.   It  has  three  fields  that 
correspond to some attribute of the radio.  Unfortunately, however, using this  FMRadio in any complex 
software system can cause problems.  The reason is that there are certain restrictions on what values the 
fields of  the  FMRadio can and cannot  be,  but  there  is  no  means of  enforcing  those restrictions.   For 
example, in the United States, all FM radio frequencies are between 87.5 and 108.0 MHz.  Consequently, 
the  frequency field  should  never  be  set  to  any  value  out  of  this  range,  since  doing  so  would  be  
meaningless.  Similarly, we've stated that we don't want the volume field to leave the range 0 to 10, but  
nothing prevents clients of FMRadio from doing so.  Finally, the presets field has to obey two restrictions: 
that the keys are integers between 1 and 6, and that the values are doubles restricted to the range of valid 
frequencies.

Now, suppose that someone who does not  have this  intimate knowledge of  the  FM radio class  we've 
designed comes along and writes the following code:

    FMRadio myRadio;
    myRadio.frequency  = 110.0; // Problem: Invalid frequency
    myRadio.volume     = 11;    // Problem: Volume out of range
    myRadio.presets[0] = 85.0;  // Problem: Bad preset index, invalid frequency

All of the above operations are illegal on FM radios, but this code compiles and runs just fine. Moreover,  
there is no indication at runtime that this code isn't going to work correctly. Everything that the client has 
done is perfectly legal C++, and the compiler has no idea that something bad might happen in the future.  
To give a context of where things can go wrong, suppose that we have a function that adjusts the power  
level  to some system peripheral  to tune in to the  proper  frequency.  Because all  legal  frequencies are 
between 87.5 and 108.0 MHz, the code adjusts the power level to a floating-point value such that the 
power is 0.0 at the lowest possible frequency (87.5 MHz) and 1.0 at the highest frequency (108.0 MHz).  
This code is shown below, assuming the existence of a  SetDevicePower function that actually sets the 
device power:
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    void TuneReceiver(FMRadio radio) {
        /* Compute the fraction of the maximum power that this
         * frequency requires.
         */
        double powerLevel = (radio.frequency - 87.5) / (108.0 - 87.5);
        SetDevicePower(powerLevel);
    }

I'll leave double-checking that the above computation gives the fraction of the power to the transmitter as 
an exercise to the reader. In the meantime, think about what will happen if we write the following code:

    FMRadio myRadio;
    myRadio.frequency  = 110.0;
    myRadio.volume     = 11; 
    myRadio.presets[0] = 85.0;
    TuneReceiver(myRadio);

We now have a fairly serious problem on our hands. Because the radio frequency is 110.0 MHz, a value out  
of  the  valid  FM  radio  range,  the  code  inside  of  TuneReceiver is  going  to  set  the  power  level  to  a 
nonsensical  value.  In particular,  since (110.0 – 87.5) / (108.0 – 87.5)  ≈ 1.095,  the code will  turn the 
receiver on at roughly 110% of the maximum power it's supposed to receive. If we're lucky, the code inside 
TuneReceiver will have a check that this value is out of range, and the program will report an error.  If 
we're unlucky and the code actually drives too much power into the receiver, we might overload the device 
and set it on fire.  In other words, because the client of the FMRadio struct set a single field to a nonsensical 
value, it's possible that our program will crash or cause a physical device malfunction.  This is clearly 
unacceptable, and we will need to do something about this.

Modifying the FM Radio

Of course, that's not all of the problems we might encounter when working with the FMRadio. Suppose, for 
example, that we write the following function, which sets the radio's frequency to the preset at the given 
position if possible, and does not change the frequency otherwise. The code is as follows:

    void LoadPreset(FMRadio& radio, int preset) {
        /* Check whether this preset exists. */
        map<int, double>::iterator itr = radio.presets.find(preset);
 
        /* If not, don't do anything. */
        if (itr == radio.presets.end())
            return;
 
        /* Otherwise, change the radio frequency. */
        radio.frequency = itr->second;
    }

Now, suppose that for some reason (efficiency, perhaps) that we decide to change the FMRadio struct so 
that the presets are implemented as an array of doubles. We arbitrarily say that any preset that has not 
been programmed will be represented by having the value 0 stored in a particular slot. That is, given my  
NPR travel presets, the preset array would look like this:

Value 88.5 89.3 0 0 0 0

Index 0 1 2 3 4 5
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This requires us to change the definition of the FMRadio interface to use a raw array instead of an STL map. 
The updated definition is shown here:

    struct FMRadio {
        double frequency;
        int    volume;
        double presets[6];
    };

We now have a serious problem. Almost of the code that we've written previously that uses the FMRadio's 
preset field will fail to compile. For example, our earlier code for  LoadPreset will call  presets.find, 
which does not exist in a raw array. This means that this single change might require us to rewrite huge 
amounts of code. In a small project, this is a mere annoyance, but in a large system on the order of millions  
of lines of code might be so time-consuming as to render the change impossible.

What Went Wrong?

The above discussion highlighted two problems with the  FMRadio struct.  First,  FMRadio provides no 
means for enforcing its invariants.  Because the aspects of the FM radio were represented in FMRadio by 
raw variables, any part of the program can modify those variables without the FMRadio getting a chance to 
intervene.  In other words, the FMRadio expects that certain relations hold between its fields, but has no 
mechanism for enforcing those relations.  Second, because the  FMRadio is represented in software as a 
particular implementation of an FM radio, code that uses the FM radio necessarily locks the FM radio into  
that  particular  implementation.   Using  the  terminology  from  the  earlier  in  this  chapter,  this 
implementation of the FM radio provides no abstraction and no encapsulation. The FMRadio interface is its 
implementation – that is, the operations that clients can perform on the FMRadio are manipulations of the 
fields that compose the FMRadio.  Changing the implementation thus changes the interface, which is why 
changing the fields breaks existing code.   Similarly,  because the interface of  FMRadio is  the set of  all 
possible manipulations of the data members, clients can tweak the FMRadio in any way they see fit, even if 
such manipulations break internal invariants.

This is the reality of what C++ programming is like without classes. Code bases are more brittle, bugs are 
more likely, and changes are more difficult.  As we now change gears and see how to represent an FM radio 
using classes, keep this starting point in mind.  By the time you finish this chapter, the FM radio will be  
significantly more robust than it is now.

Introduction to Classes

In C++, a class is an interface paired with an implementation. Like structs, classes define new types that 
can be created and used elsewhere in the program.

Because  classes  pair  an  implementation and an interface,  the  structure  of  an individual  class  can be 
partitioned into two halves – the  public interface specifying how clients interact with the class, and the 
private implementation, which specifies how functions in the public interface are implemented.  Rather 
than diving head-first into a full-blown class definition, we'll investigate each of these parts individually.  
We will focus first on how to declare the class, and worry about the implementation later.

Defining a Public Interface

Let's return to the example of the FM radio.  We are interested in designing an abstraction that represents  
an FM radio, then expressing the radio in software.  In particular, we want our radio to have three pieces of  
data: the current frequency (in MHz), the volume (from 0 to 10), and the presets.  As we saw in the failed 
experiment with struct FMRadio, we cannot simply give clients direct access to the fields that ultimately 
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implement these properties.  How, then, can we design an FM radio that contains some data but which  
does not  allow clients  to directly  modify the data?  The answer is a  subtle yet  beautiful  trick  that  is 
ubiquitous in modern software.  We will create a set of functions that set and query the value of these data 
members.   We then prevent the client from directly accessing the data members that  these functions 
manipulate.  The major advantage of this approach is that every operation that could potentially read or  
modify the data must go through this small set of functions.  Consequently, the implementer retains full  
control over what operations manipulate the class's implementation.

Now, let's see how one might express this in C++.  We will rewrite our  FMRadio struct from earlier to 
convert it into a fully-fledged C++ class. To begin, we use the C++ class keyword to indicate that we're 
defining a new class called FMRadio.  This is shown here:

    class FMRadio {
    };

Currently, this class is empty and is useless. We'll thus start defining the public interface by which clients  
of  FMRadio will interact with the class. In C++, to define a class's public interface, we use the  public 
keyword to indicate the start of the interface, and then list the functions contained in that public interface.  
This leads us to the following code:

    class FMRadio {
    public:
 
    };

That is,  the public keyword,  followed by a colon.   Any definitions that  follow the public keyword will  be 
included as part of the class's public interface.  But what functions should we put in here?  Let's begin by letting 
the  client  query  and  set  the  radio's  frequency.   To  do  this,  we'll  define  two  member  functions  called  
getFrequency and setFrequency.  This is shown here:

    class FMRadio {
    public:
        double getFrequency();
        void   setFrequency(double newFreq);
    };

These  functions  are  called  member  functions  of  the  FMRadio class.  Although  they  look  like  regular 
function prototypes, because these functions are defined inside of FMRadio, they are local to that class. In 
fact, calling the function getFrequency by itself will result in a compile-time error because there is no 
global function called getFrequency. Instead, we've defined a function that can be invoked on an object of 
type  FMRadio.  To see how this works,  let's  create a new object of  type  FMRadio.  This is syntactically 
identical to the code for creating instances of a struct type – we put the name of the type, followed by the 
variable name. This is shown here:

    FMRadio myRadio; // Declare a new variable of type FMRadio

Now that we have this  myRadio object, we can ask it for its frequency by invoking the  getFrequency 
member function. This is shown here:

    FMRadio myRadio;
    double f = myRadio.getFrequency(); // Query the radio for its frequency

Note that this code will not run as written, because we have not yet implemented the getFrequency() 
function; we'll see how to do that later in this chapter.  However, this syntax should seem familiar, as it's 
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the same syntax we used to invoke functions on STL containers, stream objects, and strings.  In fact, all of  
those objects are instances of classes.  You're on the road to learning how these complex objects are put 
together!

Let's continue designing our interface.  We also want a means for the client to set and read the radio  
volume.  Along the same lines as before, we can add a pair of member functions to FMRadio to grant access 
to this data.  This is shown here:

    class FMRadio {
    public:
        double getFrequency();
        void   setFrequency(double newFreq);
     
        int    getVolume();
        void   setVolume(int newVolume);
    };

Clients can then read and write the volume by writing code like this:

    FMRadio myRadio;
    
    myRadio.setVolume(8);
    cout << myRadio.getVolume() << endl;

Again, this code will not run because we haven't implemented either of these functions.  Don't worry, we're  
almost at the point where we'll be able to do this.

Let us now consider the final piece of the  FMRadio interface – the code for manipulating presets.  With the 
previous two properties (volume and frequency) we were working with a single entity, but we now must design 
an interface to let clients read and write multiple different values.  Moreover, some of these values might not 
exist, since the presets might not yet be programmed in.  To design a good interface, we should consider what 
clients would like to do with presets.  We should certainly allow clients to set each of the presets.  Additionally,  
clients should be able to check whether a certain preset has been programmed in.  Finally, clients should be able 
to read back the presets they've programmed in, assuming they exist.  We can represent each of these operations 
with a member function, leading to this interface for the FMRadio class:

    class FMRadio {
    public:
        double getFrequency();
        void   setFrequency(double newFreq);
     
        int    getVolume();
        void   setVolume(int newVolume);
 
        double setPreset(int index, double freq);
        bool   presetExists(int index);
        double getPreset(int index);
    };

We now have an interface for our FMRadio class. Now, let's see how we specify the implementation of this 
interface.

Writing a Class Implementation

A C++ class represents an abstraction, which consists of an interface into some object.  We've just seen  
how to define the interface for the class, and now we must provide an implementation of that interface.  
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This implementation consists of two parts.  First, we must define what variables we will use to implement  
the class.  This is akin to choosing the fields we put in a struct for the information to be useful.  Second, 
we must provide an implementation of each of the member functions we defined in the class's public 
interface.  We will do each of these in a separate step.

If you'll recall, one old version of FMRadio was a struct that looked like this:

    struct FMRadio {
        double frequency;
        int    volume;
        map<int, double> presets;
    };

This is a perfectly fine implementation of an FMRadio since it allows us to store all of the information we 
could  possibly  need.  We'll  therefore  modify  our  implementation  of  the  FMRadio class  so  that  it  is 
implemented using  these three fields.  However,  we want to do this  in a way that  prevents clients  of 
FMRadio from accessing the fields directly. For this purpose, C++ provides the private keyword, which 
indicates that certain parts of a class are completely off-limits to clients. This is shown here:

    class FMRadio {
    public:
        double getFrequency();
        void   setFrequency(double newFreq);
 
        int    getVolume();
        void   setVolume(int newVolume);
 
        double setPreset(int index, double freq);
        bool   presetExists(int index);
        double getPreset(int index);

    private:
        double frequency;
        int    volume;
        map<int, double> presets;
};

When referring to elements of a struct, one typically uses the term field. In the context of classes, these 
variables are called data members. That is, frequency is a data member of FMRadio, and getVolume is a 
member function.

Because we've marked these data members private, the C++ compiler will enforce that no client of the 
FMRadio class can access them.  For example, consider the following code:

    FMRadio myRadio;
    myRadio.frequency = 110.0; // Problem: Illegal; frequency is private

This code will cause a compile-time error because the frequency data member is private.  To write code to 
this  effect,  clients  would  have  to  use  the  public  interface,  in  particular  the  setFrequency member 
function, as shown here:

    FMRadio myRadio;
    myRadio.setFrequency(110.0); // Legal: setFrequency is public
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All  that's  left  to  do now is  implement  the  member functions  on the  FMRadio class.   Implementing a 
member  function  is  syntactically  similar  to  implementing  a  regular  function,  though  there  are  a  few 
differences.  One obvious syntactic difference is the means by which we specify the name of the function. 
If we are interested in implementing the getFrequency function of FMRadio, for example, then we would 
begin as follows:

    double FMRadio::getFrequency() {
        /* ... implementation goes here ... */
    }

Notice that  the name of  the  function is  FMRadio::getFrequency.  The double-colon operator (::)  is 
called the  scope resolution operator and tells C++ where to look for the function we want to implement. 
You can think of the syntax X::Y as meaning “look inside X for Y.” When implementing member functions, 
it is extremely important that you make sure to use the full name of the function you want to implement. If  
instead we had written the following:

    double getFrequency() { // Problem: Legal but incorrect
        /* ... implementation goes here ... */
    }

Then C++ would think that we were implementing a regular function called  getFrequency that has no 
relationship whatsoever to the getFrequency function inside of FMRadio.

Now that we've seen how to tell C++ that we're implementing the function, what code should we write  
inside  of  the  function?  We  know  that  the  function  should  return  the  FM  radio's  current  frequency.  
Moreover, the frequency is stored inside of a data member called frequency. Consequently, we can write 
the following code for FMRadio::getFrequency:

    double FMRadio::getFrequency() {
        return frequency;
    }

This may look a bit confusing, so let's take a second to think about what's going on here.  This function is a  
single line, return frequency. If you'll notice, nowhere in the getFrequency() function did we define a 
variable called frequency, but this function still compiles and runs correctly. The reason is as follows – 
inside of a member function, all of the class's data members can be accessed by name.  That is,  when 
implementing the getFrequency function, we can freely access and manipulate any or all of the class's 
data members by referring to them by name.  We don't need to indicate that frequency is a data member, 
nor do we have to specify  which FMRadio's  frequency data member we're referring to. By default, C++ 
assumes  that  all  data  members  are  the  data  members  of  the  receiver  object,  and so  the  line  return  
frequency means “return the value of the  frequency data member of the object on which this function 
was invoked.”

At this point, let us more formally define what the public and private access specifiers actually mean.  If a  
member of a class is marked public, then any part of the code can access and manipulate it.  Thus if you 
have a public member function in the class interface, all code can access it.  If a class member is marked  
private, then the only pieces of the code that can access that member are the member functions of the  
class.  That is, private data can only be read and written by the implementations of the class's member  
functions.  In this sense, the public and private keywords are C++'s mechanism for defining interfaces and 
enforcing encapsulation.  A class's interface is defined by all of its public members, and its implementation  
by the implementations of those public member functions along with any private data members.  The 
compiler enforces encapsulation by disallowing class clients from directly accessing private data, and so 
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the  implementation  can  assume  that  any  access  to  the  class's  private  data  goes  through  the  public 
interface.

Let's  conclude  this  section  by  implementing  the  remaining  pieces  of  the  FMRadio class.  First,  let's 
implement the  setFrequency function, which sets the radio's frequency to a particular value. If you'll 
recall, all FM radio frequencies must be between 87.5 MHz and 108.0 MHz. Thus, we'll have this function  
verify that the new frequency is in this range, and will then set the frequency to be in that range if so. 
Here's one possible implementation:

    void FMRadio::setFrequency(double newFreq) {
        assert(newFreq >= 87.5 && newFreq <= 108.0);
        frequency = newFreq;
    }

Here, the assert function, defined in <cassert>, is a function that tests whether the particular condition 
is true and aborts the program with a useful error message if it isn't.  assert is useful in testing because it 
allows you to verify that certain invariants hold in your programs in a means conducive to debugging. 
Plus, most compilers completely remove  assert statements from release builds, so there's no runtime 
overhead when you decide to ship your software.

This is a remarkably simple two lines of code.  We first assert that the frequency is in range, and then set  
the frequency data member of the class to the new value.  What's so fantastic about this code is that it 
allows us to enforce the restriction that the frequency be constrained to the range spanned by 87.5 MHz to  
108.0 MHz.  Because the only way that clients can change the frequency data member is through the 
setFrequency function, we can prevent the frequency from ever being set to a value out of range.  We'll 
discuss this in more detail when we talk about class invariants.

Using the implementation of the  get/setFrequency functions as a basis, we can easily implement the 
get/setVolume functions. This is shown here:

    int FMRadio::getVolume() {
        return volume;
    }
 
    void FMRadio::setVolume(int newVol) {
        assert(newVol >= 0 && newVol <= 10);
        volume = newVol;
    }

This pattern of pairing a  get* function along with a  set* function is extremely common, and you will 
undoubtedly see it in any major C++ project you work on.  We'll detail exactly why it is such a useful design 
later in this chapter.

The final  three  functions  we  wish  to  implement  are  the  setPreset,  presetExists,  and  getPreset 
functions.  These functions are in some ways similar to the get/setVolume functions, but differ in that the 
values they read and write might not exist. We'll begin with setPreset, which is shown here:

    void FMRadio::setPreset(int index, double freq) {
        assert(index >= 1 && index <= 6);
        assert(freq >= 87.5 && freq <= 108.0);
        presets[index] = freq;
    }



- 212 -  Chapter 8: Abstraction and Classes

The presetExists function can be implemented quite simply by returning whether the map contains the 
specified key.  However, there's one detail we didn't consider – what happens if the index is out of bounds? 
That is, what do we do if the client asks whether preset 0 exists, or whether preset 137 exists?  We could  
implement  presetExists to so that it returns false in these cases (since there are no presets in those  
slots), but it seems more reasonable to have the function assert that the value is in bounds first.   The  
reason is that if a client is querying whether a preset that is out of the desired range exists,  it almost 
certainly represents a logical error.  Using assert to check that the value is in bounds will let us debug the 
program more easily.  This leads to the following implementation of presetExists:

    bool FMRadio::presetExists(int index) {
        assert(index >= 1 && index <= 6);
        return presets.find(index) != presets.end();
    }

Finally, we'll implement the getPreset function.  Since there is no meaningful value to return if the preset 
doesn't exist,  we'll have this function verify that the preset is indeed valid before returning it.   This is  
shown here:

    double FMRadio::getPreset(int index) {
        assert(presetExists(index));
        return presets[index];
    }

Notice  that  in  this  function,  we  invoked  the  presetExists member  function.  As  with  private  data 
members, C++ lets you call member functions of the receiver object without having to explicitly specify 
which  object  you  are  referring  to.   That  is,  the  compiler  is  smart  enough  to  tell  that  the  call  to  
presetExists(index) should be interpreted as “call the presetExists function on the receiver object, 
passing in the value  index.”  This also brings up another important point: it is perfectly legal to use a 
class's public interface in its implementation.  In fact, doing so is often a wise idea.  If we had implemented 
getPreset without calling  presetExists,  we would have to duplicate a reasonable amount of code, 
which is in general a very bad idea.

Comparing classes and structs

Earlier in this chapter, we saw how representing the  FMRadio as a  struct led to all sorts of problems. 
The  struct had no means of enforcing invariants, and any change to the  struct's fields could break a 
potentially  unbounded  amount  of  code.   We  discussed  earlier  at  a  high  level  how  abstraction  and 
encapsulation can prevent these problems from occurring.  Does the class mechanism, which is designed 
to represent these ideas in software, prevent the aforementioned problems from happening?  Let's take a 
few minutes to see whether this is the case.

Classes Enforce Invariants

An invariant is a property of a set of data that always holds true for that data. For example, one possible  
invariant might be that a certain value always be even, while another could be that the difference between 
two values is less than fourteen. In our example with FMRadio, our class had several invariants:

• The radio's frequency is always between 87.5 MHz and 108.8 MHz.
• The radio's volume is a value between 0 and 10, inclusive.
• The radio's presets are numbered between 1 and 6, and are valid frequencies.

The struct version of FMRadio failed to enforce any of these invariants because clients could go in and 
directly modify the fields responsible for holding the data.  In the class version, however, any access to the 
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data members that represent these quantities must go through the appropriate set* and get* functions. 
This allows the implementation to double-check that all of the invariants hold before modifying the class's 
data members. For example, let's review the implementation of setPreset:

    void FMRadio::setPreset(int index, double freq) {
        assert(index >= 1 && index <= 6);
        assert(freq >= 87.5 && freq <= 108.0);
        presets[index] = freq;
    }

This is  the only function in the  interface  that allows clients  to modify the  radio's  presets.  Before the 
function  writes  a  value  to  one  of  the  presets,  it  verifies  that  the  index  and  frequency  are  in  range.  
Consequently, if the data member is written to, it is only after the implementer has had a chance to inspect  
the value and confirm that it is indeed in range. In other words, by restricting access to the data members  
and instead providing a set of  functions that modify the data members,  the implementer can prevent 
clients from modifying the implementation in a way that violates the class invariants.

Classes Enforce Encapsulation

Recall  that  when we implemented the  FMRadio as  a  struct,  changing any of  the fields would break 
existing code. The reason for this is that any manipulations of the  struct required direct access to the 
fields  of  the  struct.  When  using  classes,  however,  all  operations  on  the  class  must  go  through  an 
additional  layer  –  the  interface  –  which  is  independent  of  the  current  implementation.  For  example,  
consider the following code:

    FMRadio myRadio;

    myRadio.setVolume(10);
    cout << myRadio.getVolume() << endl;

This isn't the most exciting code we've written, but it illustrates how a client might read and set the radio's  
volume. Now, suppose that we are implementing the FMRadio class so that it interacts with a real set of 
speakers. Initially, you might think that the speaker volume is controlled by modifying how much power 
the speakers receive; at lower power,  the speakers output less sound. In reality, though, most speaker 
volumes are controlled by modifying how much  attenuation the sound signal receives. That is,  when a 
speaker is at  full  volume,  the attenuation level  is  zero,  and the speaker plays the sound at maximum 
volume. When the volume is zero (the sound is muted), the attenuation level is 100% and the speakers 
produce  no  sound.  In  other  words,  the  volume  control  is  represented  by  determining  how  much 
attenuation to insert. Consequently, whenever we want to increase the volume, we would decrease the 
attenuation, and vice-versa. Given this description, we therefore might change the implementation of the 
FMRadio class so that the volume is represented internally as an attenuation amount. Here's the modified 
class:

    class FMRadio {
    public:
        double getFrequency();
        void   setFrequency(double newFreq);
 
        int    getVolume();
        void   setVolume(int newVolume);
 
        double setPreset(int index, double freq);
        bool   presetExists(int index);
        double getPreset(int index);
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    private:
        double frequency;
        int    attenuation; // 0 is no attenuation, 10 is maximum attenuation
        map<int, double> presets;
    };

Because we've changed the internal representation of the FMRadio, we will need to change the implementation 
of the  get/setVolume functions. Now, these functions are designed so that the user inputs an amount of 
volume, not an amount of attenuation, and so the functions will have to do a quick behind-the-scenes calculation 
to convert between the two. Here's one possible implementation of setVolume:

    void FMRadio::setVolume(int newVol) {
        assert(newVol >= 0 && newVol <= 10); // Unchanged
        attenuation = 10 - newVol; // Convert from volume to attenuation level
    }

Here, the code for setVolume takes in a volume level from the client, then converts it into an attenuation 
level by subtracting the volume from ten. This means that volume 10 corresponds to 0 attenuation, volume 
7 to 3 attenuation, etc.

Now, how might we go about changing the implementation of  getVolume? This function must return a 
volume between 0 and 10 with  0  meaning no volume and 10 meaning maximum volume,  but  we've  
implemented the volume level internally as the attenuation. This means that the function must do a quick  
calculation to convert between the two. The resulting implementation is shown here:

    int FMRadio::getVolume() {
        return 10 - attenuation;
    }

I'll leave it as an exercise to the reader to verify that this computation is correct.☺

In this short discussion, we completely changed the internal implementation of the radio volume. But from 
a  client's  perspective,  absolutely nothing has changed.  Recall  the  client  code we wrote  earlier  on for  
changing the radio volume:

    FMRadio myRadio;

    myRadio.setVolume(10);
    cout << myRadio.getVolume() << endl;

This code is still perfectly legal, and moreover it produces the exact same output as before. Because this  
code only uses the class's public interface, the client cannot tell that calling  myRadio.setVolume(10) 
actually sets an internal field in the FMRadio to zero, nor can she tell that calling myRadio.getVolume() 
will perform a conversion behind-the-scenes. In other words, using the public interface allows clients of 
FMRadio to  write  code  that  will  compile  and run  correctly  even  if  the  entire  implementation  of  the  
FMRadio has changed.

Class Constructors

One of the recurring themes of this chapter has been that classes can enforce invariants. However, using 
only  the  techniques  we've  covered  so  far,  there  are  some  invariants  that  classes  cannot  enforce  
automatically. To see this, let's return to the FMRadio class. If you'll recall, when implementing FMRadio 
using a  struct,  we saw that one possible implementation of the preset list was to use an array of six 
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doubles, where an unprogrammed preset has value 0.0. Let's modify our original implementation of the 
FMRadio class so that we use this implementation strategy. The new class looks like this:
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    class FMRadio {
    public:
        double getFrequency();
        void   setFrequency(double newFreq);
 
        int    getVolume();
        void   setVolume(int newVolume);
 
        double setPreset(int index, double freq);
        bool   presetExists(int index);
        double getPreset(int index);

    private:
        double frequency;
        int    volume;
        double presets[6];
    };

This, of course, necessitates that we change our implementation of  presetExists,  since we no longer 
represent the preset list as a map. The new implementation is shown here:

    bool FMRadio::presetExists(int index) {
        assert(index >= 1 && index <= 6);
        return presets[index - 1] == 0.0; // -1 maps [1, 6] to [0, 5]
    }

Given this implementation, what is the result of running the following code snippet?

    FMRadio myRadio;
    if (myRadio.presetExists(1))
        cout << "Preset 1: " << myRadio.getPreset(1) << endl;
    else
        cout << "Preset 1 not programmed." << endl;

Intuitively, this program should print out that preset one is not programmed, since we just created the 
radio. Unfortunately, though, this program produces undefined behavior. Here is the output from several 
different runs of the program on my machine:

    Preset 1: 3.204e+108
    Preset 1 not programmed.
    Preset 1: -1.066e-34
    Preset 1: 4.334e+20

This certainly doesn't seem right! What's going on here?

The problem is that all of the data members of  FMRadio are primitive types, and unless you explicitly 
initialize a primitive type,  it  will  hold whatever value happens to be in memory at the time that it is 
created.  In  particular,  this  means  that  the  presets  array  will  be  filled  with  garbage,  and  so  the  
presetExists and getPreset functions will be working with garbage data. Garbage data is never a good 
thing, but it is even more problematic from the standpoint of class invariants. The FMRadio assumes that 
certain constraints hold for its data members, but those data members are initialized randomly. How can 
FMRadio ensure that it behaves consistently when it does not have control over its implementation? The 
answer  is  simple:  it  can't,  and we're  going to  need to  refine  our  approach to  make everything work  
correctly.
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A Step in the Right Direction: init()

One way that we could fix this problem is to create a new member function called init that initializes all 
of the data members. We then require all clients of the  FMRadio class to call this  init function before 
using the other member functions of the FMRadio class. Assuming that clients ensure to call init before 
using the FMRadio, this should solve all of our problems.

Let's take a minute to see how we might implement the init function. First, we need to modify the class's 
public interface, as shown here:

    class FMRadio {
    public: 
        void   init(); 

        double getFrequency();
        void   setFrequency(double newFreq);
 
        int    getVolume();
        void   setVolume(int newVolume);
 
        double setPreset(int index, double freq);
        bool   presetExists(int index);
        double getPreset(int index);

    private:
        double frequency;
        int    volume;
        double presets[6];
    };

We could then implement init as follows:

    void FMRadio::init() {
        for(size_t i = 0; i < 6; ++i)
            presets[i] = 0.0;
    }

This is certainly a step in the right direction. We no longer have to worry about the presets array containing  
uninitialized values. But what of the other data members, frequency and volume? They too must be initialized to 
some meaningful value. We can therefore update the init function to set them to some reasonable value. For 
simplicity, let's set the frequency to 87.5 MHz (the minimum possible frequency) and set the volume to five.  
This is shown here:

    void FMRadio::init() {
        for(size_t i = 0; i < 6; ++i)
            presets[i] = 0.0;
        frequency = 87.5;
        volume    = 5;
    }

It may seem strange that we have to initialize frequency and volume inside of the init function. After all, 
why can't we do something like this?
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    class FMRadio {
    public: 
        void   init(); 

        double getFrequency();
        void   setFrequency(double newFreq);
 
        int    getVolume();
        void   setVolume(int newVolume);
 
        double setPreset(int index, double freq);
        bool   presetExists(int index);
        double getPreset(int index);

    private:
        double frequency = 87.5;  // Problem: Not legal C++
        int    volume    = 5;     // Problem: Not legal C++
        double presets[6];
    };

Unfortunately, this is not legal C++ code. There isn't a particularly good reason why this is the case, and in  
the next release of C++ this syntax will be supported, but for now we have to manually initialize everything 
in the init function.

Why init() is Insufficient

The approach we've outlined above seems to solve all  of  our problems. Every time that we create an 
FMRadio, we manually invoke the init function. This solves our problem, but puts an extra burden on the 
client. In particular, if a client does not call the init function, our object's internals will not be configured 
properly and any use of the object will almost certainly cause some sort of runtime error.

The problem with init is that it does not make logical sense. When you purchase a physical object, most  
of the time, that object is fully assembled and ready to go. When you buy a stapler, you don't buy the  
component parts and then assemble it; you buy a finished product. You don't purchase a car and then 
manually connect the transmission to the rest of the engine; you assume that the car manufacturer has  
done this for you. In other words, by the time that you begin using an object, you expect it to be assembled.  
From the standpoint of physical objects, this is because you are buying a logically complete object, not a 
collection of  components.  From the  standpoint  of  abstraction,  this  is  because  it  breaches  the  wall  of  
abstraction if you are required to set up an object into a well-formed state before you begin using it.

None of the objects we've seen so far have required any function like init. The STL vector and map are 
initialized to sensible defaults before you begin using them, and  strings default to holding the empty 
string without any explicit intervention by the user. But how do they do this? It's through the magic of a  
special member function called the constructor.

Class Constructors

A  constructor is a special member function whose job is to initialize the object into a well-formed state 
before clients start manipulating that object.  In this sense,  constructors are like the  init function we 
wrote earlier. However, constructors have the special property that they are called automatically whenever 
an  object  is  constructed.  That  is,  if  you  have  a  class  that  defines  a  constructor,  that  constructor  is 
guaranteed to execute whenever you create an object of the class type.

Syntactically, a constructor is a member function whose name is the same as the name of the class. For 
example,  the  string  constructor  is  a  function  named string::string,  and in  our  FMRadio example,  the 
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constructor is a member function named FMRadio::FMRadio. Here is a refined interface for FMRadio that 
includes a class constructor:

    class FMRadio {
    public: 
        FMRadio();

        double getFrequency();
        void   setFrequency(double newFreq);
 
        int    getVolume();
        void   setVolume(int newVolume);
 
        double setPreset(int index, double freq);
        bool   presetExists(int index);
        double getPreset(int index);

    private:
        double frequency;
        int    volume;
        double presets[6];
    };

Notice that the constructor has no return type, not even void. This may seem strange at first, but will make 
substantially more sense once you see how and where the constructor is invoked.

Syntactically,  one  implements  a  constructor  just  as  one  would  any other  member  function.  The  only  
difference is that  the constructor  does not  have a return type,  and so the  syntax for  implementing a 
constructor looks like this:

    FMRadio::FMRadio() {
        /* ... implementation goes here ... */
    }

Constructors are like any other function, and so we can put whatever code we feel like in the body of the  
constructor.  However,  the  constructor  should  ensure  that  all  of  the  object's  data  members  that  need  
manually  initialization are  manually  initialized.  In our case,  this means that we might  implement the  
FMRadio constructor as follows:

    FMRadio::FMRadio() {
        for(size_t i = 0; i < 6; ++i)
            presets[i] = 0.0;
        frequency = 87.5;
        volume    = 5;
    }

Now, whenever we create an instance of the FMRadio type, the object will be set up correctly. That is, when we 
write code like this:

    FMRadio myRadio;
    if (myRadio.presetExists(1))
        cout << “Preset 1: “ << myRadio.getPreset(1) << endl;
    else
        cout << “Preset 1 not programmed.” << endl;
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The output will  always be “Preset 1 not programmed.” This is because in the line where we create the  
myRadio object, C++ automatically invokes the constructor, which zeros out all of the presets.

It is illegal to call a class's constructor; C++ will always do this for you. For example, the following code will  
not compile:

    FMRadio myRadio;
    myRadio.FMRadio(); // Problem: Cannot manually invoke constructor

This may seem like an unusual restriction, but is actually quite useful. Because the constructor is invoked  
when and only when the class is  being constructed for the first  time,  you don't  need to worry about 
unusual conditions where the class is being instantiated but meaningful data is already stored in the class.  
Additionally, this makes the role of the constructor explicitly clear – its job is to initialize the class to a 
meaningful  state,  nothing more.  Second,  as a  consequence,  constructors can never  return values.  The 
constructor is invoked automatically, not giving you a chance to store a returned value even if one were to 
exist.

Arguments to Constructors

In the above example, our FMRadio constructor takes in no parameters. However, it is possible to create 
constructors that take in arguments that might be necessary for initialization. For example, our FMRadio 
constructor arbitrarily sets the frequency to 87.5 MHz and the volume to 5 because we need these values 
to be in certain ranges. There's no particular reason why we should initialize these values this way, but in  
the absence of information about what the client wants to do with the object we cannot do any better. But  
what if the client could tell us what she wanted the frequency and volume to be? In that case, we could  
initialize the frequency and volume to the user's values, in essence creating a radio whose frequency and  
volume were already set up for the user. To do this, we can create a second FMRadio constructor that takes 
in a frequency and volume, then initializes the radio to those settings.

Syntactically, a constructor of this sort is a member function named FMRadio that takes in two parameters. 
This is shown here:

    class FMRadio {
    public: 
        FMRadio();
        FMRadio(double freq, int vol);

        double getFrequency();
        void   setFrequency(double newFreq);
 
        int    getVolume();
        void   setVolume(int newVolume);
 
        double setPreset(int index, double freq);
        bool   presetExists(int index);
        double getPreset(int index);

    private:
        double frequency;
        int    volume;
        double presets[6];
    };

We could then implement this function as follows:
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    FMRadio::FMRadio(double freq, int vol) {
        for(size_t i = 0; i < 6; ++i)
            presets[i] = 0.0;
        frequency = freq;
        volume    = vol;
    }

Now that we have this constructor, how do we call it? That is, how do we create an object that is initialized 
using this constructor? The syntax for this is reasonably straightforward and looks like this:

    FMRadio myRadio(88.5, 5);

That  is,  we  write  out  the  type  of  the  object  to  create,  the  name  of  the  object  to  create,  and then  a 
parenthesized list of the arguments to pass into the constructor.

You may be wondering why in the case of a zero-argument constructor, we do not need to explicitly spell 
out that we want to use the default constructor. In other words, why don't we write out code like this:

    FMRadio myRadio(); // Problem: Legal but incorrect

This code is perfectly legal, but it does not do what you'd expect. There is an unfortunate defect in C++ that 
causes this statement to be interpreted as a function prototype rather than the creation of an object using 
the default constructor. In fact, C++ will interpret this as “prototype a function called myRadio that takes in 
no arguments and returns an FMRadio” rather than “create an FMRadio called  myRadio using the zero-
argument constructor.” This is sometimes referred to as “C++'s most vexing parse” and causes extremely  
difficult to understand warnings and error messages. Thus, if you want to invoke the default constructor, 
omit the parentheses. If you want to invoke a parametrized constructor, parenthesize the arguments.

Another  important  point  to  remember when working with  multiple  constructors  is  that  constructors 
cannot invoke one another. This is an extension of the rule that you cannot directly call a constructor. If  
you need to do the same work in multiple constructors, you can either duplicate the code (yuck!) or use a  
private member function, which we'll discuss later.

Classes Without a Nullary Constructor

A function is called nullary if it takes no arguments. For example, the first FMRadio constructor we wrote 
is a nullary constructor, since it takes no arguments. If you define a class and do not provide a constructor,  
C++ will automatically provide you a default nullary constructor that does absolutely nothing. This is why  
in  the  case  of  FMRadio,  we  needed  to  provide  a  nullary  constructor  to  initialize  the  data  members;  
otherwise  they  would  initialize  to  arbitrary  values.  However,  if  you  define  a  class  and  provide  any 
constructors,  C++ will  not  automatically  generate a  nullary constructor for you.  This  means that  it  is  
possible to construct classes that do not have a zero-argument constructor. For example, suppose that we 
remove the nullary constructor from FMRadio; this results in the following class definition:



Chapter 8: Abstraction and Classes - 223 -

    class FMRadio {
    public: 
        FMRadio(double freq, int vol);

        double getFrequency();
        void   setFrequency(double newFreq);
 
        int    getVolume();
        void   setVolume(int newVolume);
 
        double setPreset(int index, double freq);
        bool   presetExists(int index);
        double getPreset(int index);

    private:
        double frequency;
        int    volume;
        double presets[6];
    };

Because this class does not have a nullary constructor, we cannot construct instances of it without passing 
in values for the frequency and volume. That is, the following code is illegal:

    FMRadio myRadio; // Problem: No default constructor available

At first, this may seem like a nuisance. However, this aspect of class design is extremely valuable because it 
allows you to create types that must be initialized to a meaningful value. For example, suppose that you 
are designing a class that represents a robot-controlled laser, either for automated welding or delicate  
surgical procedures. When building such a laser, it is imperative that the laser know how much power to  
deliver and what points the beam should be directed at. These values absolutely must be initialized to 
meaningful data, or the laser might deliver megawatts of power at a patient or aim at random points firing 
the beam. If you wanted to represent the laser as a C++ class, you could force clients to specify this data  
before using the laser by making a  RobotLaser class whose only constructor takes in both the laser 
power and laser coordinates. This means that clients could not create instances of RobotLaser without 
entering coordinates, reducing the possibility of a catastrophic failure.

Private Member Functions

Let's  return  once  again  to  our  FMRadio example,  this  time  looking  at  the  implementation  of  three 
functions:  setFrequency,  setPreset, and  presetExists. The implementations of these functions are 
shown here:

    void FMRadio::setFrequency(double newFreq) {
        assert(newFreq >= 87.5 && newFreq <= 108.0);
        frequency = newFreq;
    }

    void FMRadio::setPreset(int index, double freq) {
        assert(index >= 1 && index <= 6);
        assert(freq >= 87.5 && freq <= 108.0);
        presets[index - 1] = freq;
    } 

    double FMRadio::presetExists(int index) {
        assert(index >= 1 && index <= 6);
        return presets[index - 1] == 0.0;
    }
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Notice that each highlighted line of code appears in two of the three functions. Normally this isn't too  
serious a concern, but in this particular case makes the implementation brittle and fragile. In particular, if  
we ever want to change the number of presets or the maximum frequency range, we'll need to modify  
multiple parts of the code accordingly or risk inconsistent handling of presets and frequencies. To unify 
the code, we might consider decomposing this logic into helper functions. However, since the code we're  
decomposing out is an implementation detail of the FMRadio class, class clients shouldn't have access to 
these  helper  functions.  In  other  words,  we  want  to  create  a  set  of  functions  that  simplify  class 
implementation but  which  can't  be  accessed by  class  clients.  For  situations  like  these,  we  can  use  a  
technique called private member functions.

Marking Functions private

If you'll recall from earlier, the private keyword indicates which parts of a class cannot be accessed by 
clients. So far we have restricted ourselves to dealing only with private data members, but it is possible to  
create member functions that are marked private. Like regular member functions, these functions can read 
and write private class data, and are invoked relative to a receiver object. Unlike public member functions,  
though, they can only be invoked by the class implementation. Therefore, private member functions are 
not part of the class's interface and exist solely to simplify the class implementation.

Declaring a private member function is similar to declaring a public member function - we just add the  
definition to the class's private data. In our  FMRadio example, we will introduce two helper functions: 
checkFrequency, which asserts that a frequency is in the proper range, and checkPreset, which ensures 
that a preset index is in bounds. The updated class definition for FMRadio is shown here:

    class FMRadio {
    public: 
        FMRadio();
        FMRadio(double freq, int vol);

        double getFrequency();
        void   setFrequency(double newFreq);
 
        int    getVolume();
        void   setVolume(int newVolume);
 
        double setPreset(int index, double freq);
        bool   presetExists(int index);
        double getPreset(int index);

    private:
        void   checkFrequency(double freq);
        void   checkPreset(int index);

        double frequency;
        int    volume;
        double presets[6];
    };

We can then implement these functions as follows:
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    void FMRadio::checkFrequency(double freq) {
        assert(freq >= 87.5 && freq <= 108.8);
    }
 
    void FMRadio::checkPreset(int index) {
        assert(index >= 1 && index <= 6);
    }

Using these functions yields the following implementations of the three aforementioned functions:

    void FMRadio::setFrequency(double newFreq) {
        checkFrequency(newFreq);
        frequency = newFreq;
    }
     
    void FMRadio::setPreset(int index, double freq) {
        checkPreset(index);
        checkFrequency(freq);
        presets[index - 1] = freq;
    } 
 
    bool FMRadio::presetExists(int index) {
        checkPreset(index);
        return presets[index - 1] == 0.0;
    }

These functions are significantly cleaner than before, and the class as a whole is much more robust to  
change.

Simplifying Constructors with Private Functions

Private functions can greatly reduce the implementation complexity of classes with multiple constructors.  
Recall  that  our  FMRadio class  has  two  constructors,  one  which  initializes  the  FMRadio to  have  a 
reasonable default frequency and volume, and one which lets class clients specify the initial frequency and  
volume. The implementation of these two functions is shown here:

    FMRadio::FMRadio() {
        for(size_t i = 0; i < 6; ++i)
            presets[i] = 0.0;
        frequency = 87.5;
        volume    = 5;
    } 

    FMRadio::FMRadio(double freq, int vol) {
        for(size_t i = 0; i < 6; ++i)
            presets[i] = 0.0;
        frequency = freq;
        volume    = vol;
    }

These functions are extremely similar in structure, but because C++ does not allow you to manually call a 
class's constructor. How, then, can the two functions be unified? Simple – we introduce a private member  
function which does the initialization, then have the two constructors invoke this member function with 
the proper arguments. This is illustrated below:
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    class FMRadio {
    public: 
        FMRadio();
        FMRadio(double freq, int vol);

        double getFrequency();
        void   setFrequency(double newFreq);
 
        int    getVolume();
        void   setVolume(int newVolume);
 
        double setPreset(int index, double freq);
        bool   presetExists(int index);
        double getPreset(int index);

    private:
        void   checkFrequency(double freq);
        void   checkPreset(int index);
        void   initialize(double freq, int vol);
    
        double frequency;
        int    volume;
        double presets[6];
    };

    void FMRadio::initialize(double freq, int vol) {
        for(size_t i = 0; i < 6; ++i)
            presets[i] = 0.0;
        frequency = freq;
        volume    = vol;
    }
 
    FMRadio::FMRadio() {
        initialize(87.5, 5);
    }

    FMRadio::FMRadio(double freq, int vol) {
        initialize(freq, vol);
    }

As  you  can  see,  private  member  functions  are  extremely  useful  tools.  We  will  continue  to  use  them 
throughout  the  remainder  of  this  book,  just  as  you will  undoubtedly  use  them in the  course  of  your  
programming career.

Partitioning Classes Across Files

One of the motivations behind classes was to provide a means for separating out implementation and 
interface.  We have seen this already through the use of the public and private access specifiers, which 
prevent clients from looking at implementation-specific details.  However, there is another common means 
by  which  implementation  is  separated  from  interface,  and  that  is  the  split  between  header  files and 
implementation files.  As you've seen before, almost all of the programs you've written begin with a series 
of  #include directives which tell the compiler to fetch certain files and include them in your programs. 
Now that we've reached a critical mass and can begin writing our own classes, we will see how to design  
your own header files.

At  a  high  level,  header  files  provide  a  means  for  exporting  a  class  interface  without  also  exporting  
unnecessary  implementation  details.   Programmers  who  wish  to  use  your  class  in  their  code  can 
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#include the  header  file  containing  your  class  declaration,  and the  linker  will  ensure that  the  class  
implementation is bundled along with the final program.  More concretely, a header file contains the class 
declaration (including both  public and  private members),  and the implementation file contains the 
actual class implementation.  For example, suppose that we want to export the FMRadio class we've just 
designed in a header/implementation pair.   We'll  begin by constructing the header file.   Traditionally,  
header files that contain class declarations have the same name as the class and a .h suffix.  In our case,  
this means that we'll be creating a file called FMRadio.h that contains our class definition.  This is shown 
here:

File: FMRadio.h
#ifndef FMRadio_Included
#define FMRadio_Included

class FMRadio
{
public: 
    FMRadio();
    FMRadio(double freq, int vol);

    double getFrequency();
    void   setFrequency(double newFreq);
 
    int    getVolume();
    void   setVolume(int newVolume);
 
    double setPreset(int index, double freq);
    bool   presetExists(int index);
    double getPreset(int index);

private:
    void   checkFrequency(double freq);
    void   checkPreset(int index);
    void   initialize(double freq, int vol);

    double frequency;
    int    volume;
    double presets[6];
};

#endif

Notice that we've surrounded the header file with an include guard.  In case you've forgotten, the include  
guard is a way to prevent compiler errors in the event that a client #includes the same file twice; see the 
chapter on the preprocessor for more information.  Beyond this, though, the header contains just the class 
interface.

Now that we've built the .h file for our FMRadio class, let's see if we can provide a working implementation 
file.   Typically,  an  implementation  file  will  have  the  same  name  as  the  class,  suffixed  with  the  .cpp 
extension.*  Appropriately, we'll name this file FMRadio.cpp.  Unlike a .h file, which is designed to export 
the class declaration to clients,  the .cpp file just contains the implementation of the class.   Here's one 
possible version of the FMRadio.cpp file:

* It is also common to see the .cc extension.  Older code might use the .C extension (capital C) or the .c++ extension.
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File: FMRadio.cpp
#include "FMRadio.h"

FMRadio::FMRadio() {
    initialize(87.5, 5);
}

FMRadio::FMRadio(double freq, int vol) {
    initialize(freq, vol);
}

void FMRadio::initialize(double freq, int vol) {
    for(size_t i = 0; i < 6; ++i)
        presets[i] = 0.0;
    frequency = freq;
    volume    = vol;
}

void FMRadio::checkFrequency(double freq) {
    assert(freq >= 87.5 && freq <= 108.8);
}
 
void FMRadio::checkPreset(int index) {
    assert(index >= 1 && index <= 6);
}

double FMRadio::getFrequency() {
    return frequency;
}

void FMRadio::setFrequency(double newFreq) {
    checkFrequency(newFreq);
    frequency = newFreq;
}
 
void FMRadio::setPreset(int index, double freq) {
    checkPreset(index);
    checkFrequency(freq);
    presets[index - 1] = freq;
} 
 
bool FMRadio::presetExists(int index) {
    checkPreset(index);
    return presets[index - 1] == 0.0;
}

double FMRadio::getPreset(int index) {
    checkPreset(index);
    return presets[index – 1];
}

There are a few important aspects of this .cpp file to note.  First, notice that at the top of the file, we 
#included the .h file containing the class declaration.  This is extremely important – if we don't include the 
header file for the class, when the C++ compiler encounters the implementations of the class's member  
functions,  it  won't  have  seen  the  class  declaration  and  will  flag  all  of  the  member  function 
implementations as errors.  Second, note that when #include-ing the .h file, we surrounded the name of 
the file in “double quotes” instead of <angle brackets.>  If you'll recall, this is because the preprocessor 
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treats include directives using <angle brackets> as instructions to look for standard library files, and since  
the classes you'll be writing aren't part of the standard library you'll want to use “double quotes” instead.*

Now that we've partitioned the class into a .h/.cpp pair, we can write programs that use the class without  
having to tediously copy-and-paste the class definition and implementation.  For example, here's a short 
program  which  manipulates  an  FMRadio.   Note  that  we  never  actually  see  the  declaration  or 
implementation  of  the  FMRadio class;  #include-ing  the  header  provides  the  compiler  enough 
information to let us use the FMRadio.

    #include <iostream>
    #include "FMRadio.h"
    using namespace std;

    int main() {
        FMRadio myRadio;
        myRadio.setFrequency(88.5);
        myRadio.setVolume(8);
        /* ... etc. ... */
    }

Throughout the remainder of this book, whenever we design and build classes, we will assume that the 
classes are properly partitioned between .h and .cpp files.

Chapter Summary

• Software systems are often on the order of millions of lines of code, far larger than even the most  
competent programmers can ever keep track of at once.

• A single incorrect value in a software system can cause that entire system to fail.

• The maximum number of possible interactions in a software system grows exponentially in the 
number of components of that system.

• Abstractions give a way to present a complex object in simpler terms.

• Abstractions  partition  users  into  clients  and  implementers,  each  with  separate  tasks.  This 
separation is sometimes referred to as the wall of abstraction.

• Abstractions describe many possible implementations,  and encapsulation prevents clients from 
peeking at that implementation.

• The way in which a client interacts with an object is called that object's interface.

• Abstraction reduces  the  number  of  components  in a  software system,  reducing the  maximum 
complexity of that system.

• C++ structs lack encapsulation because their implementation is their interface.

• The C++ class concept is a realization of an interface paired with an implementation.

* If you ever have the honor of getting to write a new standard library class, please contact me... I'd love to offer 
comments and suggestions!
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• The members of a class that are listed public  form that class's interface and are accessible to  
anyone.

• The members of a class that are listed private are part of the class implementation and can only be 
viewed by member functions of that class.

• Constructors allow implementers to enforce invariants from the moment the class is created.

• Private  member  functions  allow  implementers  to  decompose  code  without  revealing  the 
implementation to clients.

• Class implementations are traditionally partitioned into a .h file containing the class definition and 
a .cpp file containing the class implementation.

• Design  class  interfaces  before  implementations  to  avoid  overspecializing  the  interface  on  an 
implementation artifact.

Practice Problems

1. In our discussion of abstraction, we talked about how interfaces and modularity can exponentially  
reduce the maximum complexity of a system.  Can you think of any examples from the real world 
where introducing indirection makes a complex system more manageable?

2. What is the motivation behind functions along the lines of getFrequency and setFrequency over 
just having a public frequency data member?
 

3. When is a constructor invoked?  Why are constructors useful?
 

4. What is the difference between a public member function and a private member function?
 

5. What goes in a class's .h file?  In its .cpp file?
 

6. We've talked at length about the streams library and STL without mentioning much of how those  
libraries are implemented behind-the-scenes.  Explain why abstraction makes it possible to use 
these libraries without full knowledge of how they work.
 

7. Suppose that C++ were designed somewhat differently in that data members marked private could 
only be read but not written to.  That is, if a data member called volume were marked private, then 
clients  could  read the  value  by  writing  myObject.volume,  but  could  not  write  to  the  volume 
variable  directly.  This  would  prohibit  clients  of  a  class  from  modifying  the  implementation 
incorrectly, since any operations that could change the object's data members would have to go 
through the public interface. However, this setup has a serious design flaw that would make class 
implementations  difficult  to  change.  What  is  this  flaw?  (Hint:  Think  back  to  the  
volume/attenuation example from earlier)
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8. Below is an interface for a class that represents a grocery list:
 
    class GroceryList {
    public:
        GroceryList();
 
        void addItem(string quantity, string item);
        void removeItem(string item);

        string itemQuantity(string item);
        bool itemExists(string item);
    };
 
The  GroceryList constructor sets the grocery list to contain no items.  The  addItem function 
adds a certain quantity of an item to the grocery list.  For example, the call
 
    gList.addItem("One Gallon", "Milk");
 
would add the item “Milk” to the list with quantity “One Gallon.”  If the item already exists in the 
list, then addItem should replace the original quantity with the new quantity.
 
The removeItem function should delete the specified item off of the shopping list.  itemExists 
returns whether the specified item exists in the shopping list, and itemQuantity takes in an item 
and returns the quantity associated with it in the list.  If the item doesn't exist, itemQuantity can 
either raise an assert error or return the empty string.
 
Provide  an  implementation  for  the  GroceryList class.   You  are  free  to  use  whatever 
implementation you feel is best, and can implement the member functions as you see fit.  However,  
you might find it useful to use a map<string, string> to represent the items in the list.
  

9. What  is  the  advantage  of  making  a  GroceryList class  over  just  using  a  raw  map<string, 
string>?
 

10. Does the GroceryList class need a constructor?  Why or why not?
 

11. Give an example of a parameterized constructor you have encountered in the STL.
 

12. Why are parameterized constructors useful?

13. Keno is a popular gambling game with similarities to a lottery or bingo.  Players place a bet and 
pick  a  set  of  numbers  between  1  and 80,  inclusive.   The  number  of  numbers  chosen can be 
anywhere from one to twenty, with each having a different payoff scale.  Once the players have 
chosen their numbers, twenty random numbers between 1 and 80 are chosen, and players receive  
a payoff based on how many numbers they picked that matched the chosen numbers.  For example, 
if a player picked five numbers and all five were chosen, she might win around $1,000 for a one- or 
two-dollar bet.  The actual payoffs are based on the probabilities of hitting  k numbers out of  n 
chosen, but this is irrelevant for our discussion.
 
Suppose that you are interested in writing a program that lets the user play Keno.  You are not  
interested in the payoffs, just letting the user enter numbers and reporting which of the user's 
numbers came up.  To do this, you decide to write a class KenoGame with the following interfaces:
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    class KenoGame {
    public:
        KenoGame();
 
        void addNumber(int value);
        size_t numChosen();
 
        size_t numWinners(vector<int>& values);
    };

The KenoGame constructor initializes the class however you see fit.  addNumber takes in a number 
from the user  and adds it  to  the  set  of  numbers the  user  guessed.   The  numChosen member 
function returns how many numbers the user has picked so far.  Finally, the numWinners function 
takes in a vector<int> corresponding to the numbers that were chosen and returns how many of  
the user's numbers were winners.
 
Write an implementation of the KenoGame class. 
 

14. Refer  back  to  the  implementation  of  Snake from  the  chapter  on  STL containers.   Design  and 
implement  a  class  that  represents  a  snake.   What  operations  will  you  support  in  the  public  
interface?  How will you implement it?
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In the previous chapter, we explored the class concept and saw how to use classes to model an interface 
paired with an implementation.   You learned how to realize the idealized versions of abstraction and 
encapsulation  using the  public and  private keywords, as well as how to use constructors to enforce 
class invariants.  However, our tour of classes has just begun, and there are many nuances of class design  
we have yet to address.  For example, since class clients cannot look at the class implementation, how can 
they tell which parts of the public interface are designed to read the class's state and which parts will  
write it?  How can you more accurately control how constructors initialize data?  And how can you share 
data across all instances of a class?  These questions are all essentially variants on a common theme: how 
can we refine our abstractions to make them more precise?

This chapter explores some of C++'s language features that allow you as a programmer to more clearly 
communicate your intentions when designing classes.  The tools you will learn in this chapter will follow 
you through the rest of your programming career, and appreciating exactly where each is applicable will 
give you a significant advantage when designing software.

Parameterizing Classes with Templates

One  of  the  most  important  lessons  an  upstart  computer  scientist  or  software  engineer  can  learn  is  
decomposition or  factoring – breaking problems down into smaller and smaller pieces and solving each 
subproblem separately.  At the heart of decomposition is the concept of  generality – code should avoid 
overspecializing on a single problem and should be robust enough to adapt to other situations.  Take as an 
example the STL.  Rather than specializing the STL container classes on a single type, the authors decided 
to parameterize the containers over the types they store.  This means that the code written for the vector 
class  can be used to  store  almost  any type,  and the  map can use  arbitrary  types as  key/value  pairs. 
Similarly, the STL algorithms were designed to operate on all types of iterators rather than on specific  
container classes, making them flexible and adaptable.

The STL is an excellent example of how versatile, flexible, and powerful C++ templates can be.  In C++ a  
template is just that – a code pattern that can be instantiated to produce a type or function that works on  
an arbitrary type.  Up to this point you've primarily been a client of template code, and now it's time to 
gear up to write your own templates.  In this section we'll cover the basics of templates and give a quick  
tour of how template classes operate under the hood.  We will make extensive use of templates later in this 
text and especially in the extended examples, and hopefully by the time you've finished reading this book 
you'll have an appreciation for just how versatile templates can be.

Class Templates

In C++, a class template is a class that, like the STL vector or map, is parameterized over some number of 
types.  In a sense, a class template is a class with a hole in it.  When a client uses a template class, she fills  
in these holes to yield a complete type.  You have already seen this with the STL containers: you cannot 
create  a  variable  of  type  vector or  map,  though  you  can create  a  variable  of  type  vector<int> or 
map<string, string>.

Class templates are most commonly used to create types that represent particular data structures.  For  
example,  the  vector class  template  is  an  implementation  of  a  linear  sequence  using  a  dynamically-
allocated array as an implementation.  The operations that maintain the dynamic array are more or less 
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independent of the type of elements in that array.  By writing  vector as a class template rather than a 
concrete class, the designers of the STL make it possible to use linear sequences of arbitrary C++ types.

Of course, not all classes should be written as class templates.  For example, the FMRadio class from the 
previous chapter is an unlikely candidate for a class template because it does not hold a collection of data  
that could be of arbitrary type.  Although FMRadio does hold multiple pieces of data (notably the radio's 
presets), those presets are always radio frequencies, which we've encoded with  doubles.  It would not 
make sense for the FMRadio's presets to be stored as vector<int>s, nor as strings.  As a general rule, 
most classes don't need to be written as class templates.

Defining a Class Template

Once you've decided that the class you're writing is best parameterized over some arbitrary type, you can 
indicate to C++ that you're defining a template class by using the template keyword and specifying what 
types the template should be parameterized over.  For example, suppose that we want to define our own  
version  of  the  pair struct  used  by  the  STL.   If  we  want  to  call  this  struct  MyPair and  have  it  be 
parameterized over two types, we can write the following:

    template <typename FirstType, typename SecondType> struct MyPair {
        FirstType first;
        SecondType second;
    };

Here, the syntax  template <typename FirstType, typename SecondType> indicates to C++ that 
what follows is a class template that is parameterized over two types,  one called  FirstType and one 
called SecondType.  In many ways, type arguments to a class template are similar to regular arguments to  
C++ functions.  For example, the actual names of the parameters are unimportant as far as clients are 
concerned, much in the same way that the actual names of parameters to functions are unimportant.  The  
above definition is functionally equivalent to this one below:

    template <typename One, typename Two> struct MyPair {
        One first;
        Two second;
    };

Within  the  body  of  the  class  template,  we  can  use  the  names  One and  Two (or  FirstType and 
SecondType) to refer to the types that the client specifies when she instantiates  MyPair,  much in the 
same way that parameters inside a function correspond to the values passed into the function by its caller.

In this above example, we used the typename keyword to introduce a type argument to a class template.  If 
you work on other C++ code bases, you might see the above class template written as follows:

    template <class FirstType, class SecondType> struct MyPair {
        FirstType first;
        SecondType second;
    };

In this instance, typename and class are completely equivalent to one another.  However, I find the use of 
class misleading because it incorrectly implies that the parameter must be a class type.  This is not the  
case – you can still instantiate templates that are parameterized using class with primitive types like int 
or double.  From here on out, we will use typename instead of class.*

* You can only substitute  class for  typename in this instance – it's illegal to declare a regular C++ class using the 
typename keyword.
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To create an instance of MyPair specialized over some particular types, we specify the name of the class 
template, followed by the type arguments surrounded by angle brackets.  For example:

    MyPair<int, string> one; // A pair of an int and a string.
    one.first = 137;
    one.second = "Templates are cool!";

This syntax should hopefully be familiar from the STL.

Classes  and  structs  are  closely  related  to  one  another,  so  unsurprisingly  the  syntax  for  declaring  a 
template class is similar to that for a template struct.  Let's suppose that we want to convert our MyPair 
struct into  a  class  with  full  encapsulation  (i.e.  with  accessor  methods  and  constructors  instead  of  
exposed data members).  Then we would begin by declaring MyPair as

    template <typename FirstType, typename SecondType> class MyPair {
    public:
        /* ... */

    private:
        FirstType first;
        SecondType second;
    };

Now, what sorts of functions should we define for our MyPair class?  Ideally, we'd like to have some way of 
accessing the elements stored in the pair, so we'll define a pair of functions getFirst and setFirst along 
with an equivalent getSecond and setSecond.  This is shown here:

    template <typename FirstType, typename SecondType> class MyPair {
    public:
        FirstType getFirst();
        void setFirst(FirstType newValue);

        SecondType getSecond();
        void setSecond(SecondType newValue);

    private:
        FirstType first;
        SecondType second;
    };

Notice that we're using the template arguments FirstType and SecondType to stand for whatever types 
the client parameterizes MyPair over.  We don't need to indicate that FirstType and SecondType are at 
all different from other types like  int or  string,  since the C++ compiler already knows that from the 
template declaration.  In fact, with a few minor restrictions, once you've defined a template argument,  
you can use it anywhere that an actual type could be used and C++ will understand what you mean.

Now that we've declared these functions, we should go about implementing them in the intuitive way.  If  
MyPair were not a template class, we could write the following:

    FirstType MyPair::getFirst() { // Problem: Not legal syntax
        return first;
    }
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The problem with this above code is that MyPair is a class template, not an actual class.  If we don't tell 
C++ that we're trying to implement a member function for a class template, the compiler won't understand 
what we mean.  Thus the proper way to implement this member function is

    template <typename FirstType, typename SecondType>
        FirstType MyPair<FirstType, SecondType>::getFirst() {
        return first;
    }

Here, we've explicitly prefaced the implementation of  getFirst with a template declaration and we've 
marked that the member function we're implementing is for  MyPair<FirstType, SecondType>.  The 
template declaration is necessary for C++ to figure out what  FirstType and  SecondType mean here, 
since without this information the compiler would think that  FirstType and  SecondType were actual 
types  instead  of  placeholders  for  types.   That  we've  mentioned  this  function  is  available  inside  
MyPair<FirstType, SecondType> instead  of  just  MyPair is  also  mandatory  since  there  is  no  real 
MyPair class – after all, MyPair is a class template, not an actual class.

The other member functions can be implemented similarly.  For example, here's an implementation of 
setSecond:

    template <typename FirstType, typename SecondType>
        void MyPair<FirstType, SecondType>::setSecond(SecondType newValue) {
        second = newValue;
    }

When implementing  member  functions  for  template  classes,  you  do  not need to  repeat  the  template 
definition if you define the function inside the body of the template class.   Thus the following code is 
perfectly legal:

    template <typename FirstType, typename SecondType> class MyPair {
    public:
        FirstType getFirst() {
            return first;
        }
        void setFirst(FirstType newValue) {
            first = newValue;
        }
    
        SecondType getSecond() {
            return second;
        }
        void setSecond(SecondType newValue) {
            second = newValue;
        }

    private:
        FirstType first;
        SecondType second;
    };

The reason for this is that inside of the class template, the compiler already knows that FirstType and 
SecondType are templates, and it's not necessary to remind it.
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Now,  let's  suppose  that  we  want  to  define  a  member  function  called  swap which  accepts  as  input  a 
reference to another  MyPair class,  then swaps the elements in that  MyPair with the elements in the 
receiver object.  Then we can prototype the function like this:

    template <typename FirstType, typename SecondType> class MyPair {
    public:
        FirstType getFirst() {
            return first;
        }
        void setFirst(FirstType newValue) {
            first = newValue;
        }
    
        SecondType getSecond() {
            return second;
        }
        void setSecond(SecondType newValue) {
            second = newValue;
        }
    
        void swap(MyPair& other);
    
    private:
        FirstType first;
        SecondType second;
    };

Even though MyPair is a template class parameterized over two arguments, inside the body of the MyPair 
template  class  definition  we  can  use  the  name  MyPair without  mentioning  that  it's  a 
MyPair<FirstType, SecondType>.  This is perfectly legal C++ and will come up more when we begin 
discussing copying behavior in a few chapters.  The actual implementation of swap is left as an exercise.

.h and .cpp files for template classes

When  writing  a  C++  class,  you  normally  partition  the  class  into  two  files:  a  .h  file  containing  the  
declaration and a .cpp file containing the implementation.  The C++ compiler can then compile the code  
contained in the .cpp file and then link it into the rest of the program when needed.  When writing a 
template class, however, breaking up the definition like this will cause linker errors.  The reason is that C+
+ templates are just that – they're  templates for C++ code.  Whenever you write code that instantiates a 
template class, C++ generates code for the particular instance of the class by replacing all references to the 
template parameters with the arguments to the template.  For example, with the  MyPair class defined 
above, if we create a  MyPair<int, string>, the compiler will generate code internally that looks like 
this:

    class MyPair<int, string> {
    public:
        int getFirst();
        void setFirst(int newValue);
    
        string getSecond();
        void setSecond(string newValue);

    private:
       int first;
       string second;
    }
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    int MyPair<int, string>::getFirst() {
        return first;
    }
    
    void MyPair<int, string>::setFirst(int newValue) {
        first = newValue;
    }
    
    string MyPair<int, string>::getSecond() {
        return second;
    }
    
    void MyPair<int, string>::setSecond(string newValue) {
        second = newValue;
    }

At this point, compilation continues as usual.

But what would happen if the compiler didn't have access to the implementation of the  MyPair class? 
That is, let's suppose that we've created a header file, my-pair.h, that contains only the class declaration 
for MyPair, as shown here:

File: my-pair.h
#ifndef MyPair_Included // Include guard prevents multiple inclusions
#define MyPair_Included

template <typename FirstType, typename SecondType> class MyPair {
public:
    FirstType getFirst();
    void setFirst(FirstType newValue);

    SecondType getSecond();
    void setSecond(SecondType newValue);

private:
    FirstType first;
    SecondType second;
};

#endif

Suppose that we have a file that  #includes the  my-pair.h file and then tries to use the  MyPair class. 
Since all that the compiler has seen of MyPair is the above class definition, the compiler will only generate 
the following code for MyPair:

    class MyPair<int, string> {
    public:
        int getFirst();
        void setFirst(int newValue);
    
        string getSecond();
        void setSecond(string newValue);
    private:
       int first;
       string second;
    }
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Notice that while all the member functions of MyPair<int, string> have been prototyped, they haven't 
been  implemented because  the  compiler  didn't  have  access  to  the  implementations  of  each  of  these 
member  functions.   In  other  words,  if  a  template  class  is  instantiated  and  the  compiler  hasn't  seen  
implementations of its member functions, the resulting template class will have no code for its member 
functions.  This means that the program won't link, and our template class is now useless.

When  writing  a  template  class  for  use  in  multiple  files,  the  entire  class  definition,  including 
implementations of member functions, must be visible in the header file.  One way of doing this is to create 
a .h file for the template class that contains both the class definition and implementation without creating  
a matching .cpp file.  This is the approach adopted by the C++ standard library; if you open up any of the  
headers for the STL, you'll find the complete (and cryptic) implementations of all of the functions and 
classes exported by those headers.

To give a concrete example of this approach, here's what the my-pair.h header file might look like if it 
contained both the class and its implementation:

File: my-pair.h
/* This method of packaging the .h/.cpp pair puts the entire class definition and
 * implementation into the .h file.  There is no .cpp file for this header.
 */

#ifndef MyPair_Included
#define MyPair_Included

template <typename FirstType, typename SecondType> class MyPair {
public:
    FirstType getFirst();
    void setFirst(FirstType newValue);

    SecondType getSecond();
    void setSecond(SecondType newValue);
private:
    FirstType first;
    SecondType second;
};

template <typename FirstType, typename SecondType>
    FirstType MyPair<FirstType, SecondType>::getFirst() {
    return first;
}

template <typename FirstType, typename SecondType>
    void MyPair<FirstType, SecondType>::setFirst(FirstType newValue) {
    first = newValue;
}

template <typename FirstType, typename SecondType>
    SecondType MyPair<FirstType, SecondType>::getSecond() {
    return second;
}

template <typename FirstType, typename SecondType>
    void MyPair<FirstType, SecondType>::setSecond(SecondType newValue) {
    second = newValue;
}

#endif
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Putting the class and its definition inside the header file is a valid way to prevent linker errors, but it 
seems to violate the principle of separation of interface and implementation.  After all, the reason we have 
both  .h  and  .cpp  files  is  to  hide  a  class  implementation  in  a  file  that  clients  never  have  to  look  at.  
Unfortunately, barring some particularly unsightly and hacky abuses of the preprocessor, you will need to 
structure template code in this manner.

The Two Meanings of typename

One of the more unfortunate quirks of the C++ language is the dual meaning of the typename keyword.  As 
mentioned previously,  when defining a template class,  you can the  typename keyword to declare type 
parameters for the template class.  However, there is another use of the typename keyword that can easily 
catch you off guard unless you're on the lookout for it.  Suppose, for example, that we wish to implement a  
class akin to the STL stack which represents a LIFO container.  Because the abstract notion of a stack only 
concerns the ordering of the elements in the container rather than the type or contents of the elements in 
the container,  we should probably consider  implementing the stack as  a template class.   Here is  one  
possible interface for such a class, which we'll call Stack to differentiate it from the STL stack:

    template <typename T> class Stack {
    public:
        void push(T value);
        T pop();

        size_t size();
        bool empty();
    };

There are  many ways  that  we could implement this  Stack class:  we could use  dynamically-allocated 
arrays,  or  the  STL  vector or  deque containers.   Of  these  three  choices,  the  vector and  deque are 
certainly  simpler  than  using  dynamically-allocated  arrays.   Moreover,  since  all  of  the  additions  and 
deletions from a stack occur at the end of the container, the deque is probably a more suitable container 
with which we could implement our Stack.  We'll therefore implement the Stack using a deque, as shown 
here:

    template <typename T> class Stack {
    public:
        void push(T value);
        T pop();
    
        size_t size();
        bool empty();
    
    private:
        deque<T> elems;
    };

Notice that we've used the template parameter T to parameterize the deque.  This is perfectly valid, and is 
quite common when implementing template classes.

Given this implementation strategy, we can implement each of the member functions as follows.  Make 
sure that you can read this code; it's fairly template-dense.
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    template <typename T> void Stack<T>::push(T value) {
        elems.push_front(value);
    }

    template <typename T> T Stack<T>::pop() {
        T result = elems.front();
        elems.pop_front();
        return result;
    }
    
    template <typename T> size_t Stack<T>::size() {
        return elems.size();
    }
    
    template <typename T> bool Stack<T>::empty() {
        return elems.empty();
    }

This is a perfectly reasonable implementation of a stack, and in fact the STL stack implementation is very 
similar to this one.

Now, suppose that we're interested in extending the functionality of the  Stack so that class clients can 
iterate over the elements of the Stack in the order that they will be removed.  For example, if we push the 
elements 1, 2, 3, 4, 5 onto the stack, the iteration would visit the elements in the order 5, 4, 3, 2, 1.  This  
functionality is usually not found on a Stack, but is useful for debugging (e.g. printing out the contents of 
the stack) or modifying the elements of the  Stack after they've already been inserted.  To do this, we'll 
need to add  begin() and  end() functions to the  Stack class that return iterators over the underlying 
deque.   Because  the  internal  deque is  a  deque<T>,  these  iterators  have  type  deque<T>::iterator. 
Consequently, you might think that we would update the interface as follows:

    template <typename T> class Stack {
    public:
        void push(T value);
        T pop();
    
        size_t size();
        bool empty();
    
        deque<T>::iterator begin(); // Problem: Illegal syntax.
        deque<T>::iterator end();   // Problem: Illegal syntax.
    
    private:
        deque<T> elems;
    };

This code is perfectly well-intentioned, but unfortunately is not legal C++ code.  The problem has to do 
with  the  fact  that  deque<T> is  a  dependent  type,  a  type  that  “depends”  on  a  template  parameter. 
Intuitively, this is because deque<T> isn't a concrete type – it's a pattern that says “once you give me the 
type T, I'll give you back a deque of T's”.  Due to a somewhat arcane restriction in the C++ language, if you 
try to access a type nested inside of a dependent type inside of a template class (for example, trying to use  
the iterator type nested inside deque<T>), you must preface that type with the typename keyword.  The 
correct version of the Stack class is as follows:
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    template <typename T> class Stack {
    public:
        void push(T value);
        T pop();
    
        size_t size();
        bool empty();
    
        typename deque<T>::iterator begin(); // Now correct
        typename deque<T>::iterator end();   // Now correct
    
    private:
        deque<T> elems;
    };

This syntactic oddity is one of the truly embarrassing parts of C++.  There is no high-level reason why 
typename should be necessary, and its existence is a perpetual source of confusion and frustration among 
new C++ programmers.  I wholeheartedly wish that I could give you a nice clean explanation as to why 
typename is necessary, but the real answer is highly technical and in many ways unsatisfactory.  Of course,  
this doesn't excuse you from having to put the typename keyword in when it's necessary, and you'll have 
to make sure to use it  where appropriate.   The good news is  that  typename is  unnecessary in most 
circumstances.  You only need to use the  typename keyword when accessing a type nested inside of a 
dependent type.  From a practical standpoint, this means that if you want to look up a type nested inside of  
a type that's either a template parameter or is parameterized over a template parameter, you must preface  
the type with the typename keyword.  In the examples used in the upcoming chapters, this will only occur  
when looking up iterators inside of STL containers that themselves are parameterized over a template 
argument, such as a deque<T>::iterator or a vector<T>::iterator.

To complete the above example, the implementation of the begin and end functions are shown here:

    template <typename T> typename deque<T>::iterator Stack<T>::begin() {
        return elems.begin();
    }

    template <typename T> typename deque<T>::iterator Stack<T>::end() {
        return elems.end();
    }

These functions might  be the densest  pieces of  code you've  encountered so far.   The code  template 
<typename T> declares that the member function implementation is an implementation of a template 
class's  member  function.   typename deque<T>::iterator is  the  return  type  of  the  function,  and 
Stack<T>::begin() is the name of the member function and the (empty) parameter list.  When writing 
template classes, code like this is fairly ubiquitous, but with practice you'll be able to read this code much 
more easily.

Clarifying Interfaces with const

At its core,  C++ is a language based on modifying program state.   ints get incremented in  for loops; 
vectors have innumerable calls to clear, resize, and push_back; and console I/O overwrites variables 
with values read directly from the user.

Consider the following function:
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    void LoadFileContents(string filename, vector<string>& out) {
        ifstream input(filename.c_str()); // Open the file
        out.clear();
    
        string line;
        while (getline(input, line))
            out.push_back(line);
    }

This function takes in a string containing the name of a file, then reads the contents of the file into a 
vector<string> specified as a reference parameter.  Because this function writes the result to an existing 
vector rather than creating a new  vector for output,  we say that the function has  side effects.   Side 
effects are extremely common in C++ code, and in fact without side effects C++ programs would be very 
difficult to write.   However,  when working with increasing large software systems, side effects can be  
dangerous.  As mentioned last chapter, a single incorrect bit can take down an entire software system. 
Consequently, you must be very careful when designing functions with side effects so that the scope of 
what those side effects can modify is minimized.  To see exactly why this is, let's consider the extreme case.  
Suppose every function in a program is allowed to modify  any piece of data in the program.  That is, 
whenever a function is called, the values of all variables in all functions might be changed.  What would 
this mean for programming?  Certainly, it would be much more difficult to reason about how programs 
operate.  Consider, for example, the following loop:

    for (size_t k = 0; k < 100; ++k)
        MyFunction();

Here, we iterate over the first one hundred integers, calling some function called MyFunction.  What will 
this  program  do?   Certainly  it  depends  on  the  implementation  of  MyFunction,  but  a  reasonable 
programmer would probably infer that MyFunction will be called exactly one hundred times.  But this is 
making the reasonable assumption that because MyFunction isn't passed k as a parameter, it has no way 
of modifying the local  variable  k in the calling function.   However,  we're assuming that  functions are 
allowed to modify any data in the program.  Given this assumption, there's no reason that the MyFunction 
function couldn't change the value of k whenever it's called.  It might, for example, set k to be 0 on every 
iteration,  meaning  that  the  loop  will  never  terminate  (see  if  you  can  convince  yourself  why  this  is). 
Similarly, the function might increment k by one every time it's called, causing the loop to execute half as 
many times as it should (since k will take on values 0, 2, 4, 8, ... instead of 0, 1, 2, 3, ...).  Without looking at 
the implementation of MyFunction, there would be no way to know exactly what will happen to k.  Trying 
to infer what the program will do by looking at its complete source code  would be substantially more 
complicated, and building programs more than a few hundred lines of code would quickly become difficult  
or impossible.

Hopefully the above example has convinced you that allowing functions to make arbitrary changes to 
program state is not a viable option.  Fortunately, C++ is specifically designed to allow programmers to 
constrain where data can be modified.  Many of the programming concepts we've explored so far revolve  
around this idea.  For example:

• Avoiding global variables.   You have probably been hammered repeatedly with the idea that 
global  variables  can  be  hazardous.   Global  variables  make  programs  significantly  harder  to 
maintain because globals can be modified by any function, at any time, for any reason.  This means 
that if a program encounters an error because a global variable has an incorrect value, it is difficult  
to track down exactly where in the program that variable received the incorrect value.  By using 
local variables instead of globals, it is easier to track down exactly where errors occur by following  
which functions have access to those variables.
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• Marking  data  members  private.   We  initially  explored  encapsulation  from  a  theoretical 
perspective as a means for separating implementation from interface.   However,  encapsulation 
also helps control where side effects can occur in a program.  If a class's data members are marked 
private, then any changes to those data members must result from the class's public interface. 
Verifying that the class's interface is implemented correctly can therefore increase confidence that 
data members aren't mercilessly clobbered.
 

• Decomposing large functions.  Besides making code cleaner, more maintainable, and easier to 
follow, decomposition minimizes the amount of code that has access to each local variable.  If a 
task is well-decomposed, then each function will have access only to a small number of variables 
and thus cannot affect much program state.

Each of these programming patterns ensure that data can only be modified in places where a programmer  
has explicitly granted particular functions access to that data.  However, C++ provides an even stronger 
mechanism for preventing unexpected side effects – the const keyword.  You have already seen const in 
the context of global constants, but the const keyword has many other uses.  This section introduces the 
mechanics of const (for example, where const can be used and what it means in these contexts) and how 
to use it properly in C++ code.

const Variables

So far, you've only seen const in the context of global constants.  For example, given the following global 
declaration:

    const int MyConstant = 137;

Whenever you refer to the value MyConstant in code, the compiler knows that you're talking about the 
value 137.  If later in your program you were to write MyConstant = 42, the complier would flag the line 
as an error because code to this effect modifies a value you explicitly indicated should never be modified. 
However, const is not limited to global constants.  You can also declare local variables const to indicate 
that their values should never change.  Consider the following code snippet:

    for (set<int>::iterator itr = mySet.lower_bound(42); 
         itr != mySet.upper_bound(137); ++itr) {
        /* ... manipulate *itr ... */
    }

This code iterates over all of the values in an STL set whose values are in the range [42, 137].*  However, 
this code is not nearly as efficient as it could be.  Because C++ evaluates the looping condition of a for loop 
on each iteration, the program will evaluate the statement itr != mySet.upper_bound(137) once per 
loop iteration, so the program will recompute mySet.upper_bound(137) multiple times.  Although the 
STL set is highly optimized and the upper_bound function is particularly fast (on a set with n elements, 
upper_bound runs in time proportional to log2 n), if there are many elements in the range [42, 137] the 
overhead of multiple calls to upper_bound may be noticeable.  To fix this, we might consider computing 
mySet.upper_bound exactly once, storing the value somewhere, and then referencing the precomputed 
value inside the for loop.  Here's one possible implementation:

    set<int>::iterator stop = mySet.upper_bound(137);
    for (set<int>::iterator itr = mySet.lower_bound(42); itr != stop; ++itr) {
        /* ... manipulate *itr ... */
    }

* If you're a bit rusty on the upper_bound and lower_bound functions, refer back to the chapter on STL associative 
containers.
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This version of the loop will run much faster than its previous incarnation.  However, this new version of 
the loop now depends on the fact that stop holds the value of mySet.upper_bound(137) throughout the 
loop.  If we accidentally overwrite stop, we'll end up iterating the wrong number of times.  In other words, 
the variable stop isn't really a variable – it shouldn't vary – but instead should be a constant.  To indicate 
to C++ that the value of stop shouldn't change, we can mark the stop variable const.  This prevents us 
from changing the value of stop, and will cause a compile-time error if we try to do so.  The updated code 
is shown here:

    const set<int>::iterator stop = mySet.upper_bound(137);
    for (set<int>::iterator itr = mySet.lower_bound(42); itr != stop; ++itr) {
        /* ... manipulate *itr ... */
    }

This is your first glimpse of a const local variable.  const local variables are similar to global constants: 
they must be initialized to a value, their values can't change during the course of execution, etc.  In fact, the  
only  difference  between a  const local  variable  and a  global  constant  is  scope.   Global  constants  are 
globally visible and persist throughout the course of a program, while  const local variables are created 
and destroyed like regular local variables.

const Objects

The main idea behind  const is  to  let  programmers communicate  that  the  values of  certain variables 
should not change during program execution.  When working with primitive types, the meaning of “should 
not  change”  is  fairly  clear:  an  int changes  if  it  is  incremented,  decremented or  overwritten;  a  bool 
changes if it flips from true to false; etc.  However, when working with variables of class type, our notion 
of “should not change” becomes substantially more nuanced.  To give you a sense for why this is, let's  
consider a  const string,  a C++  string whose contents cannot be modified.  We can declare a  const 
string as we would any other const variable.  For example:

    const string myString = "This is a constant string!";

Note that, like all const variables, we are still allowed to assign the string an initial value.

Because the  string is  const, we're not allowed to modify its contents, but we can still perform some 
basic operations on it.  For example, here's some code that prints out the contents of a const string:

    const string myString = "This is a constant string!";
    for(size_t i = 0; i < myString.length(); ++i)
        cout << myString[i] << endl;

To us humans, the above code seems completely fine and indeed it is legal C++ code.  But how does the  
compiler know that the length function doesn't modify the contents of the string?  This question may 
seem silly – of course the length function won't change the length of the string – but this is only obvious 
because we humans have a gut feeling about how a function called length should behave.  The compiler, 
on the other hand, knows nothing of natural language, and could care less whether the function were 
named “length” or “zyzzyzplyx.”  This raises a natural question: given an arbitrary class, how can the 
compiler  tell  which  member  functions  might  modify  the  receiver  object  and which  ones  cannot?   To 
answer this question, let's look at the prototype for the string member function length:*

* The actual implementation of the  string class looks very different from this because string is a class template 
rather than an actual class.  For our discussion, though, this simplification is perfectly valid.
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    class string {
    public:
        size_t length() const;

        /* ... etc. ... */
    };

Note that  there  is  a  const after  the  member function declaration.   This  is  another  use  of  the  const 
keyword that indicates that the member function does not modify any of the class's instance variables. 
That  is,  when  calling  a  const member  function,  you're  guaranteed that  the  object's  contents  cannot 
change. (This isn't technically true, as you'll see later, but it's a perfectly valid way of thinking about const 
functions).

When working with const objects, you are only allowed to call member functions on that object that have 
been explicitly marked const.  That is, even if you have a function that doesn't modify the object, unless 
you tell the compiler that the member function is const, the compiler will treat it as a non-const function. 
This may seem like a nuisance, but has the advantage that it forces you to decide whether or not a member  
function should be const before you begin implementing it.  That is, the constness of a member function 
is an interface design decision, not an implementation design decision.

To see how  const member functions work in practice, let's consider a simple  Point class that stores a 
point in two-dimensional space.  Using the getter/setter paradigm, we end up with this class definition:

    class Point {
    public:
        Point(double x, double y);

        double getX();
        double getY();

        void setX(double newX);
        void setY(double newY);

    private:
        double x, y;
    };

Let's take a minute to think about which of these functions should be  const and which should not be. 
Clearly, the  setX and  setY functions should not be  const,  since these operations by their very nature 
modify the receiver object.  But what about getX and getY?  Neither of these functions should modify the 
receiver object, since they're designed to let clients query the object's internal state.  We should therefore 
mark these functions  const to indicate that they cannot modify the object.  This gives us the following 
definition of Point:
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    class Point {
    public:
        Point(double x, double y);

        double getX() const;
        double getY() const;

        void setX(double newX);
        void setY(double newY);

    private:
        double x, y;
    };

There's only one function we've ignored so far – the Point constructor.  However, in C++ it's illegal to mark 
a constructor  const,  since the typical operation of a constructor runs contrary to the notion of  const. 
Take a minute to think about why this is; you'll be a better C++ coder for it!

Now that we've marked the getX and getY functions const, we can think about how we might go about 
implementing these functions.  You might think that we would implement them just as we would regular 
member functions, and you would almost be right.  However, the fact that the function is const is part of 
that function's signature, and so in the implementation of the  getX and  getY functions we will need to 
explicitly indicate that those member functions are const.  Here is one possible implementation of getX; 
similar code can be written for getY.
 
    double Point::getX() const {
         return x;
    }

Forgetting to add this  const can be a source of much frustration because the C++ treats  getX() and 
getX() const as two different functions.  We will discuss why this is later in this chapter.

In a  const member function, all the class's instance variables are treated as  const.  You can read their 
values, but must not modify them.  Similarly, inside a const member function, you cannot call other non-
const member functions.  The reason for this is straightforward: because non-const member functions 
can modify the receiver object, if a const member function could invoke a non-const function, then the 
const function might indirectly modify the receiver object.  But beyond these restrictions, const member 
functions can do anything that regular member functions can.  Suppose,  for example,  that we wish to  
update  the  Point class  to  support  a  member  function  called  distanceToOrigin which  returns  the 
distance between the receiver object and the point (0, 0).   Because this function shouldn't modify the 
receiver object, we'll mark it const, as shown here:
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    class Point {
    public:
        Point(double x, double y);

        double getX() const;
        double getY() const;

        void setX(double newX);
        void setY(double newY);

        double distanceToOrigin() const;

    private:
        double x, y;
    };

Mathematically,  the distance between a point  and the origin is defined as   x2
 y2 .   Using the  sqrt 

function from the <cmath> header file, we can implement the distanceToOrigin function as follows:

void Point::distanceToOrigin() const {
     double dx = getX();   // Legal!  getX is const.
     double dy = y;        // Legal!  Reading an instance variable.
     dx *= dx;             // Legal!  We're modifying dx, which isn't an
                           //         instance variable.
     dy *= dy;             // Legal!  Same reason as above.
     return sqrt(dx + dy); // Legal!  sqrt is a free function that can't
                           //         modify the current object.
}

Although  this  function  is  marked  const,  we  have  substantial  leeway  with  what  we  can  do  in  the 
implementation.  We can call the getX function, since it too is marked const.  We can also read the value of y 
and store it in another variable because this doesn't change its value.  Additionally, we can change the values of  
the  local  variables  dx and  dy,  since  doing  so  doesn't  change  any of  the  receiver  object's  data  members. 
Remember,  const member functions guarantee that the  receiver object doesn't change, not that the function 
doesn't change the values of any variables.  Finally, we can call free functions, since those functions don't have 
access to the class's data members and therefore cannot modify the receiver.

const References

Throughout this text we've used pass-by-reference by default when passing heavy objects like  vectors 
and  maps  as  parameters  to  functions.   This  improves  program  efficiency by  avoiding  expensive  copy 
operations.  Unfortunately, though, using pass-by-reference in this way makes it more difficult to reason 
about a function's behavior.  For example, suppose you see the following function prototype:

    void DoSomething(vector<int>& vec);

You  know  that  this  function  accepts  a  vector<int> by  reference,  but  it's  not  clear  why.   Does 
DoSomething modify  the  contents  of  the  vector<int>,  or  is  it  just  accepting  by  reference  to  avoid 
making a deep copy of the vector?  Without knowing which of the two meanings of pass-by-reference the 
function  writer  intended,  you  should  be  wary  about  passing  any  important  data  into  this  function. 
Otherwise, you might end up losing important data as the function destructively modifies the parameter.

We are in an interesting situation.  If we don't use pass-by-reference on functions that take large objects as  
parameters, our programs will pay substantial runtime costs unnecessarily.  On the other hand, if we do 
pass large objects by reference, we make it more difficult to reason about exactly what the functions in our  
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program are trying to do.  In other words, we can make a tradeoff between efficiency and clarity.  In many 
cases, this tradeoff is necessary.  Clean, straightforward algorithms are often fast and efficient, but more 
often than not they are slower than their more intricate counterparts.  But in this particular arena, there is 
an  easy  way  to  gain  the  efficiency  of  pass-by-reference  without  the  associated  ambiguity:  const 
references.

A  const reference is,  in  many ways,  like  a  normal  reference.   const references  refer  to  objects  and 
variables declared elsewhere in the program, and any operations performed on the reference are instead 
performed on the object being referred to.  However, unlike regular references, const references treat the 
object they alias as though it were const.  In other words, const references capture the notion of looking 
at an object without being able to modify it.

To see how const references work in practice, let's consider an example.  Suppose that we want to write a  
function which prints out the contents of a vector<int>.  Such a function clearly should not modify the 
vector, and so we can prototype this function as follows:

    void PrintVector(const vector<int>& vec);

Notice  that  this  function takes  in  a  const vector<int>&.   This  is  a  const reference (also  called  a 
reference-to-const).  Inside the  PrintVector function, the  vec parameter is treated as though it were 
const, and so we cannot make any changes to it.  Thus the following implementation of PrintVector is 
perfectly legal:

    void PrintVector(const vector<int>& vec) {
        for (size_t k = 0; k < vec.size(); ++k)
            cout << vec[k] << endl;
    }

Although the PrintVector function takes in a reference to a const vector<int>, it is perfectly legal to 
pass both const and non-const vector<int>s to PrintVector.  Whether or not the original vector is 
const, inside the  PrintVector function C++ treats the vector as though it were  const.  Thus it's legal 
(and encouraged) to write code like this:

    void PrintVector(const vector<int>& vec) {
        for (size_t k = 0; k < vec.size(); ++k)
            cout << vec[k] << endl;
    }

    int main() {
        vector<int> myVector(NUM_INTS);

        PrintVector(myVector);   // Legal!  myVector treated const in PrintVector

        myVector.push_back(137); // Legal!  myVector isn't const out here.
    }

You might be a bit uneasy with the idea of passing a non-const variable into a function that takes a 
reference-to-const.  After all, something of type Type isn't the same as something of type const Type. 
We can't assign values to const objects, nor can we invoke their non-const member functions.  However, 
it is perfectly safe to treat a non-const object as though it were const because the legal operations on a 
const object are a  subset of the legal operations on a non-const object.  That is, every object's public 
interface  can be split  into two parts,  a  const interface  of  non-mutating  operations  and a  non-const 
interface of operations which change the object's state.  This is shown below:
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In this picture, the object's internal state is represented by the fuzzy cloud, with the const and non-const 
interfaces each having access to the internals.  When an object is non-const, it has both interfaces; when 
const it has only the const interface.  Using this mental model, let's think about what happens when we 
pass an object by reference-to-const into a function.  Because the called function takes in a reference-to-
const, we can treat the function as though it expects only the const interface for an object.  Graphically:
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What does this idea mean for you as a programmer?  In particular, when writing functions that need to be  
able to look at data but not modify it,  you should strongly consider using pass-by-reference-to-const. 
This gives you the benefits of  pass-by-reference (higher efficiency) with the added guarantee that the 
parameter  won't  be  destructively  modified.   Of  course,  while  it's  legal  to  pass  non-const objects  to 
functions accepting const references, you cannot pass const objects into functions accepting non-const 
references.  The reason for this is simple: if an object is marked const, its value cannot be changed.  If a 
const object could be passed into a function by non-const reference,  that function could modify the 
original object, subverting constness.  You can think of const as a universal accepter and of non-const as 
the universal  donor –  you can convert both  const and non-const data to  const data,  but you can't 
convert const data to non-const data.  Thinking about this using our two-interface analogy, if you have 
access  to  a  class's  non-const interface,  you  can  always  ignore  it  and  just  use  the  const interface. 
However, if you only have access to the const interface, you can't suddenly give yourself access to the non-
const interface.
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Although  const references behave for the most  part  like  regular  references,  there  is  one particularly 
important behavioral  aspect where they diverge.   Suppose we are given the following prototype for a  
function called DoSomething, which takes in a reference to an int:

    void DoSomething(int& x);

Given this prototype, each of the following calls to DoSomething is illegal:

    DoSomething(137);      // Problem: Cannot pass literal by reference
    DoSomething(2.71828);  // Problem: Cannot pass literal by reference

    double myDouble;
    DoSomething(myDouble); // Problem: int& cannot bind to double

Let's examine exactly why each of these three calls fail.  In the first case, we tried to pass the integer literal  
into the DoSomething function.  This will cause problems if DoSomething tries to modify its parameter. 
Suppose, for example, that DoSomething is implemented as follows:

    void DoSomething(int& x) {
        x = 0;
    }

If we pass 137 directly into  DoSomething,  the the line  x = 0 would try to store the value 0 into the 
integer literal 137.  This is clearly nonsensical, and so the compiler disallows it.  The second erroneous call  
to  DoSomething (where we pass in 2.71828) fails for the same reason.  However, what of the third call, 
DoSomething(myDouble)?   This  fails  because  myDouble is  a  double,  not  an  int,  and  although  it's 
possible to typecast a double to an int the C++ language explicitly says that this is not acceptable.  This 
may seem harsh, but it allows C++ programs to run extremely efficiently because the compiler can assume 
that the parameter x is bound to an actual int, not something implicitly convertible to an int.*

However, suppose we change the prototype of DoSomething to accept its parameter by const reference, 
as shown here:

    void DoSomething(const int& x);

Then all of the following calls to DoSomething are perfectly legal:

    DoSomething(137);      // Legal
    DoSomething(2.71828);  // Legal

    double myDouble;
    DoSomething(myDouble);  // Legal!

Why the difference?  Think about why all of the above examples caused problems when mixed with non-
const references.  In the first case, we might accidentally assign a new value to an integer literal; the 
second case ran into similar problems.  In the third case, due to hardware restrictions, we cannot bind an 
int& to a  double because writing a value to that  int& would result in incorrect behavior.  All of these 

* I know that this explanation might seem a bit fuzzy, primarily because the main reason is technical and has to do  
with how ints and doubles are represented in the machine.  If you try to execute the machine code instructions to  
store an integer value into a variable that's declared as a double, the double will take on a completely meaningless 
value that has nothing to do with the integer that we intended to store in it.  If you're interested in learning more  
about why this is, consider taking a compilers course or studying an assembly language (MIPS or x86).  If you still  
don't understand why int&s can't be bound to doubles, send me an email and I can try to explain things in more 
detail.
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cases have to do with the fact that the reference can be used to modify the object it's bound to.  But when  
working with const references, none of these problems are possible because the referenced value can't be 
changed through the reference.

Because  normal  restrictions  on  references  do  not  apply  to  const references,  you  can  treat  pass-by-
reference-to-const as a smarter version of pass-by-value.  Any value that could be passed by value can be 
passed by reference-to-const, but when using reference-to-const objects won't be copied in most cases. 
We will address this later in this chapter.  For now, treating pass-by-reference-to-const as a more efficient 
pass-by-reference will be wise.

const and Pointers

The const keyword is useful, but has its share of quirks.  Perhaps the most persistent source of confusion 
when working with const arises when mixing const and pointers.  For example, suppose that you want 
to declare a C string as a global constant.  Since to declare a global C++ string constant you use the syntax

    const string kGlobalCppString = "This is a string!";

You might assume that to make a global C string constant, the syntax would be:

    const char* kGlobalStr = "This is a string!"; // Problem: Legal but incorrect

This syntax is partially correct.  If you were ever to write kGlobalString[0] = 'X', rather than getting 
segmentation faults at runtime (see the C strings chapter for more info), you'd instead get a compiler error 
that would direct you to the line where you tried to modify the global constant.  But unfortunately this 
variable  declaration  contains  a  subtle  but  crucial  mistake.   Suppose,  for  example,  that  we  write  the 
following code:

    kGlobalString = "Reassigned!";

Here, we reassign kGlobalString to point to the string literal “Reassigned!”  Note that we didn't modify 
the contents of the character sequence  kGlobalString points to – instead we changed  what character  
sequence kGlobalString points to.  In other words, we modified the pointer, not the pointee, and so the 
above line will  compile correctly and other code that  references  kGlobalString will  suddenly begin 
using the string “Reassigned!” instead of “This is a string!” as we would hope.

C++ distinguishes between two similar-sounding entities:  a  pointer-to-const and a  const pointer.  A 
pointer-to-const is a pointer like  kGlobalString that points to data that cannot be modified.  While 
you're free to reassign pointers-to-const, you cannot change the value of the elements they point to.  To 
declare a pointer-to-const, use the syntax  const Type* myPointer, with the  const on the left of the 
star.  Alternatively, you can declare pointers-to-const by writing Type const* myPointer.

A const pointer, on the other hand, is a pointer that cannot be assigned to point to a different value.  Thus 
with a const pointer, you can modify the pointee but not the pointer.  To declare a const pointer, you use 
the  syntax  Type* const myConstPointer,  with  the  const on  the  right  side  of  the  star.   Here, 
myConstPointer can't be reassigned, but you are free to modify the value it points to.

To illustrate by analogy, a pointer-to-const is like a telescope – it can look at other objects, and freely 
change which objects it looks at, but it cannot apply any changes to those objects.  A const pointer, on the 
other hand, is like an industrial laser.  The laser can be turned on at high power to cut a sheet of metal, or  
at low power to get a sense of what the metal looks like, but the beam is always pointed at the same place.  
You wouldn't try to cut a sheet of metal with a telescope, nor would you try to look at an object at a  
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distance by blasting a high-energy laser at it.  Remembering whether you want a pointer-to-const (look 
but don't touch) or a const pointer (touch, but only touch one thing) will be tricky at first, but will become 
more natural as you mature as a programmer.

Note that the syntax for a pointer-to-const is const Type * ptr while the syntax for a const pointer is 
Type * const ptr.   The only difference is where the  const is in relation to the star.  One trick for 
remembering which is which is to read the variable declaration from right-to-left.  For example, reading 
const Type * ptr backwards  says  that  “ptr is  a  pointer  to  a  Type that's  const,”  while 
Type * const ptr read backwards is “ptr is a const pointer to a Type.”

Returning to the C string example, to make kGlobalString behave as a true C string constant, we'd need 
to make the pointer both a const pointer and a pointer-to-const.  This may seem strange, but is perfectly 
legal  C++.  The result is a const pointer-to-const, a pointer that can only refer to one object and that 
cannot change the value of that object.  Syntactically, this looks as follows:

    const char * const kGlobalString = "This is a string!";

Note that there are two consts here – one before the star and one after it.  Here, the first const indicates 
that you are declaring a pointer-to-const, while the second means that the pointer itself is const.  Using 
the trick of reading the declaration backwards, here we have “kGlobalString is a  const pointer to a 
char that's  const.”   This  is  the  correct  way  to  make  the  C  string  completely  const,  although  it  is 
admittedly a bit clunky.

The following table summarizes what types of pointers you can create with const:

Declaration Syntax Name Can reassign? Can modify pointee?
const Type* myPtr Pointer-to-const Yes No

Type const* myPtr Pointer-to-const Yes No

Type* const myPtr const pointer No Yes

const Type* const myPtr const pointer-to-const No No

Type const* const myPtr const pointer-to-const No No

As with references and references-to-const, it is legal to set a pointer-to-const to point to a non-const 
object.  This simply means that the object cannot be modified through the pointer-to-const.

const_iterator

Suppose you have a function that accepts a  vector<string> by reference-to-const and you'd like to 
print out its contents.  You might want to write code that looks like this:

    void PrintVector(const vector<string>& myVector) {
        for(vector<string>::iterator itr = myVector.begin(); // Problem
            itr != myVector.end(); ++itr)
            cout << *itr << endl;
    }

Initially,  this  code  seems perfectly  fine,  but  unfortunately  the  compiler  will  give  you  some  positively  
ferocious errors if  you try to compile this code.  The problem has to do with a subtlety involving STL 
iterators  and  const.   Notice  that  in  the  first  part  of  the  for loop  we  declare  an  object  of  type 
vector<string>::iterator.  Because the vector is const, somehow the compiler has to know that the 
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iterator you're getting to the vector can't modify the vector's contents.  Otherwise, we might be able to 
do something like this:

    /* Note: This code doesn't compile.  It just shows off what happens if we
     * could get an iterator to a const vector.
     */
    void EvilFunction(const vector<string>& myVector) {
        vector<string>::iterator itr = myVector.begin();

        *itr = 42; // Just modified a const object!
    }

In other words, if we could get an iterator to iterate over a const vector, that iterator could be used in 
fiendish and diabolical ways to modify the contents of the vector, something we promised not to do.  This 
raises an interesting issue.  Let's reconsider our (currently flawed) implementation of PrintVector:

    void PrintVector(const vector<string>& myVector) {
        for(vector<string>::iterator itr = myVector.begin();  // Problem
            itr != myVector.end(); ++itr)
            cout << *itr << endl;
    }

This code doesn't compile because the  for loop tries to get an iterator that traverses the  vector.   As 
shown above, given an iterator over a const vector, it's possible to modify the contents of that vector 
and  subvert  constness.   But  in  this  function  we  don't modify  the  contents  of  the  vector –  we're 
harmlessly  traversing  the  vector elements  and  printing  its  contents!   So  why  does  the  compiler 
cryptically  complain  about  our  code?   The  reason  is  that  constness  is  conservative.   When  the  C++ 
compiler  checks  your  code  to  ensure  that  you  haven't  violated  the  sanctity  of  const,  its  analysis  is 
imprecise.   Rather  than determining whether  or  not  your  code actually  modifies  a  const variable,  it 
checks for syntactic structures which violate const – do you assign a a const variable?  Do you invoke a 
non-const function on a  const variable?  Do you pass a  const variable into a function which takes an 
argument by non-const reference?  Because of  this,  it  is  possible  to write code that  cannot possibly 
change the value of a const variable but which is still rejected by the compiler.  For example, consider the 
following code snippet:

    void SubtleFunction(const vector<string>& myVector) {
        if (myVector.empty())
            myVector.clear(); // Error!  Calls non-const function.
    }

This function checks to see if the parameter is the empty vector, and, if so, calls  clear on that vector. 
Calling clear on the empty vector does nothing to that vector, and so technically speaking this function 
never changes the value of its parameter.  However, the C++ compiler will still reject this code, because you  
invoked clear (a non-const member function) on a const vector.

Why does the compiler take this approach?  The answer is that it is provably impossible to build a compiler 
that can actually determine whether or not a C++ function will change the value of a particular variable.  
You read that correctly – no compiler, no matter how sophisticated or clever, can correctly determine in all 
cases whether a C++ program will read or write a particular variable.  Because of this, C++'s rules for 
constness have a margin of error.  Some programs that will never change the value of a certain variable 
will cause compiler errors, but any program that correctly obeys const will ensure that const variables 
are never overwritten.  This explains why, in our simple PrintVector example, the compiler complained. 
Although we never actually overwrite the elements of the vector using our iterator, the fact that someone 
with an iterator could overwrite the elements of the vector is enough to cause the compiler to panic.
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Because raw iterators don't play nicely with  const containers, we're going to need to change our code. 
One idea you may have had would be to mark the iterator  const to  prevent it  from overwriting the 
elements of the  vector.   While well-intentioned, this approach won't work.  A  const iterator is like a 
const pointer – it can't change what element it iterates over, but it can change the value of the elements it  
iterates over.  This is the reverse of what we want – we want an iterator that can't change the values it 
looks at but can change which elements it iterates over.  For this, we can use const_iterators.  Each STL 
container  that  defines  an iterator  also  defines  a  const_iterator that  can read the  values from  the 
container  but  not  write  them.   Using  a  const_iterator,  we  can  rewrite  our  implementation  of 
PrintVector as follows:

    void PrintVector(const vector<string>& myVector) {
         for(vector<string>::const_iterator itr = myVector.begin(); // Correct!
             itr != myVector.end(); ++itr)
             cout << *itr << endl;
    }

To maintain constness, you cannot use const_iterators in functions like insert or erase that modify 
containers.   You  can,  however,  define  iterator  ranges  using  const_iterators  for  algorithms  like 
binary_search that don't modify the ranges they apply to.

There is one subtle point we have glossed over in this discussion – how does the  vector know that it 
should hand back a const_iterator when marked const and a regular iterator otherwise?  That is, how 
do the vector's begin and end functions hand back objects of two different types based on whether or 
not the  vector is  const?  The answer may surprise you.  Here is a (slightly simplified) version of the 
vector interface which showcases the begin and end functions:

    template <typename T> class vector {
    public:
        iterator begin();
        iterator end();

        const_iterator begin() const;
        const_iterator end() const;

        /* ... etc. ... */
    };

Notice that there are two begin functions – one of which is non-const and returns a regular iterator, 
and one of which is const and returns a const_iterator.  There are similarly two versions end function. 
This is a technique known as  const-overloading and allows a function to have two different behaviors 
based on whether or not an object is const.  When a const-overloaded function is invoked, the version of 
the function is called that matches the constness of the receiver object.  For example, if you call begin() 
on a  const vector,  it  will  invoke the  const version of  begin() and return a  const_iterator.   If 
begin() is invoked on a non-const vector, then the non-const version of begin() will be invoked and 
the function will yield a regular iterator.  We will see some examples of const-overloading in upcoming 
sections.

Limitations of const

Although const is a useful programming construct, certain aspects of const are counterintuitive and can 
lead  to  subtle  violations  of  constness.   One  common  problem  arises  when  using  pointers  in  const 
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member functions.  Suppose you have the following implementation of class  Vector,  which acts like a 
vector<int>:

    class Vector {
    public:
        /* ... other members ...*/
        void constFunction() const;

    private:
        int* elems;
    };

Consider the following legal implementation of constFunction:

    Vector::constFunction() const {
        elems[0] = 137;
    }

Unfortunately, while this code modifies the value of the object pointed to by elems, it is perfectly legal  C++ 
code because it doesn't modify the value of elems – instead, it modifies the value of the elements pointed  
at by elems.  In effect, because the member function is declared const, elems acts as a const pointer (the 
pointer can't change) instead of a pointer-to-const (the pointee can't change).  This raises the issue of the 
distinction between “bitwise constness” and “semantic constness.”  Bitwise constness, which is the type 
enforced  by  C++,  means  that  const objects  are  prohibited  from  making  any  bitwise  changes  to 
themselves.  In the above example, since the value of the elems pointer didn't change, C++ considers the 
constFunction implementation  const-correct.   However,  from the viewpoint  of  semantic  constness, 
const classes should be prohibited from modifying anything that would make the object appear somehow 
different.  With regards to the above scenario with elems, the class isn't semantically const because the 
object, while const, was able to modify its data.

When working with const it's important to remember that while C++ will enforce bitwise constness, you 
must  take  care  to  ensure  that  your  program  is  semantically  const.   From  your  perspective  as  a 
programmer, if you invoke a  const member function on an object, you would expect the receiver to be 
unchanged.  If the function isn't semantically const, however, this won't be the case, and a const member 
function might make significant changes to the object's state.

To  demonstrate  the  difference  between  bitwise  and  semantically  const code,  let's  consider  another 
member function of the Vector class that simply returns the internally stored string:

    int* Vector::rawElems() const {
        return elems;
    }

Initially,  this  code  looks  correct.   Since  returning  theString doesn't  modify  the  receiver  object,  the 
function is bitwise const.  But this code entirely bypasses constness.  Consider, for example, this code:

    void ProcessRawElements(const Vector& v) {
        int* elems = v.rawElems();
        for (size_t i = 1; i < v.size(); ++i) // Problem: Subverts const!
            elems[i – 1] = elems[i];
    }

Here, we use the pointer obtained from  rawElems to indirectly move around the elements of the array. 
Although v is marked const in this example, we somehow have changed its contents.  This entirely defeats 
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the purpose of  const and should convey why maintaining semantic  constness is a crucial part of good 
programming practice.
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The above implementation of  rawElems is fatally flawed and allows clients to subvert the  constness of 
the  receiver  object.   How  can  we  modify  rawElems so  that  the  above  code  no  longer  works?   One 
particularly elegant solution is to modify the signature of  rawElems so that it returns a  const int* 
instead of a raw int*.  For example:

    const int* Vector::rawElems() const {
        return elems;
    }

Because the returned array has been marked  const, clients cannot modify any of the characters in the 
returned  sequence.   As  a  general  rule  of  thumb,  avoid  returning  non-const pointers  from  member 
functions that are marked const.  There are exceptions to this rule, of course, but in most cases  const 
functions should return pointers-to-const.

mutable

Because C++ enforces bitwise  constness rather than semantic  constness, you might find yourself in a 
situation  where  a  member  function  changes  an  object's  bitwise  representation  while  still  being 
semantically const.  At first this might seem unusual – how could we possibly leave the object in the same 
logical  state  if  we  change  its  binary  representation?  –  but  such  situations  can arise  in  practice.   For 
example,  suppose that we want to write a class that represents a grocery list.   The class definition is  
provided here:

    class GroceryList {
    public:
        GroceryList(const string& filename); // Load from a file.

        /* ... other member functions ... */

        string getItemAt(int index) const;

    private:
        vector<string> data;
    };

The GroceryList constructor takes in a filename representing a grocery list (with one element per line),  
then allows us to look up items in the list using the member function getItemAt.  Initially, we might want 
to implement this class as follows:

    GroceryList::GroceryList(const string& filename) {
        /* Read in the entire contents of the file and store in the vector. */
        ifstream input(filename.c_str());
        data.insert(data.begin(), istream_iterator<string>(input),
                                  istream_iterator<string>());
    }

    /* Returns the element at the position specified by index. */
    string GroceryList::getItemAt(int index) const {
        return data[index];
    }

Here, the  GroceryList constructor takes in the name of a file and reads the contents of that file into a 
vector<string> called data.  The getItemAt member function then accepts an index and returns the 
corresponding element from the vector.  While this implementation works correctly, in many cases it is 
needlessly inefficient.   Consider the case where our grocery list is several million lines long (maybe if 
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we're literally trying to find enough food to feed an army), but where we only need to look at the first few 
elements of the list.  With the current implementation of GroceryList, the GroceryList constructor will 
read in the entire grocery list file, an operation which undoubtedly will take a long time to finish and  
dwarfs the small time necessary to retrieve the stored elements.  How can we resolve this problem?

There are several strategies we could use to eliminate this inefficiency.  Perhaps the easiest approach is to 
have the constructor open the file,  and then to only read in data when it's explicitly requested in the 
getItemAt function.   That  way,  we don't  read any data unless it's  absolutely necessary.   Here is one 
possible implementation:

    class GroceryList {
    public:
        GroceryList(const string& filename);
    
        /* ... other member functions ... */
    
        string getItemAt(int index); // Problem: No longer const

    private:
        vector<string> data;
        ifstream sourceStream;
    };

    GroceryList::GroceryList(const string& filename) {
        sourceStream.open(filename.c_str()); // Open the file.
    }

    string GroceryList::getItemAt(int index) {
        /* Read in enough data to satisfy the request.  If we've already read it 
         * in, this loop will not execute and we won't read any data.
         */
        while(index >= data.length()) {
            string line;
            getline(sourceStream, line);
    
            data.push_back(line);
        }
        return data[index];
    }

Unlike our previous implementation, the new  GroceryList constructor opens the file without reading 
any data.  The new getItemAt function is slightly more complicated.  Because we no longer read all the 
data in the constructor, when asked for an element, one of two cases will be true.  First, we might have  
already read in the data for that line, in which case we simply hand back the value stored in the  data 
object.  Second, we may need to read more data from the file.  In this case, we loop reading data until there  
are enough elements in the data vector to satisfy the request, then return the appropriate string.

Although this new implementation is more efficient,* the  getItemAt function can no longer be marked 
const because it  modifies both the  data and sourceStream data members.   If  you'll  notice,  though, 
despite the fact that the getItemAt function is not bitwise const, it is semantically const.  GroceryList 
is supposed to encapsulate an immutable grocery list, and by shifting the file reading from the constructor 
to  getItemAt we have only changed the implementation,  not the guarantee that  getItemAt will  not 
modify the  list.   We've reached an impasse:  the interface  for  GroceryList should not  depend on its 

* The general technique of deferring computations until they are absolutely required is called lazy evaluation and is 
an excellent way to improve program efficiency.
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implementation,  and  so  the  getItemAt function  should  be  marked  const.   However,  we  have  just 
produced a perfectly reasonable implementation of GroceryList that is not bitwise const, meaning that 
the interface needs to change to accommodate the implementation.  Given our two conflicting needs – 
good interface design and good implementation design – how can we strike a balance?

For situations such as these, where a function is semantically const but not bitwise const, C++ provides 
the  mutable keyword.  mutable is an attribute that can be applied to data members that indicates that 
those data members can be modified inside member functions that are marked const.  Using mutable, we 
can rewrite the GroceryList class definition to look like this:

    class GroceryList {
    public:
        GroceryList(const string& filename); // Load from a file.

        /* ... other member functions ... */
    
        string getItemAt(int index) const; // Now marked const

    private:
        /* These data members now mutable. */
        mutable vector<string> data;
        mutable ifstream sourceStream;
    };

Because data and sourceStream are both mutable, the new implementation of getItemAt can now be 
marked const, as shown above.

mutable is a special-purpose keyword that should be used sparingly and with caution.  Mutable data  
members are exempt from the type-checking rules normally applied to const and consequently are prone 
to the same errors as non-const variables.  Also, once data members have been marked  mutable,  any 
member  function  can  modify  them,  so  be  sure  to  double-check  your  code  for  correctness.   Most 
importantly, though, do not use mutable to silence compiler warnings and errors unless you're absolutely 
certain that it's the right thing to do.  If you do, you run the risk of having functions marked const that are 
neither bitwise nor semantically const, entirely defeating the purpose of the const keyword.

const-Correctness

I still sometimes come across programmers who think const isn't worth the trouble. “Aw, const 
is a pain to write everywhere,” I've heard some complain. “If I use it in one place, I have to use it  
all the time. And anyway, other people skip it, and their programs work fine. Some of the libraries  
that I use aren't const-correct either. Is const worth it?”

We could imagine a similar scene, this time at a rifle range: “Aw, this gun's safety is a pain to set  
all the time. And anyway, some other people don't use it either, and some of them haven't shot  
their own feet off...”

Safety-incorrect  riflemen are not  long for  this  world.  Nor  are  const-incorrect  programmers,  
carpenters who don't have time for hard-hats, and electricians who don't have time to identify the  
live wire. There is no excuse for ignoring the safety mechanisms provided with a product, and  
there is particularly no excuse for programmers too lazy to write const-correct code.

– Herb Sutter, author of Exceptional C++ and all-around C++ guru. [Sut98]
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Now that you're familiar with the mechanics of  const, we'll explore how to use const correctly in real-
world C++ code.  In the remainder of this section, we will explore  const-correctness, a system for using 
const to indicate the effects of your functions (or lack thereof).  From this point forward, all of the code in 
this book will be const-correct and you should make a serious effort to const-correct your own code.

What is const-correctness?

At a high-level,  const-correct code is code that clearly indicates which variables and functions cannot 
modify program state.  More concretely,  const-correctness requires that  const be applied consistently 
and pervasively.  In particular, const-correct code tends to use const as follows:

• Objects are never passed by value.  Any object that would be passed by value is instead passed 
by reference-to-const or pointer-to-const.

• Member functions which do not change state are marked const.  Similarly, a function that is 
not marked const should mutate state somehow.

• Variables which are set but never modified are marked const.  Again, a variable not marked 
const should have its value changed at some point.

Let us take some time to explore the ramifications of each of these items individually.

Objects are never passed by value

C++ has three parameter-passing mechanisms – pass-by-value,  pass-by-reference,  and pass-by-pointer. 
The first of these requires C++ to make a full copy of the parameter being passed in, while the latter two  
initialize  the  parameter  by  copying a  pointer  to  the  object  instead of  the  full  object.*  When passing 
primitive types (int,  double,  char*, etc.) as parameters to a function, the cost of a deep copy is usually 
negligible, but passing a heavy object like a string,  vector, or  map can at times be as expensive as the 
body of the function using the copy.  Moreover, when passing objects by value to a function, those objects  
also need to be cleaned up by their destructors once that function returns.  The cost of passing an object 
by value is thus at least the cost of a call to the class's copy constructor (discussed in a later chapter) and a  
call to the destructor, whereas passing that same object by reference or by pointer simply costs a single 
pointer copy.

To avoid incurring the overhead of a full object deep-copy, you should avoid passing objects by value into  
functions and should instead opt to pass either by reference or by pointer.  To be const-correct, moreover, 
you should consider passing the object by reference-to-const or by pointer-to-const if you don't plan on 
mutating the object inside the function.  In fact,  you can treat pass-by-reference-to-const or  pass-by-
pointer-to-const as the smarter, faster way of passing an object by value.  With both pass-by-value and 
pass-by-reference-to-const,  the  caller  is  guaranteed  that  the  object  will  not  change  value  inside  the 
function call.

There is one difference between pass-by-reference-to-const and pass-by-value, though, and that's when 
using pass-by-value the function gets a fresh object that it is free to destructively modify.  When using 
pass-by-reference-to-const, the function cannot mutate the parameter.  At times this might be a bit vexing. 
For  example,  consider  the  ConvertToLowerCase function  we  wrote  in  the  earlier  chapter  on  STL 
algorithms:

* References are commonly implemented behind-the-scenes in a manner similar to pointers, so passing an object  
by reference is at least as efficient as passing an object by pointer.
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    string ConvertToLowerCase(string toConvert) {
        transform(toConvert.begin(), toConvert.end(), 
                  toConvert.begin(),
                  ::tolower);
        return toConvert;
    }

Here, if  we simply change the parameter from being passed-by-value to being passed-by-reference-to-
const, the code won't compile because we modify the toConvert variable.  In situations like these, it is 
sometimes preferable to use pass-by-value, but alternatively we can rewrite the function as follows:

    string ConvertToLowerCase(const string& toConvert) {
        string result = toConvert;
        transform(result.begin(), result.end(), result.begin(), ::tolower);
        return result;
    }

Here, we simply create a new variable called result, initialize it to the parameter toConvert, then 
proceed as in the above function.

Member functions which do not change state are const

If  you'll  recall  from  our  earlier  discussion  of  const member  functions,  when  working  with  const 
instances of a class, C++ only allows you to invoke member functions which are explicitly marked const. 
No matter how innocuous a function is, if it isn't explicitly marked const, you cannot invoke it on a const 
instance of an object.  This means that when designing classes, you should take great care to mark const 
every member function that does not change the state of the object.  Is this a lot of work?  Absolutely! 
Does it pay off?  Of course!

As an extreme example of why you should always mark nonmutating member functions const, suppose 
you try to pass a CS106B/X Vector to a function by reference-to-const.  Since the Vector is marked as 
const, you can only call Vector member functions that themselves are const.  Unfortunately, none of the 
Vector's member functions are  const,  so you can't call  any member functions of a  const Vector.   A 
const CS106B/X Vector is effectively a digital brick.  As fun as bricks are, from a functional standpoint  
they're pretty much useless, so do make sure to constify your member functions.

If you take care to const correct all member functions that don't modify state, then your code will have an 
additional, stronger property: member functions which are  not marked  const are guaranteed to make 
some sort of change to the receiver's internal state.  From an interface perspective this is wonderful – if  
you want to call a particular function that isn't marked const, you can almost guarantee that it's going to 
make some form of modification to the receiver object.  Thus when you're getting accustomed to a new 
code base, you can quickly determine what operations on an object modify that object and which just  
return some sort of internal state.

Variables which are set but never changed are const

Variables vary.  That's why they're called variables.  Constants, on the other hand, do not.  Semantically, 
there  is  a  huge  difference  between  the  sorts  of  operations  you  can  perform  on  constants  and  the 
operations you can perform on variables, and using one where you meant to use the other can cause all  
sorts of debugging headaches.  Using const, we can make explicit the distinction between constant values 
and true variables, which can make debugging and code maintenance much easier.  If a variable is const, 
you cannot inadvertently pass it by reference or by pointer to a function which subtly modifies it, nor can  
you accidentally overwrite it with  = when you meant to check for equality with  ==.   Many years after 
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you've marked a variable const, programmers trying to decipher your code will let out a sigh of relief as 
they realize that they don't need to watch out for subtle operations which overwrite or change its value.

Without getting carried away, you should try to mark as many local variables  const as possible.  The 
additional compile-time safety checks and readability will more than compensate for the extra time you 
spent typing those extra five characters.

Example: CS106B/X Map

As an example of what const-correctness looks like in practice, we'll consider how to take a variant of the 
CS106B/X Map class and modify it so that it is const-correct.  The initial interface looks like this:

    template <typename ValueType> class Map {
    public:
        Map(int sizeHint = 101);
        ~Map();

        int size();
        bool isEmpty();

        void put(string key, ValueType value);
        void remove(string key);
        bool containsKey(string key);

        /* get causes an Error if the key does not exist.  operator[] (the
         * function which is called when you use the map["key"] syntax) creates
         * an element with the specified key if the key does not already exist.
         */
        ValueType get(string key);
        ValueType& operator[](string key);

        void clear();
    
        void mapAll(void fn(string key, ValueType val));

        template <typename ClientDataType>
        void mapAll(void fn(string key, ValueType val, ClientDataType& data),
                    ClientDataType& data);

        Iterator iterator();

    private:
        /* ... Implementation specific ... */
    };

The operator[] function shown here is what's called an overloaded operator and is the function that lets 
us write code to the effect of  myMap["Key"] = value and  value = myMap["Key"].   We will  cover 
overloaded operators in a later chapter, but for now you can think of it simply as a function that is called  
whenever the Map has the element-selection brackets applied to it.

The first set of changes we should make to the Map is to mark all of the public member functions which 
don't modify state const.  This results in the following interface:
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    /* Note: Still more changes to make.  Do not use this code as a reference! */
    template <typename ValueType> class Map {
    public:
        Map(int sizeHint = 101);
        ~Map();
    
        int size() const;
        bool isEmpty() const;
    
        void put(string key, ValueType value);
        void remove(string key);
        bool containsKey(string key) const;
    
        /* get causes an Error if the key does not exist.  operator[] (the
         * function which is called when you use the map["key"] syntax) creates
         * an element with the specified key if the key does not already exist.
         */
        ValueType get(string key) const;
        ValueType& operator[](string key);
    
        void clear();
    
        void mapAll(void fn(string key, ValueType val)) const;
        template <typename ClientDataType>
        void mapAll(void fn(string key, ValueType val, ClientDataType& data),
                    ClientDataType& data) const;
    
        Iterator iterator() const;
    
    private:
        /* ... Implementation specific ... */
    };

The  size,  isEmpty,  and  containsKey functions  are  all  const because  they  simply  query  object 
properties without changing the Map.  get is also const since accessing a key/value pair in the Map does 
not actually modify the underlying state, but operator[] should definitely not be marked const because 
it may update the container if the specified key does not exist.

The trickier functions to  const-correct are  mapAll and  iterator.  Unlike the STL iterators, CS106B/X 
iterators are read-only and can't modify the underlying container.  Handing back an iterator to the  Map 
contents therefore cannot change the Map's contents, so we have marked iterator const.  In addition, 
since  mapAll passes its arguments to the callback function by value,  there is no way for the callback 
function to modify the underlying container.  It should therefore be marked const.

Now that the interface has its member functions const-ified, we should make a second pass over the Map 
and replace all instances of pass-by-value with pass-by-reference-to-const.   In general,  objects should 
never be passed by value and should always be passed either by pointer or reference with the appropriate  
constness.  This eliminates unnecessary copying and can make programs perform asymptotically better. 
The resulting class looks like this:
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    /* Note: Still more changes to make.  Do not use this code as a reference! */
    template <typename ValueType> class Map {
    public:
        Map(int sizeHint = 101);
        ~Map();
    
        int size() const;
        bool isEmpty() const;
    
        void put(const string& key, const ValueType& value);
        void remove(const string& key);
        bool containsKey(const string& key) const;
    
        /* get causes an Error if the key does not exist.  operator[] (the
         * function which is called when you use the map["key"] syntax) creates
         * an element with the specified key if the key does not already exist.
         */
        ValueType get(const string& key) const;
        ValueType& operator[](const string& key);
    
        void clear();
    
        void mapAll(void (fn)(const string& key, const ValueType& val)) const;
        template <typename ClientDataType>
        void mapAll(void (fn)(const string& key, const ValueType& val,
                              ClientDataType& data),
                    ClientDataType &data) const;
    
        Iterator iterator() const;
    
    private:
        /* ... Implementation specific ... */
    };

The parameters to put, remove, containsKey, get, and operator[] have all been updated to use pass-
by-reference-to-const instead  of  pass-by-value.   The  trickier  functions  to  modify  are  the  mapAll 
functions.  These functions themselves accept function pointers which initially took their values by value. 
We have updated them appropriately so that the function pointers accept their arguments by reference-to-
const, since we assume that the class client will also be  const-correct.  Note that we did not mark the 
ClientDataType& parameter to  mapAll const,  since the  Map client may actually want to modify that 
parameter.

There is one last change to make, and it concerns the get function, which currently returns a copy of the 
value associated with a given key.  At a high-level, there is nothing intuitively wrong with returning a copy  
of the stored value,  but from an efficiency standpoint we may end up paying a steep runtime cost by 
returning the object by value.  After all, this requires a full object deep copy, plus a call to the object's  
destructor once the returned object goes out of scope.  Instead, we'll modify the interface such that this  
function returns the object by reference-to-const.  This allows the Map client to look at the value and, if 
they choose, copy it, but prevents clients from intrusively modifying the  Map internals through a  const 
function.  The final, correct interface for Map looks like this:
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    /* const-corrected version of the CS106B/X Map. */
    template <typename ValueType> class Map {
    public:
        Map(int sizeHint = 101);
        ~Map();

        int size() const;
        bool isEmpty() const;

        void put(const string& key, const ValueType& value);
        void remove(const string& key);
        bool containsKey(const string& key) const;

        /* get causes an Error if the key does not exist.  operator[] (the
         * function which is called when you use the map["key"] syntax) creates
         * an element with the specified key if the key does not already exist.
         */
        const ValueType& get(const string& key) const;
        ValueType& operator[](const string& key);
    
        void clear();
    
        void mapAll(void (fn)(const string& key, const ValueType& val)) const;
        template <typename ClientDataType>
        void mapAll(void (fn)(const string& key, const ValueType& val,
                              ClientDataType& data),
                    ClientDataType &data) const;
    
        Iterator iterator() const;
    
    private:
        /* ... Implementation specific ... */
    };

As an interesting intellectual exercise, compare this code to the original version of the Map.  The interface 
declaration is considerably longer than before because of the additional  consts, but ultimately is more 
pleasing.  Someone unfamiliar with the interface can understand, for example, that the  Map's  Iterator 
type  cannot  modify  the  underlying  container  (since  otherwise  the  iterator() function  wouldn't  be 
const), and can also note that mapAll allows only a read-only map operation over the Map.  This makes 
the code more self-documenting, a great boon to programmers responsible for maintaining this code base  
in the long run.

Why be const-correct?

As you can see from the example with the CS106B/X Map, making code const-correct can be tricky and 
time-consuming.  Indeed, typing out all the requisite consts and &s can become tedious after a while.  So 
why should you want to be const-correct in the first place?

There are multiple reasons why code is better off const-correct than non-const-correct.  Here are a few:

• Code correctness.  If nothing else, marking code const whenever possible reduces the possibility 
for lurking bugs in your code.  Because the compiler can check which regions of the code are and 
are not mutable, your code is less likely to contain logic errors stemming either from a misuse of  
an interface or from a buggy implementation of a member function.
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• Code documentation.   const-correct  code  is  self-documenting  and clearly  indicates  to  other 
programmers what it  is  and is not  capable of  doing.   If  you are presented an interface for an  
entirely  foreign class,  you  may still  be  able  to figure  out  which methods are  safe  to  call  with  
important data by noting which member functions are const or accept parameters by reference-
to-const.

• Library integration.  The C++ standard libraries and most third-party libraries are fully  const-
correct and expect that any classes or functions that interface with them to be  const-correct as 
well.  Writing code that is not const-correct can prevent you from fully harnessing the full power 
of some of these libraries.

Optimizing Construction with Member Initializer Lists

We've just concluded a whirlwind tour of  const,  and now it's time to change gears and talk about an 
entirely different aspect of class design: the member initializer list.

Normally,  when  you  create  a  class,  you'll  initialize  all  of  its  data  members  in  the  body  constructor.  
However, in some cases you'll need to initialize instance variables before the constructor begins running. 
Perhaps you'll have a const instance variable that you cannot assign a value, or maybe you have an object 
as an instance variable where you do not want to use the default constructor.  For situations like these,  C+
+  has  a  construct  called  the  member  initializer  list that  you  can  use  to  fine-tune  the  way your  data 
members are set up.  This section discusses initializer list  syntax,  situations where initializer lists are  
appropriate, and some of the subtleties of initializer lists.

How C++ Constructs Objects

To fully understand why initializer lists exist in the first place, you'll need to understand the way that C++ 
creates and initializes new objects.

Let's suppose you have the following class:

    class SimpleClass {
    public:
        SimpleClass();

    private:
        int myInt;
        string myString;
        vector<int> myVector;
    };

Let's define the SimpleClass constructor as follows:

    SimpleClass::SimpleClass() {
        myInt = 5;
        myString = "C++!";
        myVector.resize(10);
    }

What happens when you create a new instance of the class MyClass?  It turns out that the simple line of 
code MyClass mc actually causes a cascade of events that goes on behind the scenes.  Let's take a look at 
what happens, step-by-step.
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The first step in constructing a C++ object is simply to get enough space to hold all of the object's data 
members.   The memory is not  initialized to any particular  value,  so initially all  of  your  object's  data  
members hold garbage values.  In memory, this looks something like this:

As you can see, none of the instance variables have been initialized, so they all contain junk.  At this point,  
C++ calls the default constructor of each instance variable.  For primitive types, this leaves the variables 
unchanged.  After this step, our object looks something like this:

Finally,  C++ will  invoke the object's constructor so you can perform any additional initialization code.  
Using the constructor defined above, the final version of the new object will look like this:

int myInt 137

string myString
Length: 4    
Text: "C++"

vector<int> myVector Size: 10
Elements: {0, 0, ... , 0}

int myInt ???

string myString
Length: 0    
Text: ""

vector<int> myVector Size: 0
Elements: {}             

int myInt ???

string myString
Length: ???  
Text: ???

vector<int> myVector Size: ???
Elements: ???            
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At this point, our object is fully-constructed and ready to use.

However, there's one thing to consider here.  Before we reached the SimpleClass constructor, C++ called 
the default  constructor  on both  myString and  myVector.  myString was therefore  initialized to the 
empty  string,  and  myVector was  constructed  to  hold  no  elements.   However,  in  the  SimpleClass 
constructor,  we  immediately  assigned  myString to  hold  “C++!”  and  resized  myVector to  hold  ten 
elements.   This means that we effectively initialized  myString and  myVector twice –  once with their 
default constructors and once in the SimpleClass constructor.*

To improve efficiency and resolve certain other problems which we'll  explore later,  C++ has a feature 
called an initializer list.  An initializer list is simply a series of values that C++ will use instead of the default  
values to initialize instance variables.  For example, in the above example, you can use an initializer list to  
specify that the variable myString should be set to “C++!” before the constructor even begins running.

To use an initializer list, you add a colon after the constructor and then list which values to initialize which  
variables with.  For example, here's a modified version of the SimpleClass constructor that initializes all 
the instance variables in an initializer list instead of in the constructor:

    SimpleClass::SimpleClass() : myInt(5), myString("C++!"), myVector(10) {
        // Note: Empty constructor
    }

Here, we're telling C++ to initialize the variables myInt and myString to 5 and “C++!,” respectively, before 
the class  constructor is  even called.   Also,  by writing  myVector(10),  we're telling C++ to invoke the 
parametrized constructor of myVector passing in the value 10, which creates a vector with ten elements. 
This time, when we create a new object of type myVector, the creation steps will look like this:

First, as in the previous case, the object is allocated somewhere in memory and all variables have garbage 
values:

Next, C++ invokes all of the constructors for the object's data members using the values specified in the 
initializer list.  The object now looks like this:

* Technically speaking, the objects are only initialized once, but the runtime efficiency is as though the objects were  
initialized  multiple  times.   We'll  talk  about  the  differences  between  initialization  and  assignment  in  a  later  
chapter.

int myInt ???

string myString
Length: ???  
Text: ???

vector<int> myVector Size: ???
Elements: ???            
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Finally, C++ invokes the  MyClass constructor, which does nothing.  The final version of the class thus is  
identical to the above version.

As you can see, the values of the instance variables  myInt,  myString,  and  myVector are correctly set 
before the  SimpleClass constructor is invoked.  This is considerably more efficient than the previous 
version and will run much faster.

Note that while in this example we used initializer lists to initialize all of the object's instance variables, 
there is no requirement that you do so.  However, in practice it's usually a good idea to set up all variables  
in an initializer list to make clear what values you want for each of your data members.

Parameters in Initializer Lists

In the above example, the initializer list we used specified constant values for each of the data members. 
However, it's both legal and useful to initialize data members with expressions instead of literal constants. 
For example, consider the following class, which encapsulates a rational number:

    class RationalNumber
    {
    public:
        RationalNumber(int numerator = 0, int denominator = 1);

        /* ... */
    private:
        int numerator, denominator;
    };

The following is a perfectly legal constructor that initializes the data members to the values specified as 
parameters to the function:

    RationalNumber::RationalNumber(int numerator, int denominator) :
        numerator(numerator), denominator(denominator)
    {
        // Empty constructor
    }

C++ is smart enough to realize that the syntax numerator(numerator) means to initialize the numerator 
data member to the value held by the numerator parameter, rather than causing a compile-time error or 

int myInt 137

string myString
Length: 4    
Text: "C++"

vector<int> myVector Size: 10
Elements: {0, 0, ... , 0}
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initializing the  numerator data member to itself.   Code of  this form might  indicate that  you need to 
rename the parameters to the constructor, but is perfectly legal.

On  an  unrelated  note,  notice  that  in  the  RationalNumber class  declaration  we  specified  that  the 
numerator and denominator parameters to RationalNumber were equal to zero and one, respectively. 
These are default arguments to the constructor and allow us to call the constructor with fewer than two 
parameters.  If we don't specify the parameters, C++ will use these values instead.  For example:

    RationalNumber fiveHalves(5, 2);
    RationalNumber three(3); // Calls constructor with arguments (3, 1)
    RationalNumber zero; // Calls constructor with arguments (0, 1)

You can use default arguments in any function, provided that if a single parameter has a default argument 
every parameter after it also has a default.  Thus the following code is illegal:

    void DoSomething(int x = 5, int y); // Problem: y needs a default

While the following is legal:

    void DoSomething(int x, int y = 5); // Legal

When writing functions that take default arguments, you should only specify the default arguments in the 
function prototype, not the function definition.  If you don't prototype the function, however, you should 
specify the defaults in the definition.  C++ is very strict about this and even if you specify the same defaults 
in both the prototype and definition the compiler will complain.

When Initializer Lists are Mandatory

Initializer lists are useful from an efficiency standpoint.  However, there are times where initializer lists 
are the only syntactically legal way to set up your instance variables.

Suppose  we'd  like  to  make  an  object  called  Counter that  supports  two  functions,  increment and 
decrement, that adjust an internal counter.  However, we'd like to add the restriction that the  Counter 
can't drop below 0 or exceed a user-defined limit.  Thus we'll use a parametrized constructor that accepts  
an int representing the maximum value for the Counter and stores it as an instance variable.  Since the 
value of the upper limit will never change, we'll mark it const so that we can't accidentally modify it in our 
code.  The class definition for Counter thus looks something like this:

    class Counter {
    public:
        Counter(int maxValue);

        void increment();
        void decrement();
        int getValue() const;

    private:
        int value;
        const int maximum;
    };

Then we'd like the constructor to look like this:
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    Counter::Counter(int maxValue) {
        value = 0;
        maximum = maxValue; // Problem: Writing to a const value!
    }

Unfortunately, the above code isn't valid because in the second line we're assigning a value to a variable  
marked const.  Even though we're in the constructor, we still cannot violate the sanctity of constness.  To 
fix this, we'll initialize the value of maximum in the initializer list, so that maximum will be initialized to the 
value of maxValue, rather than assigned the value maxValue.  This is a subtle distinction, so make sure to 
think about it before proceeding.

The correct version of the constructor is thus

    Counter::Counter(int maxValue) : value(0), maximum(maxValue) {
        // Empty constructor
    }

Note that we initialized maximum based on the constructor parameter maxValue.  Interestingly, if we had 
forgotten to initialize maximum in the initializer list, the compiler would have reported an error.  In C++, it 
is mandatory to initialize all const primitive-type instance variables in an initializer list.  Otherwise, you'd 
have constants whose values were total garbage.

Another case where initializer lists are mandatory arises when a class contains objects with no legal or  
meaningful default constructor.  Suppose, for example, that you have an object that stores a CS106B/X Set 
of a custom type customT with comparison callback MyCallback.  Since the Set requires you to specify 
the  callback  function  in  the  constructor,  and  since  you're  always  going  to  use  MyCallback as  that 
parameter, you might think that the syntax looks like this:

    class SetWrapperClass {
    public:
        SetWrapperClass();

    private:
        Set<customT> mySet(MyCallback); // Problem: Need a comparison function
    };

Unfortunately, this isn't legal C++ syntax.  However, you can fix this by rewriting the class as

    class SetWrapperClass {
    public:
        SetWrapperClass();

    private:
        Set<customT> mySet; // Note: no parameters specified
    };

And then initializing mySet in the initializer list as

    SetWrapperClass::SetWrapperClass() : mySet(MyCallback) {
        // Yet another empty constructor!
    }

Now, when the object is created, mySet will have MyCallback passed to its constructor and everything 
will work out correctly.
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Multiple Constructors

If you write a class with multiple constructors (which, after we discuss of copy constructors, will be most  
of your classes), you'll need to make initializer lists for each of your constructors.  That is, an initializer list  
for one constructor won't invoke if a different constructor is called.

Sharing Information With static

Suppose that we're developing a  windowed operating system and want to write the  code that  draws 
windows on the screen.  We decide to create a class Window that exports a drawWindow function.  In order 
to display the window correctly,  drawWindow needs access to a  Palette object that performs primitive 
rendering operations like drawing lines, arcs, and filled polygons.  Assume that we know that the window 
will always be drawn with the same Palette.  Given this description, we might initially design Window so 
that it has a Palette as a data member, as shown here:

    class Window {
    public:
        /* ... constructors, destructors, etc. ...*/

        /* All windows can draw themselves. */
        void drawWindow();
    private:
        /* ... other data members ... */
        Palette pal;
    };

Now, every window has its own palette and can draw itself appropriately. 

There's nothing fundamentally wrong with this setup, but it contains a small flaw.  Let's suppose that we 
have three different window objects.  In memory, those objects would look like this:

Since pal is a data member of Window, every Window has its own Palette.  There might be an arbitrary 
number of windows on screen at any time, but there's only one screen and it doesn't make sense for every 
window to have its own palette.  After all, each window is likely to use a similar set of colors as those used  
by every other window, and it seems more reasonable for every window to share a single palette,  as  
shown here:

Other Window
Data Members

Palette pal

Other Window
Data Members

Other Window
Data Members

Palette pal Palette pal

First 
Instance

Second 
Instance

Third 
Instance
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How can we model this in code?  Using the techniques so far, we have few options.  First, we could create a 
global Palette object, then have each Window use this global Palette.  This is a particularly bad choice 
for two reasons:

• It uses global variables.  Independently of any other strengths and weaknesses of this approach, 
global variables are a big programming no-no.  Globals can be accessed and modified anywhere in  
the program, making debugging difficult should problems arise.  It is also possible to inadvertently 
reference global variables inside of unrelated functions, leading to subtle bugs that can take down 
the entire program.

• It lacks encapsulation.  Because the Palette is a global variable, other parts of the program can 
modify the Window Palette without going through the Window class.  This leads to the same sorts 
of  problems  possible  with  public  data  members:  class  invariants  breaking  unexpectedly,  code 
written with one version of Window breaking when the Window is updated, etc.

Second, we could have each  Window object contain a  pointer to a  Palette object,  then pass a shared 
Palette as a parameter to each instance of Window.  For example, we could design the class like this:

    class Window {
    public:
        Window(Palette* p, /* ... */);
        /* ... other constructors, destructors, etc. ...*/

        /* All windows can draw themselves. */
        void drawWindow();

    private:
        /* ... other data members ... */
        Palette* pal;
    };

This allows us to share a single  Palette across multiple  Windows and looks remarkably like the above 
diagram.  However, this approach has its weaknesses:
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• It complicates Window creation.  Let's think about how we would go about creating Windows with 
this setup.  Before creating our first Window, we'd need to create a Palette to associate with it, as 
shown here:

    Palette* p = new Palette;
    Window*  w = new Window(p, /* ... */);

If later we want to create more Windows, we'd need to keep track of the original Palette we used 
so that we can provide it as a parameter to the Window constructor.  This means that any part of 
the program responsible for Window management needs to know about the shared Palette.

• It  violates  encapsulation.   Clients  of  Window shouldn't  have  to  know  how  Windows  are 
implemented,  and  by  requiring  Window users  to  explicitly  manage  the  shared  Palette we're 
exposing  too  much  detail  about  the  Window class.   This  approach  also  locks  us  in  to  a  fixed 
implementation.  For example, what if we want to switch from Palette to a TurboPalette that 
draws twice as quickly? With the current approach all Window clients would need to upgrade their 
code to match the new implementation.

• It complicates resource management.  Who is responsible for cleaning up the Window Palette 
at the end of the program?  Window clients shouldn't have to, since the Palette really belongs to 
the  Window class.  But no particular  Window owns the  Palette,  since each instance of  Window 
shares a single Palette.  There are systems we could use to make cleanup work correctly (see the  
later  extended  example  on  smart  pointers  for  one  possibility),  but  they  increase  program 
complexity.

Both of these approaches have their individual strengths, but have drawbacks that outweigh their benefits.  
Let's review exactly what we're trying to do.  We'd like to have a single  Palette that's shared across 
multiple different Windows.  Moreover, we'd like this Palette to obey all of the rules normally applicable 
to class design: it should be encapsulated and it should be managed by the class rather than clients.  Using  
the techniques we've covered so far it is difficult to construct a solution with these properties.  For a clean 
solution, we'll need to introduce a new language feature: static data members.

Static Data Members

Static data members are data members associated with a class as a whole rather than a particular instance  
of that class.  In the above example with  Window and Palette, the window Palette is associated with 
Windows in general rather than any one specific Window object and is an ideal candidate for a static data 
member.

In many ways static data members behave similarly to regular data members.  For example, if a class has a  
private static data member, only member functions of the class can access that variable.  However, static 
data members behave differently from other data members because there is only one copy of each static 
data member.  Each instance of a class containing a static data member shares the same version of that  
data  member.   That  is,  if  a  single  class  instance changes  a  static  data  member,  the  change affects  all  
instances of that class.

The syntax for declaring static data members is slightly more complicated than for declaring nonstatic 
data members.  There are two steps: declaration and definition.  For example, if we want to create a static 
Palette object inside of Window, we could declare the variable as shown here:
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    class Window {
    public:
        /* ... constructors, destructors, etc. ...*/

        /* All windows can draw themselves. */
        void drawWindow();

    private:
        /* ... other data members ... */
        static Palette sharedPal;
    };

Here,  sharedPal is  declared  as  a  static  data  member  using  the  static keyword.   But  while  we've 
declared sharedPal as a static data member, we haven't  defined sharedPal yet.  Much in the same way 
that functions are separated into prototypes (declarations) and implementations (definitions), static data 
members have to be both declared inside the class in which they reside and defined inside the .cpp file  
associated with that class.  For the above example, inside the .cpp file for the Window class, we would write

    Palette Window::sharedPal;

There are two important points to note here.  First, when defining the static variable, we must use the 
fully-qualified name (Window::sharedPal) instead of just its local name (sharedPal).  Second, we do 
not repeat the static keyword during the variable declaration – otherwise, the compiler will think we're 
doing something completely different (see the “More to Explore” section).  You may have noticed that even 
though  Window::sharedPal is private we're still allowed to use it outside the class.  This is only legal 
during definition, and outside of this one context it is illegal to use  Window::sharedPal outside of the 
Window class.

In some circumstances you may want to create a class containing a static data member where the data 
member needs to take on an initial value.  For example, if we want to create a class containing an int as a 
static data member, we would probably want to initialize the int to a particular value.  Given the following 
class declaration:

    class MyClass {
    public:
        void doSomething();

    private:
        static int myStaticData;
    };

It is perfectly legal to initialize myStaticData as follows:

    int MyClass::myStaticData = 137;

As you'd expect, this means that myStaticData initially holds the value 137.

Although the syntax for creating a static data member can be intimidating,  once initialized static data 
members look just like regular data members.  For example, consider the following member function:
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    void MyClass::doSomething() {
        ++myStaticData; // Modifies myStaticData for all classes    
    }

Nothing here seems all that out-of-the-ordinary and this code will work just fine.  Note, however, that  
modifications to myStaticData are visible to all other instances of MyClass.

Let's consider another example where static data members can be useful.  Suppose that you're debugging 
the windowing code from before and you're pretty sure that you've forgotten to delete all instances of 
Window that you've allocated with new.  Since C++ won't give you any warnings about this, you'll need to 
do the instance counting yourself.  The number of active instances of a class is class-specific information 
that doesn't pertain to any specific instance of the object, and this is the perfect spot to use static data  
members.  To handle our instance counting, we'll modify the Window definition as follows:

    class Window {
    public:
        /* ... constructors, destructors, etc. ...*/

        void drawWindow();

    private:
        /* ... other data members ... */
        static Palette sharedPal;
        static int numInstances;
    };

We'll also define the variable outside the class as

    int Window::numInstances = 0;

We know that whenever we create a new instance of a class, the class's constructor will be called.  This 
means  that  if  we  increment  numInstances inside  the  Window constructor,  we'll  correctly  track  the 
number of times the a Window has been created.  Thus, we'll rewrite the Window constructor as follows:

    Window::Window(/* ... */) {
        /* ... All older initialization code ... */
        ++numInstances;
    }

Similarly, we'll decrement numInstances in the Window destructor.  We'll also have the destructor print 
out a message if this is the last remaining instance so we can see how many instances are left:

    Window::~Window() {
        /* ... All older cleanup code ... */
        --numInstances;
        if(numInstances == 0)
            cout << "No more Windows!*" << endl;
    }
    
Static Member Functions

Inside  of  member  functions,  a  special  variable  called  this acts  as  a  pointer  to  the  current  object. 
Whenever you access a class's instance variables inside a member function, you're really accessing the 
instance variables of the this pointer.  For example, given the following Point class:

* This is not meant as a slight to Microsoft.
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    class Point {
    public:
        Point(int xLoc, int yLoc);
        int getX() const;
        int getY() const;

    private:
        int x, y;
    };

If we implement the Point constructor as follows:

    Point::Point(int xLoc, int yLoc) {
        x = xLoc;
        y = yLoc;
    }

This code is equivalent to

    Point::Point(int xLoc, int yLoc) {
        this->x = xLoc;
        this->y = yLoc;
    }

How does C++ know what value this refers to?  The answer is subtle but important.  Suppose that we 
have a Point object called pt and that we write the following code:

    int x = pt.getX();

The C++ compiler converts this into code along the lines of

    int x = Point::getX(&pt);

Where Point::getX is prototyped as

    int Point::getX(Point *const this);

This is not legal C++ code, but illustrates what's going on behind the scenes whenever you call a member  
function.

The  mechanism  behind  member  function  calls  should  rarely  be  of  interest  to  you  as  a  programmer. 
However,  the fact that an N-argument member function is really an (N+1)-argument free function can 
cause problems in a few places.  For example, suppose that we want to provide a comparison function for  
Points that looks like this:
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    class Point {
    public:
        Point(int xLoc, int yLoc);
        int getX() const;
        int getY() const;
    
        bool compareTwoPoints(const Point& one, const Point& two) const;

    private:
        int x, y;
    };
    
    bool Point::compareTwoPoints(const Point& one, const Point& two) const {
        if(one.x != two.x)
            return one.x < two.x;
        return one.y < two.y;
    }

If you have a vector<Point> that you'd like to pass to the STL sort algorithm, you'll run into trouble if 
you try to use this syntax:

    sort(myVector.begin(), myVector.end(), &Point::compareTwoPoints); // Problem

The problem is that sort expects a comparison function that takes two parameters and returns a bool. 
However,  Point::compareTwoPoints takes  three parameters: two points to compare and an invisible 
“this” pointer.  Thus the above code will generate an error.

If  you  want  to  define  a  comparison or  predicate  function inside of  a  class,  you'll  want  that  member 
function to not have an  invisible  this.   What does this mean from a practical standpoint?  A member 
function  without  a  this pointer  does  not  have  a  receiver  object,  and  thus  can  only  operate  on  its 
parameters and any static data members of the class it's declared in (since that data is particular to the  
class rather than any particular instance).  Functions of this sort are called static member functions and can 
be created using the  static keyword.  In the above example with  Point,  we could create the  Point 
comparison function as a static member function using the following syntax:

    class Point {
    public:
        Point(int xLoc, int yLoc);

        int getX() const;
        int getY() const;
    
        static bool compareTwoPoints(const Point& one, const Point& two);

    private:
        int x, y;
    };

    bool Point::compareTwoPoints(const Point& one, const Point& two) const
    {
        if(one.x != two.x)
            return one.x < two.x;
        return one.y < two.y;
    }
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Now, the above call to sort will work since compareTwoPoints would no longer have a this pointer.

Unlike static data members, when writing static member functions you do not need to separate the code  
out into a separate declaration and definition.  You may want to do so anyway, though.

Let's return to our earlier example about tracking the number of Window instances currently in use.  While 
it's nice that the destructor prints out a message when the last instance has been cleaned up, we'd prefer a  
more robust model where we can check how many more copies of the class exist.  This function is not  
specific  to  a  particular  class  instance,  so  we'll  make  this  function  static.   We'll  call  this  function 
getRemainingInstances and implement it as shown here:

    class Window {
    public:
        /* ... constructors, destructors, etc. ...*/
        void drawWindow();
    
        static int getRemainingInstances();

    private:
        /* ... other data members ... */
        static Palette sharedPal;
        static int numInstances;
    };

    Palette Window::sharedPal;
    int Window::numInstances = 0;

    int Window::getRemainingInstances()
    {
        return numInstances;
    }

As with static data, note that when defining static member functions, you omit the static keyword.  Only 
put static inside the class declaration.

You can invoke static member functions either using the familiar object.method syntax, or you can use 
the fully qualified name of the function.  For example, with the above example, we could check how many  
remaining instances there were of the MyClass class by calling getRemainingInstances as follows:

    cout << Window::getRemainingInstances() << endl;

const and static

Unfortunately,  the  const and  static keywords do not always interact intuitively.   One of the biggest 
issues to be aware of is that const member functions can modify static data.  For example, consider the 
following class:

    class ConstStaticClass {
    public:
        void constFn() const;

    private:
        static int staticData;
    };

    int ConstStaticClass::staticData = 0;
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Then the following implementation of constFn is completely valid:

    void ConstStaticClass::constFn() const {
        ++staticData;
    }
    
Although the above implementation of  constFn increments a static data member,  the above code will 
compile and run without any problems.  The reason is that the code doesn't modify the receiver object. 
Static data members are not associated with a particular class instance, so modifications to static data 
members do not change the state of any one instance of the class.

Additionally, since static member functions don't have a this pointer, they cannot be declared const. 
In the case of getNumInstances, this means that although the function doesn't modify any class data, we 
still cannot mark it const.

Integral Class Constants

There is one other topic concerning the interaction of  const and  static: class constants.  Suppose we 
want to make a constant variable accessible only in the context of a class.  What we want is a variable  
that's  const,  so it's immutable, and  static,  so that all copies of the class share the data.  It's legal to 
declare these variables like this:

    class ClassConstantExample {
    public:
        /* Omitted. */

    private:
        static const int MyConstant;
    };

    const int ClassConstantExample::MyConstant = 137;

Note the const in the definition of ClassConstantExample::MyConstant.

However, since the double declaration/definition can be a bit tedious, C++ has a built-in shorthand you can 
use when declaring class constants of  integral types.   That is,  if  you have a  static const int or a 
static const char, you can condense the definition and declaration into a single statement by writing;

    class ClassConstantExample {
    public:
        /* Omitted. */

    private:
        static const int MyConstant = 137; // Condense into a single line
    };

This shorthand is common in professional code.  Be careful when using the shorthand, though, because 
some older compilers won't correctly interpret it.  Also, be aware that this only works with integral types, 
so you cannot initialize a static const double or static const float this way.

Integrating Seamlessly with Conversion Constructors

When designing classes, you might find that certain data types can logically be converted into objects of  
the type you're creating.  For example, when writing the aforementioned rational number class, you might  
note that raw ints could have a defined conversion to  RationalNumber objects.  In these situations, it 
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may be useful to define  implicit conversions between the two types.  To define implicit conversions, C++ 
uses conversion constructors, constructors that accept a single parameter and initialize an object to be a 
copy of that parameter.

While useful, conversion constructors have several major idiosyncrasies, especially when C++ interprets  
normal  constructors  as  conversion  constructors.   This  section  explores  implicit  type  conversions,  
conversion  constructors,  and  how  to  prevent  coding  errors  stemming  from  inadvertent  conversion 
constructors.

Implicit Conversions

In C++, an  implicit conversion is a conversion from one type to another that doesn't require an explicit 
typecast.  Perhaps the simplest example is the following conversion from an int to a double:

    double myDouble = 137 + 2.71828;

Here, even though 137 is an int while 2.71828 is a double, C++ will implicitly convert it to a double so 
the operation can proceed smoothly.

When C++ performs implicit conversions, it does not “magically” figure out how to transform one data  
type into another.  Rather, it creates a temporary object of the correct type that's initialized to the value of 
the implicitly converted object.  Thus the above code is functionally equivalent to

    double temp = double(myInt);
    double myDouble = temp + 2.71828;

As seen here, the compiler created a temporary variable of type double, then initialized it by converting 
the integer myInt to a double.  When   C++ performs these conversions, it uses a special function called a 
conversion constructor to initialize the new object.  Conversion constructors are simply class constructors 
that accept a single parameter and initialize the new object to a copy of the parameter.  In the  double 
example, the newly-created double had the same value as the int parameter.

Conversion constructors are surprisingly easy to write, and in fact our RationalNumber class already has 
a conversion constructor.  I've reprinted this class below:

    class RationalNumber
    {
    public:
        RationalNumber(int numerator = 0, int denominator = 1);

        /* ... */
    private:
        int numerator, denominator;
    };

Given just this class, we can write code like the following:

    RationalNumber myNumber = 137;

How is this possible?  137 is an int, not a RationalNumber.  The reason is that C++ interprets this code as 
a call to the RationalNumber constructor, passing in the integer 137.  That is, the code is equivalent to

    RationalNumber myNumber(137);
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Which itself is equivalent to the more verbose

    RationalNumber myNumber(137, 1);

In general, if you define a class that has a constructor that can be called with one argument, C++ will treat  
this constructor as a conversion constructor, and will translate code of the form

    Type variable = value;

Into code of the format

    Type variable(value);

While  conversion constructors are  quite  useful  in a wide number of  circumstances,  the fact  that C++ 
automatically treats all single-parameter constructors as conversion constructors can lead to convoluted 
or nonsensical code.  One of my favorite examples of “conversion-constructors-gone-wrong” comes from 
an older version of the CS106B/X ADT class libraries.  Originally, the CS106B/X Vector was defined as

    template <typename ElemType> class Vector
    {
    public:
        Vector(int sizeHint = 10); // Hint about the size of the Vector

        /* ... */
    };
    
Nothing seems all that out-of-the-ordinary here – we have a Vector template class that lets you give the 
class a hint about the number of elements you will be storing in it.   However, because the constructor 
accepts a single parameter, C++ will interpret it as a conversion constructor and thus will let us implicitly  
convert from ints to Vectors.  This can lead to some very strange behavior.  For example, given the above  
class definition, consider the following code:

    Vector<int> myVector = 137;

This code, while nonsensical, is legal and equivalent to Vector<int> myVector(137).  Fortunately, this 
probably won't cause any problems at runtime – it just doesn't make sense in code.

However, suppose we have the following code:

    void DoSomething(Vector<int>& myVector) {
        myVector = NULL;
    }

This code is totally legal even though it makes no logical sense.  Since NULL is #defined to be 0, The above 
code will create a new Vector<int> initialized with the parameter 0 and then assign it to myVector.  In 
other words, the above code is equivalent to

    void DoSomething(Vector<int>& myVector) {
        Vector<int> tempVector(0);
        myVector = tempVector;
    }
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tempVector is empty when it's created, so when we assign tempVector to myVector, we'll set myVector 
to  the  empty  vector.   Thus  the  nonsensical  line  myVector = 0 is  effectively  an  obfuscated  call  to 
myVector.clear().
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This is a quintessential example of why conversion constructors can be dangerous.  When writing single-
argument  constructors,  you  run  the  risk  of  letting  C++  interpret  your  constructor  as  a  conversion 
constructor.

explicit

To prevent problems like the one described above, C++ provides the explicit keyword to indicate that a 
constructor must not be interpreted as a conversion constructor.  If a constructor is marked explicit, it 
indicates that the constructor should not be considered for the purposes of implicit conversions.   For  
example,  let's  look at the current version of the CS106B/X  Vector,  which has its constructor marked 
explicit:

    template <typename ElemType> class Vector
    {
    public:
        explicit Vector(int sizeHint = 10); // Hint the size of the Vector

        /* ... */
    };

Now, if we write code like

    Vector<int> myVector = 10;

We'll get a compile-time error since there's no implicit conversion from int to Vector<int>.  However, 
we can still write

    Vector<int> myVector(10);

Which is what we were trying to accomplish in the first place.  Similarly, we eliminate the myVector = 0 
error, and a whole host of other nasty problems.

When designing classes, if you have a single-argument constructor that is not intended as a conversion 
function, you must mark it  explicit to avoid running into the “implicit conversion” trap.  While indeed 
this is more work for you as an implementer, it will make your code safer and more stable.

Chapter Summary

• Templates can be used to define a family of abstractions that depend on an arbitrary type.

• The typename keyword is used to declare parameters to a template class.

• A template class's interface and implementation should be put into the .h file  and no .cpp file 
should be created for the class.

• The typename keyword is also used in front of types nested inside of dependent types.

• Marking a variable const prevents its value from being changed after the variable is initialized.

• A const member function cannot modify any of the class's data members.

• const member functions clarify interfaces by indicating which member functions read values and 
which member functions write values.
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• const can have different meanings when applied to pointers based on where the const occurs.

• C++ enforces bitwise constness; it is up to you to ensure that your classes are semantically const.

• The  mutable keyword allows you to write semantically  const functions which are not bitwise 
const.

• Member initializer lists initialize data members to particular values before the constructor begins 
running.

• The  static keyword allows you to indicate that certain data is shared across all instances of a 
class.

• static data members must be declared in the .h file and defined in the .cpp file.

• static member functions are functions associated with a class as a whole, rather than a particular 
instance of a class.

• static member functions are invoked by writing ClassName::functionName().

• Integral class constants can be initialized in the body of the class and do not need to be separately 
defined.

• Conversion constructors allow classes to be initialized to values of a different type.

• The explicit keyword prevents accidental implicit conversions from occurring.

Practice Problems

1. How do you declare a class template?
 

2. How do you implement member functions for a class template?
 

3. Is  there  a  difference  between  the  typename and  class keywords  when  declaring  template 
arguments?
 

4. When is it necessary to preface a type with the typename keyword in a class template?
 

5. The following line of code declares a member function inside a class:

    const char * const MyFunction(const string& input) const;

Explain what each const in this statement means.

6. What is const-overloading?
 

7. What is the difference between semantic constness and bitwise constness?
 

8. What is the difference between a const pointer and a pointer-to-const?
 

9. How are const references different from regular references?
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10. What does the mutable keyword do?
 

11. What are the steps involved in class construction?  In what order do they execute?
 

12. How do you declare an initializer list?
 

13. What is static data and how does it differ from regular member data?
 

14. What are the two steps required to add static data to a class?
 

15. What is a static member function?  How do you call a static member function?
 

16. What is a conversion constructor?
 

17. Explain what the explicit keyword does.

18. The STL map's bracket operator accepts a key and returns a reference to the value associated with  
that key.  If the key is not found, the  map will insert a new key/value pair so that the returned 
reference is valid.  Is this function bitwise const?  Semantically const?

19. When working with pointers to pointers,  const can become considerably trickier to read.  For 
example, a const int * const * const is a const pointer to a const pointer to a const int, 
so  neither  the  pointer,  its  pointee,  or  its  pointee's  pointee  can  be  changed.   What  is  an 
int * const *?  How about an int ** const **? 
 

20. The CS106B/X Vector has the following interface:

          template <typename ElemType> class Vector {
          public:
              Vector(int sizeHint = 0);
        
              int size();
              bool isEmpty();
    
              ElemType getAt(int index);
              void setAt(int index, ElemType value);
        
              ElemType& operator[](int index);
        
              void add(ElemType elem);
              void insertAt(int index, ElemType elem);
              void removeAt(int index);
        
              void clear();
    
              void mapAll(void fn(ElemType elem));
              template <typename ClientDataType>
                  void mapAll(void fn(ElemType elem, ClientDataType & data),
                              ClientDataType & data);
    

        Iterator iterator();
    };
 
Modify this interface so that it is  const-correct.  (Hint: You may need to const-overload some of  
these functions) 
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21. Modify the Snake simulation code from the earlier extended example so that it is const-correct.

22. Explain each of the steps involved in object construction.  Why do they occur in the order they do? 
Why are each of them necessary?
 

23. Why must a function with a single parameter with default value must have default values specified 
for each parameter afterwards? 

24. NASA is currently working on Project Constellation, which aims to resume the lunar landings and 
ultimately to land astronauts on Mars.  The spacecraft under development consists of two parts – 
an orbital module called Orion and a landing vehicle called Altair.  During a lunar mission, the  
Orion vehicle will  orbit  the Moon while the Altair  vehicle descends to the surface.   The Orion 
vehicle is designed such that it does not necessarily have to have an Altair landing module and 
consequently can be used for low Earth orbit missions in addition to lunar journeys.  You have 
been hired to develop the systems software for the spacecraft.  Because software correctness and 
safety are critically important, you want to design the system such that the compiler will alert you  
to as many potential software problems as possible.
 
Suppose that we have two classes, one called OrionModule and one called AltairModule.  Since 
every  Altair  landing  vehicle  is  associated  with  a  single  OrionModule,  you  want  to  define  the 
AltairModule class such that it stores a pointer to its  OrionModule.  The AltairModule class 
should  be  allowed  to  modify  the  OrionModule it  points  to  (since  it  needs  to  be  able  to 
dock/undock and possibly to borrow CPU power for critical landing maneuvers),  but it should 
under no circumstance be allowed to change which OrionModule it's associated with.  Here is a 
skeleton implementation of the AltairModule class:

    class AltairModule 
    public:
        /* Constructor accepts an OrionModule representing the Orion 
         * spacecraft this Altair is associated with, then sets up 
         * parentModule to point to that OrionModule.
         */
        AltairModule(OrionModule* owner);
 
        /* ... */
    private:
        OrionModule* parentModule;
    };
 
Given the above description about what the  AltairModule should be able to do with its owner 
OrionModule,  appropriately  insert  const into  the  definition  of  the  parentModule member 
variable. Then, implement the constructor AltairModule such that the parentModule variable is 
initialized to point to the owner parameter. 

25. Explain why static member functions cannot be marked const.
 

26. Write a class UniquelyIdentified such that each instance of the class has a unique ID number 
determined by taking the ID number of the previous instance and adding one.  The first instance 
should have ID number 1.  Thus the third instance of the class will have ID 3, the ninety-sixth 
instance  96,  etc.  Also  write  a  const-correct  member  function  getUniqueID that  returns  the 
class's unique ID.  Don't worry about reusing older IDs if their objects go out of scope.
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27. The C header file <cstdlib> exports two functions for random number generation – srand, which 
seeds  the  randomizer,  and  rand,  which  generates  a  pseudorandom  int between  0  and  the 
constant  RAND_MAX.   To make the pseudorandom values of  rand appear truly random, you can 
seed the randomizer using the value returned by the time function exported from <ctime>.  The 
syntax is srand((unsigned int)time(NULL)).  Write a class RandomGenerator that exports a 
function  next that  returns  a  random  double in  the  range  [0, 1).   When  created,  the 
RandomGenerator class should seed the randomizer with  srand only if a previous instance of 
RandomGenerator hasn't already seeded it. 
 

28. Does it make sense to initialize static data members in a member initializer list?  Explain why or 
why not.
 

29. Should you ever mark static data members mutable?  Why or why not?

These practice problems concern a RationalNumber class that encapsulates a rational number (that is, a 
number expressible as the quotient of two integers).  RationalNumber is declared as follows:

    class RationalNumber
    {
    public:
        RationalNumber(int num = 0, int denom = 1) :
            numerator(num), denominator(denom) {}
    
        double getValue() const {
            return static_cast<double>(numerator) / denominator;
        }

        void setNumerator(int value) {
            numerator = value;
        }
        void setDenominator(int value) {
            denominator = value;
        }

    private:
        int numerator, denominator;
    };

The constructor to RationalNumber accepts two parameters that have default values.  This means that if 
you omit one or more of the parameters to RationalNumber, they'll be filled in using the defaults.  Thus 
all three of the following lines of code are legal:

    RationalNumber zero; // Value is 0 / 1 = 0
    RationalNumber five(5); // Value is 5 / 1 = 5
    RationalNumber piApprox(355, 113); // Value is 355/113 = 3.1415929203...

30. Explain why the RationalNumber constructor is a conversion constructor.

31. Write a RealNumber class that encapsulates a real number (any number on the number line).  It 
should have a conversion constructor that accepts a double and a default constructor that sets the 
value to zero. (Note: You only need to write one constructor.  Use RationalNumber as an example)

32. Write a conversion constructor that converts RationalNumbers into RealNumbers.
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33. If  a  constructor  has  two  or  more  arguments  and  no  default  values,  can  it  be  a  conversion  
constructor?

34. C++ will apply at most one implicit type conversion at a time.  That is, if you define three types A, B, 
and  C such that  A is implicitly convertible to  B and  B is implicitly convertible to  C, C++ will not 
automatically convert objects of type A to objects of type C.  Give an reason for why this might be. 
(Hint: Add another implicit conversion between these types)
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Consider the following C++ code snippet:

    vector<string> myVector(kNumStrings);
    for(vector<string>::iterator itr = myVector.begin(); 
        itr != myVector.end(); ++itr)
        *itr += "Now longer!";

Here, we create a vector<string> of a certain size, then iterate over it concatenating “Now longer!” to 
each of the strings.  Code like this is ubiquitous in C++, and initially does not appear all that exciting.  
However, let's take a closer look at how this code is structured.  First, let's look at exactly what operations  
we're performing on the iterator:

    vector<string> myVector(kNumStrings);
    for(vector<string>::iterator itr = myVector.begin(); 
        itr != myVector.end(); ++itr)
        *itr += "Now longer!";

In this simple piece of code, we're comparing the iterator against myVector.end() using the != operator, 
incrementing the iterator with the  ++ operator, and dereferencing the iterator with the  * operator.  At a 
high level,  this doesn't  seem all  that out of  the ordinary,  since STL iterators are designed to look like 
regular pointers and these operators are all well-defined on pointers.  But the key thing to notice is that  
STL iterators aren't pointers, they're objects, and !=, *, and ++ aren't normally defined on objects.  We can't 
write  code  like  ++myVector or  *myMap  =  137,  so  why  can  these  operations  be  applied  to 
vector<string>::iterator?

Similarly, notice how we're concatenating the string “Now longer!” onto the end of the string:

    vector<string> myVector(kNumStrings);
    for(vector<string>::iterator itr = myVector.begin(); 
        itr != myVector.end(); ++itr)
        *itr += "Now longer!";

Despite the fact that string is an object, somehow C++ “knows” what it means to apply += to strings.

All  of  the  above examples are  instances  of  operator  overloading,  the  ability  to specify  how operators 
normally  applicable  to  primitive  types  can  interact  with  custom  classes.   Operator  overloading  is 
ubiquitous in professional C++ code and, used correctly,  can make your programs more concise,  more 
readable, and more template-friendly.

There are two overarching purposes of operator overloading.  First, operator overloading enables your 
custom classes to act like primitive types.  That is, if you have a class like vector that mimics a standard 
C++ array,  you can allow clients to use array notation to access individual  elements.   Similarly,  when 
designing a class encapsulating a mathematical entity (for example, a complex number), you can let clients  
apply mathematical  operators like  +,  -,  and  * to your type as though it  were built  into the language. 
Second, operator overloading enables your code to interact correctly with template and library code.  For 
example, you can overload the << operator to make a class compatible with the streams library, or the < 
operator to interface with STL containers.
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This chapter discusses general topics in operator overloading, demonstrating how to overload some of the 
more common operators.   It  also includes tricks and pitfalls to be aware of when overloading certain 
operators.

A Word of Warning

I  would be remiss to discuss operator overloading without first  prefacing it with a warning:  operator  
overloading is a double-edged sword.  When used correctly, operator overloading can lead to intuitive,  
template-friendly  code  that  elegantly  performs  complex  operations  behind  the  scenes.   However, 
incorrectly overloaded operators can lead to incredibly subtle bugs.  Seemingly innocuous code along the  
lines  of  *myItr = 5 can  cause  serious  problems  if  implemented  incorrectly,  and  without  a  solid 
understanding of how to overload operators you may find yourself in serious trouble.

There is a pearl of design wisdom that is particularly applicable to operator overloading:

The Principle of Least Astonishment: A function's name should communicate its behavior and should be 
consistent with other naming conventions and idioms.

The principle of least astonishment should be fairly obvious – you should design functions so that clients  
can understand what those functions do simply by looking at the functions' names; that is, clients of your 
code should not be “astonished” that a function with one name does something entirely different.  For 
example, a function named DoSomething violates the principle of least astonishment because it doesn't 
communicate what it does,  and a function called  ComputePrimes that reads a grocery list from a file 
violates  the  principle  because the name of  the  function is  completely  different  from  the  operation it 
performs.  However, other violations of the principle of least astonishment are not as blatant.  For example, 
a custom container class whose empty member function erases the contents of the container violates the 
principle  of  least  astonishment  because  C++  programmers  expect  empty to  mean  “is  the  container 
empty?” rather than “empty the container.”  Similarly, a class that is bitwise  const but not semantically 
const violates the principle, since programmers assume that objects can't be modified by const member 
functions.

When working with operator overloading, it is crucial to adhere to the principle of least astonishment.  C+
+ lets you redefine almost all of the built-in operators however you choose, meaning that it's possible to  
create code that does something completely different from what C++ programmers might expect.   For 
example, suppose that you are working on a group project and that one of your teammates writes a class 
CustomVector that acts like the STL vector but which performs some additional operations behind the 
scenes.  Your program contains a small bug, so you look over your teammate's code and find the following 
code at one point:

    CustomVector one = /* ... */, two = /* ... */;
    one %= two;

What does the line  one %= two do?  Syntactically, this says “take the remainder when dividing  one by 
two, then store the result back in one.”  But this makes no sense – how can you divide one CustomVector 
by another?  You ask your teammate about this, and he informs you that the %= operator means “remove 
all  elements  from  one that  are  also  in  two.”   This  is  an  egregious  violation  of  the  principle  of  least 
astonishment.  The code neither communicates what it does nor adheres to existing convention, since the 
semantics of the %= operator are meaningless when applied to linear data structures.  This is not to say, of  
course,  that  having the ability  to remove all  elements from one  CustomVector that are  contained in 
another is a bad idea – in fact, it  can be quite useful – but this functionality should be provided by a  
properly-named member function rather than a cryptically-overloaded operator.  For example, consider 
the following code:
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    CustomVector one = /* ... */, two = /* ... */;
    one.removeAllIn(two);

This  code  accomplishes  the  same  task  as  the  above  code,  but  does  so  by  explicitly  indicating  what  
operation is being performed.  This code is much less likely to confuse readers and is far more descriptive 
than before.

As another example, suppose that your teammate also implements a class called CustomString that acts 
like the standard string type, but provides additional functionality.  You write the following code:

    CustomString one = "Hello", two = " World";
    one += two;
    cout << one + "!" << endl;

Intuitively, this should create two strings, then concatenate the second onto the end of the first.  Next, the  
code prints out  one followed by an exclamation point, yielding “Hello World!”  Unfortunately, when you 
compile this code, you get an unusual error message – for some reason the code  one += two compiles 
correctly, but the compiler rejects the code one + "!".  In other words, your teammate has made it legal 
to  concatenate  two strings  using  +=,  but  not  by  using  +.   Again,  think  back  to  the  principle  of  least 
astonishment.  Programmers tacitly expect that objects that can be added with + can be added with += and 
vice-versa, and providing only half of this functionality is likely to confuse code clients.

The moral of this story is simple: when overloading operators,  make sure that you adhere to existing  
conventions.  If you don't, you will end up with code that is either incorrect, confusing, or both.

Hopefully this  grim introduction has not  discouraged you from using operator overloading.   Operator 
overloading is extraordinarily useful and you will not be disappointed with the possibilities that are about 
to open up to you.  With that said, let's begin discussing the mechanics behind this powerful technique.

Defining Overloaded Operators

We introduced operator overloading as a mechanism for redefining how the built-in operators apply to 
custom classes.  Syntactically, how do we communicate to the C++ compiler that we want to redefine these  
operators?  The answer is somewhat odd.  Here's the original motivating example we had at the beginning  
of the chapter:

    vector<string> myVector(kNumStrings);
    for(vector<string>::iterator itr = myVector.begin(); 
        itr != myVector.end(); ++itr)
        *itr += "Now longer!";

When you provide this code to the C++ compiler, it interprets it as follows:

vector<string> myVector(kNumStrings);
for(vector<string>::iterator itr = myVector.begin(); 
    operator!= (itr, myVector.end());
    itr.operator++())
    (itr.operator*()).operator +=("Now longer!");

Notice  that  everywhere  we  used  the  built-in  operator  in  conjunction  with  an  object,  the  compiler 
reinterpreted the operator as a call to a specially-named function called  operator op, where  op is the 
particular  operator  we  used.   Thus  itr != myVector.end() translated  into  operator!= (itr, 
myVector.end()),  ++itr was interpreted as  itr.operator++(),  etc.   Although these functions may 
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have cryptic names, they're just regular functions.  Operator overloading is simply syntax sugar, a way of 
rewriting one operation (in this case, function calls) using a different syntax (here, the built-in operators).  
Overloaded operators are not somehow “more efficient” than other functions simply because the function 
calls aren't explicit, nor are they treated any different from regular functions.  They are special only in that 
they can are invoked using the built-in operators rather than through an explicit function calls.

If you'll notice, some of the operators used above were translated into member function calls (particularly  
++ and  *),  while others (!=)  were translated into calls to free functions.   With a few exceptions,  any 
operator can be overloaded as either a free function or a member function.  Determining whether to use  
free functions or member functions for overloaded operators is a bit tricky, and we'll discuss it more as we 
continue our tour of overloaded operators.

Each of C++'s built-in operators has a certain number of operands.  For example, the plus operator (a + b) 
has two operands corresponding to the values on the left-  and right-hand sides of the operator.   The  
pointer  dereference  operator  (*itr),  on  the  other  hand,  takes  in  only  one  operand:  the  pointer  to 
dereference.  When defining a function that is an overloaded operator, you will need to ensure that your 
function has one parameter for each of the operator's operands.  For example, suppose that we want to 
define a type RationalNumber which encapsulates a rational number (a ratio of two integers).  Because 
it's  mathematically sound to add two rational  numbers,  we might want to consider overloading the  + 
operator as applied to RationalNumber so that we can add RationalNumbers using an intuitive syntax. 
What  would  such  a  function  look  like?   If  we  implement  the  + operator  as  a  member  function  of 
RationalNumber, the syntax would be as follows:

    class RationalNumber {
    public:
        const RationalNumber operator+ (const RationalNumber& rhs) const;

        /* ... etc. ... */
    };

(You might be wondering why the return type is const RationalNumber.  For now, you can ignore that... 
we'll pick this up in the next section)

With operator+ defined this way, then addition of RationalNumbers will be translated into calls to the 
member function operator+ on RationalNumber.  For example, the following code:

    RationalNumber one, two;
    RationalNumber three = one + two;

will be interpreted by the compiler as

    RationalNumber one, two;
    RationalNumber three = one.operator +(two);

Notice that the code one + two was interpreted as one.operator+ (two).  That is, the receiver object of 
the operator+ function is the left-hand operand, while the argument is the right-hand argument.  This is 
not a coincidence, and in fact C++ will guarantee that the relative ordering of the operands is preserved. 
one + two will  never  be  interpreted  as  two.operator+ (one) under  any  circumstance,  and  our 
implementation of operator+ can take this into account.

Alternatively, we could consider implementing operator+ as a free function taking in two arguments.  If 
we chose this approach, then the interface for RationalNumber would be as follows:
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    class RationalNumber {
    public:
         /* ... etc. ... */
    };

    const RationalNumber operator+ (const RationalNumber& lhs,
                                    const RationalNumber& rhs);

In this case, the code 

    RationalNumber one, two;
    RationalNumber three = one + two;

would be interpreted by the compiler as

    RationalNumber one, two;
    RationalNumber three = operator+ (one, two);

Again, the relative ordering of the parameters is guaranteed to be stable, and so you can assume that the 
first parameter to operator+ will always be on the left-hand side of the operator.

In some cases, two operators are syntactically identical but have different meanings.  For example, the - 
operator can refer either to the binary subtraction operator (a - b) or the unary negation operator (-a). 
If overload the - operator, how does the compiler know whether your overloaded operator is the unary or  
binary version of -?  The answer is rather straightforward: if the function operates on two pieces of data,  
the compiler treats operator- as the binary subtraction operator, and if the function uses just one piece 
of data it's considered to be the unary negation operator.  Let's make this discussion a bit more concrete.  
Suppose  that  we  want  to  implement  subtraction  on the  RationalNumber class.   Because  the  binary 
subtraction operator has two operands, we would provide subtraction as an overloaded operator either as 
a free function:

    const RationalNumber operator- (const RationalNumber& lhs,
                                    const RationalNumber& rhs);

or, alternatively, as a member function:

    class  RationalNumber {
    public:
        const RationalNumber operator- (const RationalNumber& rhs) const;

        /* ... etc. ... */
    };

Notice that both of these functions operate on two pieces of data.  In the first case, the function takes in  
two parameters, and in the second, the receiver object is one piece of data and the parameter is the other.  
If  we  now  want  to  provide  an  implementation  of  operator- which  represents  the  unary  negation 
operator, we could implement it as a free function with the following signature:

    const RationalNumber operator- (const RationalNumber& arg);

Or as a member function of this form:
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    class  RationalNumber {
    public:
        const RationalNumber operator- () const;
    
        /* ... etc. ... */
    };

Again, don't worry about why the return type is a const RationalNumber.  We'll address this shortly.

What Operator Overloading Cannot Do

When overloading operators, you cannot define brand-new operators like # or @.  After all, C++ wouldn't 
know the associativity or proper syntax for the operator (is one # two + three interpreted as (one # 
two) + three or  one # (two + three)?)  Additionally,  you cannot overload any of the following 
operators:

Operator Syntax Name

:: MyClass::value Scope resolution
. one.value Member selection
?: a > b ? -1 : 1 Ternary conditional
.* a.*myClassPtr; Pointer-to-member selection (beyond the scope of this text)

sizeof sizeof(MyClass) Size of object
typeid typeid(MyClass) Runtime type information operator
(T)

static_cast
dynamic_cast

reinterpret_cast
const_cast

(int) myClass; Typecast

Note that operator overloading only lets you define what built-in operators mean when applied to objects. 
You cannot use operator overloading to redefine what addition means as applied to  ints, nor can you 
change how pointers are dereferenced.  Then again, by the principle of least astonishment, you wouldn't 
want to do this anyway.

Lvalues and Rvalues

Before we begin exploring some of the implementation issues associated with overloaded operators, we 
need to take a quick detour to explore two concepts from programming language theory called lvalues and 
rvalues.  Lvalues and rvalues stand for “left values” and “right values” are are so-named because of where 
they can appear in an assignment statement.  In particular, an lvalue is a value that can be on the left-hand  
side of an assignment, and an rvalue is a value that can only be on the right-hand side of an assignment.  
For example, in the statement x = 5, x is an lvalue and 5 is an rvalue.  Similarly, in *itr = 137, *itr is 
the lvalue and 137 is the rvalue.

It is illegal to put an rvalue on the left-hand side of an assignment statement.  For example, 137 = 42 is 
illegal  because  137 is  an  rvalue,  and  GetInteger()  =  x is  illegal  because  the  return  value  of 
GetInteger() is an rvalue.  However, it is legal to put an lvalue on the right-hand side of an assignment, 
as in x = y or x = *itr.
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At this point the distinction between lvalues and rvalues seems purely academic.  “Okay,” you might say,  
“some things can be put on the left-hand side of an assignment statement and some things can't.   So  
what?”  When writing overloaded operators, the lvalue/rvalue distinction is extremely important.  Because 
operator overloading lets us define what the built-in operators mean when applied to objects of class type, 
we  have  to  be  very  careful  that  overloaded operators  return  lvalues  and  rvalues  appropriately.   For  
example, by default the + operator returns an rvalue; that is, it makes no sense to write

    (x + y) = 5;

Since this would assign the value 5 to the result of adding x and  y.  However, if we're not careful when 
overloading the + operator, we might accidentally make the above statement legal and pave the way for 
nonsensical but legal code.  Similarly, it is legal to write

    myArray[5] = 137;

So the element-selection operator (the brackets operator) should be sure to return an lvalue instead of an 
rvalue.  Failure to do so will make the above code illegal when applied to custom classes.

Recall that an overloaded operator is a specially-named function invoked when the operator is applied to 
an object of a custom class type.  Thus the code

    (x + y) = 5;

is equivalent to

    operator+ (x, y) = 5;

if either x or y is an object.  Similarly, if myArray is an object, the code

    myArray[5] = 137;

is equivalent to

    myArray.operator[](5) = 137;

To ensure that these functions have the correct semantics, we need to make sure that operator+ returns 
an rvalue and that operator[] returns an lvalue.  How can we enforce this restriction?  The answer has to 
do with the return type of the two functions.  To make a function that returns an lvalue, have that function  
return a non-const reference.  For example, the following function returns an lvalue:

    string& LValueFunction();

Because a reference is just another name for a variable or memory location, this function hands back a  
reference to an lvalue and its return value can be treated as such.  To have a function return an rvalue, have 
that function return a const object by value.  Thus the function

    const string RValueFunction();
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returns an rvalue.*  The reason that this trick works is that if we have a function that returns a  const 
object, then code like

    RValueFunction() = 137;

is illegal because the return value of RValueFunction is marked const.

Lvalues  and rvalues  are  difficult  to  understand  in  the  abstract,  but  as  we begin  to  actually  overload  
particular operators the difference should become clearer.

Overloading the Element Selection Operator

Let's  begin our descent  into the  realm of  operator overloading by discussing the overloaded element 
selection  operator  (the  [ ] operator,  used  to  select  elements  from  arrays).   You've  been  using  the 
overloaded element selection operator ever since you encountered the string and vector classes.  For 
example, the following code uses the vector's overloaded element selection operator:

    for(int i = 0; i < myVector.size(); ++i)
        myVector[i] = 137;

In the above example, while it looks like we're treating the  vector as a primitive array, we are instead 
calling the a function named operator [], passing i as a parameter.  Thus the above code is equivalent to

    for(int i = 0; i < myVector.size(); ++i)
        myVector.operator [](i) = 137;

To write a custom element selection operator,  you write a member function called  operator [] that 
accepts as its parameter the value that goes inside the brackets.  Note that while this parameter can be of  
any type (think of the STL map), you can only have a single value inside the brackets.  This may seem like 
an arbitrary restriction, but makes sense in the context of the principle of least astonishment: you can't  
put multiple values inside the brackets when working with raw C++ arrays, so you shouldn't do so when  
working with custom objects.

When writing  operator [], as with all overloaded operators, you're free to return objects of whatever 
type you'd like.  However, remember that when overloading operators, it's essential to maintain the same  
functionality you'd expect from the naturally-occurring uses of the operator.  In the case of the element  
selection operator, this means that the return value should be an lvalue, and in particular a reference to  
some internal class data determined by the index.  For example, here's one possible prototype of the C++ 
string's element selection operator:

    class string {
    public:
        /* ... */
    
        char& operator [] (size_t position);
    };

* Technically speaking any non-reference value returned from a function is an rvalue.  However, when returning  
objects  from a  function,  the  rvalue/lvalue  distinction  is  blurred because the assignment  operator  and other 
operators are member functions that can be invoked regardless of whether the receiver is an rvalue or lvalue.  The  
additional const closes this loophole.
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Here, operator[] takes in an int representing the index and returns a reference to the character at that 
position in the  string.   If  string is implemented as a wrapper for a raw C string, then one possible 
implementation for operator[] might be

    char& string::operator[] (size_t index) {
        return theString[index]; // Assuming theString is an array of characters
    }

Because operator[] returns a reference to an element, it is common to find operator[] paired with a 
const-overload that returns a  const reference to an element in the case where the receiver object is 
immutable.  There are exceptions to this rule, such as the STL map, but in the case of string we should 
provide a const overload, as shown here:

    class string {
    public:
        /* ... */

              char& operator [] (size_t position);
        const char& operator [] (size_t position) const;
    };

The implementation of the const operator[] function is identical to the non-const version.

When  writing  the  element  selection  operator,  it's  completely  legal  to  modify  the  receiver  object  in 
response to a request.  For example, with the STL map,  operator[] will silently create a new object and 
return a reference to  it  if  the  key isn't  already in the  map.   This  is  part  of  the  beauty of  overloaded 
operators – you're allowed to perform any necessary steps to ensure that the operator makes sense.

Unfortunately, if your class encapsulates a multidimensional object, such as a matrix or hierarchical key-
value system, you cannot “overload the [][] operator.”  A class is only allowed to overload one level of the 
bracket syntax; it's not legal to design objects that doubly-overload [].*

Overloading Compound Assignment Operators

The compound assignment operators are operators of the form op= (for example, += and *=) that update 
an object's value but do not overwrite it.  Compound assignment operators are often declared as member  
functions with the following basic prototype:

    MyClass& operator += (const ParameterType& param)

For example, suppose we have the following class, which represents a vector in three-dimensional space:

    class Vector3D {
    public:
        /* ... */
    private:
        static const int NUM_COORDINATES = 3;
        double coordinates[NUM_COORDINATES];
    };

* There is a technique called proxy objects that can make code along the lines of myObject[x][y] legal.  The trick is 
to define an operator[] function for the class that returns another object that itself overloads operator[].  We'll 
see this trick used in the upcoming chapter on a custom grid class.
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It is legal to add two mathematical vectors to one another; the result is the vector whose components are 
the pairwise sum of each of the components of the source vectors.  If we wanted to define a += operator for 
Vector3D to let us perform this addition, we would modify the interface of Vector3D as follows:

    class Vector3D {
    public:
        /* ... */
        Vector3D& operator+= (const Vector3D& other);

    private:
        static const int NUM_COORDINATES = 3;
        double coordinates[NUM_COORDINATES];
    };

This could then be implemented as

    Vector3D& Vector3D::operator +=(const Vector3D& other) {
        for(int i = 0; i < NUM_COORDINATES; ++i)
           coordinates[i] += other.coordinates[i];
        return *this;
    }

If  you'll  notice,  operator+= returns  *this,  a  reference  to  the  receiver  object.   Recall  that  when 
overloading operators, you should make sure to define your operators such that they work identically to 
the C++ built-in operators.  It turns out that the += operator yields an lvalue, so the code below, though the 
quintessence of abysmal style, is perfectly legal:

    int one, two, three, four;
    (one += two) += (three += four);

Since overloaded operators let custom types act like primitives, the following code should also compile:

    Vector3D one, two, three, four;
    (one += two) += (three += four);

If we expand out the calls to the overloaded += operator, we find that this is equivalent to

    Vector3D one, two, three, four;
    one.operator+=(two).operator +=(three.operator +=(four));

Note that the reference returned by one.operator+=(two) then has its own += operator invoked.  Since 
operator += is not marked const, had the += operator returned a const reference, this code would have 
been illegal.   Make sure  to  have any (compound)  assignment  operator  return  *this as  a  non-const 
reference.

Unlike  the  regular  assignment  operator,  with  the  compound  assignment  operator  it's  commonly 
meaningful  to accept objects  of  different  types as parameters.   For  example,  we might want to make 
expressions like myVector *= 137 for Vector3Ds meaningful as a scaling operation.  In this case, we can 
simply define an operator *= that accepts a double as its parameter.  For example:
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    class Vector3D {
    public:
        /* ... */
        Vector3D& operator += (const Vector3D& other);
        Vector3D& operator *= (double scaleFactor);

    private:
        static const int NUM_COORDINATES = 3;
        double coordinates[NUM_COORDINATES];
    };

Despite the fact that the receiver and parameter have different types, this is perfectly legal C++.  Here's one 
possible implementation:

    Vector3D& Vector3D::operator*= (double scaleFactor) {
        for(int k = 0; k < NUM_COORDINATES; ++k)
            coordinates[k] *= scaleFactor;
        return *this;
    }

Although  we  have  implemented  operator+= and  operator*= for  the  Vector3D class,  C++  will  not 
automatically provide  us  an  implementation  of  operator-= and  operator/=,  despite  the  fact  that  those 
functions can easily be implemented as wrapped calls to the operators we've already implemented.  This might 
seem counterintuitive, but prevents errors from cases where seemingly symmetric operations are undefined.  For 
example, it is legal to multiply a vector and a matrix, though the division is undefined.  For completeness' sake, 
we'll prototype operator-= and operator/= as shown here:

    class Vector3D {
    public:
        /* ... */
        Vector3D& operator += (const Vector3D& other);
        Vector3D& operator -= (const Vector3D& other);

        Vector3D& operator *= (double scaleFactor);
        Vector3D& operator /= (double scaleFactor);

    private:
        static const int NUM_COORDINATES = 3;
        double coordinates[NUM_COORDINATES];
    };

Now, how might we go about implementing these operators?  operator/= is the simplest of the two and can be 
implemented as follows:

    Vector3D& Vector3D::operator /= (double scaleFactor) {
        *this *= 1.0 / scaleFactor;
        return *this;
    }

This  implementation,  though  cryptic,  is  actually  quite  elegant.   The  first  line,  *this  *=  1.0  / 
scaleFactor, says that we should multiply the receiver object (*this) by the reciprocal of  scaleFactor. 
The *= operator is the compound multiplication assignment operator that we wrote above, so this code invokes 
operator*= on the receiver.  In fact, this code is equivalent to
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    Vector3D& Vector3D::operator /= (double scaleFactor) {
        operator*= (1.0 / scaleFactor);
        return *this;
    }

Depending on your taste, you might find this particular syntax more readable than the first version.  Feel free to 
use either version.

Now,  how  would  we  implement  operator-=,  which  performs  a  componentwise  subtraction  of  two 
Vector3Ds?  At a high level, subtracting one vector from another is equal to adding the inverse of the second 
vector to the first, so we might want to write code like this:

    Vector3D& Vector3D::operator -= (const Vector3D& other) {
        *this += -other;
        return *this;
    }

That is, we add -other to the receiver object.  But this code is illegal because we haven't defined the unary 
minus operator as applied to Vector3Ds.  Not to worry – we can overload this operator as well.  The syntax for  
this function is as follows:

    class Vector3D {
    public:
        /* ... */
        Vector3D& operator += (const Vector3D& other);
        Vector3D& operator -= (const Vector3D& other);

        Vector3D& operator *= (double scaleFactor);
        Vector3D& operator /= (double scaleFactor);

        const Vector3D operator- () const;

    private:
        static const int NUM_COORDINATES = 3;
        double coordinates[NUM_COORDINATES];
    };

There are four pieces of information about this function that deserve attention:

• The name of the unary minus function is operator -.

• The function takes no parameters.  This lets C++ know that the function is the unary minus function (I.e. 
-myVector) rather than the binary minus function (myVector – myOtherVector).

• The function returns a const Vector3D.  The unary minus function returns an rvalue rather than an 
lvalue, since code like -x = 137 is illegal.  As mentioned above, this means that the return value of this 
function should be a const Vector3D.

• The function is marked const.  Applying the unary minus to an object doesn't change its value, and to 
enforce this restriction we'll mark operator – const.

One possible implementation of operator- is as follows:
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    const Vector3D Vector3D::operator- () const {
        Vector3D result;
        for(int k = 0; k < NUM_COORDINATES; ++k)
            result.coordinates[k] = -coordinates[k];
        return result;
    }

Note that the return type of this function is const Vector3D while the type of result inside the function is 
Vector3D.  This isn't a problem, since returning an object from a function yields a new temporary object and it's 
legal to initialize a const Vector3D using a Vector3D.

When writing compound assignment operators,  as  when writing regular assignment  operators,  you must  be  
careful that self-assignment works correctly.  In the above example with  Vector3D's compound assignment 
operators we didn't need to worry about this because the code was structured correctly.  However, when working  
with the C++  string's  += operator, since the  string needs to allocate a new buffer capable of holding the 
current  string appended  to  itself,  it  would  need  to  handle  the  self-assignment  case,  either  by explicitly 
checking for self-assignment or through some other means.

Overloading Mathematical Operators

In the previous section, we provided overloaded versions of the += family of operators.  Thus, we can now 
write classes for which expressions of the form one += two are valid.  However, the seemingly equivalent 
expression one = one + two will still not compile, since we haven't provided an implementation of the 
lone + operator.  C++ will not automatically provide implementations of related operators given a single 
overloaded operator, since in some cases this could result in nonsensical or meaningless behavior.

The  built-in  mathematical  operators  yield  rvalues,  so  code  like  (x + y) = 137 will  not  compile. 
Consequently, when overloading the mathematical operators, make sure they return rvalues as well by 
having them return const objects.

Let's consider an implementation of operator + for our Vector3D class.  Because the operator yields an 
rvalue, we're supposed to return a const Vector3D, and based on our knowledge of parameter passing, 
we know that  we should  accept  a  const  Vector3D & as  a  parameter.   There's  one more  bit  we're 
forgetting, though, and that's to mark the operator + function const, since operator + creates a new 
object  and doesn't  modify  either  of  the  values  used in the  arithmetic  statement.   This  results  in  the  
following code

    class Vector3D {
    public:
        /* ... */
        Vector3D& operator += (const Vector3D& other);
        const Vector3D operator+ (const Vector3D& other);

        Vector3D& operator -= (const Vector3D& other);

        Vector3D& operator *= (double scaleFactor);
        Vector3D& operator /= (double scaleFactor);

        const Vector3D operator- () const;

    private:
        static const int NUM_COORDINATES = 3;
        double coordinates[NUM_COORDINATES];
    };
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How are we to implement this function?  We could just do a component-by-component addition, but it's  
actually much easier to just write the function in terms of our operator +=.  The full version of this code 
is shown below:

    const Vector3D Vector3D::operator +(const Vector3D& other) const {
        Vector3d result = *this; // Make a deep copy of this Vector3D.
        result += other;         // Use existing addition code.
        return result;
    }

Now, all of the code for operator + is unified, which helps cut down on coding errors.

There is an interesting and common case we haven't addressed yet – what if one of the operands isn't of  
the same type as the class?  For example, if you have a  Matrix class that encapsulates a 3x3 matrix, as 
shown here:

    class Matrix {
    public:
        /* ... */

        Matrix& operator *= (double scalar); // Scale all entries

    private:
        static const int MATRIX_SIZE = 3;
        double entries[MATRIX_SIZE][MATRIX_SIZE];   
    };

Note that there is a defined *= operator that scales all elements in the matrix by a double factor.  Thus 
code  like  myMatrix *= 2.71828 is  well-defined.   However,  since  there's  no  defined  operator *, 
currently we cannot write myMatrix = myMatrix * 2.71828.

Initially, you might think that we could define  operator * just as we did  operator + in the previous 
example.  While this will work in most cases, it will lead to some problems we'll need to address later.  For 
now, however, let's add the member function operator * to Matrix, which is defined as

    const Matrix Matrix::operator *(double scalar) const {
        MyMatrix result = *this;
        result *= scalar;
        return result;
    }

Now, we can write expressions like myMatrix = myMatrix * 2.71828.  However, what happens if we 
write code like myMatrix = 2.71828 * myMatrix?  This is a semantically meaningful expression, but 
unfortunately it won't compile.  When interpreting overloaded operators, C++ will always preserve the 
order of values in an expression.*  Thus 2.71828 * myMatrix is not the same as myMatrix * 2.71828. 
Remember  that  the  reason  that  myMatrix  *  2.71828 is  legal  is  because  it's  equivalent  to 
myMatrix.operator *(2.71828).  The expression 2.71828 * myMatrix, on the other hand, is illegal 
because C++ will try to expand it into (2.71828).operator *(myMatrix), which makes no sense.

* One major reason for this is that sometimes the arithmetic operators won't be commutative.  For example, given 
matrices  A and B,  AB is not necessarily the same as  BA, and if C++ were to arbitrarily flip parameters it could 
result in some extremely difficult-to-track bugs.
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To fix this, we can make operator * a free function that accepts two parameters, a double and a Matrix, 
and  returns  a  const  Matrix.   Thus  code  like  2.71828  *  myMatrix will  expand  into  calls  to 
operator *(2.71828, myMatrix).  The new version of operator * is defined below:

    const Matrix operator * (double scalar, const Matrix& matrix) {
        Matrix result = *matrix;
        matrix *= scalar;
        return result;
    }

But here we run into the same problem as before if we write  myMatrix * 2.71828,  since we haven't 
defined a function accepting a Matrix as its first parameter and an double as its second.  To fix this, we'll 
define a second free function operator * with the parameters reversed that's implemented as a call to 
the other version:

    const Matrix operator *(const Matrix& matrix, double scalar) {
        return scalar * matrix; // Calls operator* (scalar, matrix)
    }

As a general rule, mathematical operators like  + should always be implemented as free functions.  This 
prevents problems like those described here.

One  important  point  to  notice  about  overloading  the  mathematical  operators  versus  the  compound 
assignment operators is that it's considerably faster to use the compound assignment operators over the 
standalone mathematical operators.  Not only do the compound assignment operators work in-place (that  
is,  they  modify  existing  objects),  but  they  also  return  references  instead  of  full  objects.   From  a 
performance standpoint, this means that given these three strings:

    string one = "This ";
    string two = "is a ";
    string three = "string!";

Consider these two code snippets to concatenate all three strings:

    /* Using += */
    string myString = one;
    myString += two;
    myString += three;

    /* Using + */
    string myString = one + two + three

Oddly,  the  second  version  of  this  code  is  considerably  slower  than  the  first  because  the  + operator 
generates temporary objects.  Remember that one + two + three is equivalent to

    operator +(one, operator +(two, three))

Each call to operator + returns a new string formed by concatenating the parameters, so the code one 
+ two + three creates two temporary string objects.  The first version, on the other hand, generates 
no temporary objects since the += operator works in-place.  Thus while the first version is less sightly, it is 
significantly faster than the second.
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Overloading ++ and --

Overloading the increment and decrement operators can be a bit tricky because there are two versions of 
each operator: prefix and postfix.  Recall that x++ and ++x are different operations – the first will evaluate 
to the value of  x, then increment x, while the second will increment x and then evaluate to the updated 
value of x.  You can see this below:

    int x = 0
    cout << x++ << endl; // Prints: 0
    cout << x << endl;   // Prints: 1

    x = 0;
    cout << ++x << endl; // Prints: 1
    cout << x << endl;   // Prints: 1

Although this  distinction is  subtle,  it's  tremendously  important  for  efficiency reasons.   In  the  postfix  
version of   ++, since we have to return the value of the variable was before it was incremented, we'll need 
to make a full copy of the old version and then return it.  With the prefix  ++, since we're returning the 
current value of the variable, we can simply return a reference to it.  Thus the postfix ++ can be noticeably 
slower than the prefix version; this is the reason that when advancing an STL iterator it's faster to use the  
prefix increment operator.

The next question we need to address is how we can legally use ++ and -- in regular code.  Unfortunately, 
it can get a bit complicated.  For example, the following code is totally legal:

    int x = 0;
    ++++++++++++++x; // Increments x seven times.

This is legal because it's equivalent to

    ++(++(++(++(++(++(++x))))));

The prefix  ++ operator  returns the variable  being incremented as an  lvalue,  so this  statement means 
“increment x, then increment x again, etc.”

However, if we use the postfix version of ++, as seen here:

    x++++++++++++++; // Error

We get a compile-time error because  x++ returns the original value of x as an  rvalue,  which can't  be 
incremented  because that would require putting the rvalue on the left side of an assignment (in particular,  
x = x + 1).

Now, let's actually get into some code.  Unfortunately, we can't just sit down and write operator ++, since 
it's unclear which operator ++ we'd be overloading.  C++ uses a hack to differentiate between the prefix 
and postfix versions of the increment operator: when overloading the prefix version of ++ or --, you write 
operator ++ as a function that takes no parameters.  To overload the postfix version, you'll  overload 
operator ++, but the overloaded operator will accept as a parameter the integer value 0.  In code, these 
two declarations look like
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    class MyClass {
    public:
        /* ... */

        MyClass& operator ++(); // Prefix
        const MyClass operator ++(int dummy); // Postfix

    private:
        /* ... */
    };

Note that the prefix version returns a MyClass& as an lvalue and the postfix version a const MyClass as 
an rvalue.

We're allowed to implement ++ and -- in any way we see fit.  However, one of the more common tricks is 
to write the ++ implementation as a wrapped call to operator +=.  Assuming you've provided this 
function, we can then write the prefix operator ++ as

    MyClass& MyClass::operator ++() {
        *this += 1;
        return *this;
    }

And the postfix operator ++ as

    const MyClass MyClass::operator ++(int dummy) {
        MyClass oldValue = *this; // Store the current value of the object.
        ++*this;
        return oldValue;
    }

Notice that the postfix  operator++ is implemented in terms of the prefix  operator++.  This is a fairly 
standard technique and cuts down on the amount of code that you will need to write for the functions.

In your future C++ career, you may encounter versions of operator++ that look like this:

    const MyClass MyClass::operator ++(int) {
        MyClass oldValue = *this; // Store the current value of the object.
        ++*this;
        return oldValue;
    }

Although this function takes in an int parameter, that parameter does not have a name.  It turns out that it 
is  perfectly  legal  C++ code to write functions that accept parameters but do not  give names to those  
parameters.  In this case, the function acts just like a regular function that accepts a parameter, except that 
the parameter cannot be used inside of the function.  In the case of operator++, this helps give a cue to 
readers that  the  integer  parameter  is  not  meaningful  and exists  solely to differentiate  the  prefix  and 
postfix versions of the function.

Overloading Relational Operators

Perhaps the most commonly overloaded operators (other than operator =) are the relational operators; 
for  example, < and  ==.   Unlike  the  assignment  operator,  by  default  C++  does  not  provide  relational 
operators for your objects.  This means that you must explicitly overload the == and related operators to 
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use them in code.  The prototype for the relational operators looks like this (written for <, but can be for 
any of the relational operators):

    class MyClass {
    public:
        /* ... */
        bool operator < (const MyClass& other) const;

    private:
        /* ... */
    };

You're  free  to choose any means for defining what it  means for  one object to be “less  than” another. 
However, when doing so, you must take great care to ensure that your less-than operator defines a total  
ordering on objects of your type.  This means that the following must be true about the behavior of the 
less-than operator:

• Trichotomy: For any a and b, exactly one of a < b, a = b, and b < a is true.
• Transitivity: If a < b and b < c, then a < c.

These properties of < are important because they allow the notion of sorted order to make sense.  If either 
of these conditions does not hold, then it is possible to encounter strange situations in which a collection  
of elements cannot be put into ascending order.  For example, suppose that we have the following class,  
which represents a point in two-dimensional space:

    class Point {
    public:
        Point(double x, double y);

        double getX() const;
        void setX(double value);

        double getY() const;
        void setY(double value);
    }

Now consider the following implementation of a less-than operator for comparing Points:

    bool operator< (const Point& one, const Point& two) {
        return one.getX() < two.getX() && one.getY() < two.getY();
    }

Intuitively, this may seem like a reasonable definition of the < operator: point a is less than point b if both 
coordinates of  a are less than the corresponding coordinates of  b.  However, this implementation of < is 
bound to cause problems.  In particular, consider the following code:

    Point one(1, 0), two(0, 1);
    cout << (one < two) << endl;
    cout << (two < one) << endl;

Here, we create two points called one and two and compare them using the < operator.  What will the first 
line print?  Using the above definition of  operator<, the comparison  one < two will evaluate to false 
because the x coordinate of one is greater than the x coordinate of two.  But what about two < one?  In 
this case, two's x coordinate is less than one's, but its y coordinate is greater than one's.  Consequently, we 
have that two < one also evaluates to false.  We have reached a precarious situation.  We have found two 
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values,  one and two, such that one and two do not have equal values, but neither is less than the other. 
This means that we could not possibly sort a list of elements containing both one and two, since neither 
one precedes the other.

The problem with the above implementation of operator< is that it violates trichotomy.  Recall from the 
above definition of a total ordering that trichotomy means that exactly one of a < b, a = b, a > b must hold 
for  any  a and  b.   Our  definition  of  operator< does  not  have  this  property,  as  illustrated  above. 
Consequently,  we  have  a  legal  implementation  of  operator< that  is  wholly  incorrect.   We'll  need to 
redefine how operator< works in order to ensure that trichotomy holds.

One common strategy for implementing operator< is to use what's called a lexicographical ordering.  To 
illustrate a lexicographically ordering,  consider the words  about and  above  and think about how you 
would compare them alphabetically.  You'd begin by noting that the first letter of each word was the same, 
as was the second and the third.  However, the fourth letter of the words disagree, and in particular the 
letter  u from  about precedes the letter  v from  above.   Consequently, we would say that  about comes 
lexicographically before above.  Interestingly, though, the last letter of about (t) comes after the last letter 
of above (e).  We don't care, though, because we stopped comparing letters as soon as we found the first  
mismatch in the words.

This strategy has an elegant analog for arbitrary types.  Given a type, one way to implement operator< is 
as follows.  Given two objects a and b of that type, check whether the first field of a and b are not the same. 
If so, say that a is smaller if its first field is smaller than b's first field.  Otherwise, look at the second field. 
If the fields are not the same, then return a if a's second field is smaller than b's and b otherwise.  If not, 
then look at the third field, etc.  To give you a concrete example of how this works, consider the following  
revision to the Point's operator< function:

    bool operator< (const Point& one, const Point& two) {
        if (one.getX() != two.getX()) return one.getX() < two.getX();
        return one.getY() < two.getY();
    }

Here, we first check whether the points disagree in their x coordinate.  If so, we say that one is less than 
two only  if  it  has  a  smaller  x coordinate.   Otherwise,  if  the  points  agree  in  their  x coordinate,  then 
whichever has the lower y coordinate is said to have the smaller value.  Amazingly, this implementation 
strategy results in an ordering that is both trichotic and transitive, exactly the properties we want out of 
the < operator.

Of course, this strategy works on classes that have more than two fields, provided that you compare each  
field one at a time.  It is an interesting exercise to convince yourself that a lexicographical ordering on any  
type obeys trichotomy, and that such an ordering obeys transitivity as well.

Once you have a working implementation of  operator<, it is possible to define all five other relational 
operators solely in terms of the operator<.  This is due to the following set of relations:

A < B ⇔ A < B

A <= B ⇔ !(B < A)

A == B ⇔ !(A < B || B < A)

A != B ⇔ A < B || B < A

A >= B ⇔ !(A < B)

A > B ⇔ B < A
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For example, we could implement operator> for the Point class as

    bool operator> (const Point& one, const Point& two) {
        return two < one;
    }

We could similarly implement operator<= for Points as

    bool operator<= (const Point& one, const Point& two) {
        return !(one < two);
    }

This is a fairly standard technique, and it's well worth the effort to remember it.

Storing Objects in STL maps

Up to this point we've avoided storing objects as keys in STL  maps.  Now that we've covered operator 
overloading,  though,  you  have  the  necessary  knowledge  to  store  objects  in  the  STL  map and  set 
containers.

Internally, the STL map and set are layered on binary trees that use the relational operators to compare 
elements.  Due to some clever design decisions, STL containers and algorithms only require the < operator 
to compare two objects.  Thus, to store a custom class inside a map or set, you simply need to overload the 
< operator and the STL will handle the rest.  For example, here's some code to store a Point struct in a 
map:

    struct pointT {
        int x, y;

        bool operator < (const pointT& other) const {
            if(x != other.x)
                return x < other.x;
            return y < other.y;
        }
    };
    map<pointT, int> myMap; // Now works using the default < operator.

You can use a similar trick to store objects as values in a set.

friend

Normally, when you mark a class's data members private, only instances of that class are allowed to access 
them.  However,  in some cases you might want to allow specific  other classes or functions to modify  
private data.  For example, if you were implementing the STL map and wanted to provide an iterator class 
to traverse it, you'd want that iterator to have access to the map's underlying binary tree.  There's a slight 
problem here, though.  Although the iterator is an integral component of the map, like all other classes, the 
iterator cannot access private data and thus cannot traverse the tree.

How are we to resolve this problem?  Your initial thought might be to make some public accessor methods 
that would let the iterator modify the object's internal data representation.  Unfortunately, this won't work 
particularly well, since then any class would be allowed to use those functions, something that violates the 
principle of encapsulation.  Instead, to solve this problem, we can use the C++ friend keyword to grant 
the  iterator  class  access  to the  map or  set's  internals.   Inside the  map declaration,  we can write  the 
following:
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    template <typename KeyType, typename ValueType> class map {
    public:
        /* ... */

        friend class iterator;
        class iterator {
            /* ... iterator implementation here ... */
        };
    };

Now, since iterator is a friend of map, it can read and modify the map's private data members.

Just as we can grant other classes friend access to a class, we can give friend access to global functions. 
For example, if we had a free function  ModifyMyClass that accepted a  MyClass object as a reference 
parameter,  we  could  let  ModifyMyClass modify  the  internal  data  of  MyClass if  inside  the  MyClass 
declaration we added the line

    class MyClass {
    public:
        /* ... */
        friend void ModifyMyClass(MyClass& param);

    };

The syntax for  friend can be misleading.   Even though we're prototyping  ModifyMyClass inside the 
MyClass function,  because  ModifyMyClass is  a  friend of  MyClass it  is  not a  member  function  of 
MyClass.  After all, the purpose of the friend declaration is to give outside classes and functions access to 
the MyClass internals.

When using friend, there are two key points to be aware of.  First, the friend declaration must precede 
the actual implementation of the friend class or function.  Since C++ compilers only make a single pass 
over the source file, if they haven't seen a friend declaration for a function or class, when the function or 
class tries to modify your object's internals, the compiler will generate an error.  Second, note that while 
friend is quite useful in some circumstances, it can quickly lead to code that entirely defeats the purpose 
of encapsulation.   Before you grant  friend access to a piece of code,  make sure that  the code has a 
legitimate reason to be modifying your object.   That is,  don't make code a  friend simply because it's 
easier to write that way.  Think of friend as a way of extending a class definition to include other pieces of 
code.  The class, together with all its friend code, should comprise a logical unit of encapsulation.

When overloading an operator as a free function, you might want to consider giving that function friend 
access to your class.  That way, the functions can efficiently read your object's private data without having 
to go through getters and setters.

Unfortunately, friend does not interact particularly intuitively with template classes.  Suppose we want to 
provide  a  friend function  PQueueFriend for  a  template  version  of  the  CS106B/X  PQueue.   If 
PQueueFriend is declared like this:

    template <typename T> void PQueueFriend(const PQueue<T>& pq) {
       /* ... */
    }
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You'll  notice  that  PQueueFriend itself  is  a  template  function.   This  means  that  when  declaring 
PQueueFriend a friend of the template PQueue, we'll need to make the friend declaration templatized, 
as shown here:
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    template <typename T> class PQueue {
    public:
        /* ... */
        template <typename T> friend PQueueFriend(const PQueue<T>& pq);
    };

If you forget the  template declaration, then your code will compile correctly but will generate a linker 
error.   While this can be a bit of nuisance,  it's important to remember since it arises frequently when 
overloading the stream operators, as you'll see below.

Overloading the Stream Insertion Operator

Have you ever wondered why cout << "Hello, world!" << endl is syntactically legal?  It's through 
the overloaded  << operator in conjunction with  ostreams.*  In fact,  the entire streams library can be 
thought of as a gigantic library of massively overloaded << and >> operators.

The C++ streams library is designed to give you maximum flexibility with your input and output routines 
and even lets you define your own stream insertion and extraction operators.  This means that you are 
allowed to define the << and >> operators so that expressions like cout << myClass << endl and cin 
>> myClass are well-defined.  However, when writing stream insertion and extraction operators, there 
are huge number of considerations to keep in mind, many of which are beyond the scope of this text.  This  
next section will discuss basic strategies for overloading the << operator, along with some limitations of 
the simple approach.

As with all overloaded operators, we need to consider what the parameters and return type should be for  
our overloaded << operator.  Before considering parameters, let's think of the return type.  We know that it  
should be legal to chain stream insertions together – that is, code like cout << 1 << 2 << endl should 
compile correctly.  The << operator associates to the left, so the above code is equal to

    (((cout << 1) << 2) << endl);

Thus, we need the << operator to return an ostream.  Now, we don't want this stream to be const, since 
then we couldn't write code like this:

    cout << "This is a string!" << setw(10) << endl;

Since if cout << "This is a string!" evaluated to a const object, we couldn't set the width of the 
next operation to 10.  Also, we cannot return the stream by value, since stream classes have their copy 
functions marked private.  Putting these two things together, we see that the stream operators should  
return a non-const reference to whatever stream they're referencing.

Now let's consider what parameters we need.  We need to know what stream we want to write to or read  
from, so initially you might think that we'd define overloaded stream operators as member functions that 
look like this:

    class MyClass {
    public:
       ostream& operator << (ostream& input) const; // Problem: Legal but incorrect
    };

* As a reminder, the ostream class is the base class for output streams.  This has to do with inheritance, which we'll  
cover  in  a  later  chapter,  but  for  now just  realize  that  it  means  that  both  stringstream and  ofstream are 
specializations of the more generic ostream class.
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Unfortunately, this isn't correct.  Consider the following two code snippets:

    cout << myClass;
    myClass << cout;

The first of these two versions makes sense, while the second is backwards.  Unfortunately, with the above  
definition of operator <<, we've accidentally made the second version syntactically legal.  The reason is  
that these two lines expand into calls to

    cout.operator <<(myClass);
    myClass.operator <<(cout);

The first of these two isn't defined, since  cout doesn't have a member function capable of writing our 
object (if it did, we wouldn't need to write a stream operator in the first place!).  However, based on our 
previous definition, the second version, while semantically incorrect, is syntactically legal.  Somehow we 
need to change how we define the stream operator so that we are allowed to write cout << myClass.  To 
fix  this,  we'll  make  the  overloaded  stream  operator  a  free  function  that  takes  two  parameters  –  an  
ostream to write to and a myClass object to write.  The code for this is:

    ostream& operator << (ostream& stream, const MyClass& mc) {
        /* ... implementation ... */
        return stream;
    }

While this code will work correctly, because operator << is a free function, it doesn't have access to any 
of the private data members of  MyClass.   This can be a nuisance, since we'd like to directly write the 
contents of MyClass out to the stream without having to go through the (possibly inefficient) getters and 
setters.  Thus, we'll declare operator << a friend inside the MyClass declaration, as shown here:

    class MyClass {
    public:
        /* More functions. */
        friend ostream& operator <<(ostream& stream, const MyClass& mc);

    };

Now, we're all set to do reading and writing inside the body of the insertion operator.  It's not particularly 
difficult to write the stream insertion operator – all that we need to do is print out all of the meaningful  
class information with some formatting information.  So, for example, given a Point class representing a 
point in 2-D space, we could write the insertion operator as

    ostream& operator <<(ostream& stream, const Point& pt) {
        stream << '(' << pt.x << ", " << pt.y << ')';
        return stream;
    }

While this code will work in most cases, there are a few spots where it just won't work correctly.  For 
example, suppose we write the following code:

    cout << "01234567890123456789" << endl; // To see the number of characters.
    cout << setw(20) << myPoint << endl;

Looking at this code, you'd expect that it would cause myPoint to be printed out and padded with space 
characters  until  it  is  at  least  twenty  characters  wide.   Unfortunately,  this  isn't  what  happens.   Since  
operator << writes the object one piece at a time, the output will look something like this:



- 318 -  Chapter 10: Operator Overloading

    01234567890123456789
                       (0, 4)

That's nineteen spaces, followed by the actual Point data.  The problem is that when we invoke operator 
<<, the function writes a single ( character to stream.  It's this operation, not the Point as a whole, that 
will  get aligned to 20 characters.   There are many ways to circumvent this problem, but  perhaps the 
simplest is to buffer the output into a stringstream and then write the contents of the stringstream to 
the destination in a single operation.  This can get a bit complicated, especially since you'll need to copy 
the stream formatting information over.

Writing a correct stream extraction operator (operator >>) is complicated.  For more information on 
writing stream extraction operators, consult a reference.

Overloading * and ->

Consider the following code snippet:

    for(set<string>::iterator itr = mySet.begin(); itr != mySet.end(); ++itr)
        cout << *itr << " has length " << itr->length() << endl;

Here, we traverse a  set<string> using iterators, printing out each string and its length.  Interestingly, 
even though set iterators are not raw pointers (they're objects capable of traversing binary trees), thanks 
to operator overloading, they can respond to the  * and  -> operators as though they were regular C++ 
pointers.

If you create a custom class that acts like a C++ pointer (perhaps a custom iterator or “smart pointer,” a  
topic  we'll  return to later),  you can provide implementations of the pointer dereference and member 
selection operators * and -> by overloading their respective operator functions.  The simpler of these two 
functions is the pointer dereference operator.  To make an object that can be dereferenced to yield an  
object of type T, the syntax for its * operator is

    class PointerClass {
    public:
        T& operator *() const;
        /* ... */
    };

You can invoke the operator * function by “dereferencing” the custom pointer object.  For example, the 
following code:

    *myCustomPointer = 137;

is completely equivalent to

    myCustomPointer.operator *() = 137;

Because we can assign a value to the result of  operator *, the  operator * function should return an 
lvalue (a non-const reference).

There are two other points worth noting here.  First, how can C++ distinguish this operator * for pointer 
dereference from the  operator * used for multiplication?  The answer has to do with the number of 
parameters to the function.  Since a pointer dereference is a unary operator, the function prototype for the 
pointer-dereferencing  operator * takes  no  parameters.   Had  we  wanted  to  write  operator * for 
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multiplication, we would have written a function operator * that accepts a parameter (or a free function 
accepting  two  parameters).   Second,  why  is  operator * marked  const?   This  has  to  do  with  the 
difference between const pointers and pointers-to-const.  Suppose that we have a const instance of a 
custom pointer class.  Since the pointer object is const, it acts as though it is a const pointer rather than a 
pointer-to-const.  Consequently, we should be able to dereference the object and modify its stored pointer 
without affecting its constness.

The arrow operator  operator -> is slightly more complicated than  operator *.   Initially, you might 
think that operator -> would be a binary operator, since you use the arrow operator in statements like 
myClassPtr->myElement.  However, C++ has a rather clever mechanism for operator -> that makes it a 
unary operator.   A class's  operator -> function should return a pointer to the object that the arrow 
operator should actually be applied to.  This may be a bit confusing, so an example is in order.  Suppose we  
have a class CustomStringPointer that acts as though it's a pointer to a C++ string object.  Then if we 
have the following code:

    CustomStringPointer myCustomPointer;
    cout << myCustomPointer->length() << endl;

This code is equivalent to

    CustomStringPointer myCustomPointer;
    cout << (myCustomPointer.operator ->())->length() << endl;

In the first version of the code, we treated the myCustomPointer object as though it was a real pointer by 
using the arrow operator to select the length function.  This code expands out into two smaller steps:

1. The  CustomStringPointer's  operator -> function is called to determine which pointer the 
arrow should be applied to.

2. The returned pointer then has the -> operator applied to select the length function.

Thus when writing the  operator -> function,  you simply need to return the pointer that the arrow 
operator should be applied to.  If you're writing a custom iterator class, for example, this is probably the 
element being iterator over.

We'll explore one example of overloading these operators in a later chapter.

List of Overloadable Operators

The following table lists the most commonly-used operators you're legally allowed to overload in C++, 
along with any restrictions about how you should define the operator.

Operator Yields Usage

= Lvalue MyClass& operator =(const MyClass& other);

See the the earlier chapter for details.

+= -= *=
/= %=

(etc.)

Lvalue MyClass& operator +=(const MyClass& other);

When  writing  compound  assignment  operators,  make  sure  that  you  correctly 
handle “self-compound-assignment.”
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+ - * / %

(etc.)

Rvalue const MyClass operator + (const MyClass& one,
                          const MyClass& two);

These operator should be defined as a free functions.

< <= ==
> >= !=

Rvalue bool operator < (const MyClass& other) const;
bool operator < (const MyClass& one,
                 const MyClass& two);

If you're planning to use relational operators only for the STL container classes, 
you just need to overload the < operator.  Otherwise, you should overload all six so 
that users aren't surprised that  one != two is illegal while  !(one == two) is 
defined.

[] Lvalue       ElemType& operator [](const KeyType& key);
const ElemType& operator [](const KeyType& key) const;

Most of the time you'll need a const-overloaded version of the bracket operator. 
Forgetting to provide one can lead to a real headache!

++ -- Prefix: Lvalue
Postfix: Rvalue

Prefix version: MyClass& operator ++();
Postfix version: const MyClass operator ++(int dummy);

- Rvalue const MyClass operator -() const;

* Lvalue ElemType& operator *() const;

With this function, you're allowing your class to act as though it's a pointer.  The 
return type should be a reference to the object it's “pointing” at.  This is how the  
STL iterators and smart pointers work.  Note that this is the unary * operator and 
is not the same as the * multiplicative operator.

-> Lvalue ElemType* operator ->() const;

If the -> is overloaded for a class, whenever you write  myClass->myMember, it's 
equivalent  to  myClass.operator ->()->myMember.   Note  that  the  function 
should be const even though the object returned can still modify data.  This has to 
do with how pointers can legally be used in C++.  For more information, refer to 
the chapter on const.

<< >> Lvalue friend ostream& operator << (ostream& out,
                             const MyClass& mc);
friend istream& operator >> (istream& in,
                             MyClass& mc);

() Varies See the chapter on functors.

Extended Example: grid

The STL encompasses a wide selection of associative and sequence containers.  However, one useful data type 
that did not find its way into the STL is a multidimensional array class akin to the CS106B/X Grid.  In this 
extended example, we will implement an STL-friendly version of the CS106B/X Grid class, which we'll call 
grid,  that  will  support  STL-compatible  iterators,  intuitive  element-access  syntax,  and  relational  operators. 
Once we're done, we'll have an industrial-strength container class we will use later in this book to implement  
more complex examples.

Implementing a fully-functional grid may seem daunting at first, but fortunately it's easy to break the 
work up into several smaller steps that culminate in a working class.
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Step 0: Implement the Basic grid Class.

Before diving into some of the  grid's  more advanced features,  we'll  begin by implementing the  grid 
basics.  Below is a partial specification of the grid class that provides core functionality:

Figure 0: Basic (incomplete) interface for the grid class
template <typename T> class grid {
public:
    /* Constructors, destructors. */
    grid();                               // Create empty grid
    grid(size_t rows, size_t cols);       // Construct to specified size

    /* Resizing operations. */
    void clear();                          // Empty the grid
    void resize(size_t rows, size_t cols); // Resize the grid

    /* Query operations. */    
    size_t numRows() const;              // Returns number of rows in the grid
    size_t numCols() const;              // Returns number of columns in the grid
    bool empty() const;                  // Returns whether the grid is empty
    size_t size() const;                 // Returns the number of elements

    /* Element access. */
          T& getAt(size_t row, int col);    // Access individual elements
    const T& getAt(int row, int col) const; // Same, but const
};

These functions are defined in greater detail here:

grid(); Constructs a new, empty grid.

grid(size_t rows, size_t cols); Constructs a new  grid with the specified number 
of rows and columns.  Each element in the grid is 
initialized to its default value.

void clear(); Resizes the grid to 0x0.

void resize(size_t rows, size_t cols); Discards  the  current  contents  of  the  grid and 
resizes the grid to the specified size.  Each element 
in the grid is initialized to its default value.

size_t numRows() const;
size_t numCols() const;

Returns  the  number  of  rows and columns in  the 
grid.

bool empty() const; Returns  whether  the  grid contains  no  elements. 
This is true if either the number of rows or columns 
is zero.

size_t size() const; Returns the number of total elements in the grid.

      T& getAt(size_t row, size_t col);
const T& getAt(size_t row, size_t col) const;

Returns a reference to the element at the specified 
position.  This function is  const-overloaded.  We 
won't worry about the case where the indices are 
out of bounds.

Because grids can be dynamically resized, we will need to back grid with some sort of dynamic memory 
management.  Because the grid represents a two-dimensional entity, you might think that we need to use 
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a  dynamically-allocated  multidimensional  array  to  store  grid elements.   However,  working  with 
dynamically-allocated  multidimensional  arrays  is  tricky  and  greatly  complicates  the  implementation. 
Fortunately,  we can sidestep this  problem by implementing the two-dimensional  grid object  using  a 
single-dimensional array.  To see how this works, consider the following 3x3 grid:

0 1 2

3 4 5

6 7 8

We can represent all of the elements in this grid using a one-dimensional array by laying out all of the  
elements sequentially, as seen here:

0 1 2 3 4 5 6 7 8

If you'll  notice,  in this ordering,  the three elements of  the first  row appear in order as the first  three 
elements, then the three elements of the second row in order, and finally the three elements of the final 
row in order.   Because this one-dimensional representation of a two-dimensional object preserves the 
ordering of individual rows, it is sometimes referred to as row-major order.

To represent a grid in row-major order, we need to be able to convert between grid coordinates and array  
indices.  Given a coordinate (row, col) in a grid of dimensions (nrows, ncols), the corresponding position in 
the row-major order representation of that grid is given by index = col + row * ncols.  The intuition behind 
this formula is that because the ordering within any row is preserved, each horizontal step in the grid  
translates into  a  single  step forward or  backward in the  row-major  order  representation of  the  grid. 
However, each vertical step in the grid requires us to advance forward to the next row in the linearized  
grid, skipping over ncols elements.

Using row-major order, we can back the grid class with a regular STL vector, as shown here:

    template <typename T> class grid {
    public:
        grid();
        grid(size_t rows, size_t cols);

        void clear();
        void resize(size_t rows, size_t cols);
   
        size_t numRows() const;
        size_t numCols() const;
        bool empty() const;
        size_t size() const;

              T& getAt(size_t row, size_t col);
        const T& getAt(size_t row, size_t col) const;

    private:
        vector<T> elems;
        size_t rows;
        size_t cols;
    };
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Serendipitously, implementing the  grid with a  vector allows us to use C++'s automatically-generated 
copy constructor and assignment operator for grid.  Since vector already manages its own memory, we 
don't need to handle it manually.

Note that we explicitly keep track of the number of rows and columns in the grid even though the vector 
stores the total number of elements.  This is necessary so that we can compute indices in the row-major 
ordering for points in two-dimensional space.

The above functions have relatively straightforward implementations that are given below:

    template <typename T> grid<T>::grid() : rows(0), cols(0) {

    }

    template <typename T> 
    grid<T>::grid(size_t rows, size_t cols) 
      : elems(rows * cols), rows(rows), cols(cols) {
    }

    template <typename T> void grid<T>::clear() {
        resize(0, 0);
    }

    template <typename T> void grid<T>::resize(size_t rows, size_t cols) {
        /* See below for assign */
        elems.assign(rows * cols, ElemType());

        /* Explicit this-> required since parameters have same name as members. */
        this->rows = rows;
        this->cols = cols;
    }

    template <typename T> size_t grid<T>::numRows() const {
        return rows;
    }

    template <typename T> size_t grid<T>::numCols() const {
        return cols;
    }

    template <typename T> bool grid<T>::empty() const {
        return size() == 0;
    }

    template <typename T> size_t grid<T>::size() const {
        return numRows() * numCols();
    }

    /* Use row-major ordering to access the proper element of the vector. */
    template <typename T> T& grid<T>::getAt(size_t row, size_t col) {
        return elems[col + row * cols];
    }
    template <typename T> const T& grid<T>::getAt(size_t row,size_t col) const {
        return elems[col + row * cols];
    }
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Most of these functions are one-liners and are explained in the comments.  The only function that you may 
find  interesting  is  resize,  which  uses the  vector's  assign member  function.   assign is  similar  to 
resize in that it changes the size of the  vector, but unlike  resize assign discards all of the current 
vector contents and replaces them with the specified number of copies of the specified element.  The use  
of ElemType() as the second parameter to assign means that we will fill the vector with copies of the 
default value of the type being stored (since ElemType() uses the temporary object syntax to create a new 
ElemType).

Step 1: Add Support for Iterators

Now that we have the basics of a grid class, it's time to add iterator support.  This will allow us to plug the 
grid directly into the STL algorithms and will be invaluable in a later chapter.

Like the map and set, the grid does not naturally lend itself to a linear traversal – after all, grid is two-
dimensional  –  and  so  we  must  arbitrarily  choose  an  order  in  which  to  visit  elements.   Since  we've  
implemented the grid in row-major order, we'll have grid iterators traverse the grid row-by-row, top to 
bottom, from left to right.  Thus, given a 3x4 grid, the order of the traversal would be

0 1 2

3 4 5

6 7 8

9 10 11

This order of iteration maps naturally onto the row-major ordering we've chosen for the  grid.  If we 
consider how the above grid would be laid out in row-major order, the resulting array would look like this:

0 1 2 3 4 5 6 7 8 9 10 11

Thus this iteration scheme maps to a simple linear traversal of the underlying representation of the grid. 
Because we've chosen to represent the elements of  the  grid using a  vector,  we can iterate over the 
elements of the grid using vector iterators.  We thus add the following definitions to the grid class:
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    template <typename T> class grid {
    public:
        grid();
        grid(size_t rows, size_t cols);

        void clear();
        void resize(size_t rows, size_t cols);
   
        size_t numRows() const;
        size_t numCols() const;
        bool empty() const;
        size_t size() const;

        T& getAt(size_t row, size_t col);
        const T& getAt(size_t row, size_t col) const;

        typedef typename vector<T>::iterator iterator;
        typedef typename vector<T>::const_iterator const_iterator;

    private:
        vector<T> elems;
        size_t rows;
        size_t cols;
    };

Now, clients of  grid can create  grid<int>::iterators rather than  vector<int>::iterators.  This 
makes the interface more intuitive and increases encapsulation; since iterator is a typedef, if we later 
decide to replace the underlying representation with a dynamically-allocated array, we can change the 
typedefs to

    typedef ElemType* iterator;
    typedef const ElemType* const_iterator;

And clients of the grid will not notice any difference.

Notice  that  in  the  above  typedefs  we  had  to  use  the  typename keyword  to  name  the  type 
vector<ElemType>::iterator.  This is the pesky edge case mentioned in the chapter on templates and 
somehow manages to creep into more than its fair share of code.  Since iterator is a nested type inside 
the template type vector<ElemType>, we have to use the typename keyword to indicate that iterator 
is the name of a type rather than a class constant.

We've now defined an  iterator type for our  grid,  so what functions should we export to the  grid 
clients?  We'll at least want to provide support for begin and end, as shown here:
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    template <typename T> class grid {
    public:
        grid();
        grid(size_t rows, size_t cols);

        void clear();
        void resize(size_t rows, size_t cols);
   
        size_t numRows() const;
        size_t numCols() const;
        bool empty() const;
        size_t size() const;

        T& getAt(size_t row, size_t col);
        const T& getAt(size_t row, size_t col) const;

        typedef typename vector<T>::iterator iterator;
        typedef typename vector<T>::const_iterator const_iterator;

              iterator begin();
        const_iterator begin() const;
              iterator end();
        const_iterator end() const;
    private:
        vector<T> elems;
        size_t rows;
        size_t cols;
    };

We've provided two versions of each function so that clients of a const grid can still use iterators.  These 
functions  are  easily  implemented by  returning  the  value  of  the  underlying  vector's  begin and  end 
functions, as shown here:

    template <typename T> typename grid<T>::iterator grid<T>::begin() {
        return elems.begin();
    }

Notice that the return type of this function is  typename grid<ElemType>::iterator rather than just 
iterator.  Because iterator is a nested type inside grid, we need to use grid<ElemType>::iterator 
to  specify  which iterator  we want,  and since  grid is  a  template  type  we have to  use  the  typename 
keyword to indicate that iterator is a nested type.  Otherwise, this function should be straightforward.

The rest of the functions are implemented here:

    template <typename T> typename grid<T>::const_iterator grid<T>::begin() const {
        return elems.begin();
    }

    template <typename T> typename grid<T>::iterator grid<T>::end() {
        return elems.end();
    }

    template <typename T> typename grid<T>::const_iterator grid<T>::end() const {
        return elems.end();
    }
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Because  the  grid is  implemented  in  row-major  order,  elements  of  a  single  row  occupy  consecutive 
locations in the  vector.  It's therefore possible to return iterators delineating the start and end of each 
row in the  grid.  This is useful functionality, so we'll provide it to clients of the  grid through a pair of 
member functions row_begin and row_end (plus const overloads).  These functions are declared here:

    template <typename T> class grid {
    public:
        grid();
        grid(size_t rows, size_t cols);

        void clear();
        void resize(size_t rows, size_t cols);
   
        size_t numRows() const;
        size_t numCols() const;
        bool empty() const;
        size_t size() const;

        T& getAt(size_t row, size_t col);
        const T& getAt(size_t row, size_t col) const;

        typedef typename vector<ElemType>::iterator iterator;
        typedef typename vector<ElemType>::const_iterator const_iterator;

              iterator begin();
        const_iterator begin() const;
              iterator end();
        const_iterator end() const;

              iterator row_begin(size_t row);
        const_iterator row_begin(size_t row) const;
              iterator row_end(size_t row);
        const_iterator row_end(size_t row) const;
 
    private:
        vector<T> elems;
        size_t rows;
        size_t cols;
    };

Before implementing these functions,  let's take a minute to figure out exactly where the iterations we  
return should point to.  Recall that the element at position (row, 0) in a grid of size (rows,  cols) can be 
found at position row * cols.  We should therefore have row_begin(row) return an iterator to the row * 
cols element of the  vector.   Since there are  cols elements in each row and  row_end should return an 
iterator to one position past the end of the row, this function should return an iterator to the position cols 
past the location returned by row_begin.  Given this information, we can implement these functions as 
shown here:

    template <typename T> typename grid<T>::iterator grid<T>::row_begin(int row) {
        return begin() + numCols() * row;
    }

    template <typename T> 
        typename grid<T>::const_iterator grid<T>::row_begin(int row) const {
        return begin() + numCols() * row;
    }
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    template <typename T> typename grid<T>::iterator grid<T>::row_end(int row) {
        return row_begin(row) + numCols();
    }

    template <typename T>
        typename grid<T>::const_iterator grid<T>::row_end(int row) const {
        return row_begin(row) + numCols();
    }

We now have an elegant iterator interface for the grid class.  We can iterate over the entire container as 
a whole, just one row at a time, or some combination thereof.  This enables us to interface the grid with 
the STL algorithms.  For example, to zero out a grid<int>, we can use the fill algorithm, as shown here:

    fill(myGrid.begin(), myGrid.end(), 0);

We can also sort the elements of a row using sort:

    sort(myGrid.row_begin(0), myGrid.row_end(0));

With  only  a  handful  of  functions  we're  now  capable  of  plugging  directly  into  the  full  power  of  the 
algorithms.  This is part of the beauty of the STL – had the algorithms been designed to work on containers  
rather than iterator ranges, this would not have been possible.

Step 2: Add Support for the Element Selection Operator

When using regular C++ multidimensional arrays, we can write code that looks like this:

    int myArray[137][42];
    myArray[2][4] = 271828;
    myArray[9][0] = 314159;

However, with the current specification of the grid class, the above code would be illegal if we replaced 
the  multidimensional  array  with  a  grid<int>,  since  we  haven't  provided  an  implementation  of 
operator [].

Adding support for element selection to linear classes like the  vector is simple – we simply have the 
brackets operator return a reference to the proper element.  Unfortunately, it is much trickier to design 
grid such that the bracket syntax works correctly.  The reason is that if we write code that looks like this:

    grid<int> myGrid(137, 42);
    int value = myGrid[2][4];

By replacing the bracket syntax with calls to operator [], we see that this code expands out to

    grid<int> myGrid(137, 42);
    int value = (myGrid.operator[] (2)).operator[] (4);

Here, there are two calls to operator [], one invoked on myGrid and the other on the value returned by 
myGrid.operator[](2).   To  make  the  above  code  compile,  the  object  returned  by  the  grid's 
operator[] must itself define an operator [] function.  It is this returned object, rather than the grid 
itself,  which is responsible for retrieving the requested element from the  grid.   Since this temporary 
object is used to perform a task normally reserved for the grid, it is sometimes known as a proxy object.
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How can we implement the grid's operator [] so that it works as described above?  First, we will need 
to define a new class representing the object returned by the  grid's  operator [].  In this discussion, 
we'll call it MutableReference, since it represents an object that can call back into the grid and mutate 
it.  For simplicity and to maximize encapsulation, we'll define  MutableReference inside of  grid.  This 
results in the following interface for grid:

    template <typename T> class grid {
    public:
        /* ... previously-defined functions ... */

        class MutableReference {
        public:
            friend class grid;
            T& operator[] (size_t col);

        private:
            MutableReference(grid* owner, size_t row);
        
            grid* const owner;
            const size_t row;
        };
 
    private:
        vector<T> elems;
        size_t rows;
        size_t cols;
    };

The  MutableReference object stores some a pointer to the  grid that created it, along with the index 
passed in to the  grid's  operator [] function when the  MutableReference was created.  That way, 
when we invoke the MutableReference's operator [] function specifying the col coordinate of the grid, 
we can pair it with the stored row coordinate, then query the grid for the element at (row, col).  We have 
also  made  grid a  friend of  MutableReference so  that  the  grid can  call  the  private  constructor 
necessary to initialize a MutableReference.

We can implement MutableReference as follows:

    template <typename T>
        grid<T>::MutableReference::MutableReference(grid* owner, int row) :
           owner(owner), row(row) {
    }

    template <typename T>
        T& grid<T>::MutableReference::operator[] (int col) {
        return owner->getAt(row, col);
    }

Notice  that  because  MutableReference is  a  nested  class  inside  grid,  the  implementation  of  the 
MutableReference functions is prefaced with  grid<ElemType>::MutableReference instead of just 
MutableReference.   However,  in  this  particular  case  the  pesky  typename keyword is  not  necessary 
because  we  are  prototyping  a  function  inside  MutableReference rather  than  using  the  type 
MutableReference in an expression.

Now that we've implemented  MutableReference,  we'll define an  operator [] function for the  grid 
class that constructs and returns a properly-initialized MutableReference.  This function accepts an row 
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coordinate, and returns a  MutableReference storing that row number and a pointer back to the  grid. 
That way, if we write

    int value = myGrid[1][2];

The following sequences of actions occurs:

1. myGrid.operator[] is invoked with the parameter 1.

2. myGrid.operator[] creates a MutableReference storing the row coordinate 1 and a means for 
communicating back with the myGrid object.

3. myGrid.operator[] returns this MutableReference.

4. The returned MutableReference then has its operator[] function called with parameter 2.

5. The returned MutableReference then calls back to the myGrid object and asks for the element at 
position (1, 2).

This sequence of actions is admittedly complex, but is transparent to the client of the grid class and runs 
efficiently.

operator[] is defined and implemented as follows:

    template <typename T> class grid {
    public:
        /* ... previously-defined functions ... */

        class MutableReference {
        public:
            friend class grid;
            T& operator[] (size_t col);

        private:
            MutableReference(grid* owner, size_t row);
        
            grid* const owner;
            const size_t row;
        };
        MutableReference operator[] (int row);
     
    private:
        vector<T> elems;
        size_t rows;
        size_t cols;
    };

    template <typename T>
        typename grid<T>::MutableReference grid<T>::operator[] (int row) {
        return MutableReference(this, row);
    }

Notice that we've only provided an implementation of the non-const version of operator[].  But what if 
we want to use operator[] on a const grid?  We would similarly need to return a proxy object, but that 
object would need to guarantee that grid clients could not write code like this:
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    const grid<int> myGrid(137, 42);
    myGrid[0][0] = 2718; // Ooops!  Modified const object!

To prevent this sort of problem, we'll have the const version of  operator[] return a proxy object of a 
different type, called  ImmutableReference which behaves similarly to  MutableReference but which 
returns const references to the elements in the grid.  This results in the following interface for grid:

    template <typename T> class grid {
    public:
        /* ... previously-defined functions ... */
    
        class MutableReference {
        public:
            friend class grid;
            T& operator[] (size_t col);
    
        private:
            MutableReference(grid* owner, size_t row);
        
            grid* const owner;
            const size_t row;
        };
        MutableReference operator[] (int row);
    
        class ImmutableReference {
        public:
            friend class grid;
            const T& operator[] (size_t col) const;
    
        private:
            MutableReference(const grid* owner, size_t row);
        
            const grid* const owner;
            const size_t row;
        };
        ImmutableReference operator[] (size_t row) const;
     
    private:
        vector<T> elems;
        size_t rows;
        size_t cols;
    };

ImmutableReference and the const version of operator[] are similar to MutableReference and the 
non-const version of operator[], and to save space we won't write it here.  The complete listing of the 
grid class at the end of this chapter contains the implementation if you're interested.

Step 3: Define Relational Operators

Now that our  grid has full support for iterators and a nice bracket syntax that lets us access individual 
elements,  it's  time  to  put  on  the  finishing  touches.   As  a  final  step  in  the  project,  we'll  provide 
implementations of the relational operators for our grid class.  We begin by updating the grid interface 
to include the following functions:
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    template <typename T> class grid {
    public:
        /* ... previously-defined functions ... */
    
        bool operator <  (const grid& other) const;
        bool operator <= (const grid& other) const;
        bool operator == (const grid& other) const;
        bool operator != (const grid& other) const;
        bool operator >= (const grid& other) const;
        bool operator >  (const grid& other) const;
     
    private:
        vector<T> elems;
        size_t rows;
        size_t cols;
    };

Note that of the six operators listed above, only the  == and  != operators have intuitive meanings when 
applied to  grids.  However, it also makes sense to define a  < operator over  grids so that we can store 
them  in  STL  map and  set containers,  and  to  ensure  consistency,  we  should  define  the  other  three 
operators as well.

Because there is no natural interpretation for what it means for one grid to be “less than” another, we are 
free to implement these functions in any way that  we see fit,  provided that  we obey transitivity and  
trichotomy.  As mentioned earlier it is possible to implement all six of the relational operators in terms of  
the less-than operator.  One strategy for implementing the relational operators is thus to implement just  
the less-than operator and then to define the other five as wrapped calls to operator <.  But what is the 
best way to determine whether one grid compares less than another?  One general approach is to define a 
lexicographical ordering over grids.  We will compare each field one at a time, checking to see if the fields 
are equal.  If so, we move on to the next field.  Otherwise, we immediately return that one grid is less than 
another without looking at the remaining fields.  If we go through every field and find that the grids are 
equal, then we can return that neither grid is less than the other.  This is similar to the way that we might  
order words alphabetically – we find the first mismatched character, then return which word compares 
first.  We can begin by implementing operator < as follows:

    template <typename T> bool grid<T>::operator < (const grid& other) const {
        /* Compare the number of rows and return if there's a mismatch. */
        if(rows != other.rows)
            return rows < other.rows;

        /* Next compare the number of columns the same way. */
        if(cols != other.cols)
            return cols < other.cols;

        /* ... */
    }

Here, we compare the rows fields of the two objects and immediately return if they aren't equal.  We can 
then check the cols fields in the same way.  Finally, if the two grids have the same number of rows and 
columns, we need to check how the elements of the grids compare.  Fortunately, this is straightforward 
thanks  to  the  STL  lexicographical_compare algorithm.   lexicographical_compare accepts  four 
iterators  delineating  two  ranges,  then  lexicographically  compares  the  elements  in  those  ranges  and 
returns  if  the  first  range  compares  lexicographically  less  than  the  second.   Using 
lexicographical_compare, we can finish our implementation of operator < as follows:
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    template <typename T> bool grid<T>::operator < (const grid& other) const {
        /* Compare the number of rows and return if there's a mismatch. */
        if(rows != other.rows)
            return rows < other.rows;

        /* Next compare the number of columns the same way. */
        if(cols != other.cols)
            return cols < other.cols;

        return lexicographical_compare(begin(), end(), other.begin(), other.end());
    }

All that's left to do now is to implement the other five relational operators in terms of operator <.  This is 
done below:

    template <typename T> bool grid<T>::operator >=(const grid& other) const { 
        return !(*this < other);  
    } 
  
    template <typename T> bool grid<T>::operator ==(const grid& other) const {  
        return !(*this < other) && !(other < *this); 
    } 
  
    template <typename T> bool grid<T>::operator !=(const grid& other) const {  
        return (*this < other) || (other < *this); 
    }  
 
    template <typename T> bool grid<T>::operator > (const grid& other) const { 
        return other < *this;  
    } 
  
    template <typename T> bool grid<T>::operator <=(const grid& other) const {  
        return !(other < *this); 
    }

At  this  point  we're  done!   We  now have  a  complete  working implementation  of  the  grid class  that 
supports iteration, element access, and the relational operators.  To boot, it's implemented on top of the  
vector, meaning that it's slick and efficient.  This class should be your one-stop solution for applications 
that require a two-dimensional array.
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More to Explore

Operator overloading is an enormous topic in C++ and there's simply not enough space to cover it all in 
this chapter.  If you're interested in some more advanced topics, consider reading into the following:

1. Overloaded new and delete: You are allowed to overload the new and delete operators, in case 
you want to change how memory is allocated for your class.  Note that the overloaded  new and 
delete operators  simply  change  how  memory  is  allocated,  not  what  it  means  to  write  new 
MyClass. Overloading new and delete is a complicated task and requires a solid understanding of 
how C++ memory management works, so be sure to consult a reference for details.

2. Conversion functions: In an earlier chapter, we covered how to write conversion constructors,  
functions  that  convert  objects  of  other  types  into  instances  of  your  new class.   However,  it's  
possible to use operator overloading to define an implicit conversion from objects of your class  
into objects of  other types.   The syntax is  operator Type(),  where  Type is the data type to 
convert your object to.  Many professional programmers advise against conversion functions, so 
make sure that they're really the best option before proceeding.

Practice Problems

Operator  overloading is  quite  difficult  because your  functions must  act  as  though they're  the  built-in 
operators.  Here are some practice problems to get you used to overloading operators:

1. What is an overloaded operator?
 

2. What is an lvalue?  An rvalue?  Does the + operator yield an lvalue or an rvalue?  How about the 
pointer dereference operator?
 

3. Are overloaded operators inherently more efficient than regular functions?
 

4. Explain how to implement operator + in terms of operator +=.
 

5. What is the signature of an overloaded operator for subtraction?  For unary negation?
 

6. How do you differentiate between the prefix and postfix versions of the ++ operator?
 

7. What does the -> operator return?
 

8. What is a friend function?  How do you declare one?
 

9. How do you declare an overloaded stream insertion operator?
 

10. What is trichotomy and why is it important to C++ programmers?
 

11. What is transitivity and why is it important to C++ programmers?
 

12. In Python, it is legal to use negative array indices to mean “the element that many positions from 
the  end  of  the  array.”   For  example,  myArray[-1] would  be  the  last  element  of  an  array, 
myArray[-2] the  penultimate  element,  etc.   Using  operator  overloading,  it's  possible  to 
implement this functionality for a custom array class.  Do you think it's a good idea to do so?  Why  
or why not?  Think about the principle of least astonishment when answering.



Chapter 10: Operator Overloading - 335 -

13. Why is it better to implement + in terms of += instead of += in terms of +? (Hint: Think about the  
number of objects created using += and using +.)

14. Consider the following definition of a Span struct:
 
struct Span {
    int start, stop;
};
 
The Span struct allows us to define the range of elements from [start, stop) as a single variable. 
Given  this  definition  of  Span and  assuming  start and  stop are  both  non-negative,  provide 
another bracket operator for our Vector class that selects a range of elements.
 

15. Consider the following interface for a class that iterates over a container of ElemTypes:
 
class iterator {
public:
    bool operator== (const iterator& other);
    bool operator!= (const iterator& other);
 
    iterator operator++ ();

    ElemType* operator* () const;
    ElemType* operator-> () const;
};
 
There are several mistakes in the definition of this iterator.  What are they?  How would you fix  
them?
 

16. The implementation of  the  grid class's  operator== and  operator!= functions  implemented 
those operators in terms of the less-than operator.  This is somewhat inefficient, since it's more 
direct to simply check if the two  grids are equal or unequal rather than to use the comparison 
operators.   Rewrite  the  grid's  operator== function to directly  check whether  the  grids  are 
identical.  Then rewrite operator!= in terms of operator==. 



Chapter 11: Resource Management
_________________________________________________________________________________________________________

This chapter is about two things – putting away your toys when you're done with them, and bringing 
enough of your toys for everyone to share.  These are lessons you (hopefully!) learned in kindergarten 
which happen to pop up just about everywhere in life.  We're supposed to clean up our own messes so that 
they don't accumulate and start to interfere with others, and try to avoid hogging things so that others  
don't hurt us by trying to take those nice things away from us.

The focus of this chapter is how to play nice with others when it comes to resources.  In particular, we will 
explore two of C++'s most misunderstood language features,  the  copy constructor and the  assignment  
operator.  By the time you're done reading this chapter, you should have a much better understanding of  
how to manage resources in ways that will keep your programs running and your fellow programmers 
happy.  The material in this chapter is somewhat dense, but fear not!  We'll make sure to go over all of the  
important points neatly and methodically.

Consider the STL vector.  Internally, vector is backed by a dynamically-allocated array whose size grows 
when additional space is needed for more elements.  For example, a ten-element vector might store those 
elements in an array of size sixteen, increasing the array size if we call  push_back seven more times. 
Given this description, consider the following code:

    vector<int> one(kNumInts);
    for(size_t k = 0; k < one.size(); ++k)
        one.push_back(int(k));

    vector<int> two = one;

In the first three lines, we fill  one with the first  kNumInts integers, and in the last line we create a new 
vector called two that's a copy of one.  How does C++ know how to correctly copy the data from one into 
two?  It can't simply copy the pointer to the dynamically-allocated array from  one into  two,  since that 
would cause one and two to share the same data and changes to one vector would show up in the other. 
Somehow C++ is aware that to copy a  vector it needs to dynamically allocate a new array of elements, 
then copy the elements from the source to the destination.  This is not done by magic, but by two special  
functions called the copy constructor and the assignment operator, which control how to copy instances of 
a particular class.

Before discussing the particulars of the copy constructor and assignment operator, we first need to dissect 
exactly how an object can be copied.  In order to copy an object, we first have to answer an important  
question – where do we put the copy?  Do we store it in a new object, or do we reuse an existing object?  
These two options are fundamentally different from one another and C++ makes an explicit distinction 
between them.  The first option – putting the copy into a new location – creates the copy by initializing the 
new object to the value of the object to copy.  The second – storing the copy in an existing variable –  
creates the copy by assigning the existing object the value of the object to copy.  What do these two copy 
mechanisms look like in C++?  That is, when is an object initialized to a value, and when is it assigned a  
new value?

In C++, initialization can occur in three different places:
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1. A variable is created as a copy of an existing value.  For example, suppose we write the following 
code:

    MyClass one;
    MyClass two = one;
 
Here, since two is told to hold the value of one, C++ will initialize two as a copy of one.  Although it 
looks like we're assigning a value to two using the = operator, since it is a newly-created object, the 
= indicates initialization, not assignment.  In fact, the above code is equivalent to the more explicit  
initialization code below:
 
    MyClass one;
    MyClass two(one);   // Identical to above.

This syntax makes more clear that two is being created as a copy of one, indicating initialization 
rather than assignment.

2. An object is passed by value to a function.  Consider the following function:

    void MyFunction(MyClass arg) {
         /* ... */
    } 
 
If we write
 
    MyClass mc;
    MyFunction(mc);

Then the function MyFunction somehow has to set up the value of arg inside the function to have 
the same value as mc outside the function.  Since arg is a new variable, C++ will  initialize it as a 
copy of mc.
 

3. An object is returned from a function by value.  Suppose we have the following function: 

    MyClass MyFunction() {
        MyClass mc;
        return mc;
    }
 
When the statement  return mc executes, C++ needs to return the  mc object from the function. 
However,  mc is a local variable inside the  MyFunction function, and to communicate its value to 
the MyFunction caller C++ needs to create a copy of mc before it is lost.  This is done by creating a 
temporary MyClass object for the return value, then initializing it to be a copy of mc.

Notice that in all three cases, initialization took place because some new object was created as a copy of an  
existing object.  In the first case this was a new local variable, in the second a function parameter, and in  
the third a temporary object.

Assignment in C++ is much simpler than initialization and only occurs if an existing object is explicitly  
assigned a new value.   For example,  the following code will  assign two the value of  one,  rather than 
initializing two to one:
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    MyClass one, two;
    two = one;

It can be tricky to differentiate between initialization and assignment because in some cases the syntax is  
almost identical.  For example, if we rewrite the above code as

    MyClass one;
    MyClass two = one;

two is  now  initialized  to  one because  it  is  declared  as  a  new  variable.   Always  remember  that  the 
assignment only occurs when giving an existing object a new value.

Why is it important to differentiate between assignment and initialization?  After all, they're quite similar; 
in both cases we end up with a new copy of an existing object.  However, assignment and initialization are  
fundamentally different operations.  When  initializing a new object as a copy of an existing object, we 
simply need to copy the existing object into the new object.  When assigning an existing object a new value, 
the existing object's value ceases to be and we must make sure to clean up any resources the object may 
have allocated before setting it to the new value.  In other words, initialization is a straight copy, while  
assignment is cleanup followed by a copy.  This distinction will become manifest in the code we will write  
for the copy functions later in this chapter.

Copy Functions: Copy Constructors and Assignment Operators

Because  initialization  and  assignment  are  separate  tasks,  C++  handles  them  through  two  different 
functions called the  copy constructor and the  assignment operator.   The copy constructor  is  a  special 
constructor responsible for initializing new class instances as copies of existing instances of the class.  The 
assignment  operator  is  a  special  function called an  overloaded operator (see  the  chapter  on operator 
overloading  for  more  details)  responsible  for  assigning  the  receiver  object  the  value  of  some  other  
instance of the object.  Thus the code

    MyClass one;
    MyClass two = one;

will initialize two to one using the copy constructor, while the code

    MyClass one, two;
    two = one;

will assign one to two using the assignment operator.

Syntactically, the copy constructor is written as a one-argument constructor whose parameter is another 
instance of the class accepted by reference-to-const.  For example, given the following class:

    class MyClass {
    public:
        MyClass();
        ~MyClass();
    
        /* ... */
    };

The copy constructor would be declared as follows:
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    class MyClass {
    public:
        MyClass();
        ~MyClass();
    
        MyClass(const MyClass& other); // Copy constructor
    
        /* ... */
    };
    
The syntax for the assignment operator is substantially more complex than that of the copy constructor 
because it is an overloaded operator; in particular,  operator =.   For reasons that will become clearer 
later in the chapter, the assignment operator should accept as a parameter another instance of the class by  
reference-to-const and should return a non-const reference to an object of the class type.  For a concrete 
example, here's the assignment operator for MyClass:

    class MyClass {
    public:
        MyClass();
        ~MyClass();
    
        MyClass(const MyClass& other); // Copy constructor
        MyClass& operator = (const MyClass& other); // Assignment operator
        /* ... */
    };

We'll defer discussing exactly why this syntax is correct until later, so for now you should take it on faith.

What C++ Does For You

Unless  you  specify  otherwise,  C++  will  automatically  provide  any  class  you  write  with  a  basic  copy 
constructor and assignment operator that invoke the copy constructors and assignment operators of all 
the  class's  data  members.   In many cases,  this  is  exactly  what  you want.   For  example,  consider  the 
following class:

    class DefaultClass {
    public:
        /* ... */

    private:
        int myInt;
        string myString;
    };

Suppose you have the following code:

    DefaultClass one;
    DefaultClass two = one;

The line  DefaultClass two = one will  invoke  the copy constructor  for  DefaultClass.   Since  we 
haven't  explicitly  provided  our  own  copy  constructor,  C++  will  initialize  two.myInt to  the  value  of 
one.myInt and two.myString to one.myString.  Since int is a primitive and string has a well-defined 
copy constructor, this code is totally fine.
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However, in many cases this is not the behavior you want.  Let's consider the example of a class Vector 
that acts as a wrapper for a dynamic array.  Suppose we define Vector as shown here:

    class Vector {
    public:
        Vector();
        ~Vector();
        /* Note: No copy constructor or assignment operator */

        /* ... */

    private:
        int* elems;
        /* ... */
    };

Here, if  we rely on C++'s default copy constructor or assignment operator, we'll  run into trouble.  For  
example, consider the following code:

    Vector one;
    Vector two = one;

Because we haven't  provided a  copy constructor,  C++ will  initialize  two.elems to  one.elems.   Since 
elems is an int*, instead of getting a deep copy of the elements, we'll end up with two pointers to the 
same array.  Thus changes to one will show up in two and vice-versa.  This is dangerous, especially when 
the destructors for both  one and  two try to deallocate the memory for  elems.  In situations like these, 
you'll need to override C++'s default behavior by providing your own copy constructors and assignment  
operators.

There are a few circumstances where C++ does not automatically provide default copy constructors and 
assignment operators.  If your class contains a reference or const variable as a data member, your class 
will not automatically get an assignment operator.  Similarly, if your class has a data member that doesn't 
have a copy constructor or assignment operator (for example, an ifstream), your class won't be copyable. 
There is one other case involving inheritance where C++ won't automatically create the copy functions for  
you, and in the chapter on inheritance we'll see how to exploit this to disable copying.

The Rule of Three

There's a well-established C++ principle called the “rule of three” that identifies most spots where you'll 
need to write your own copy constructor and assignment operator.  If this were a math textbook, you'd 
probably see the rule of three written out like this:

Theorem (The Rule of Three): If a class has any of the following three member functions:
• Destructor
• Copy Constructor
• Assignment Operator

Then that class should have all three of those functions.

Corollary: If a class has a destructor, it should also have a copy constructor and assignment operator.

The rule of three holds because in almost all situations where you have any of the above functions, C++'s  
default behavior won't correctly manage your objects.  In the above example with Vector, this is the case 
because copying the elems* pointer doesn't actually duplicate the elements array.  Similarly, if you have a 
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class holding an open file handle, making a shallow copy of the object might cause crashes further down 
the line as the destructor of one class closed the file handle, corrupting the internal state of all “copies” of  
that object.

Both C++ libraries and fellow C++ coders will expect that, barring special circumstances, all objects will  
correctly  implement the three above functions,  either by falling back on C++'s  default  versions or  by 
explicitly providing correct implementations.  Consequently, you must keep the rule of three in mind when 
designing classes or you will end up with insidious or seemingly untraceable bugs as your classes start to  
destructively interfere with each other.

Writing Copy Constructors

For the rest of this chapter, we'll discuss copy constructors and assignment operators through a case study  
of a Vector class, a generalization of the above Vector which behaves similarly to the STL vector.  The 
class definition for Vector looks like this:

    template <typename T> class Vector {
    public:
        Vector();
        Vector(const Vector& other);             // Copy constructor
        Vector& operator =(const Vector& other); // Assignment operator
        ~Vector();

        typedef T* iterator;
        typedef const T* const_iterator;

        iterator begin();
        iterator end();
        const_iterator begin() const;
        const_iterator end() const;

        /* ... other member functions ... */
    private:
        T* array;
        size_t allocatedLength;
        size_t logicalLength;
        static const size kStartSize = 16;
    };

Internally,  Vector is  implemented as a  dynamically-allocated array of  elements.   Two data  members, 
allocatedLength and logicalLength, track the allocated size of the array and the number of elements  
stored in it, respectively.  Vector also has a class constant kStartSize that represents the default size of 
the allocated array.

The Vector constructor is defined as

    template <typename T> Vector<T>::Vector() {
        allocatedLength = kStartSize;
        logicalLength = 0;
        array = new T[allocatedLength];
    }

Similarly, the Vector destructor is
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    template <typename T> Vector<T>::~Vector() {
        delete [] array;
    }

Now, let's write the copy constructor.  We know that we need to match the prototype given in the class  
definition, so we'll write that part first:

    template <typename T> Vector<T>::Vector(const Vector& other) {
        /* ... */
    }

Inside the copy constructor, we need to initialize the object so that we're holding a deep copy of the other  
Vector.  This necessitates making a full deep-copy of the other  Vector's array, as well as copying over 
information  about  the  size  and  capacity  of  the  other  Vector.   This  second  step  is  relatively 
straightforward, and can be done as follows:

    template <typename T> Vector<T>::Vector(const DebugVector& other) {
        logicalLength = other.logicalLength;
        allocatedLength = other.allocatedLength;
    
        /* ... */
    }

Note that this implementation of the copy constructor sets  logicalLength to  other.logicalLength 
and  allocatedLength to  other.allocatedLength,  even  though  other.logicalLength and 
other.allocatedLength explicitly reference private data members of the  other object.  This is legal 
because other is an object of type Vector and the copy constructor is a member function of Vector.  A 
class can access both its private fields and private fields of other objects of the same type.  This is called 
sibling access and is true of any member function, not just the copy constructor.  If the copy constructor  
were not a member of Vector or if other were not a Vector, this code would not be legal.

Now, we'll make a deep copy of the other Vector's elements by allocating a new array that's the same size 
as other's and then copying the elements over.  The code looks something like this:

    template <typename T> Vector<T>::Vector(const Vector& other) {
        logicalLength = other.logicalLength;
        allocatedLength = other.allocatedLength;
    
        array = new T[allocatedLength];
        for(size_t i = 0; i < logicalLength; ++i)
            array[i] = other.array[i];
    }

Interestingly, since  Vector is a template, it's unclear what the line  array[i] = other.array[i] will 
actually do.  If we're storing primitive types, then the line will simply copy the values over, but if we're  
storing objects, the line invokes the class's assignment operator.  Notice that in both cases the object will 
be correctly copied over.  This is one of driving forces behind defining copy constructors and assignment  
operators, since template code can assume that expressions like object1 = object2 will be meaningful.

An alternative means for copying data over from the other object uses the STL copy algorithm.  Recall that 
copy takes three parameters – two delineating an input range of iterators and one denoting the beginning 
of an output range – then copies the specified iterator range to the destination.  Although designed to work 
on iterators, it is possible to apply STL algorithms directly to ranges defined by raw C++ pointers.  Thus we 
could rewrite the copy constructor as follows:
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    template <typename T> Vector<T>::Vector(const Vector& other) {
        logicalLength = other.logicalLength;
        allocatedLength = other.allocatedLength;
    
        array = new T[allocatedLength];
        copy(other.begin(), other.end(), array);
    }

Here, the range spanned by other.begin() and other.end() is the entire contents of the other Vector, 
and array is the beginning of the newly-allocated data we've reserved for this Vector.  I personally find 
this syntax preferable to the explicit for loop, since it increases readability.

At this point we have a complete and correct implementation of the copy constructor.  The code for this  
constructor is not particularly dense, and it's remarkably straightforward.  In some cases, however, it can  
be a bit trickier to write a copy constructor.  We'll see some of these cases later in the chapter.

Writing Assignment Operators

We've  now  successfully  written  a  copy  constructor  for  our  Vector class.   Unfortunately,  writing  an 
assignment operator is significantly more involved than writing a copy constructor.  C++ is designed to 
give you maximum flexibility when designing an assignment operator, and thus won't alert you if you've 
written a syntactically legal assignment operator that is completely incorrect.  For example, consider this  
legal but incorrect assignment operator for an object of type MyClass:

    void MyClass::operator =(const MyClass& other) {
        cout << "I'm sorry, Dave.  I'm afraid I can't copy that object." << endl;
    }

Here, if we write code like this:

    MyClass one, two;
    two = one;

Instead of making two a deep copy of one, instead we'll get a message printed to the screen and two will 
remain unchanged.  This is one of the dangers of a poorly-written assignment operator – code that looks 
like it does one thing can instead do something totally different.  This section discusses how to correctly 
implement an assignment operator by starting with invalid code and progressing towards a correct, final 
version.

Let's start off with a simple but incorrect version of the assignment operator for Vector.  Intuitively, since 
both the copy constructor and the assignment operator make a copy of another object, we might consider  
implementing the assignment operator by naively copying the code from the copy constructor into the 
assignment operator.  This results in the following (incorrect!) version of the assignment operator:

    /* Many major mistakes here.  Do not use this code as a reference! */
    template <typename T> void Vector<T>::operator= (const Vector& other) {
        logicalLength = other.logicalLength;
        allocatedLength = other.allocatedLength;
    
        array = new T[allocatedLength];
        copy(other.begin(), other.end(), array);
    }

This code is based off the copy constructor, which we used to initialize the object as a copy of an existing  
object.   Unfortunately,  this code contains a  substantial  number of  mistakes that we'll  need to correct 
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before we end up with the final version of the function.  Perhaps the most serious error here is the line  
array = new T[allocatedLength].  When the assignment operator is invoked, this  Vector already 
holds its own array of elements.  This line therefore orphans the old array and leaks memory.  To fix this, 
before we make this object a copy of the one specified by the parameter, we'll take care of the necessary 
deallocations.  This is shown here:

If you'll notice, we've already written the necessary cleanup code in the DebugVector destructor.  Rather 
than rewriting this code, we'll decompose out the generic cleanup code into a clear function, as shown 
here:

    /* Many major mistakes here.  Do not use this code as a reference! */
    template <typename T> void Vector<T>::operator= (const Vector& other) {
        delete [] array;
 
        logicalLength = other.logicalLength;
        allocatedLength = other.allocatedLength;
    
        array = new T[allocatedLength];
        copy(other.begin(), other.end(), array);
    }

At this point, we can make a particularly useful observation.  If you'll notice, the cleanup code to free the 
existing array is identical to the code for the destructor, which has the same task.  This is no coincidence.  
In general,  when writing an assignment operator,  the assignment operator will  need to free all  of  the 
resources acquired by the object, much in the same way that the destructor must.  To avoid unnecessary 
code duplication, we can factor out the code to free the Vector's resources into a helper function called 
clear(), which is shown here:

    template <typename T> void Vector<T>::clear() {
        delete [] array;
    }

We can then rewrite the destructor as

    template <typename T> Vector<T>::~Vector() {
        clear();
    }

And we can insert this call to clear into our assignment operator as follows:

    /* This code still has errors.  Do not use it as a reference! */
    template <typename T> void Vector<T>::operator= (const Vector& other) {
        clear();

        logicalLength = other.logicalLength;
        allocatedLength = other.allocatedLength;

        array = new T[allocatedLength];
        copy(other.begin(), other.end(), array);
    }

Along the same lines, you might have noticed that all of the code after the call to clear is exactly the same 
code we wrote inside the body of the copy constructor.  This isn't a coincidence – in fact, in most cases  
you'll have a good deal of overlap between the assignment operator and copy constructor.  Since we can't 
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invoke our own copy constructor directly (or  any constructor, for that matter), instead we'll decompose 
the copying code into a member function called copyOther as follows:

    template <typename T> void Vector<T>::copyOther(const Vector& other) {
        logicalLength = other.logicalLength;
        allocatedLength = other.allocatedLength;

        array = new T[allocatedLength];
        copy(other.begin(), other.end(), array);
    }

Now we can rewrite the copy constructor as 

    template <typename T> Vector<T>::Vector(const Vector& other) {
        copyOther(other);
    }

And the assignment operator as 

    /* Not quite perfect yet.  Do not use this code as a reference! */
    template <typename T> void Vector<T>::operator= (const Vector& other) {
        clear();
        copyOther(other);
    }

This simplifies the copy constructor and assignment operator and highlights the general pattern of what 
the two functions should do.  With a copy constructor, you'll simply copy the contents of the other object.  
With an assignment operator, you'll clear out the receiver object, then copy over the data from another 
object.

However,  we're  still  not  done  yet.   There  are  two  more  issues  we  need  to  fix  with  our  current  
implementation of the assignment operator.  The first one has to do with  self-assignment.  Consider, for 
example, the following code:

    MyClass one;
    one = one;

While  this  code  might  seem  a  bit  silly,  cases  like  this  come  up  frequently  when  accessing  elements  
indirectly  through  pointers  or  references.   Unfortunately,  with  our  current  DebugVector assignment 
operator, this code will lead to unusual runtime behavior, possibly including a crash.  To see why, let's trace 
out the state of our object when its assignment operator is invoked on itself.

At the start of the assignment operator, we call clear to clean out the object for the copy.  During this call 
to clear, we deallocate the memory associated with the object.  We then invoke the copyOther function 
to  set  the  current  object  to be  a  copy of  the  receiver  object.   Unfortunately,  things  don't  go  quite  as 
expected.  Because we're assigning the object to itself, the parameter to the assignment operator is the  
receiver object itself.  This means that when we called clear trying to clean up the resources associated 
with  the  receiver  object,  we  also  cleaned up  all  the  resources  associated  with  the  parameter  to  the  
assignment operator.  In other words, clear destroyed both the data we wanted to clean up and the data 
we were meaning to copy.  The call to copyOther will therefore copy garbage data into the receiver object, 
since the resources it means to copy have already been cleaned up.  This is extremely bad, and will almost  
certainly cause a program crash.
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When writing assignment operators, you  must ensure that your code correctly handles self-assignment. 
While there are many ways we can do this, perhaps the simplest is to simply check to make sure that the  
object to copy isn't the same object pointed at by the this pointer.  The code for this logic looks like this:

    /* Not quite perfect yet.  Do not use this code as a reference! */
    template <typename T> void Vector<T>::operator= (const Vector& other) {
        if(this != &other) {
            clear();
            copyOther(other);
        }
    }

Note that we check if(this != &other).  That is, we compare the addresses of the current object and 
the parameter.  This will determine whether or not the object we're copying is exactly the same object as  
the one we're working with.  In the practice problems for this chapter, you'll explore what would happen if 
you were to write if(*this != other).  One detail worth mentioning is that the self-assignment check 
is not necessary in the copy constructor, since an object can't be a parameter to its own constructor.

There's one final bug we need to sort out, and it has to do with how we're legally allowed to use the  = 
operator.  Consider, for example, the following code:

    MyClass one, two, three;
    three = two = one;

This code is equivalent to three = (two = one).  Since our current assignment operator does not return 
a value, (two = one) does not have a value, so the above statement is meaningless and the code will not  
compile.  We thus need to change our assignment operator so that performing an assignment like two = 
one yields a value that can then be assigned to other values.  The final version of our assignment operator 
is thus

    /* The correct version of the assignment operator. */
    template <typename T> Vector<T>& Vector<T>::operator= (const Vector& other) {
        if(this != &other) {
            clear();
            copyOther(other);
        }
        return *this;
    }

One General Pattern

Although  each  class  is  different,  in  many  cases  the  default  constructor,  copy  constructor,  assignment 
operator, and destructor will share a general pattern.  Here is one possible skeleton you can fill in to get  
your copy constructor and assignment operator working.

MyClass::MyClass() : /* Fill in initializer list. */ {
    /* Default initialization here. */
}

MyClass::MyClass(const MyClass& other) {
    copyOther(other);
}
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MyClass& MyClass::operator =(const MyClass& other) {
    if(this != &other) {
        clear();
        // Note: When we cover inheritance, there's one more step here.
        copyOther(other);
    }
    return *this;
}

MyClass::~MyClass() {
    clear();
}

Semantic Equivalence and copyOther Strategies

Consider the following code snippet:

    Vector<int> one;
    Vector<int> two = one;

Here, we know that two is a copy of one, so the two objects should behave identically to one another.  For 
example,  if  we  access  an  element  of  one,  we  should  get  the  same  value  as  if  we  had  accessed  the 
corresponding element of  two and vice-versa.  However, while  one and  two are indistinguishable from 
each other in terms of functionality, their memory representations are not identical because one and two 
point  to  two  different  dynamically-allocated  arrays.   This  raises  the  distinction  between  semantic  
equivalence and bitwise equivalence.  Two objects are said to be  bitwise equivalent if they have identical 
representations in memory.  For example, any two ints with the value 137 are bitwise equivalent, and if 
we define a  pointT struct as a pair of ints, any two  pointTs holding the same values will be bitwise 
equivalent.  Two objects are semantically equivalent if, like one and two, any operations performed on the 
objects will yield identical results.  When writing a copy constructor and assignment operator, you attempt 
to convert an object into a semantically equivalent copy of another object.  Consequently, you are free to 
pick any copying strategy that creates a semantically equivalent copy of the source object.

In the preceding section, we outlined one possible implementation strategy for a copy constructor and 
assignment operator that uses a shared function called copyOther.  While in the case of the DebugVector 
it was relatively easy to come up with a working copyOther implementation, when working with more 
complicated  objects,  it  can  be  difficult  to  devise  a  working  copyOther.   For  example,  consider  the 
following class, which represents a mathematical set implemented as a linked list:
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    template <typename T> class ListSet {
    public:
        ListSet();
        ListSet(const ListSet& other);
        ListSet& operator =(const ListSet& other);
        ~ListSet();

        void insert(const T& toAdd);
        bool contains(const T& toFind) const;

    private:
        struct cellT {
            T data;
            cellT* next;
        };
        cellT* list;

        void copyOther(const ListSet& other);
        void clear();
    };

This ListSet class exports two functions, insert and contains, that insert an element into the list and 
determine whether the list contains an element, respectively.  This class represents a mathematical set, an  
unordered collection of elements, so the underlying linked list need not be in any particular order.  For 
example,  the  lists  {0, 1, 2, 3, 4} and  {4, 3, 2, 1, 0} are  semantically  equivalent  because 
checking whether a number is an element of the first list yields the same result as checking whether the 
number is in the second.  In fact, any two lists containing the same elements are semantically equivalent to  
one another.  This means that there are multiple ways in which we could implement copyOther.  Consider 
these two:

    /* Version 1: Duplicate the list as it exists in the original ListSet. */
    template <typename T> void ListSet<T>::copyOther(const ListSet& other) {
        /* Keep track of what the current linked list cell is. */
        cellT** current = &list;
    
        /* Iterate over the source list. */
        for(cellT* source = other.list; source != NULL; source = source->next) {
            /* Duplicate the cell. */
            *current = new cellT;
            (*current)->data = source->data;
            (*current)->next = NULL;
    
            /* Advance to next element. */
            current = &((*current)->next);
        }
    } 

    /* Version 2: Duplicate list in reverse order of original ListSet */
    template <typename T> void ListSet<T>::copyOther(const ListSet& other) {
        for(cellT* source = other.list; source != NULL; source = source->next) {
            cellT* newNode = new cellT;
            newNode->data = source->data;
            newNode->next = list;
            list = newNode;
        }
    }
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As you can see, the second version of this function is much,  much cleaner than the first.  There are no 
address-of operators floating around, so everything is expressed in terms of simpler pointer operations.  
But while the second version is cleaner than the first, it duplicates the list in reverse order.  This may 
initially seem problematic but is actually perfectly safe.  As the original object and the duplicate object  
contain the same elements in some order, they will be semantically equivalent, and from the class interface 
we would be unable to distinguish the original object and its copy.

There is  one implementation of  copyOther that  is  considerably more elegant  than either  of  the  two 
versions listed above:

    /* Version 3: Duplicate list using the insert function */
    template <typename T> void ListSet<T>::copyOther(const ListSet& other) {
        for(cellT* source = other.list; source != NULL; source = source->next)
            insert(source->data);
    }

Notice that this implementation uses the ListSet's public interface to insert the elements from the source 
ListSet into the receiver object.  This version of  copyOther is unquestionably the cleanest.  If you'll 
notice, it doesn't matter exactly how insert adds elements into the list (indeed, insert could insert the 
elements at random positions), but we're guaranteed that at the end of the copyOther call, the receiver 
object will be semantically equivalent to the parameter.

Conversion Assignment Operators

When  working  with  copy  constructors,  we  needed  to  define  an  additional  function,  the  assignment 
operator, to handle all the cases in which an object can be copied or assigned.  However, in the chapter on  
conversion  constructors,  we  provided  a  conversion  constructor  without  a  matching  “conversion 
assignment operator.”  It turns out that this is not a problem because of how the assignment operator is  
invoked.  Suppose that we have a CString class that has a defined copy constructor, assignment operator, 
and conversion constructor that converts raw C++ char * pointers into CString objects.  Now, suppose 
we write the following code:

    CString myCString;
    myCString = "This is a C string!";

Here, in the second line, we assign an existing CString a new value equal to a raw C string.  Despite the 
fact that we haven't defined a special assignment operator to handle this case, the above is perfectly legal 
code.  When we write the line

    myCString = "This is a C string!";

C++ converts it into the equivalent code

    myCString.operator= ("This is a C string!");

This syntax may look entirely foreign, but is simply a direct call to the assignment operator.  Recall that the 
assignment operator is a function named operator =, so this code passes the C string  "This is a C 
string!" as a parameter to operator =.  Because operator = accepts a CString object rather than a 
raw C string, C++ will invoke the CString conversion constructor to initialize the parameter to operator 
=.  Thus this code is equivalent to 

    myCString.operator =(CString("This is a C string!"));
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In other words,  the conversion constructor converts the raw C string into a  CString object,  then the 
assignment operator sets the receiver object equal to this temporary CString.

In  general,  you  need  not  provide  a  “conversion  assignment  operator”  to  pair  with  a  conversion 
constructor.   As  long  as  you've  provided  well-defined  copy  behavior,  C++  will  link  the  conversion 
constructor and assignment operator together to perform the assignment.

Disabling Copying

In CS106B/X we provide you the DISALLOW_COPYING macro, which causes a compile error if you try to 
assign or copy objects of the specified type.  DISALLOW_COPYING, however, is not a standard C++ feature. 
Without using the CS106B/X library,  how can we replicate the functionality?  We can't prevent object 
copying by simply not defining a copy constructor and assignment operator.  All this will do is have C++  
provide its own default version of these two functions, which is not at all what we want.  To solve this  
problem, instead we'll provide an assignment operator and copy constructor, but declare them private so 
that class clients can't access them.  For example:

    class CannotBeCopied {
    public:
        CannotBeCopied();
        /* Other member functions. */

    private:
        CannotBeCopied(const CannotBeCopied& other);
        CannotBeCopied& operator = (const CannotBeCopied& other);
    };

Now, if we write code like this:

    CannotBeCopied one;
    CannotBeCopied two = one;

We'll get a compile-time error on the second line because we're trying to invoke the copy constructor,  
which has been declared private.  We'll get similar behavior when trying to use the assignment operator.

This trick is almost one hundred percent correct, but does have one edge case: what if we try to invoke the  
copy constructor or assignment operator inside a member function of the class?  The copy functions might 
be private, but that doesn't mean that they don't exist, and if we call them inside a member function might  
accidentally create a copy of an otherwise uncopyable object.  To prevent this from happening, we'll use a  
cute trick.  Although we'll  prototype the copy functions inside the private section of the class, we won't 
implement them.  This means that if we accidentally do manage to call either function, we will get a linker 
error because the compiler can't find code for either function.  This is admittedly a bit hackish, so in C+
+0x, the next revision of C++, there will be a way to explicitly indicate that a class is uncopyable.  In the  
meantime, though, the above approach is perhaps your best option.  We'll see another way to do this later  
when we cover inheritance.

Extended Example: SmartPointer

In C++ parlance, a raw pointer like an int* or a  char* is sometimes called a  dumb pointer because the 
pointer has no “knowledge” of the resource it owns.  If an  int* goes out of scope, it doesn't inform the 
object it's pointing at and makes no attempt whatsoever to clean it up.  The int* doesn't own its resource, 
and assigning one int* to another doesn't make a deep copy of the resource or inform the other int* that 
another pointer now references its pointee.
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Because raw pointers are so problematic, many C++ programmers prefer to use  smart pointers, objects 
that mimic raw pointers but which perform functions beyond merely pointing at a resource.  For example,  
the C++ standard library class auto_ptr, which we'll cover in the chapter on exception handling, acts like 
a regular pointer except that it automatically calls  delete on the resource it owns when it goes out of 
scope.  Other smart pointers are custom-tuned for specific applications and might perform functions like 
logging  access,  synchronizing  multithreaded  applications,  or  preventing  accidental  null  pointer 
dereferences.  Thanks to operator overloading, smart pointers can be built to look very similar to regular  
C++ pointers.  We can provide an implementation of  operator * to support dereferences like  *myPtr, 
and can define operator -> to let clients write code to the effect of myPtr->clear().  Similarly, we can 
write copy constructors and assignment operators for smart pointers that do more than just transfer a 
resource.

Reference Counting

Memory management in C++ is tricky.  You must be careful to balance every new with exactly one delete, and 
must make sure that no other pointers to the resource exist after delete-ing it to ensure that later on you don't 
access invalid memory.  If you  delete memory too many times you run into undefined behavior, and if you 
delete it too few you have a memory leak.  Is there a better way to manage memory?  In many cases, yes, and 
in this extended example we'll see one way to accomplish this using a technique called reference counting.  In 
particular, we'll design a smart pointer class called SmartPointer which acts like a regular C++ pointer, except 
that it uses reference counting to prevent resource leaks.

To motivate reference counting, let's suppose that we have a smart pointer class that stores a pointer to a  
resource.   The destructor for this smart pointer class can then  delete the resource automatically,  so 
clients  of  the  smart  pointer  never  need  to  explicitly  clean  up  any  resources.   This  system  is  fine  in 
restricted circumstances, but runs into trouble as soon as we have several smart pointers pointing to the 
same resource.  Consider the scenario below:

Smart 
Pointer

Resource

Smart 
Pointer

Both of these pointers can access the stored resource, but unfortunately neither smart pointer knows of 
the      other's existence.  Here we hit a snag.  If one smart pointer cleans up the resource while the other  
still points to it, then the other smart pointer will point to invalid memory.  If both of the pointers try to  
reclaim the dynamically-allocated memory, we will encounter a runtime error from double-delete-ing a 
resource.  Finally, if neither pointer tries to clean up the memory, we'll get a memory leak.

To resolve this problem, we'll use a system called reference counting where we will explicitly keep track of 
the number of pointers to a dynamically-allocated resource.  While there are several ways to make such a 
system work, perhaps the simplest is to use an intermediary object.  This can be seen visually:
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Smart 
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Now, the smart pointer stores a pointer to an intermediary object rather than a pointer directly to the  
resource.  This intermediary object has a counter (called a  reference counter) that tracks the number of 
smart pointers accessing the resource, as well as a pointer to the managed resource.  This intermediary 
object lets the smart pointers tell whether or not they are the only pointer to the stored resource; if the 
reference count is anything other than one, some other pointer shares the resource.  Provided that we 
accurately track the reference count,  each pointer can tell  if  it's the last pointer that knows about the  
resource and can determine whether to deallocate it.

To see how reference counting works, let's walk through an example.  Given the above system, suppose 
that we want to share the resource with another smart pointer.  We simply make this new smart pointer 
point  to the  same intermediary object  as  our  original  pointer,  then update  the  reference count.   The 
resulting scenario looks like this:

Smart 
Pointer

Resource
Intermediary

2

Smart 
Pointer

Although in this diagram we only have two objects pointing to the intermediary, the reference-counting 
system allows for any number of smart pointers to share a single resource.

Now, suppose one of  these  smart  pointers needs to stop pointing to the resource –  maybe it's  being  
assigned to a different resource, or perhaps it's going out of scope.  That pointer decrements the reference  
count of the intermediary variable and notices that the reference count is nonzero.  This means that at 
least one smart pointer still references the resource, so the smart pointer simply leaves the resource as it  
is.  Memory now looks like this:
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Finally,  suppose  this  last  smart  pointer  needs  to  stop  pointing  to  this  resource.   It  decrements  the  
reference count, but this time notices that the reference count is zero.  This means that no other smart  
pointers reference this resource, and the smart pointer knows that it needs to deallocate the resource and 
the intermediary object, as shown here:

The resource has now been deallocated and no other pointers reference the memory.  We've safely and  
effectively cleaned up our resources.   Moreover,  this process is completely automatic – the user never 
needs to explicitly deallocate any memory.

The following summarizes the reference-counting scheme described above:

• When creating a smart pointer to manage newly-allocated memory, first create an intermediary 
object and make the intermediary point to the resource.  Then, attach the smart pointer to the  
intermediary and set the reference count to one.

• To make a new smart pointer point to the same resource as an existing one, make the new smart  
pointer point to the old smart pointer's  intermediary object and increment the intermediary's 
reference count.

• To remove  a  smart  pointer  from  a  resource (either  because  the  pointer  goes  out  of  scope  or 
because it's being reassigned), decrement the intermediary object's reference count.  If the count  
reaches zero, deallocate the resource and the intermediary object.

While  reference counting  is  an excellent  system for  managing memory automatically,  it  does have its 
limitations.  In particular, reference counting can sometimes fail to clean up memory in “reference cycles,”  
situations where multiple reference-counted pointers hold references to one another.   If  this happens, 
none of the reference counters can ever drop to zero, since the cyclically-linked elements always refer to 
one another.  But barring this sort of setup, reference counting is an excellent way to automatically manage 
memory.  In this extended example, we'll see how to implement a reference-counted pointer, which we'll 

Smart 
Pointer

Resource

Intermediary

0
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call  SmartPointer, and will explore how the correct cocktail of C++ constructs can make the resulting  
class slick and efficient.

Designing SmartPointer

The above section details the implementation the  SmartPointer class, but we have not talked about its 
interface.   What functions should we provide?  We'll  try to make  SmartPointer resemble a raw C++ 
pointer as closely as possible, meaning that it should support operator * and operator -> so that the 
client can dereference the SmartPointer.  Here is one possible interface for the SmartPointer class:

    template <typename T> class SmartPointer {
    public:
        explicit SmartPointer(T* memory);
        SmartPointer(const SmartPointer& other);
        SmartPointer& operator =(const SmartPointer& other); 
        ~SmartPointer();

        T& operator *  () const;
        T* operator -> () const;
    };

Here is a breakdown of what each of these functions should do:

explicit SmartPointer(T* memory);

Constructs a new SmartPointer that manages the resource specified as the parameter.  The reference 
count is initially set to one.  We will assume that the provided pointer came from a call to  new.   This 
function  is  marked  explicit so  that  we  cannot  accidentally  convert  a  regular  C++  pointer  to  a 
SmartPointer.  At first this might seem like a strange design decision, but it prevents a wide range of 
subtle bugs.  For example,  suppose that this constructor is not  explicit and consider the following 
function:

void PrintString(const SmartPointer<string>& ptr) {
    cout << *ptr << endl;
}

This function accepts a  SmartPointer by reference-to-const, then prints out the stored string.  Now, 
what happens if we write the following code?

string* ptr = new string("Yay!");
PrintString(ptr);
delete ptr;

The  first  line  dynamically-allocates  a  string,  passes  it  to  PrintString,  and  finally  deallocates  it. 
Unfortunately, this code will almost certainly cause a runtime crash.  The problem is that PrintString 
expects a SmartPointer<string> as a parameter, but we've provided a string*.  C++ notices that the 
SmartPointer<string> has a conversion constructor that accepts a string*, and makes a temporary 
SmartPointer<string> using the pointer we passed as a parameter.  This new SmartPointer starts 
tracking the pointer with a reference count of one.  After the function returns, the parameter is cleaned 
up and its destructor invokes.  This decrements the reference count to zero, and then deallocates the  
pointer stored in the SmartPointer.  The above code then tries to delete ptr a second time, causing a 
runtime crash. To prevent this problem, we'll mark the constructor explicit, which makes the implicit 
conversion illegal and prevents this buggy code from compiling.
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SmartPointer(const SmartPointer& other);

Constructs a new SmartPointer that shares the resource contained in another SmartPointer, updating 
the reference count appropriately.

SmartPointer& operator=(const SmartPointer& other);

Causes this  SmartPointer to stop pointing to the resource it's currently managing and to share the 
resource held by another  SmartPointer.   If the smart pointer was the last pointer to its resource, it 
deletes it.

~SmartPointer();

Detaches the SmartPointer from the resource it's sharing, freeing the associated memory if necessary.

T& operator* () const;

“Dereferences” the pointer and returns a reference to the object being pointed at.  Note that  operator* is 
const; see the last chapter for more information why.

T* operator-> () const;

Returns  the  object  that  the  arrow  operator  should  really  be  applied  to  if  the  arrow  is  used  on  the  
SmartPointer.  Again, see the last chapter for more information on this.

Given this public interface for SmartPointer, we can now begin implementing the class.  We first need to 
decide on how we should represent the reference-counting information.  One simple method is to define a 
private struct inside SmartPointer that represents the reference-counting intermediary.  This looks as 
follows:

    template <typename T> class SmartPointer {
    public:
        explicit SmartPointer(T* memory);
        SmartPointer(const SmartPointer& other);
        SmartPointer& operator =(const SmartPointer& other); 
        ~SmartPointer();

        T& operator *  () const;
        T* operator -> () const;

    private:
        struct Intermediary {
            T* resource;
            size_t refCount;
        };
        Intermediary* data;
    };

Here, the resource field of the Intermediary is the actual pointer to the stored resource and refCount 
is the reference count.  Notice that we did not declare the reference count as a direct data member of the  
SmartPointer, but rather in the Intermediary object.  This is because the reference count of a resource 
is not owned by any one  SmartPointer, but rather is shared across all  SmartPointers that point to a 
particular resource.  This way, any changes to the reference count by one  SmartPointer will  become 
visible in all of the other SmartPointers referencing the resource.  You might ask – could we have made 
the  refCount a  static data  member?   This  would  indeed make  the  reference  count  visible  across 
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multiple  SmartPointers,  but  unfortunately  it  won't  work  out  correctly.   In  particular,  if  we  use 
SmartPointer to manage multiple resources, each one needs to have its own refCount or changes to the 
refCount for a particular resource will show up in the refCount for other resources.

Given this setup, we can implement the SmartPointer constructor by creating a new Intermediary that 
points to the specified resource and has an initial reference count of one:

    template <typename T> SmartPointer<T>::SmartPointer(T* res) {
        data = new Intermediary;
        data->resource = res;
        data->refCount = 1;
    }

It's very important that we allocate the Intermediary object on the heap rather than as a data member. 
That way, when the  SmartPointer is cleaned up (either by going out of scope or by an explicit call to  
delete), if it isn't the last pointer to the shared resource, the intermediary object isn't cleaned up.

We  can  similarly  implement  the  destructor  by  decrementing  the  reference  count,  then  cleaning  up 
memory if appropriate.  Note that if the reference count hits zero, we need to delete both the resource and 
the intermediary.  Forgetting to deallocate either of these leads to memory leaks, the exact problem we 
wanted to avoid.  The code for this is shown here:

    template <typename T> SmartPointer<T>::~SmartPointer() {
        --data->refCount;
        if(data->refCount == 0) {
            delete data->resource;
            delete data;
        }
    }

This is an interesting destructor in that it isn't guaranteed to actually clean up any memory.  Of course, this  
is exactly the behavior we want, since the memory might be shared among multiple SmartPointers.

Implementing operator * and operator -> simply requires us to access the pointer stored inside the 
SmartPointer.  These two functions can be implemented as follows:*

    template <typename T> T& SmartPointer<T>::operator * () const {
        return *data->resource;
    }
    template <typename T> T* SmartPointer<T>::operator -> () const {
        return data->resource;
    }

Now, we need to implement the copy behavior for this  SmartPointer.   One way to do this is to write 
helper functions clear and copyOther which perform deallocation and copying.  We will use a similar 

* It is common to see operator -> implemented as

RetType* MyClass::operator -> () const
{
    return &**this;
}

&**this is interpreted by the compiler as &(*(*this)), which means “dereference the this pointer to get the receiver 
object, then dereference the receiver.  Finally, return the address of the referenced object.”  At times this may be the  
best way to implement operator ->, but I advise against it in general because it's fairly cryptic.



- 358 -  Chapter 11: Resource Management

approach here, except using functions named detach and attach to make explicit the operations we're 
performing.  This leads to the following definition of SmartPointer:
    template <typename T> class SmartPointer {
    public:
        explicit SmartPointer(T* memory);
        SmartPointer(const SmartPointer& other);
        SmartPointer& operator =(const SmartPointer& other); 
        ~SmartPointer();

        T& operator *  () const;
        T* operator -> () const;

    private:
        struct Intermediary {
            T* resource;
            size_t refCount;
        };
        Intermediary* data;

        void detach();
        void attach(Intermediary* other);
    };

Now, what should these functions do?  The first of these, detach, should detach the SmartPointer from 
the shared intermediary and clean up the memory if it was the last pointer to the shared resource.  In case  
this sounds familiar, it's because this is exactly the behavior of the  SmartPointer destructor.  To avoid 
code duplication, we'll move the code from the destructor into detach as shown here:

    template <typename T> void SmartPointer<T>::detach() {
        --data->refCount;
        if(data->refCount == 0) {
            delete data->resource;
            delete data;
        }
    }

We can then implement the destructor as a wrapped call to detach, as seen here:

    template <typename T> SmartPointer<T>::~SmartPointer() {
        detach();
    }

The attach function, on the other hand, makes this SmartPointer begin pointing to the specified Intermediary 
and increments the reference count.  Here's one possible implementation of attach:

    template <typename T> void SmartPointer<T>::attach(Intermediary* to) {
        data = to;
        ++data->refCount;
    }

Given  these  two  functions,  we  can  implement  the  copy  constructor  and  assignment  operator  for  
SmartPointer as follows:
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    template <typename T> SmartPointer<T>::SmartPointer(const SmartPointer& other){
        attach(other.data);
    }

    template <typename T>
    SmartPointer<T>& SmartPointer<T>::operator= (const SmartPointer& other) {
        if(this != &other) {
            detach();
            attach(other.data);
        }
        return *this;
    }

It is crucial that we check for self-assignment inside the  operator= function, since otherwise we might 
destroy the data that we're trying to keep track of!

At this point we have a rather slick SmartPointer class.  Here's some code demonstrating how a client 
might use SmartPointer:

    SmartPointer<string> myPtr(new string);
    *myPtr = "This is a string!";
    cout << *myPtr << endl;

    SmartPointer<string> other = myPtr;
    cout << *other << endl;
    cout << other->length() << endl;

The beauty of this code is that client code using a SmartPointer<string> looks almost identical to code 
using a regular C++ pointer.  Isn't operator overloading wonderful?

Extending SmartPointer

The SmartPointer defined above is useful but lacks some important functionality.  For example, suppose 
that we have the following function:

    void DoSomething(string* ptr);

Suppose that we have a  SmartPointer<string> managing a resource and that we want to pass the 
stored string as a parameter to  DoSomething.  Despite the fact that  SmartPointer<string> mimics a 
string*,  it  technically  is  not  a  string* and  C++  won't  allow  us  to  pass  the  SmartPointer into 
DoSomething. Somehow we need a way to have the SmartPointer hand back the resource it manages.

Notice that the only SmartPointer member functions that give back a pointer or reference to the actual 
resource are operator* and operator->.  Technically speaking, we could use these functions to pass the 
stored  string into  DoSomething,  but  the  syntax  would  be  messy  (in  the  case  of  operator*)  or 
nightmarish (for operator ->).  For example:
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   SmartPointer<string> myPtr(new string);

    /* To use operator* to get the stored resource, we have to first dereference 
     * the SmartPointer, then use the address-of operator to convert the returned
     * reference into a pointer.
     */
    DoSomething(&*myPtr);

    /* To use operator-> to get the stored resource, we have to explicitly call the
     * operator-> function.  Yikes!
     */
    DoSomething(myPtr.operator-> ());

Something is clearly amiss and we cannot reasonably expect clients to write code like this routinely.  We'll  
need to extend the  SmartPointer class  to provide a way to return the stored pointer  directly.   This 
necessitates the creation of a new member function, which we'll call get, to do just that.  Given a function 
like this, we could then invoke DoSomething as follows:

DoSomething(myPtr.get());

The updated interface for SmartPointer looks like this:

    template <typename T> class SmartPointer {
    public:
        explicit SmartPointer(T* memory);
        SmartPointer(const SmartPointer& other);
        SmartPointer& operator =(const SmartPointer& other); 
        ~SmartPointer();
    
        T& operator *  () const;
        T* operator -> () const;

        T* get() const;

    private:
        struct Intermediary {
            T* resource;
            size_t refCount;
        };
        Intermediary* data;
    
        void detach();
        void attach(Intermediary* other);
    };

The implementation of get is fairly straightforward and is shown here:

    template <typename T> T* SmartPointer<T>::get() const {
        return data->resource;
    }

Further Extensions

There are several more extensions to the SmartPointer class that we might want to consider, of which 
this section explores two.  The first is rather straightforward.  At times, we might want to know exactly 
how many  SmartPointers share a resource.  This might enable us to perform some optimizations,  in 
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particular  a  technique called  copy-on-write.   We will  not  explore  this  technique here,  though  you are 
encouraged to do so on your own.

Using  the  same  logic  as  above,  we'll  define  another  member  function  called  getShareCount which 
returns the number of SmartPointers pointing to the managed resource (including the receiver object). 
This results in the following class definition:

    template <typename T> class SmartPointer {
    public:
        explicit SmartPointer(T* memory);
        SmartPointer(const SmartPointer& other);
        SmartPointer& operator =(const SmartPointer& other); 
        ~SmartPointer();

        T& operator *  () const;
        T* operator -> () const;

        T*  get() const;
        size_t getShareCount() const;

    private:
        struct Intermediary {
            T* resource;
            size_t refCount;
        };
        Intermediary* data;
    
        void detach();
        void attach(Intermediary* other);
    };

And the following implementation:

    template <typename T> size_t SmartPointer<T>::getShareCount() const {
        return data->refCount;
    }

The last  piece of  functionality  we'll  consider  is the  ability  to “reset”  the  SmartPointer to  point  to a 
different resource.  When working with a  SmartPointer,  at times we may just want to drop whatever 
resource we're  holding  and begin  managing a  new one.   As you might  have suspected,  we'll  add yet  
another member function called reset which resets the SmartPointer to point to a new resource.  The 
final interface and code for reset is shown here:
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    template <typename T> class SmartPointer {
    public:
        explicit SmartPointer(T* memory);
        SmartPointer(const SmartPointer& other);
        SmartPointer& operator =(const SmartPointer& other); 
        ~SmartPointer();

        T& operator *  () const;
        T* operator -> () const;

        T*     get() const;
        size_t getShareCount() const;
        void   reset(T* newRes);

    private:
        struct Intermediary {
            T* resource;
            size_t refCount;
        };
        Intermediary* data;

        void detach();
        void attach(Intermediary* other);
    };

    template <typename T> void SmartPointer<T>::reset(T* newRes) {
        /* We're no longer associated with our current resource, so drop it. */
        detach();

        /* Attach to a new intermediary object. */
        data = new Intermediary;
        data->resource = newRes;
        data->refCount = 1
    }

Practice Problems

The only way to learn copy constructors and assignment operators is to play around with them to gain 
experience.  Here are some practice problems and thought questions to get you started:

1. When is the copy constructor invoked?
 

2. When is the assignment operator invoked?
 

3. What is the signature of the copy constructor?
 

4. What is the signature of the assignment operator?
 

5. What is the rule of three?  What are the “three” it refers to?
 

6. What is the behavior of the default-generated copy constructor and assignment operator?
 

7. Why does the assignment operator have to check for self-assignment but the copy constructor not 
need to check for “self-initialization?”
 

8. What is bitwise equivalence?  What is semantic equivalence?  Which of the two properties should 
be guaranteed by the two copy functions? 
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9. What is a smart pointer?
 

10. What is reference-counting?
 

11. Realizing  that  the  copy  constructor  and  assignment  operator  for  most  classes  have  several  
commonalities, you decide to implement a class's copy constructor using the class's assignment 
operator. For example, you try implementing the Vector's copy constructor as
 
    template <typename T> Vector<T>::Vector(const Vector& other) {
        *this = other;
    }
 
(Since  this is a pointer to the receiver object,  *this is the receiver object, so  *this = other 
means to assign the receiver object the value of the parameter other)
 
This idea, while well-intentioned, has a serious flaw that causes the copy constructor to almost 
always cause a crash.  Why is this? (Hint: Were any of the Vector data members initialized before  
calling the assignment operator?  Walk through the assignment operator and see what happens if the  
receiver object's data members haven't been initialized.)

12. It is illegal to write a copy constructor that accepts its parameter by value.  Why is this?  However,  
it's perfectly acceptable to have an assignment operator that accepts its parameter by value.  Why 
is this legal?  Why the difference?
 

13. An alternative implementation of the assignment operator uses a technique called copy-and-swap. 
The copy-and-swap approach is broken down into two steps.  First, we write a member function  
that accepts a reference to another instance of the class, then exchanges the data members of the  
receiver object and the parameter.  For example, when working with the DebugVector, we might 
write a function called swapWith as follows:
 
  template <typename ElemType> void Vector<ElemType>::swapWith(Vector& other)
  {
      swap(array, other.array);
      swap(logicalLength, other.logicalLength);
      swap(allocatedLength, other.allocatedLength);
  }
 
Here, we use the STL swap algorithm to exchange data members.  Notice that we never actually 
make a deep-copy of any of the elements in the array – we simply swap pointers with the other  
DebugVector.  We can then implement the assignment operator as follows:
  
  template <typename T> Vector<T>& Vector<T>::operator= (const Vector& other)
  {
      DebugVector temp(other);
      swapWith(temp);
      return *this;
  }

Trace through this implementation of the assignment operator and explain how it sets the receiver 
object to be a deep-copy of the parameter.  What function actually deep-copies the data?  What 
function is responsible for cleaning up the old data members?
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14. When writing an assignment operator using the pattern covered earlier in the chapter, we had to 
explicitly check for self-assignment in the body of the assignment operator.  Explain why this is no  
longer necessary using the copy-and-swap approach, but why it still might be a good idea to insert 
the self-assignment check anyway. 
 

15. A singleton class is a class that can have at most one instance.  Typically, a singleton class has its 
default  constructor  and destructor  marked private  so  that  clients  cannot  instantiate  the  class 
directly, and exports a static member function called getInstance() that returns a reference to 
the only instance of the class.  That one instance is typically a private static data member of the 
class.  For example:
 
    class Singleton {
    public:
        static Singleton& getInstance();

    private:
        Singleton();  // Clients cannot call this function; it's private
        ~Singleton(); // ... nor can they call this one

        static Singleton instance; // ... but they can be used here because
                                   // instance is part of the class.
    };
 
Singleton Singleton::instance;
 
Does it make sense for a singleton class to have a copy constructor or assignment operator?  If so,  
implement them.  If not, modify the Singleton interface so that they are disabled.

16. Given  this  chapter's  description  about  how  to  disable  copying  in  a  class,  implement  a  macro 
DISALLOW_COPYING that  accepts  as  a  parameter  the  name  of  the  current  class  such  that  if 
DISALLOW_COPYING is placed into the private section of a class, that class is uncopyable.  Note that  
it is legal to create macros that span multiple lines by ending each line with the \ character.  For 
example, the following is all one macro:
 
#define CREATE_PRINTER(str) void Print##str() {\
    cout << #str << endl;\
}

17. Consider the following alternative mechanism for disabling copying in a class: instead of marking 
those  functions  private,  instead  we  implement  those  functions,  but  have  them  call  abort (a 
function from  <cstdlib> that immediately terminates the program) after printing out an error 
message.  For example:

    class PseudoUncopyable {
    public:
        PseudoUncopyable(const PseudoUncopyable& other) {
            abort();
        }
        PseudoUncopyable& operator= (const PseudoUncopyable& other) {
            abort();
            return *this; // Never reached; suppresses compiler warnings
        }
    };
 
Why is this approach a bad idea?
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18. Should you copy  static data members in a copy constructor or assignment operator?  Why or 
why not?
 

19. In the canonical implementation of the assignment operator we saw earlier in this chapter, we 
used the check if (this != &other) to avoid problems with self-assignment.  In this exercise, 
we'll see what happens if we replace this check with if (*this != other).
 
1. What is the meaning of if (*this != other)?  Will this code compile for any class, or does 

that class have to have a special property?
 

2. Will the check if (*this != other) correctly detect whether an object is being assigned to 
itself? Will it detect anything else? 

3. Assume  that  the  Vector has  an  implementation  of  operator!= that  checks  whether  the 
operands have exactly the same size and elements.  What is the asymptotic (big-O) complexity 
of the check if(*this != other)?  How about if (this != &other)?  Does this give you 
a better sense why the latter is preferable to the former?
 

20. In  a  sense,  our  implementation  of  the  Vector assignment  operator  is  wasteful.   It  works  by 
completely discarding the internal array, then constructing a new array to hold the other Vector's 
elements.  An alternative implementation would work as follows.  If the other Vector's elements 
can fit in the space currently allocated by the Vector, then the elements from the other  Vector 
are copied directly into the existing space.  Otherwise, new space is allocated as before.  Rewrite  
the Vector's operator= function using this optimization.  Why won't this technique work for the 
copy constructor?
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Forty years ago, goto-laden code was considered perfectly good practice.  Now we strive to write  
structured control flows.  Twenty years ago, globally accessible data was considered perfectly  
good practice.   Now we strive to encapsulate data.  Ten years ago, writing functions without  
thinking about the impact of exceptions was considered good practice.  Now we strive to write  
exception-safe code.

Time goes on.  We live.  We learn.

– Scott Meyers, author of Effective C++ and one of the leading experts on C++. [Mey05]

In  an  ideal  world,  network  connections  would  never  fail,  files  would  always  exist  and  be  properly 
formatted, users would never type in malformed input, and computers would never run out of memory.  
Realistically, though, all of the above can and will occur and your programs will have to be able to respond 
to  them  gracefully.   In  these  scenarios,  the  normal  function-call-and-return mechanism  is  not  robust 
enough to signal and report errors and you will have to rely on exception handling, a C++ language feature 
that redirects program control in case of emergencies.

Exception handling is a complex topic and will have far-reaching effects on your C++ code.  This chapter  
introduces  the  motivation  underlying  exception  handling,  basic  exception-handling  syntax,  and  some 
advanced techniques that can keep your code operating smoothly in an exception-filled environment.

A Simple Problem

Up to this point, all of the programs you've written have proceeded linearly – they begin inside a special  
function called main, then proceed through a chain of function calls and returns until (hopefully) hitting 
the  end of  main.   While  this  is  perfectly  acceptable,  it  rests  on the fact  that  each  function,  given its 
parameters, can perform a meaningful task and return a meaningful value.  However, in some cases this 
simply isn't possible.

Suppose,  for  example,  that  we'd  like  to  write  our  own  version  of  the  CS106B/X  StringToInteger 
function, which converts a  string representation of an number into an  int equivalent.  One possible 
(partial) implementation of StringToInteger might look like this:*

    int StringToInteger(const string &input) {
        stringstream converter(input);
        int result; // Try reading an int, fail if we're unable to do so.

        converter >> result;
        if (converter.fail())
            // What should we do here?

        char leftover; // See if anything's left over.  If so, fail.
        converter >> leftover;
        if (!converter.fail())
           return result;
        else
           // What should we do here?
     }

* This  is  based off  of  the  GetInteger function we covered in  the chapter  on streams.   Instead of  looping and 
reprompting the user for input at each step, however, it simply reports errors on failure.
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If the parameter input is a string with a valid integer representation, then this function simply needs to 
perform the conversion.  But what should our function do if the parameter doesn't represent an integer? 
One possible option, and the one used by the CS106B/X implementation of StringToInteger, is to call a 
function like Error that prints an error and terminates the program.  This response seems a bit drastic 
and is a decidedly suboptimal solution for several reasons.  First, calling Error doesn't give the program a 
chance  to  recover  from  the  problem.   StringToInteger is  a  simple  utility  function,  not  a  critical 
infrastructure component, and if it fails chances are that there's an elegant way to deal with the problem.  
For example,  if  we're using  StringToInteger to convert user input in a text  box into an integer for 
further processing, it makes far more sense to reprompt the user than to terminate the program.  Second,  
in a very large or complicated software system, it seems silly to terminate the program over a simple 
string error.  For example, if this  StringToInteger function were used in an email client to convert a 
string representation of a time to an integer format (parsing the hours and minutes separately), it would 
be disastrous if the program crashed whenever receiving malformed emails.  In essence, while using a 
function like Error will prevent the program from continuing with garbage values, it is simply too drastic 
a move to use in serious code.

This approach suggests a second option, one common in pure C –  sentinel values.   The idea is to have 
functions return special values meaning “this value indicates that the function failed to execute correctly.”  
In  our  case,  we  might  want  to  have  StringToInteger return  -1  to  indicate  an  error,  for  example. 
Compared with the “drop everything” approach of Error this may seem like a good option – it reports the 
error and gives the calling function a chance to respond.  However, there are several major problems with 
this method.  First, in many cases it is not possible to set aside a value to indicate failure.  For example, 
suppose that we choose to reserve -1 as an error code for StringToInteger.  In this case, we'd make all 
of our calls to StringToInteger as

    if (StringToInteger(myParam) == -1) { 
        /* ... handle error ... */ 
    }

But what happens if the input to StringToInteger is the string "-1"?  In this case, whether or not the 
StringToInteger function completes successfully, it will still return -1 and our code might confuse it  
with an error case.

Another serious problem with this approach is that if each function that might possibly return an error 
has to reserve sentinel values for errors, we might accidentally check the return value of one function 
against the error code of another function.  Imagine if there were several constants floating around named 
ERROR,  STATUS_ERROR,  INVALID_RESULT, etc., and whenever you called a function you needed to check 
the return value against the correct one of these choices.  If you chose incorrectly, even with the best of  
intentions your error-checking would be invalid.

Yet another shortcoming of this approach is that in some cases it will be impossible to reserve a value for 
use  as  a  sentinel.   For  example,  suppose  that  a  function  returns  a  vector<double>.   What  special 
vector<double> should we choose to use as a sentinel?

However, the most serious problem with the above approach is that you as a programmer can ignore the 
return value without encountering any warnings.   Even if StringToInteger returns a sentinel  value 
indicating an error, there are no compile-time or runtime warnings if you choose not to check for a return 
value.  In the case of  StringToInteger this may not be that much of a problem – after all,  holding a 
sentinel value instead of a meaningful value will not immediately crash the program – but this can lead to  
problems down the line that can snowball into fully-fledged crashes.  Worse, since the crash will probably  
be caused by errors from far earlier in the code, these sorts of problems can be nightmarish to debug. 
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Surprisingly, experience shows that many programmers – either out of negligence or laziness – forget to 
check return values for error codes and snowball effects are rather common.

We seem to have reached an unsolvable problem.  We'd like an error-handling system that, like  Error, 
prevents the program from continuing normally when an error occurs.  At the same time, however, we'd 
like the elegance of sentinel values so that we can appropriately process an error.  How can we combine  
the strengths of both of these approaches into a single system?

Exception Handling

The reason the above example is such a problem is that the normal C++ function-call-and-return system 
simply isn't robust enough to communicate errors back to the calling function.  To resolve this problem,  
C++ provides language support for an error-messaging system called exception handling that completely 
bypasses function-call-and-return.  If an error occurs inside a function, rather than returning a value, you 
can report the problem to the exception handling system to jump to the proper error-handling code.

The C++ exception handling system is broken into three parts –  try blocks,  catch blocks,  and  throw 
statements.  try blocks are simply regions of code designated as areas that runtime errors might occur.  To 
declare a  try block,  you simply write the keyword  try,  then surround the appropriate code in curly 
braces.  For example, the following code shows off a try block:

    try {
        cout << "I'm in a try block!" << endl;
    }

Inside of a try block, code executes as normal and jumps to the code directly following the try block once 
finished.  However, at some point inside a try block your program might run into a situation from which it 
cannot normally recover – for example, a call to StringToInteger with an invalid argument.  When this 
occurs, you can report the error by using the  throw keyword to “throw” the exception into the nearest 
matching catch clause.  Like return, throw accepts a single parameter that indicates an object to throw 
so that  when handling the exception your code has access to extra information about the error.   For 
example, here are three statements that each throw objects of different types:

    throw 0;                     // Throw an int
    throw new vector<double>;    // Throw a vector<double> *
    throw 3.14159;               // Throw a double

When you throw an exception, it can be caught by a catch clause specialized to catch that error.  catch 
clauses are defined like this:

    catch(ParameterType param) {
        /* Error-handling code */
    }

Here, ParameterType represents the type of variable this catch clause is capable of catching.  catch blocks 
must directly follow try blocks, and it's illegal to declare one without the other.  Since catch clauses are  
specialized for a single type, it's perfectly legal to have cascading catch clauses, each designed to pick up a 
different type of exception.  For example, here's code that catches exceptions of type int,  vector<int>, 
and string:
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    try {
       // Do something
    }
    catch(int myInt) {
       // If the code throws an int, execution continues here.
    }
    catch(const vector<int>& myVector) {
       // Otherwise, if the code throws a vector<int>, execution resumes here.
    }
    catch(const string& myString) {
       // Same for string
    }

Now, if the code inside the try block throws an exception, control will pass to the correct  catch block. 
You can visualize exception handling as a room of people and a ball.  The code inside the try block begins 
with the ball and continues talking as long as possible.  If an error occurs, the try block throws the ball to 
the appropriate catch handler, which begins executing.

Let's return to our earlier example with StringToInteger.  We want to signal an error in case the user 
enters an invalid parameter, and to do so we'd like to use exception handling.  The question, though, is 
what type of object we should throw.  While we can choose whatever type of object we'd like, C++ provides 
a  header  file,  <stdexcept>,  that  defines  several  classes  that  let  us  specify  what  error  triggered  the 
exception.  One of these, invalid_argument, is ideal for the situation.  invalid_argument accepts in its 
constructor a string parameter containing a message representing what type of error occurred, and has 
a  member function called  what that  returns  what the  error  was.*  We can thus rewrite  the  code for 
StringToInteger as

int StringToInteger(const string& input) {
   stringstream converter(input);
   int result; // Try reading an int, fail if we're unable to do so.

   converter >> result;
   if (converter.fail())
      throw invalid_argument("Cannot parse " + input + " as an integer.");

   char leftover; // See if anything's left over.  If so, fail.
   converter >> leftover;
   if (!converter.fail())
      return result;
   else
      throw invalid_argument(string("Unexpected character: ") + leftover);
}

Notice  that  while  the  function  itself  does  not  contain  a  try/catch pair,  it  nonetheless  has  a  throw 
statement.  If this statement is executed, then C++ will step backwards through all calling functions until it  
finds an appropriate  catch statement.  If it doesn't find one, then the program will halt with a runtime 
error.  Now, we can write code using StringToInteger that looks like this:

* what is a poor choice of a name for a member function.  Please make sure to use more descriptive names in your 
code!
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    try {
        int result = StringToInteger(myString);
        cout << "The result was: " << result;
    }
    catch(const invalid_argument& problem) {
        cout << problem.what() << endl; // Prints out the error message.
    }
    cout << "Yay!  We're done." << endl;

Here, if StringToInteger encounters an error and throws an exception, control will jump out of the try 
block into the  catch clause specialized to catch objects of  type  invalid_argument.   Otherwise,  code 
continues as normal in the try block, then skips over the catch clause to print “Yay!  We're done.”

There  are  several  things  to  note  here.   First,  if  StringToInteger throws  an  exception,  control 
immediately breaks out of the try block and jumps to the catch clause.  Unlike the problems we had with 
our earlier approach to error handling, here, if there is a problem in the try block, we're guaranteed that 
the  rest  of  the  code  in  the  try block  will  not  execute,  preventing  runtime  errors  stemming  from 
malformed objects.  Second, if there is an exception and control resumes in the  catch clause, once the 
catch block  finishes  running,  control  does  not resume  back  inside  the  try block.   Instead,  control 
resumes directly following the  try/catch pair, so the program above will print out “Yay!  We're done.” 
once the catch block finishes executing.  While this might seem unusual, remember that the reason for 
exception handling in the first place is to halt code execution in spots where no meaningful operation can  
be defined.  Thus if control leaves a try block, chances are that the rest of the code in the try could not 
complete without errors, so C++ does not provide a mechanism for resuming program control.  Third, note 
that we caught the  invalid_argument exception by reference (const invalid_argument& instead of 
invalid_argument).  As with parameter-passing, exception-catching can take values either by value or  
by reference, and by accepting the parameter by reference you can avoid making an unnecessary copy of  
the thrown object.

A Word on Scope

Exception handling is an essential part of the C++ programming language because it provides a system for  
recovering  from  serious  errors.   As  its  name  implies,  exception  handling  should  be  used  only  for 
exceptional circumstances – errors out of  the ordinary that  necessitate a major change in the flow of  
control.  While you can use exception handling as a fancy form of function call and return, it is highly  
recommended that you avoid doing so.  Throwing an exception is  much slower than returning a value 
because  of  the  extra  bookkeeping required,  so  be  sure  that  you're  only  using  exception handling  for 
serious program errors.

Also, the exception handling system will only respond when manually triggered.  Unless a code snippet 
explicitly throws a value, a catch block cannot respond to it.  This means that you cannot use exception 
handling to prevent your program from crashing from segmentation faults or other pointer-based errors,  
since  pointer  errors  result  in  operating-system  level  process  termination,  not  C++-level  exception 
handling.*

Programming with Exception Handling

While exception handling is a robust and elegant system, it has several sweeping implications for C++ 
code.  Most notably, when using exception handling, unless you are absolutely certain that the classes and  
functions you use never throw exceptions, you must treat your code as though it might throw an exception  

* If you use Microsoft's Visual Studio development environment, you might notice that various errors like null-
pointer  dereferences  and  stack  overflows  result  in  errors  that  mention  “unhandled  exception”  in  their 
description.  This is a Microsoft-specific feature and is different from C++'s exception-handling system.
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at any point.  In other words, you can never assume that an entire code block will be completed on its own, 
and should be prepared to handle cases where control breaks out of your functions at inopportune times.  
For example, consider the following function:

    void SimpleFunction() {
        int* myArray = new int[128];
        DoSomething(myArray);
        delete [] myArray;
    }

Here, we allocate space for a raw array, pass it to a function, then deallocate the memory.  While this code  
seems totally safe, when you introduce exceptions into the mix, this code can be very dangerous.  What  
happens,  for  example,  if  DoSomething throws an exception?  In this case,  control  would jump to the 
nearest catch block and the line delete [] myArray would never execute.  As a result, our program will 
leak the array.  If this program runs over a sufficiently long period of time, eventually we will run out of  
memory and our program will crash.

There are three main ways that we can avoid these problems.  First, it's completely acceptable to just avoid  
exception-handling all  together.   This approach might seem like a cop-out,  but it is a completely valid  
option that many C++ developers choose.   Several  major software projects written in C++ do not use  
exception handling (including the Mozilla Firefox web browser), partially because of the extra difficulties 
encountered when using exceptions.   However,  this  approach results  in code that  runs into the  same 
problems discussed earlier  in this chapter with  StringToInteger –  functions can only communicate 
errors through return values and programmers must be extra vigilant to avoid ignoring return values.

The second approach to writing exception-safe code uses a technique called “catch-and-rethrow.”  Let's 
return to the above code example with a dynamically-allocated character buffer.  We'd like to guarantee 
that the array we've allocated gets deallocated, but as our code is currently written, it's difficult to do so 
because the DoSomething function might throw an exception and interrupt our code flow.  If there is an 
exception,  what  if  we  were  able  to  somehow  intercept  that  exception,  clean  up  the  buffer,  and then 
propagate the exception outside of the SimpleFunction function?  From an outside perspective, it would 
look as if the exception had come from inside the DoSomething function, but in reality it would have taken 
a quick stop inside SimpleFunction before proceeding outwards.

The reason this method works is that it is legal to throw an exception from inside a catch block.  Although 
catch blocks are usually reserved for error handling, there is nothing preventing us from throwing the  
exception we catch.  For example, this code is completely legal:

    try{
        try {
            DoSomething();
        }
        catch(const invalid_argument& error) {
           cout << "Inner block: Error: " << error.what() << endl;
           throw error; // Propagate the error outward
        }
    }
    catch(const invalid_argument& error) {
        cout << "Outer block: Error:  " << error.what() << endl;
    }

Here, if the DoSomething function throws an exception, it will first be caught by the innermost try block, 
which prints it to the screen.  This catch handler then throws error again, and this time it is caught by 
the outermost catch block.
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With this technique, we can almost rewrite our SimpleFunction function to look something like this:

    void SimpleFunction() {
        int myArray = new int[128];

        /* Try to DoSomething.  If it fails, catch the exception and rethrow it. */
        try {
            DoSomething(myCString);
        }
        catch (/* What to catch? */) {
            delete [] myArray;
            throw /* What to throw? */;
        }

        /* Note that if there is no exception, we still need to clean things up. */
        delete [] myArray;
    }

There's a bit of a problem here – what sort of exceptions should we catch?  Suppose that we know every  
sort of exception DoSomething might throw.  Would it be a good idea to write a catch block for each one 
of these types?  At first this may seem like a good idea, but it can actually cause more problems than it  
solves.  First, in each of the catch blocks, we'd need to write the same delete [] statement.  If we were 
to make changes to the  SimpleFunction function that necessitated more cleanup code, we'd need to 
make progressively more changes to the  SimpleFunction catch cascade, increasing the potential for 
errors.  Also, if we forget to catch a specific type of error, or if DoSomething later changes to throw more 
types of errors, then we might miss an opportunity to catch the thrown exception and will leak resources.  
Plus, if we don't know what sorts of exceptions DoSomething might throw, this entire approach will not 
work.

The problem is that in this case, we want to tell C++ to catch anything that's thrown as an exception.  We 
don't care about what the type of the exception is, and need to intercept the exception simply to ensure 
that our resource gets cleaned up.  Fortunately, C++ provides a mechanism specifically for this purpose.  To 
catch an exception of any type, you can use the special syntax catch(...), which catches any exception. 
Thus we'll have the catch clause inside DoSomething be a catch(...) clause, so that we can catch any 
type of exception that DoSomething might throw.  But this causes another problem: we'd like to rethrow 
the exception, but since we've used a catch(...) clause, we don't have a name for the specific exception 
that's been caught.  Fortunately, C++ has a special use of the  throw statement that lets you throw the 
current exception that's being processed.  The syntax is

    throw;

That is,  a  lone  throw statement with no parameters.  Be careful when using  throw;,  however, since if 
you're not inside of a catch block the program will crash!

The final version of SimpleFunction thus looks like this:
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void SimpleFunction() {
        int myArray = new int[128];

        /* Try to DoSomething.  If it fails, catch the exception and rethrow it. */
        try {
            DoSomething(myCString);
        }
        catch (...) {
            delete [] myArray;
            throw;
        }

        /* Note that if there is no exception, we still need to clean things up. */
        delete [] myArray;
    }

As you can tell, the “catch-and-rethrow” approach to exception handling results in code that can be rather  
complicated.  While in some circumstances catch-and-rethrow is the best option, in many cases there's a  
much better alternative that  results  in concise,  readable,  and thoroughly exception-safe code –  object  
memory management.

Object Memory Management and RAII

C++'s memory model is best described as “dangerously efficient.”  Unlike other languages like Java, C++ 
does not have a garbage collector and consequently you must manually allocate and deallocate memory. 
At first, this might seem like a simple task – just delete anything you allocate with new, and make sure not 
to delete something twice.  However, it can be quite difficult to keep track of all of the memory you've 
allocated in a program.  After all, you probably won't notice any symptoms of memory leaks unless you run 
your programs for hours on end, and in all likelihood will have to use a special tool to check memory 
usage.  You can also run into trouble where two objects each point to a shared object.  If one of the objects  
isn't careful and accidentally  deletes the memory while the other one is still accessing it, you can get 
some particularly nasty runtime errors where seemingly valid data has been corrupted.  The situation gets  
all the more complicated when you introduce exception-handling into the mix, where the code to delete 
allocated memory might not be reached because of an exception.

In some cases having a high degree of control over memory management can be quite a boon to your  
programming, but much of the time it's simply a hassle.  What if we could somehow get C++ to manage our 
memory for us?  While building a fully-functional garbage collection system in C++ would be just short of  
impossible,  using  only  basic  C++  concepts  it's  possible  to  construct  an  excellent  approximation  of  
automatic memory management.  The trick is to build smart pointers, objects that acquire a resource when 
created and that clean up the resource when destroyed.  That is, when the objects are constructed, they 
wrap a newly-allocated pointer inside an object shell that cleans up the mess when the object goes out of  
scope.  Combined with features like operator overloading, it's possible to create slick smart pointers that 
look almost exactly like true C++ pointers, but that know when to free unused memory.

The C++ header file <memory> exports the auto_ptr type, a smart pointer that accepts in its constructor a 
pointer  to  dynamically-allocated  memory  and  whose  constructor  calls  delete on  the  resource.* 
auto_ptr is a template class whose template parameter indicates what type of object the auto_ptr will 
“point” at.  For example, an auto_ptr<string> is a smart pointer that points to a string.  Be careful – if 
you write  auto_ptr<string *>, you'll end up with an  auto_ptr that points to a  string *, which is 
similar to a string **.  Through the magic of operator overloading, you can use the regular dereference 
and arrow operators on an auto_ptr as though it were a regular pointer.  For example, here's some code 

* Note that auto_ptr calls delete, not delete [], so you cannot store dynamically-allocated arrays in auto_ptr.  If 
you want the functionality of an array with automatic memory management, use a vector.
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that dynamically allocates a  vector<int>, stores it in an auto_ptr, and then adds an element into the 
vector:

    /* Have the auto_ptr point to a newly-allocated vector<int>.  The constructor
     * is explicit, so we must use parentheses.
     */
    auto_ptr<vector<int> > managedVector(new vector<int>);
    managedVector->push_back(137); // Add 137 to the end of the vector.
    (*managedVector)[0] = 42; // Set element 0 by dereferencing the pointer.

While in many aspects  auto_ptr acts like a regular pointer with automatic deallocation,  auto_ptr is 
fundamentally  different  from regular  pointers  in  assignment  and initialization.   Unlike  objects  you've 
encountered  up  to  this  point,  assigning  or  initializing  an  auto_ptr to  hold  the  contents  of  another 
destructively modifies the source auto_ptr.  Consider the following code snippet:

    auto_ptr<int> one(new int);
    auto_ptr<int> two;
    two = one;

After the final line executes,  two will hold the resource originally owned by one, and one will be empty. 
During  the  assignment,  one relinquished  ownership  of  the  resource  and  cleared  out  its  state. 
Consequently,  if  you use  one from this point forward, you'll  run into trouble because it's not actually 
holding a pointer to anything.  While this is highly counterintuitive, it has several advantages.  First, it 
ensures that there can be at most one auto_ptr to a resource, which means that you don't have to worry 
about the contents of an auto_ptr being cleaned up out from underneath you by another  auto_ptr to 
that resource.  Second, it means that it's safe to return  auto_ptrs from functions without the resource 
getting cleaned up.  When returning an auto_ptr from a function, the original copy of the auto_ptr will 
transfer  ownership  to  the  new  auto_ptr during  return-value  initialization,  and the  resource  will  be 
transferred safely.*  Finally, because each auto_ptr can assume that it has sole ownership of the resource, 
auto_ptr can be implemented extremely efficiently and has almost zero overhead.

As a consequence of the “auto_ptr assignment is transference” policy, you must be careful when passing 
an auto_ptr by value to a function.  Since the parameter will be initialized to the original object, it will  
empty the original  auto_ptr.  Similarly, you should not store  auto_ptrs in STL containers, since when 
the containers reallocate or balance themselves behind the scenes they might assign auto_ptrs around in 
a way that will trigger the object destructors.

For reference, here's a list of the member functions of the auto_ptr template class:

* For those of you interested in programming language design, C++ uses what's known as copy semantics for most 
of its operations, where assigning objects to one another creates copies of the original objects.  auto_ptr seems 
strange because it uses move semantics, where assigning auto_ptrs to one another transfers ownership of some 
resource.   Move semantics  are not easily  expressed in C++ and the code to correctly  implement  auto_ptr is 
surprisingly complex and requires an intricate understanding of the C++ language.  The next revision of C++,  C+
+0x,  will  add several new features to the language to formalize and simply move semantics and will  replace  
auto_ptr with unique_ptr, which formalizes the move semantics.
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explicit auto_ptr (Type* resource) auto_ptr<int> ptr(new int);

Constructs  a  new  auto_ptr wrapping  the  specified  pointer,  which 
must be from dynamically-allocated memory.

auto_ptr(auto_ptr& other) auto_ptr<int> one(new int);
auto_ptr<int> two = one;

Constructs a new  auto_ptr that acquires resource ownership from 
the auto_ptr used in the initialization.  Afterwards, the old auto_ptr 
will not encapsulate any dynamically-allocated memory.

T& operator *() const *myAutoPtr = 137;

Dereferences  the  stored  pointer  and  returns  a  reference  to  the 
memory it's pointing at.

T* operator-> () const myStringAutoPtr->append("C++!");

References member functions of the stored pointer.

T* release() int *regularPtr = myPtr.release();

Relinquishes control of the stored resource and returns it so it can be 
stored in another location.  The  auto_ptr will then contain a  NULL 
pointer and will not manage the memory any more.

void reset(T* ptr = NULL) myPtr.reset();
myPtr.reset(new int);

Releases any stored resources and optionally stores a new resource 
inside the auto_ptr.

T* get() const SomeFunction(myPtr.get()); // Retrieve stored resource

Returns  the  stored  pointer.   Useful  for  passing  the  managed 
resource to other functions.

Of course, dynamically-allocated memory isn't the only C++ resource that can benefit from object memory  
management.  For example, when working with OS-specific libraries like Microsoft's Win32 library, you 
will  commonly  have  to  manually  manage  handles  to  system  resources.   In  spots  like  these,  writing 
wrapper classes that act like auto_ptr but that do cleanup using methods other than a plain delete can 
be quite beneficial.  In fact, the system of having objects manage resources through their constructors and 
destructors is commonly referred to as resource acquisition is initialization, or simply RAII.

Exceptions and Smart Pointers

Up to this point, smart pointers might seem like a curiosity, or perhaps a useful construct in a limited 
number of circumstances.  However, when you introduce exception handling to the mix, smart pointers 
will be invaluable.  In fact, in professional code where exceptions can be thrown at almost any point, smart  
pointers are almost as ubiquitous as regular C++ pointers.

Let's suppose you're given the following linked list cell struct:

    struct nodeT {
        int data;
        nodeT *next;
    };



Chapter 12: Error Handling - 379 -

Now, consider this function:

    nodeT* GetNewCell() {
        nodeT* newCell = new nodeT;
        newCell->next = NULL;
        newCell->data = SomeComplicatedFunction();
        return newCell;
    }

This  function  allocates  a  new  nodeT  cell,  then  tells  it  to  hold  on  to  the  value  returned  by 
SomeComplicatedFunction.  If we ignore exception handling, this code is totally fine, provided of course  
that the calling function correctly holds on to the  nodeT * pointer we return.  However, when we add 
exception  handling  to  the  mix,  this  function  is  a  recipe  for  disaster.   What  happens  if 
SomeComplicatedFunction throws an exception?  Since  GetNewCell doesn't have an associated  try 
block, the program will  abort  GetNewCell and search for the nearest  catch clause.   Once the  catch 
finishes executing, we have a problem – we allocated a  nodeT object, but we didn't clean it up.  Worse, 
since  GetNewCell is  no  longer  running,  we've  lost  track  of  the  nodeT entirely,  and  the  memory  is 
orphaned.

Enter  auto_ptr to  save  the  day.   Suppose  we  change  the  declaration  nodeT*  newCell to 
auto_ptr<nodeT> newCell.  Now, if  SomeComplicatedFunction throws an exception, we won't leak 
any memory since when the auto_ptr goes out of scope, it will reclaim the memory for us.  Wonderful!  Of 
course,  we also need to change the last line from  return newCell to  return newCell.release(), 
since we promised to return a nodeT *, not an auto_ptr<nodeT>.  The new code is printed below:

    nodeT* GetNewCell() {
        auto_ptr<nodeT> newCell(new nodeT);
        newCell->next = NULL;
        newCell->data = SomeComplicatedFunction();
        return newCell.release(); // Tell the auto_ptr to stop managing memory.
    }

This function is now wonderfully exception-safe thanks to  auto_ptr.   Even if we prematurely exit the 
function from an exception in SomeComplicatedFunction, the auto_ptr destructor will ensure that our 
resources are cleaned up.  However,  we can make this code even safer by using the  auto_ptr in yet 
another spot.   What happens if  we call  GetNewCell but don't  store the return value anywhere?  For 
example, suppose we have a function like this:

    void SillyFunction() {
        GetNewCell(); // Oh dear, there goes the return value.
    }

When we wrote  GetNewCell,  we tacitly assumed that the calling function would hold on to the return 
value  and  clean  the  memory  up  at  some  later  point.   However,  it's  totally  legal  to  write  code  like 
SillyFunction that calls  GetNewCell and entirely discards the return value.   This leads to memory 
leaks,  the  very  problem  we  were  trying  to  solve  earlier.   Fortunately,  through  some  creative  use  of 
auto_ptr, we can eliminate this problem.  Consider this modified version of GetNewCell:

    auto_ptr<nodeT> GetNewCell() {
        auto_ptr<nodeT> newCell(new nodeT);
        newCell->next = NULL;
        newCell->data = SomeComplicatedFunction();
        return newCell; // See below
    }
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Here, the function returns an auto_ptr, which means that the returned value is itself managed.  Now, if 
we  call  SillyFunction,  even  though  we  didn't  grab  the  return  value  of  GetNewCell,  because 
GetNewCell returns an auto_ptr, the memory will still get cleaned up.

Documenting Invariants with assert

The exception-handling techniques we've covered so far are excellent ways of handling and recovering 
from errors that can only be detected at compile-time.  If  a network connection fails to open, or your  
graphics card fails to initialize correctly, you can use exceptions to report the error so that your program  
can detect and recover from the problem.

However, there is an entirely different class of problems that your programs might encounter at runtime –  
logic errors.  As much as we'd all like to think that we can write perfect software on the first try, we all  
make mistakes when designing programs.  We pass NULL pointers into functions that expect them to be 
non-NULL.  We make accidental changes to linked lists while iterating over them.  We pass in values by  
reference that we meant to pass in by value.  These are normal errors in the programming process, and 
while time and experience can reduce their frequency, they can never entirely be eliminated.  The question 
then arises – given that you are going to make mistakes during development, how can you design your 
software to make it easier to detect and correct these errors?

When designing software, at various points in the program you will expect certain conditions to hold true.  
You might expect that a certain integer is even, or that a pointer is non-NULL, etc.  If these conditions don't 
hold, it's often a sign that your program contains a bug.

One trick you can use to make it easier to detect and diagnose bugs is to have the program check that these  
invariants hold at runtime.  If they do, then everything is going according to plan, but if for some reason 
the invariants do not hold it could signal the presence of a bug.  If the program can then report that an  
invariant failed to hold, it will make it significantly easier to debug.  For this purpose, C++ provides the 
assert macro.  assert, exported by the header <cassert>, checks to see that some condition holds true. 
If so, the macro has no effect.  Otherwise, it prints out the statement that did not evaluate to true, along  
with the file and line number in which it was written, then terminates the program.  For example, consider  
the following code:

    void MyFunction(int *myPtr) {
        assert(myPtr != NULL);
        *myPtr = 137;
    }

If a caller passes a null pointer into MyFunction, the assert statement will halt the program and print out a 
message that might look something like this:

    Assertion Failed: 'myPtr != NULL': File: main.cpp, Line: 42

Because  assert abruptly terminates the program without giving the rest of the application a chance to  
respond, you should not use  assert as a general-purpose error-handling routine.  In practical software 
development,  assert is usually used to express programmer assumptions about the state of execution 
that  can  only  be  broken if  the  software  is  written  incorrectly.   If  an  assert fails,  it  means  that  the 
programmer made a mistake, not that something unusual occurred at runtime.  For errors that might arise 
during normal execution, such as missing files or malformed user input,  user exception handling.   For 
errors that represent a bug in the original code, assert is a much better choice.
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Let's consider a concrete example.  Assume we have some enumerated type Color, which might look like 
this:

    enum Color {Red, Green, Blue, Magenta, Cyan, Yellow, Black, White};

Now, suppose that we want to write a function called IsPrimaryColor that takes in a Color and reports 
whether that color is a primary color (red, green, or blue).  Here's one implementation:

    bool IsPrimaryColor(Color c) {
        switch(c) {
            case Red:
            case Green:
            case Blue:
                return true;
            default:
                /* Otherwise, must not be a primary color. */
                return false;
        }
    }

Here, if the color is Red, Green, or Blue, we return that the color is indeed a primary color.  Otherwise, we 
return that it is not a primary color.  However, what happens if the parameter is not a valid Color, perhaps 
if the call is IsPrimaryColor(Color(-1))?  In this function, since we assume that that the parameter is 
indeed a color,  we might want to indicate that to the program by explicitly putting in an  assert test. 
Here's a modified version of the function, using assert and assuming the existence of a function IsColor:

    bool IsPrimaryColor(Color c) {
        assert(IsColor(c)); // We assume that this is really a color.
        switch (c) {
            case Red:
            case Green:
            case Blue:
                return true;
            default:
                /* Otherwise, must not be a primary color. */
                return false;
        }
    }

Now, if the caller passes in an invalid Color, the program will halt with an assertion error pointing us to 
the line that caused the problem.  If we have a good debugger, we should be able to figure out which caller  
erroneously passed in an invalid Color and can better remedy the problem.  Were we to ignore this case 
entirely, we might have considerably more trouble debugging the error, since we would have no indication  
of where the problem originated.

While  assert can be used to catch a good number of programmer errors during development, it has the 
unfortunate  side-effect  of  slowing  a  program  down  at  runtime  because  of  the  overhead of  the  extra 
checking involved.  Consequently, most major compilers disable the assert macro in release or optimized 
builds.  This may seem dangerous, since it eliminates checks for inconsistent state, but is actually not a  
problem  because,  in  theory,  you  shouldn't  be  compiling  a  release  build  of  your  program  if  assert 
statements fail during execution.*  Because assert is entirely disabled in optimized builds, you should use 
assert only to check that specific relations hold true, never to check the return value of a function.  If an  
assert contains a call to a function, when assert is disabled in release builds, the function won't be called, 

* In practice, this isn't always the case.  But it's still a nice theory!



- 382 -  Chapter 12: Error Handling

leading  to  different  behavior  in  debug  and  release  builds.   This  is  a  persistent  source  of  debugging 
headaches.
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More to Explore

Exception-handling and RAII are complex topics that have impressive ramifications for the way that your 
write C++ code.  However, we simply don't have time to cover every facet of exception handling.  In case  
you're interested in exploring more advanced topics in exception handling and RAII, consider looking into 
the following:

1. The Standard Exception Classes: In this chapter we discussed  invalid_argument, one of the 
many exception classes available in the C++ standard library.  However, there are several more 
exception classes that form an elaborate hierarchy.  Consider reading into some of the other classes 
– some of them even show up in the STL!

2. Exception Specifications.  Because functions can throw exceptions at any time, it can be difficult 
to determine which pieces of code can and cannot throw exceptions.  Fortunately, C++ has a feature 
called an exception specification which indicates what sorts of exceptions a function is allowed to 
throw.  When an exception leaves a function with an exception specification,  the program will  
abort unless the type of the exception is one of the types mentioned in the specification.

3. Function try Blocks.  There is a variant of a regular try block that lets you put the entire contents 
of a function into a try/catch handler pair.  However, it is a relatively new feature in C++ and is not  
supported by several popular compilers.  Check a reference for more information.

4. new and Exceptions.  If your program runs out of available memory, the new operator will indicate 
a failure by throwing an exception of type bad_alloc.  When designing custom container classes, 
it might be worth checking against this case and acting accordingly.

5. The Boost Smart Pointers: While auto_ptr is useful in a wide variety of circumstances, in many 
aspects it is limited.  Only one auto_ptr can point to a resource at a time, and auto_ptrs cannot 
be stored inside of STL containers.  The Boost C++ libraries consequently provide a huge number 
of smart pointers, many of which employ considerably more complicated resource-management 
systems than auto_ptr.  Since many of these smart pointers are likely to be included in the next 
revision of the C++ standard, you should be sure to read into them.

Bjarne  Stroustrup (the  inventor  of  C++)  wrote  an excellent  introduction to  exception safety,  focusing 
mostly on implementations of the C++ Standard Library.  If you want to read into exception-safe code, you  
can  read  it  online  at  http://www.research.att.com/~bs/3rd_safe.pdf.   Additionally,  there  is  a  most 
excellent  reference  on  auto_ptr available  at 
http://www.gotw.ca/publications/using_auto_ptr_effectively.htm that is a great resource on the subject.

Practice Problems

1. Explain why the auto_ptr constructor is marked explicit. (Hint: Give an example of an error you  
can make if the constructor is not marked explicit).

2. The SimpleFunction function from earlier in this chapter ran into difficulty with exception-safety 
because it relied on a manually-managed C string.  Explain why this would not be a problem if it  
instead used a C++ string.

http://www.gotw.ca/publications/using_auto_ptr_effectively.htm
http://www.research.att.com/~bs/3rd_safe.pdf
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3. Consider the following C++ function:

     void ManipulateStack(stack<string>& myStack) {
        if (myStack.empty())
            throw invalid_argument("Empty stack!");

        string topElem = myStack.top();
        myStack.pop();

        /* This might throw an exception! */
        DoSomething(myStack);

        myStack.push(topElem);
    }

This  function  accepts  as  input  a  C++  stack<string>,  pops  off  the  top  element,  calls  the 
DoSomething function, then pushes the element back on top.  Provided that the  DoSomething 
function doesn't throw an exception, this code will guarantee that the top element of the  stack 
does not change before and after the function executes.   Suppose,  however,  that we wanted to  
absolutely guarantee that the top element of the stack never changes, even if the function throws 
an exception.  Using the catch-and-rethrow strategy, explain how to make this the case.

5. Write a class called AutomaticStackManager whose constructor accepts a stack<string> and 
pops off the top element (if one exists) and whose destructor pushes the element back onto the  
stack.  Using this class, rewrite the code in Problem 4 so that it's exception safe.  How does this 
version of the code compare to the approach using catch-and-rethrow?
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Consider a simple task.  Suppose you have a  vector<string> and you'd like to count the number of 
strings that have length less than five.  You stumble upon the STL count_if algorithm, which accepts a 
range of iterators and a predicate function, then returns the number of elements in the range for which the 
function returns true.   For example, you could use  count_if as follows to count the number of even 
integers in a vector:

    bool IsEven(int val) {
        return val % 2 == 0;
    }

    vector<int> myVector = /* ... */
    int numEvens = count_if(myVector.begin(), myVector.end(), IsEven);

In our case, since we want to count the number of strings with length less than five, we could write a 
function like this one:

    bool LengthIsLessThanFive(const string& str) {
        return str.length() < 5;
    }

And then call count_if(myVector.begin(), myVector.end(), LengthIsLessThanFive) to get the 
number of short strings in the vector.  Similarly, if we want to count the number of strings with length 
less than ten, we could write a LengthIsLessThanTen function like this one:

    bool LengthIsLessThanTen(const string& str) {
        return str.length() < 10;
    }

and then call count_if(myVector.begin(), myVector.end(), LengthIsLessThanTen).  In general, 
if we know in advance what length we want to compare the string lengths against, we can write a function 
that returns whether a particular string's length is less than that value, then pass it into count_if to get 
our result.  This approach is legal C++, but is not particularly elegant.  Every time we want to compare the  
string  length  against  a  particular  value,  we  have  to  write  an  entirely  new  function  to  perform  the 
comparison.  Good programming practice suggests that we should instead just write  one function that 
looks like this:

    bool LengthIsLessThan(const string& str, size_t length) {
        return str.length() < length;
    }

This more generic function takes in a string and a length, then returns whether the string's length is less  
than the requested length.  This way, we can specify the maximum length as the second parameter rather 
than writing multiple instances of similar functions.

While  this  new function  is  more  generic  than  the  previous  version,  unfortunately  we  can't  use  it  in 
conjunction with count_if.  count_if requires a unary function (a function taking only one argument) 
as its final parameter, and the new LengthIsLessThan is a binary function.  Our new LengthIsLessThan 
function, while more generic than the original version, is actually less useful in this context.  There must be 
some way to compromise between the two approaches.  We need a way to construct a function that takes 



- 388 -  Chapter 13: Functors

in only one parameter (the string to test), but which can be customized to accept an arbitrary maximum 
length.  How can we do this?  

This  problem  boils  down  to  a  question  of  data  flow.   To  construct  this  hybrid  function,  we  need  to  
somehow communicate the upper bound into the function so that it can perform the comparison.  So how  
can we give this data to the function?  Recall that a function has access the following information:

• Its local variables.
• Its parameters.
• Global variables.

Is there some way that we can store the maximum length of the string in one of these locations?  We can't  
store it in a local variable, since local variables don't persist between function calls and aren't accessible to  
callers.  As mentioned above, we also can't store it in a parameter, since count_if is hardcoded to accept a 
unary function.  That leaves global variables.  We could solve this problem using global variables: we would 
store the maximum length in a global  variable,  then compare the string parameter length against the 
global.  For example:

    size_t gMaxLength; // Value to compare against

    bool LengthIsLessThan(const string& str) {
        return str.length() < gMaxLength;
    }

This approach works: if our vector<string> is called v, then we can count the number of elements less 
than some value by writing

    gMaxLength = /* ... some value ... */
    int numShort = count_if(v.begin(), v.end(), LengthIsLessThan);

But just because this approach works does not mean that it is optimal.  This approach is deeply flawed for 
several reasons, a handful of which are listed here:

• It is error-prone.  Before we use  LengthIsLessThan, we must take care to set  gMaxLength to 
the maximum desired length.  If we forget to do so, then LengthIsLessThan will use the wrong 
value in the comparison and we will get the wrong answer.  Moreover, because there is no formal 
relationship between the gMaxLength variable and the LengthIsLessThan function, the compiler 
can't verify that we correctly set gMaxLength before calling LengthIsLessThan, putting an extra 
burden on the programmer

• It is not scalable.   If every time we encounter a problem like this one we create a new global  
variable, programs we write will begin to fill up with global variables that are used only in the 
context of a single function.  This leads to  namespace pollution, where too many variables are in 
scope and it is easy to accidentally use one when another is expected.

• It uses global variables.   Any use of global variables should send a shiver running down your 
spine.  Global variables should be avoided at all costs, and the fact that we're using them here  
suggests that something is wrong with this setup.

None of the options we've considered are feasible or attractive.  There has to be a better way to solve this,  
but how?
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Functors to the Rescue

The fundamental issue at heart here is that a unary function does not have access to enough information 
to answer the question we're asking.  Essentially, we want a unary function to act like a binary function 
without taking an extra parameter.  Using only the tools we've seen so far, this simply isn't possible.  To 
solve this problem, we'll turn to a more powerful C++ entity: a functor.  A functor (or function object) is an 
C++ class that acts like a function.  Functors can be called using the familiar function call syntax, and can 
yield values and accept parameters just like regular functions.  For example, suppose we create a functor 
class called MyClass imitating a function accepting an int and returning a double.  Then we could “call” 
an object of type MyClass as follows:

    MyClass myFunctor;
    cout << myFunctor(137) << endl; // "Call" myFunctor with parameter 137

Although myFunctor is an object, in the second line of code we treat it as though it were a function by  
invoking it with the parameter 137.

At this point,  functors might seem utterly baffling:  why would you ever want to create an object that  
behaves like a function?  Don't worry, we'll answer that question in a short while.  In the meantime, we'll 
discuss the syntax for functors and give a few motivating examples.

To create a functor, we create an object that overloads the function call operator, operator ().  The name 
of this function is a bit misleading – it is a function called operator (), not a function called operator 
that takes no parameters.  Despite the fact that the name looks like “operator parentheses,” we're not 
redefining what it means to parenthesize the object.  Instead, we're defining a function that gets called if  
we invoke the object like a function.  Thus in the above code,

    cout << myFunctor(137) << endl;

is equivalent to

    cout << myFunctor.operator()(137) << endl;

Unlike other operators we've seen so far, when overloading the function call operator, you're free to return 
an object of any type (or even void) and can accept any number of parameters.  Remember that the point 
of operator overloading is to allow objects to act like built-in types, and since a regular function can have 
arbitrarily many parameters and any return type, functors are allowed the same freedom.  For example, 
here's a sample functor that overloads the function call operator to print out a string:

    class MyFunctor {
    public:
        void operator() (const string& str) const {
            cout << str << endl;
        }
    };

Note that in the function definition there are two sets of parentheses.  The first group is for the function  
name  –  operator () –   and  the  second  for  the  parameters  to  operator ().   If  we  separated  the 
implementation of operator () from the class definition, it would look like this:
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    class MyFunctor {
    public:
        void operator() (const string& str) const;
    };

    void MyFunctor::operator() (const string& str) const {
        cout << str << endl;
    }

Now that we've written MyFunctor, we can use it as follows:

    MyFunctor functor;
    functor("Functor power!");

This code calls the functor and prints out “Functor power!”

At this point functors might seem like little more than a curiosity.  “Sure,” you might say, “I can make an  
object that can be called like a function.  But what does it buy me?”  A lot more than you might initially  
suspect, it turns out.  The key difference between a function and a functor is that a functor's function call  
operator is a member function whereas a raw C++ function is a free function.  This means that a functor can 
access the following information when being called:

• Its local variables.
• Its parameters.
• Global variables.
• Class data members.

This last point is extremely important and is the key difference between a regular function and a functor. 
If a functor's operator() member function requires access to data beyond what can be communicated by 
its  parameters,  we  can  store  that  information  as  a  data  member  inside  the  functor  class.   Since 
operator() is a member of the functor class, it can then access that data freely.  For example, consider the  
following functor class:

    class StringAppender {
    public:
        /* Constructor takes and stores a string. */
        explicit StringAppender(const string& str) : toAppend(str) {}

        /* operator() prints out a string, plus the stored suffix. */
        void operator() (const string& str) const {
            cout << str << ' ' << toAppend << endl;
        }

    private:
        const string toAppend;
    };
    
This functor's constructor takes in a string and stores it for later use.  Its operator ()  function accepts a 
string,  then prints that string suffixed with the string stored by the constructor.  We can then use the  
StringAppender functor like this:

    StringAppender myFunctor("is awesome");
    myFunctor("C++");
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This code will print out “C++ is awesome,” since the constructor stored the string “is awesome” and we 
passed “C++” as a parameter to the function.  If you'll notice, though, in the actual function call we only 
passed in one piece of information – the string “C++.”  This is precisely why functors are so useful.  Like 
regular functions, functors are invoked with a fixed number of parameters.  Unlike raw functions, however, 
functors can be constructed to store as much information is necessary to solve the task at hand.

Let's return to the above example with count_if.  Somehow we need to provide a unary function that can 
return whether a string is less than an arbitrary length.  To solve this problem, instead of writing a unary 
function,  we'll  create  a  unary  functor whose  constructor  stores  the  maximum  length  and  whose 
operator () accepts  a  string  and  returns  whether  it's  of  the  correct  length.   Here's  one  possible 
implementation:

    class ShorterThan {
    public:
        /* Accept and store an int parameter */
        explicit ShorterThan(size_t maxLength) : length(maxLength) {}

        /* Return whether the string length is less than the stored int. */
        bool operator() (const string& str) const {
            return str.length() < length;
        }

    private:
        const size_t length;
    };

In this code, the constructor accepts a single size_t, then stores it as the length data member.  From that 
point forward, whenever the functor is invoked on a particular string, the functor's operator() function 
can compare the length of that string against length data member. This is exactly what we want – a unary 
function that knows what value to compare the parameter's length against.  To tie everything together, 
here's the code we'd use to count the number of strings in the vector that are shorter than the specified 
value:

    ShorterThan st(length);
    count_if(myVector.begin(), myVector.end(), st);

Functors are incredible when combined with STL algorithms for this very reason – they look and act like 
regular functions,  but have access to extra information.   This is  just  our first  taste of  functors,  as we 
continue our exploration of C++ you will recognize exactly how much they will influence your program 
design.

Look back to the above code with count_if.  If you'll notice, we created a new ShorterThan object, then 
fed it to  count_if.   After the call to  count_if,  odds are we'll never use that particular  ShorterThan 
object again.  This is an excellent spot to use temporary objects, since we need a new ShorterThan for the 
function call but don't plan on using it afterwards.  Thus, we can convert this code:

    ShorterThan st(length)
    count_if(myVector.begin(), myVector.end(), st);
Into this code:

    count_if(myVector.begin(), myVector.end(), ShorterThan(length));

Here, ShorterThan(length) constructs a temporary ShorterThan functor with parameter length, then 
passes it to the count_if algorithm.  Don't get tripped up by the syntax – ShorterThan(length) does 
not call the ShorterThan's operator () function.  Instead, it invokes the ShorterThan constructor with 
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the parameter length to create a temporary object.  Even if we had written the operator() function to 
take in an int, C++ would realize that the parentheses here means “construct an object” instead of “invoke 
operator()” from context.

Writing Functor-Compatible Code

In previous chapters, you've seen how to write code that accepts a function pointer as a parameter.  For 
example, the  following code accepts a function that takes and returns a  double, then prints a table of 
some values of that function:

    const double kLowerBound = 0.0;
    const double kUpperBound = 1.0;
    const int    kNumSteps   = 25;
    const double kStepSize   = (kUpperBound – kLowerBound) / kNumSteps;

    void TabulateFunctionValues(double function(double)) {
        for(double i = kLowerBound; i <= kUpperBound; i += kStepSize)
            cout << "f(" << i << ") = " << function(i) << endl;
    }

For any function accepting and returning a  double,  we can call  TabulateFunctionValues with that 
function as an argument.  But what about functors?  Can we pass them to TabulateFunctionValues as 
well?  As an example, consider the following implementation of a Reciprocal functor, whose operator() 
takes in a double and returns the reciprocal of that double:

    class Reciprocal {
    public:
        double operator() (double val) const {
            return 1.0 / val;
        }
    };

Given this class implementation, is the following code legal?

    TabulateFunctionValues(Reciprocal());

(Recall  that  Reciprocal() constructs  a  temporary  Reciprocal object  for  use  as  the  parameter  to 
TabulateFunctionValues.)

At a high level, this code seems perfectly fine.  After all, Reciprocal objects can be called as though they 
were  unary  functions  taking  and  returning  doubles,  so  it  seems  perfectly  reasonable  to  pass  a 
Reciprocal into TabulateFunctionValues.  But despite the similarities, Reciprocal is not a function 
– it's a functor – and so the above code will not compile.  The problem is that C++'s static type system 
prevents function pointers from pointing to functors,  even if the functor has the same parameter and 
return type as the function pointer.  This is not without reason – the machine code for calling a function is  
very different from machine code for calling a functor, and if C++ were to conflate the two it would result 
either in slower function calls or undefined runtime behavior.

Given  that  this  code  doesn't  compile,  how  can  we  fix  it?   Let's  begin  with  some  observations,  then 
generalize to the optimal solution.  The above code does not compile because we're trying to provide a 
Reciprocal object to a function expecting a function pointer.  This suggests one option – could we rewrite 
the  TabulateFunctionValues function such that it accepts a  Reciprocal as a parameter instead of a 
function pointer?  For example, we could write the following:
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    void TabulateFunctionValues(Reciprocal function) {
        for(double i = kLowerBound; i <= kUpperBound; i += kStepSize)
            cout << "f(" << i << ") = " << function(i) << endl;
    }

Now, if we call the function as

    TabulateFunctionValues(Reciprocal());

The  code  is  perfectly  legal  because  the  argument  has  type  Reciprocal and  the 
TabulateFunctionValues function is specifically written to take in objects of type  Reciprocal.   But 
what if we have another functor we want to use in TabulateFunctionValues?  For example, we might 
write a functor called Arccos that computes the inverse cosine of its parameter, as seen here:

    class Arccos {
    public:
        double operator() (double val) const {
            return acos(val); // Using the acos function from <cmath>
        }
    };

Unfortunately, if we try to call TabulateFunctionValues passing in an Arccos object, as shown here:

    TabulateFunctionValues(Arccos());

we'll  get yet  another  compile-time error,  this time because the  TabulateFunctionValues function is 
hardcoded to accept a Reciprocal, but we've tried to provide it an object of type Arccos.  Again, if we 
rewrite  TabulateFunctionValues to  only  accept  objects  of  type  Arccos,  we  could  alleviate  this 
problem.  Of course, in doing so, we would break all code that accepted objects of type Reciprocal.  How 
can we resolve this problem?  Fortunately,  the answer is yes,  thanks to a particularly ingenious trick.  
Below are three versions of TabulateFunctionValues, each of which take in a parameter of a different 
type:

    void TabulateFunctionValues(double function(double)) {
        for(double i = kLowerBound; i <= kUpperBound; i += kStepSize)
            cout << "f(" << i << ") = " << function(i) << endl;
    }
    void TabulateFunctionValues(Reciprocal function) {
        for(double i = kLowerBound; i <= kUpperBound; i += kStepSize)
            cout << "f(" << i << ") = " << function(i) << endl;
    }
    void TabulateFunctionValues(Arccos function) {
        for(double i = kLowerBound; i <= kUpperBound; i += kStepSize)
            cout << "f(" << i << ") = " << function(i) << endl;
    }

Notice that the only difference between the three implementations of  TabulateFunctionValues is the 
type of the parameter to the function.  The rest of the code is identical.  This suggests a rather elegant  
solution using templates.  Instead of providing multiple different versions of TabulateFunctionValues, 
each specialized for  a particular  type of  function or functors,  we'll  write  a single  template version of 
TabulateFunctionValues parameterized over the type of the argument.  This is shown here:
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    template <typename UnaryFunction>
        void TabulateFunctionValues(UnaryFunction function) {
        for(double i = kLowerBound; i <= kUpperBound; i += kStepSize)
            cout << "f(" << i << ") = " << function(i) << endl;
    }

Now,  we  can pass  any  type  of  object  to  TabulateFunctionValues that  we  want,  provided that  the 
argument can be called with a single double as a parameter to produce a value.  This means that we can 
pass in raw functions, Reciprocal objects, Arccos objects, and any other functor classes that happen to 
mimic functions from  doubles to  doubles.   This hearkens back to our  discussion of  concepts in the 
previous chapter.  By writing  TabulateFunctionValues as a template function parameterized over an 
arbitrary type, we let clients provide objects of whatever type they see fit, as long as it can be called as a  
function taking a double and returning a double.

When writing functions that require a user-specified callback, you may want to consider parameterizing 
the function over the type of the callback instead of using function pointers.  The resulting code will be  
more flexible and future generations of programmers will be much the better for your extra effort.

STL Algorithms Revisited

Now that you're armed with the full power of C++ functors, let's revisit some of the STL algorithms we've 
covered and discuss how to maximize their firepower.

The very first algorithm we covered was accumulate, defined in the <numeric> header.  If you'll recall, 
accumulate sums up the elements in a range and returns the result.  For example, given a vector<int>, 
the following code returns the sum of all of the vector's elements:

    accumulate(myVector.begin(), myVector.end(), 0);

The first two parameters should be self-explanatory, and the third parameter (zero) represents the initial  
value of the sum.

However, this view of accumulate is limited, and to treat accumulate as simply a way to sum container 
elements  would  be  an  error.   Rather,  accumulate is  a  general-purpose  function  for  transforming  a  
collection of elements into a single value.

There is a second version of the accumulate algorithm that takes a binary function as a fourth parameter. 
This version of accumulate is implemented like this:

    template <typename InputIterator, typename Type, typename BinaryFn> 
    inline Type accumulate(InputIterator start,
                           InputIterator stop,
                           Type accumulator,
                           BinaryFn fn) {
       while(start != stop) {
          accumulator = fn(accumulator, *start);
          ++start;
       }
       return initial;
    }

This accumulate iterates over the elements of a container, calling the binary function on the accumulator  
and the current element of the container and storing the result back in the accumulator.  In other words,  
accumulate continuously updates the value of the accumulator based on its initial value and the values 
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contained in the input range.   Finally,  accumulate returns the accumulator.   Note that the version of 
accumulate we encountered earlier is actually a special case of the above version where the provided 
callback function computes the sum of its parameters.

To see  accumulate in action,  let's  consider an example.   Recall  that the STL algorithm  lower_bound 
returns an iterator to the first element in a range that compares greater than or equal to some value.  
However, lower_bound requires the elements in the iterator range to be in sorted order, so if you have an  
unsorted  vector, you  cannot  use  lower_bound.   Let's  write  a  function  UnsortedLowerBound that 
accepts a range of iterators and a lower bound, then returns the  value of the least element in the range 
greater than or equal to the lower bound.  For simplicity, let's assume we're working with a vector<int> 
so that we don't get bogged down in template syntax, though this approach can easily be generalized.

Although this function can be implemented using loops, we can leverage off of  accumulate to come up 
with a considerably more concise solution.  Thus, we'll define a functor class to pass to accumulate, then 
write UnsortedLowerBound as a wrapper call to accumulate with the proper parameters.
Consider the following functor:

    class LowerBoundHelper {
    public:
        explicit LowerBoundHelper(int lower) : lowestValue(lower) {}
        int operator() (int bestSoFar, int current) {
            return current >= lowestValue && current < bestSoFar?
                   current : bestSoFar;
        }

    private:
        const int lowestValue;
    };

This functor's constructor accepts the value that we want to lower-bound.  Its  operator () function 
accepts  two  ints,  the  first  representing  the  lowest  known  value  greater  than  lowestValue and  the 
second the current value.  If the value of the current element is greater than or equal to the lower bound  
and also less than the best value so far, operator () returns the value of the current element.  Otherwise, 
it simply returns the best value we've found so far.  Thus if we call this functor on every element in the 
vector and keep track of the return value, we should end up with the lowest value in the vector greater 
than or equal to the lower bound.  We can now write the UnsortedLowerBound function like this:

    int UnsortedLowerBound(const vector<int>& input, int lowerBound) {
        return accumulate(input.begin(), input.end(),
                          numeric_limits<int>::max(),
                          LowerBoundHelper(lowerBound));
    }

Our  entire  function  is  simply  a  wrapped  call  to  accumulate,  passing  a  specially-constructed 
LowerBoundHelper object  as  a  parameter.   Note  that  we've  used  the  value 
numeric_limits<int>::max() as the initial value for the accumulator.  numeric_limits, defined in the 
<limits> header,  is  a  traits  class  that  exports  useful  information about  the  bounds and behavior  of  
numeric types, and its max static member function returns the maximum possible value for an element of  
the specified type.  We use this value as the initial value for the accumulator since any integer is less than  
it,  so  if  the  range  contains  no  elements  greater  than  the  lower  bound  we  will  get 
numeric_limits<int>::max() back as a sentinel.

If you need to transform a range of values into a single result (of any type you wish), use accumulate.  To 
transform a range of values into another range of values, use transform.  We discussed transform briefly 
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in the chapter on STL algorithms in the context of ConvertToUpperCase and ConvertToLowerCase, but 
such examples are just the tip of the iceberg.  transform is nothing short of a miracle function, and it 
arises a whole host of circumstances.*

Higher-Order Programming

This discussion of functors was initially motivated by counting the number of short strings inside of an 
STL vector.  We demonstrated that by using count_if with a custom functor as the final parameter, we 
were able to write code that counted the number of elements in a vector<string> whose length was less 
than a certain value.  But while this code solved the problem efficiently, we ended up writing so much code 
that any potential benefits of the STL algorithms were dwarfed by the time spent writing the functor.  For  
reference, here was the code we used:

    class ShorterThan {
    public:
        explicit ShorterThan(size_t maxLength) : length(maxLength) {}
        bool operator() (const string& str) const {
            return str.length() < length;
        }

    private:
        size_t length;
    };

    const size_t myValue = GetInteger();
    count_if(myVector.begin(), myVector.end(), ShorterThan(myValue));

Consider the following code which also solves the problem, but by using a simple for loop:

    const int myValue = GetInteger();
    int total = 0;
    for(int i = 0; i < myVector.size(); ++i)
        if(myVector[i].length() < myValue) ++total;

This code is considerably more readable than the functor version and is approximately a third as long.  By  
almost any metric, this code is superior to the earlier version.

If you'll  recall,  we were motivated to write this  ShorterThan functor because we were unable to use 
count_if in conjunction with a traditional C++ function.  Because  count_if accepts as a parameter a 
unary function, we could not write a C++ function that could accept both the current container element  
and the value to compare its length against.  However, we did note that were count_if to accept a binary 
function and extra client data, then we could have written a simple C++ function like this one:

    bool LengthIsLessThan(const string& str, int threshold) {
        return str.length() < threshold;
    }

And then passed it in, along with the cutoff length, to the count_if function.

The fundamental problem is that the STL count_if algorithm requires a single-parameter function, but 
the  function  we  want  to  use  requires  two  pieces  of  data.   We  want  the  STL  algorithms  to  use  our  
two-parameter  function  LengthIsLessThan,  but  with  the  second parameter  always  having the same 

* Those of you familiar with functional programming might recognize  accumulate and  transform as the classic 
higher-order functions Map and Reduce.
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value.  What if somehow we could modify LengthIsLessThan by “locking in” the second parameter?  In 
other words, we'd like to take a function that looks like this:

bool LengthIsLessThan

string str 

(parameter)

 
int length

(parameter)

And transform it into another function that looks like this:

Modified LengthIsLessThan

string str 

(parameter)
 

int length

5

Now, if we call this special version of LengthIsLessThan with a single parameter (call it str), it would be 
as though we had called the initial version of LengthIsLessThan, passing as parameters the value of str 
and the stored value 5.  This then returns whether the length of the str string is less than 5.  Essentially, 
by binding the second parameter of the two-parameter  LengthIsLessThan function, we end up with a 
one-parameter function that describes exactly the predicate function we want to provide to  count_if. 
Thus, at a high level, the code we want to be able to write should look like this:

    count_if(v.begin(), v.end(),
             the function formed by locking 5 as the second parameter of LengthIsLessThan);

This sort of programming, where functions can be created and modified just like regular objects, is known 
as higher-order programming.  While by default C++ does not support higher-order programming, using 
functors and the STL functional programming libraries, in many cases it is possible to write higher-order  
code in C++.  In the remainder of this chapter, we'll explore the STL functional programming libraries and 
see how to use higher-order programming to supercharge STL algorithms.

Adaptable Functions

To  provide  higher-order  programming  support,  standard  C++  provides  the  <functional> library. 
<functional> exports several useful  functions that can transform and modify functions on-the-fly to 
yield new functions more suitable to the task at hand.  However, because of several language limitations,  
the  <functional> library can only modify specially constructed functions called “adaptable functions,” 
functors (not  regular C++ functions)  that export  information about their  parameter and return types.  
Fortunately,  any one- or two-parameter function can easily be converted into an equivalent adaptable 
function.  For example, suppose you want to make an adaptable function called MyFunction that takes a 
string by reference-to-const as a parameter and returns a bool, as shown below:
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    class MyFunction {
    public:
        bool operator() (const string& str) const {
            /* Function that manipulates a string */
        }
    };

Now, to make this function an adaptable function, we need to specify some additional information about 
the parameter and return types of this functor's  operator () function.  To assist in this process, the 
functional library defines a helper template class called unary_function, which is prototyped below:

    template <typename ParameterType, typename ReturnType>
       class unary_function;

The first template argument represents the type of the parameter to the function; the second, the 
function's return type.

Unlike the other classes you have seen before, the unary_function class contains no data members and 
no member functions.  Instead, it performs some behind-the-scenes magic with the typedef keyword to 
export the information expressed in the template types to the rest of the functional programming library. 
Since we want our above functor to also export this information, we'll inheritance to import all of the 
information from  unary_function into our  MyFunction functor.   Because  MyFunction accepts  as  a 
parameter an object of type string and returns a variable of type bool, we will have MyFunction inherit 
from the type unary_function<string, bool>.  The syntax to accomplish this is shown below:

    class MyFunction : public unary_function<string, bool> {
    public:
        bool operator() (const string& str) const {
            /* Function that manipulates a string */
        }
    };

We'll  explore  inheritance  in  more  detail  later,  but  for  now  just  think  of  it  as  a  way  for  importing 
information from class into another.  Note that although the function accepts as its parameter a  const 
string&, we chose to use a unary_function specialized for the type string.  The reason is somewhat 
technical and has to do with how unary_function interacts with other functional library components, so 
for now just remember that you should not specify reference-to-const types inside the unary_function 
template parametrization.  

The syntax for converting a binary functor into an adaptable binary function works similarly to the above  
code for unary functions.  Suppose that we'd like to make an adaptable binary function that accepts a 
string and an int and returns a bool.  We begin by writing the basic functor code, as shown here:

    class MyOtherFunction {
    public:
        bool operator() (const string& str, int val) const {
            /* Do something, return a bool. */
        }
    };

To convert this functor into an adaptable function, we'll  have it inherit  from  binary_function.   Like 
unary_function, binary_function is a template class that's defined as
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    template <typename Param1Type, typename Param2Type, typename ResultType>
        class binary_function;

Thus the adaptable version of MyOtherFunction would be

    class MyOtherFunction: public binary_function<string, int, bool> {
    public:
        bool operator() (const string& str, int val) const {
            /* Do something, return a bool. */
        }
    };

While the above approach for generating adaptable functions is perfectly legal, it's a bit clunky and we still  
have a high ratio of boilerplate code to actual logic.  Fortunately, the STL functional library provides the 
powerful  but  cryptically  named  ptr_fun* function  that  transforms  a  regular  C++  function  into  an 
adaptable function.  ptr_fun can convert both unary and binary C++ functions into adaptable functions 
with the correct parameter types,  meaning that  you can skip the hassle of  the  above code by simply 
writing  normal  functions  and  then  using  ptr_fun to  transform  them  into  adaptable  functions.   For 
example, given the following C++ function:

    bool LengthIsLessThan(string myStr, int threshold) {
        return myStr.length() < threshold;
    }

If we need to get an adaptable version of that function, we can write ptr_fun(LengthIsLessThan) in the 
spot where the adaptable function is needed.

ptr_fun is a useful but imperfect tool.  Most notably, you cannot use  ptr_fun on functions that accept 
parameters as reference-to-const.  ptr_fun returns a unary_function object, and as mentioned above, 
you cannot specify reference-to-const as template arguments to unary_function.  Also, because of the 
way that the C++ compiler generates code for functors, code that uses ptr_fun can be a bit slower than 
code using functors.

For situations where you'd like to convert a member function into an adaptable function, you can use the 
mem_fun or mem_fun_ref functions.  These functions convert member functions into unary functions that 
accept  as  input a  receiver  object,  then invoke  that  member function on the  receiver.   The  difference  
between mem_fun and mem_fun_ref is how they accept their parameters – mem_fun accepts a pointer to 
the  receiver  object,  while  mem_fun_ref accepts  a  reference to  the  receiver.   For  example,  given  a 
vector<string>, the following code will print out the lengths of all of the strings in the vector:

    transform(myVector.begin(), myVector.end(), ostream_iterator<int>(cout, "\n"),
              mem_fun_ref(&string::length));

Let's dissect this call to transform, since there's a lot going on.  The first two parameters delineate the input 
range, in this case the full contents of  myVector.  The third parameter specifies where to put the output, and 
since here it's an ostream_iterator the output will be printed directly to the console instead of stored in some 
other location.  The final parameter is mem_fun_ref(&string::length), a function that accepts as input a 
string and then returns the value of the length member function called on that string.

mem_fun_ref can also be used to convert unary (one-parameter) member functions into adaptable binary 
functions that take as a first parameter the object to apply the function to and as a second parameter the  

* ptr_fun is short for “pointer function”, not “fun with pointers.”
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parameter to the function.  When we cover binders in the next section, you should get a better feel for  
exactly how useful this is.

Binding Parameters

Now that we've covered how the STL functional library handles adaptable functions, let's consider how we 
can use them in practice.

At  the  beginning  of  this  chapter,  we  introduced  the  notion  of  parameter  binding,  converting  a  two-
parameter function into a one-parameter function by locking in the value of one of its parameters.  To 
allow you to bind parameters to functions, the STL functional programming library exports two functions, 
bind1st and bind2nd, which accept as parameters an adaptable function and a value to bind and return 
new functions that are equal to the old functions with the specified values bound in place.  For example, 
given the following implementation of LengthIsLessThan:

    bool LengthIsLessThan(string str, int threshold) {
        return str.length() < threshold;
    }

We could use the following syntax to construct a function that's  LengthIsLessThan with the value five 
bound to the second parameter:

    bind2nd(ptr_fun(LengthIsLessThan), 5)

The  line  bind2nd(ptr_fun(LengthIsLessThan), 5) first  uses  ptr_fun to  generate  an  adaptable 
version of the  LengthIsLessThan function, then uses  bind2nd to lock the parameter 5 in place.  The 
result is a new unary function that accepts a string parameter and returns if that string's length is less 
than 5, the value we bound to the second parameter.  Since bind2nd is a function that accepts a function as 
a parameter and returns a function as a result,  bind2nd is a function that is sometimes referred to as a 
higher-order function.

Because the result of the above call to bind2nd is a unary function that determines if a string has length 
less than five, we can use the count_if algorithm to count the number of values less than five by using the 
following code:

    count_if(container.begin(), container.end(),
             bind2nd(ptr_fun(LengthIsLessThan), 5));

Compare this code to the functor-based approach illustrated at the start of this chapter.  This version of the 
code is much, much shorter than the previous version.  If you aren't beginning to appreciate exactly how 
much power and flexibility the <functional> library provides, skip ahead and take a look at the practice 
problems.

The  bind1st function acts  similarly to  bind2nd,  except that  (as  its  name suggests)  it  binds the  first 
parameter of  a  function.   Returning to the above example,  given a  vector<int>,  we could count the 
number of elements in that vector smaller than the length of string “C++!” by writing

    count_if(myVector.begin(), myVector.end(),
             bind1st(ptr_fun(LengthIsLessThan), "C++!"));

(Admittedly, this isn't the most practical use case for bind1st, but it does get the point across).
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In the STL functional programming library, parameter binding is restricted only to binary functions.  Thus  
you cannot bind a parameter in a three-parameter function to yield a new binary function, nor can you  
bind  the  parameter  of  a  unary  function  to  yield  a  zero-parameter  (“nullary”)  function.   For  these 
operations, you'll need to create your own custom functors, as shown in the practice problems at the end 
of this chapter.

Negating Results

Suppose that given a function LengthIsLessThan, we want to find the number of strings in a container 
that  are  not less  than  a  certain  length.   While  we  could  simply  write  another  function 
LengthIsNotLessThan,  it  would  be  much  more  convenient  if  we  could  somehow  tell  C++  to  take 
whatever value LengthIsLessThan returns and to use the opposite result.  That is, given a function that 
looks like this:

We'd like to change it into a function that looks like this:

This operation is negation – constructing a new function whose return value has the opposite value of the 
input function.  There are two STL negator functions – not1 and not2 – that return the negated result of a 
unary  or  binary  predicate  function,  respectively.   Thus,  the  above  function  that's  a  negation  of 
LengthIsLessThan could be written as  not2(ptr_fun(LengthIsLessThan)).  Since  not2 returns an 
adaptable function, we can then pass the result of this function to bind2nd to generate a unary function 
that returns whether a string's length is at least a certain threshold value.  For example, here's code that 
returns the number of strings in a container with length at least 5:

count_if(container.begin(), container.end(),
         bind2nd(not2(ptr_fun(LengthIsLessThan)), 5));

LengthIsLessThan
Input

 

NO

YES

inverter

LengthIsLessThan
Input

 

YES

NO
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While this line is dense, it elegantly solves the problem at hand by combining and modifying existing code  
to create entirely different functions.  Such is the beauty and simplicity of higher-order programming – 
why rewrite code from scratch when you already have all the pieces individually assembled?
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Operator Functions

Let's suppose that you have a container of ints and you'd like to add 137 to each of them.  Recall that you  
can use the STL transform algorithm to apply a function to each element in a container and then store the 
result.  Because we're adding 137 to each element, we might consider writing a function like this one:

    int Add137(int param) {
        return param + 137;
    }

And then writing

    transform(container.begin(), container.end(), container.begin(), Add137);

While this code works correctly, this approach is not particularly robust.  What if later on we needed to  
increment all elements in a container by 42, or perhaps by an arbitrary value?  Thus, we might want to 
consider replacing Add137 by a function like this one:

    int AddTwoInts(int one, int two) {
        return one + two;
    }

And then using binders to lock the second parameter in place.  For example, here's code that's equivalent  
to what we've written above:

    transform(container.begin(), container.end(), container.begin(),
              bind2nd(ptr_fun(AddTwoInts), 137));

At this point, our code is correct, but it can get a bit annoying to have to write a function AddTwoInts that 
simply adds two integers.  Moreover, if we then need code to increment all doubles in a container by 1.37, 
we  would  need  to  write  another  function  AddTwoDoubles to  avoid  problems  from  typecasts  and 
truncations.  Fortunately, the designers of the STL functional library recognized how tedious it is to write 
out this sort of code, and so the STL functional library provides a large number of template adaptable 
function classes that simply apply the basic C++ operators to two values.  For example, in the above code, 
we can use the adaptable function class plus<int> instead of our AddTwoInts function, resulting in code 
that looks like this:

    transform(container.begin(), container.end(), container.begin(),
              bind2nd(plus<int>(), 137));

Note that we need to write plus<int>() instead of simply plus<int>, since we're using the temporary 
object syntax to construct a plus<int> object for bind2nd.  Forgetting the parentheses can cause a major 
compiler error headache that can take a while to track down.  Also notice that we don't  need to use  
ptr_fun here, since plus<int> is already an adaptable function.

For reference, here's a list of the “operator functions” exported by <functional>:

plus minus multiplies divides modulus negate

equal_to not_equal_to greater less greater_equal less_equal

logical_and logical_or logical_not

To see an example that combines the techniques from the previous few sections, let's consider a function  
that accepts a vector<double> and converts each element in the vector to its reciprocal (one divided by 
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the  value).   Because  we  want  to  convert  each  element  with  value  x to  the  value  1/x,  we  can  use  a 
combination of binders and operator functions to solve this problem by binding the value 1.0 to the first  
parameter of the  divides<double> functor.  The result is a unary function that accepts a parameter of 
type double and returns the element's reciprocal.  The resulting code looks like this:

    transform(v.begin(), v.end(), v.begin(), bind1st(divides<double>(), 1.0));

This code is concise and elegant, solving the problem in a small space and making explicit what operations 
are being performed on the data.

Unifying Functions and Functors

There are a huge number of ways to define a function or function-like object in C++, each of which has  
slightly different syntax and behavior.  For example, suppose that we want to write a function that accepts  
as input a function that can accept  an  int and return a  double.   While of  course we could accept  a 
double (*) (int) – a pointer to a function accepting an  int and returning a  double – this is overly 
restrictive.  For example, all of the following functions can be used as though they were functions taking in 
an int and returning a double:

    double Fn1(const int&);    /* Accept by reference-to-const, yield double. */
    int    Fn2(int);           /* Accept parameter as a int, return int. */
    int    Fn3(const int&);    /* Accept reference-to-const int, return int. */

In addition, if we just accept a double (*) (int), we also can't accept functors as input, meaning that 
neither of these objects below – both of which can accept an int and return a double – could be used:

    /* Functor accepting an int and returning a double. */
    class MyFunctor {
    public:
        double operator() (int);
    };

    /* Adaptable function accepting double and returning a double. */
    bind2nd(multiplies<int>(), 137);

Earlier in this chapter, we saw how we can write functions that accept any of the above functions using  
templates, as shown here:

    template <typename UnaryFunction> void DoSomething(UnaryFunction fn) {
        /* ... */
    }

If we want to write a  function that accepts a function as input we can rely on templates, but what if we 
want to write a  class that needs to store a function of any arbitrary type?  To give a concrete example,  
suppose that we're designing a class representing a graphical window and we want the client to be able to  
control the window's size and position.  The window object, which we'll assume is of type Window, thus 
allows the user to provide a function that will be invoked whenever the window is about to change size.  
The user's function then takes in an int representing the potential new width of the window and returns 
an int representing what the user wants the new window size to be.  For example, if we want to create a 
window that can't be more than 100 pixels wide, we could pass in this function:

    int ClampTo100Pixels(int size) {
        return min(size, 100);
    }
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Alternatively, if we want the window size to always be 100 pixels, we could pass in this function:

    int Always100Pixels(int) {
        return 100; // Ignore parameter
    }

Given that we need to store a function of an arbitrary type inside the Window class, how might we design 
Window?  Using the approach outlined above, we could parameterize the Window class over the type of the 
function it stores, as shown here:

    template <typename WidthFunction> class Window {
    public:
       Window(WidthFunction fn, /* ... */);

        /* ... */

    private:
        WidthFunction width;

        /* ... */
    };

Given this implementation of Window, we could then specify that a window should be no more than 100 
pixels wide by writing

    Window<int (*)(int)> myWindow(ClampTo100Pixels);

This  Window class  lets  us use any reasonable function to determine the window size,  but has several 
serious drawbacks.  First, it requires the Window client to explicitly parameterize Window over the type of 
callback being stored.  When working with function pointers this results in long and convoluted variable 
declarations (look above for an example), and when working with library functors such as those in the STL 
<functional> library (e.g. bind2nd (ptr_fun(MyFunction), 137))*, we could end up with a Window 
of such a complicated type that it would be infeasible to use with without the aid of typedef.  But a more 
serious problem is that this approach causes two  Windows that don't use the same type of function to 
compute width to have completely different types.  That is, a Window using a raw C++ function to compute 
its size would have a different type from a Window that computed its size with a functor.  Consequently, we 
couldn't make a vector<Window>, but instead would have to make a vector<Window<int (*)(int)> > 
or a vector<Window<MyFunctorType> >.  Similarly, if we want to write a function that accepts a Window, 
we can't just write the following:

    void DoSomething(const Window& w) { // Error – Window is a template, not a type
        /* ... */
    }

We instead would have to write

    template <typename WindowType>
        void DoSomething(const WindowType& w) { // Legal but awkward
        /* ... */
    }

* As an FYI, the type of bind2nd(ptr_fun(MyFunction), 137) is

    binder2nd<pointer_to_binary_function<Arg1, Arg2, Ret> >

where Arg1, Arg2, and Ret are the argument and return types of the MyFunction function.
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It should be clear that templatizing the Window class over the type of the callback function does not work 
well.  How can we resolve this problem?  In the remainder of this chapter, see a beautiful solution to this  
problem  that  will  unify  our  treatment  of  functors,  inheritance,  templates,  operator  overloading,  copy 
functions, and conversion constructors.  The result is amazingly elegant and hopefully will impress upon 
you exactly how powerful functors are as a technique.

Inheritance to the Rescue

Let's take a few minutes to think about the problem we're facing.  We have a collection of different objects  
that each have similar functionality (they can be called as functions), but we don't know exactly which  
object the user will provide.  This sounds exactly like the sort of problem we can solve using inheritance 
and virtual functions.  But we have a problem – inheritance only applies to objects, but some of the values 
we might want to store are simple function pointers, which are primitives.  Fortunately, we can apply a  
technique called the Fundamental Theorem of Software Engineering (or FTSE) to solve this problem:

Theorem  (The Fundamental  Theorem  of  Software  Engineering): Any problem  can be  solved by 
adding enough layers of indirection.

This is a very useful programming concept that will prove relevant time and time again – make sure you 
remember it!

In this particular application, the FTSE says that we need to distance ourselves by one level from raw 
function pointers and functor classes.  This leads to the following observation: while we might not be able  
to treat functors and function pointers polymorphically, we certainly can create a new class hierarchy and  
then treat that class polymorphically.  The idea goes something like this – rather than having the user 
provide us a functor or function pointer which could be of any type, instead we'll define an abstract class  
exporting the callback function, then will have the user provide a subclass which implements the callback.

One possible base class in this hierarchy is shown below:

    class IntFunction {
    public:
        /* Polymorphic classes need virtual destructors. */
        virtual ~IntFunction() {}

        /* execute() actually calls the proper function and returns the value. */
        virtual int execute(int value) const = 0;
    };

IntFunction exports  a  single  function called  execute which accepts  an  int and returns  an  int.   This 
function is marked purely virtual since it's unclear exactly what this function should do.  After all, we're trying to  
store an arbitrary function, so there's no clearly-defined default behavior for execute.

We can now modify the implementation of  Window to hold a pointer to an  IntFunction instead of being 
templatized over the type of the function, as shown here:

    class Window {
    public:
        Window(IntFunction* sizeFunction, /* ... */);

        /* ... */
    private:
        IntFunction* fn;
    };
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Now, if we wanted to clamp the window to 100 pixels, we can do the following:

    class ClampTo100PixelsFunction: public IntFunction {
    public:
        virtual int execute(int size) const {
            return min(size, 100);
        }
    };

    Window myWindow(new ClampTo100PixelsFunction, /* ... */);

Similarly, if we want to have a window that's always 100 pixels wide, we could write

    class FixedSizeFunction: public IntFunction {
    public:
        virtual int execute(int size) const {
            return 100;
        }
    };
    
    Window myWindow(new FixedSizeFunction, /* ... */);

It  seems as  though  we've  solved the  problem – we now have a  Window class  that  allows us  to  fully 
customize its resizing behavior – what more could we possibly want?

The main problem with our solution is the sheer amount of boilerplate code clients of  Window have to 
write if they want to change the window's resizing behavior.  Our initial goal was to let class clients pass 
raw C++ functions and functors to the Window class, but now clients have to subclass IntFunction to get 
the job done.  Both of the above subclasses are lengthy even though they only export a single function.  Is  
there a simpler way to do this?

The answer,  of  course,  is yes.   Suppose we have a pure C++ function that accepts an  int by value and 
returns  an  int that  we  want  to  use  for  our  resizing  function  in  the  Window class;  perhaps  it's  the 
ClampTo100Pixels function we defined earlier, or perhaps it's Always100Pixels.  Rather than defining 
a new subclass of  IntFunction for every single one of these functions, instead we'll build a single class 
that's  designed to  wrap up a  function pointer  in a  package that's  compatible  with  the  IntFunction 
interface.  That is, we can define a subclass of IntFunction whose constructor accepts a function pointer 
and whose execute calls this function.  This is the Fundamental Theorem of Software Engineering in action 
– we couldn't directly treat the raw C++ function polymorphically, but by abstracting by a level we can 
directly apply inheritance.

Here's one possible implementation of the subclass:

    class ActualFunction: public IntFunction {
    public:
        explicit ActualFunction(int (*fn)(int)) : function(fn) {}
    
        virtual int execute(int value) const {
            return function(value);
        }
    
    private:
        int (*function)(int);
    };

Now, if we want to use ClampTo100Pixels inside of Window, we can write:
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    Window myWindow(new ActualFunction(ClampTo100Pixels), /* ... */);

There is a bit of extra code for creating the ActualFunction object, but this is a one-time cost.  We can 
now use ActualFunction to wrap any raw C++ function accepting an int and returning an int and will 
save a lot of time typing out new subclasses of IntFunction for every callback.

Now, suppose that we have a functor class, which we'll call  MyFunctor,  that we want to use inside the 
Window class.  Then we could define a subclass that looks like this:

    class MyFunctorFunction: public IntFunction {
    public:
        explicit MyFunctorFunction(MyFunctor fn) : function(fn) {}

        virtual int execute(int value) const {
            return function(value);
        }

    private:
        MyFunctor function;
    };

And could then use it like this:

    Window myWindow(new MyFunctorFunction(MyFunctor(137)), /* ... */);

Where we assume for simplicity that the MyFunctor class has a unary constructor.

We're getting much closer to an ideal solution.  Hang in there; the next step is pretty exciting.

Templates to the Rescue

At this point we again could just call it quits – we've solved the problem we set out to solve and using the 
above pattern our Window class can use any C++ function or functor we want.  However, we are close to an  
observation that will greatly simplify the implementation of Window and will yield a much more general 
solution.

Let's reprint the two subclasses of IntFunction we just defined above which wrap function pointers and 
functors:
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    class ActualFunction: public IntFunction {
    public:
        explicit ActualFunction(int (*fn)(int)) : function(fn) {}

        virtual int execute(int value) const {
            return function(value);
        }

    private:
        int (*const function)(int);
    };

    class MyFunctorFunction: public IntFunction {
    public:
        explicit MyFunctorFunction(MyFunctor fn) : function(fn) {}
    
        virtual int execute(int value) const {
            return function(value);
        }

    private:
        MyFunctor function;
    };

If you'll notice, besides the name of the classes, the only difference between these two classes is what type of  
object is being stored.  This similarity is no coincidence – any callable function or functor would require a 
subclass with exactly this structure.  Rather than requiring the client of  Window to reimplement this subclass 
from scratch each time, we can instead create a template class that's a subclass of  IntFunction.  It's rare in 
practice  to  see  templates  and  inheritance  mixed  this  way,  but  here  it  works  out  beautifully.   Here's  one 
implementation:

    template <typename UnaryFunction> class SpecificFunction: public IntFunction {
    public:
        explicit SpecificFunction(UnaryFunction fn) : function(fn) {}

        virtual int execute(int value) const {
            return function(value);
        }

    private:
        UnaryFunction function;
    };

We now can use the Window class as follows:

    Window myWindow(new SpecificFunction<int(*)(int)>(ClampTo100Pixels), /*...*/);
    Window myWindow(new SpecificFunction<MyFunctor>(MyFunctor(137)), /*...*/);

The syntax here might be a bit tricky, but we've greatly reduced the complexity associated with the Window class 
since clients no longer have to implement their own subclasses of IntFunction.
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One More Abstraction

This design process has consisted primarily of adding more and more abstractions on top of the system  
we're designing, and it's time for one final leap.  Let's think about what we've constructed so far.  We've 
built a class hierarchy with a single base class and a template for creating as many subclasses as we need.  
However, everything we've written has been hardcoded with the assumption that the Window class is the 
only class that might want this sort of functionality.  Having the ability to store and call a function of any 
conceivable type is enormously useful, and if we can somehow encapsulate all of the necessary machinery 
to get this working into a single class, we will be able to reuse what we've just built time and time again.  In  
this next section, that's exactly what we'll begin doing.

We'll begin by moving the code from Window that manages the stored function into a dedicated class called 
Function.  The basic interface for Function is shown below:

    class Function {
    public:
        /* Constructor and destructor.  We'll implement copying in a bit. */
        Function(IntFunction* fn);
        ~Function();

        /* Function is a functor that calls into the stored resource. */
        int operator() (int value) const;

    private:
        IntFunction* function;
    };

We'll leave the  Function constructor left as an implicit conversion constructor, since that way we can 
implicitly  convert  between  a  callable  IntFunction pointer  and  a  Function functor.   We  can  then 
implement the above  functions as follows:

    /* Constructor accepts an IntFunction and stores it. */
    Function::Function(IntFunction* fn) : function(fn) {
        // Handled in initializer list
    }

    /* Destructor deallocates the stored function. */
    Function::~Function() {
        delete function;
    }

    /* Function call just calls through to the pointer and returns the result. */
    int Function::operator() (int value) const {
        return function->execute(value);
    }

Nothing here should be too out-of-the-ordinary – after all, this is pretty much the same code that we had 
inside the Window class.

Given this version of Function, we can write code that looks like this:
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    Function myFunction = new SpecificFunction<int (*)(int)>(ClampTo100Pixels);
    cout << myFunction(137) << endl; // Prints 100
    cout << myFunction(42) << endl; // Prints 42

If you're a bit worried that the syntax new SpecificFunction<int (*)(int)>(ClampTo100Pixels) 
is unnecessarily bulky, that's absolutely correct.  Don't worry, in a bit we'll see how to eliminate it.  In the 
meantime, however, let's implement the copy behavior for the Function class.  After all, there's no reason 
that we shouldn't be able to copy Function objects, and defining copy behavior like this will lead to some 
very impressive results in a bit.

We'll begin by defining the proper functions inside the Function class, as seen here:

    class Function {
    public:
        /* Constructor and destructor. */
        Function(IntFunction* fn);
        ~Function();

        /* Copy support. */
        Function(const Function& other);
        Function& operator= (const Function& other);

        /* Function is a functor that calls into the stored resource. */
        int operator() (int value) const;

    private:
        IntFunction* function;

        void clear();
        void copyOther(const Function& other);
    };

Now, since the Function class contains only a single data member (the IntFunction pointer), to make a 
deep-copy of a Function we simply need to make a deep copy of its requisite IntFunction.  But here we 
run into a problem.  IntFunction is an abstract class and we can't tell at compile-time what type of object 
is  actually  being  pointed  at  by  the  function pointer.   How,  then,  can  we  make  a  deep-copy  of  the 
IntFunction?  The answer is surprisingly straightforward – we'll just introduce a new virtual function to 
the IntFunction class that returns a deep copy of the receiver object.  Since this function duplicates an  
existing object, we'll call it clone.  The interface for IntFunction now looks like this:

    class IntFunction {
    public:
        /* Polymorphic classes should have virtual destructors. */
        virtual ~IntFunction() { }

        /* execute() actually calls the proper function and returns the value. */
        virtual int execute(int value) const = 0;

        /* clone() returns a deep-copy of the receiver object. */
        virtual IntFunction* clone() const = 0;
    };

We can then update the template class SpecificFunction to implement clone as follows:
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    template <typename UnaryFunction> class SpecificFunction: public IntFunction {
    public:
        explicit SpecificFunction(UnaryFunction fn) : function(fn) {}
    
        virtual int execute(int value) const {
            return function(value);
        }
    
        virtual IntFunction* clone() const {
            return new SpecificFunction(*this);
        }

    private:
        UnaryFunction function;
    };

Here, the implementation of clone returns a new SpecificFunction initialized via the copy constructor 
as  a  copy  of  the  receiver  object.   Note  that  we  haven't  explicitly  defined  a  copy  constructor  for 
SpecificFunction and are relying here on C++'s automatically-generated copy function to do the trick 
for us.  This assumes, of course, that the UnaryFunction type correctly supports deep-copying, but this 
isn't a problem since raw function pointers can trivially be deep-copied as can all primitive types and it's 
rare to find functor classes with no copy support.

We can then implement the copy constructor, assignment operator, destructor, and helper functions for 
Function as follows:

    Function::~Function() {
        clear();
    }

    Function::Function(const Function& other) {
        copyOther(other);
    }

    Function& Function::operator= (const Function& other) {
        if(this != &other) {
            clear();
            copyOther(other);
        }
        return *this;
    }

    void Function::clear() {
        delete function;
    }

    void Function::copyOther(const Function& other) {
        /* Have the stored function tell us how to copy itself. */
        function = other.function->clone();
    }

Our Function class is now starting to take shape!

Hiding SpecificFunction

Right now our Function class has full deep-copy support and using SpecificFunction<T> can store any 
type of callable function.  However, clients of Function have to explicitly wrap any function they want to 
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store inside Function in the SpecificFunction class.  This has several problems.  First and foremost, 
this  breaks  encapsulation.   SpecificFunction is  only  used  internally  to  the  Function class,  never 
externally,  so  requiring  clients  of  Function to  have  explicit  knowledge  of  its  existence  violates 
encapsulation.  Second, it requires the user to know the type of every function they want to store inside  
the Function class.  In the case of ClampTo100Pixels this is rather simple, but suppose we want to store 
bind2nd(multiplies<int>(), 137) inside of  Function.  What is the type of the object returned by 
bind2nd(multiplies<int>(), 137)?  For reference, it's  binder2nd<multiplies<int> >,  so if we 
wanted to store this in a Function we'd have to write

    Function myFunction = 
        new SpecificFunction<binder2nd<multiplies<int> > >(bind2nd(multiplies<int>(),137));

This is a syntactic nightmare and makes the Function class terribly unattractive.

Fortunately,  however,  this  problem  has  a  quick  fix  –  we  can  rewrite  the  Function constructor  as  a 
template function parameterized over the type of argument passed into it,  then construct the relevant  
SpecificFunction for  the  Function client.   Since  C++ automatically  infers  the  parameter  types  of 
template functions, this means that clients of Function never need to know the type of what they're storing 
– the compiler will do the work for them.  Excellent!

If we do end up making the Function constructor a template, we should also move the IntFunction and 
SpecificFunction classes so that they're inner classes of  Function.   After all,  they're specific to the 
implementation of Function and the outside world has no business using them.

The updated interface for the Function class is shown here:

    class Function {
    public:
        /* Constructor and destructor. */
        template <typename UnaryFunction> Function(UnaryFunction fn);
        ~Function();

        /* Copy support. */
        Function(const Function& other);
        Function& operator= (const Function& other);

        /* Function is a functor that calls into the stored resource. */
        int operator() (int value) const;

    private:
        class IntFunction { /* ... */ };
        template <typename UnaryFunction> class SpecificFunction { /* ... */ };

        IntFunction* function;

        void clear();
        void copyOther(const Function& other);
    };



- 414 -  Chapter 13: Functors

We can then implement the constructor as follows:

    template <typename UnaryFunction> Function::Function(UnaryFunction fn) {
        function = new SpecificFunction<UnaryFunction>(fn);
    }

Since we've left the Function constructor not marked explicit, this template constructor is a conversion 
constructor.  Coupled with the assignment operator, this means that we can use Function as follows:

    Function fn = ClampTo100Pixels;
    cout << fn(137) << endl; // Prints 100
    cout << fn(42) << endl; // Prints 42

    fn = bind2nd(multiplies<int>(), 2);
    cout << fn(137) << endl; // Prints 274
    cout << fn(42) << endl; // Prints 84

This is exactly what we're looking for – a class that can store any callable function that takes in an int and 
returns an int.  If this doesn't strike you as a particularly elegant piece of code, take some time to look 
over it again.

There's one final step we should take, and that's to relax the restriction that  Function always acts as a 
function from ints to ints.  There's nothing special about int, and by giving Function clients the ability 
to specify their own parameter and return types we'll increase the scope of what Function is capable of 
handling.  We'll thus templatize Function as Function<ArgType, ReturnType>.  We also need to make 
some minor edits to IntFunction (which we'll rename to ArbitraryFunction since IntFunction is no 
longer applicable), but in the interest of brevity we won't reprint them here.

The final interface for Function thus looks like this:

    template <typename ArgType, typename ReturnType> class Function {
    public:
        /* Constructor and destructor. */
        template <typename UnaryFunction> Function(UnaryFunction);
        ~Function();

        /* Copy support. */
        Function(const Function& other);
        Function& operator= (const Function& other);

        /* Function is a functor that calls into the stored resource. */
        ReturnType operator() (ArgType value) const;

    private:
        class ArbitraryFunction { /* ... */ };
        template <typename UnaryFunction> class SpecificFunction { /* ... */ }

        ArbitraryFunction* function;
    
        void clear();
        void copyOther(const Function& other);
    };
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To conclude our discussion of Window, using the new Function type we could rewrite the Window class 
using Function as follows:

    class Window {
    public:
        Window(const Function<int, int>& widthFn, /* ... */
        /* ... other member functions ... */

    private:
        Function<int, int> widthFunction;
    };

Now, clients can pass any unary function (or functor) that maps from  ints to  ints as a parameter to 
Window and the code will compile correctly.

External Polymorphism

The Function type we've just developed is subtle in its cleverness.  Because we can convert any callable 
unary function into a Function, when writing code that needs to work with some sort of unary function, 
we can have that code use Function instead of any specific function type.  This technique of abstracting 
away  from  the  particular  types  that  provide  a  behavior  into  an  object  representing  that  behavior  is 
sometimes known as  external polymorphism.  As opposed to  internal polymorphism, where we explicitly 
define  a  set  of  classes  containing  virtual  functions,  external  polymorphism  “grafts”  a  set  of  virtual  
functions onto any type that supports the requisite behavior.

Virtual functions can be slightly more expensive than regular functions because of the  virtual function 
table lookup required.  External polymorphism is implemented using inheritance and thus also incurs an 
overhead,  but  the  overhead is  slightly greater  than regular  inheritance.   Think for  a  minute  how the 
Function class  we  just  implemented  is  designed.   Calling  Function::operator() requires  the 
following:

1. Following the ArbitraryFunction pointer in the Function class to its virtual function table.

2. Calling the function indicated by the virtual function table, which corresponds to the particular 
SpecificFunction being pointed at.

3. Calling the actual function object stored inside the SpecificFunction.

This is slightly more complex than a regular virtual function call, and illustrates the cost associated with 
external polymorphism.  That said,  in some cases (such as the  Function case outlined here) the cost is 
overwhelming offset by the flexibility afforded by external polymorphism.

Implementing the <functional> Library

Now what we've seen how the <functional> library works from a client perspective, let's discuss how 
the library is put together.  What's so special about adaptable functions?  How does  ptr_fun convert a 
regular function into an adaptable one?  How do functions like bind2nd and not1 work?  This discussion 
will be highly technical and will push the limits of your knowledge of templates, but by the time you're  
done  you  should  have  an  excellent  grasp  of  how  template  libraries  are  put  together.   Moreover,  the  
techniques used here are applicable beyond just the <functional> library and will almost certainly come 
in handy later in your programming career.
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Let's  begin  by  looking  at  exactly  what  an  adaptable  function  is.   Recall  that  adaptable  functions  are 
functors  that  inherit  from  either  unary_function or  binary_function.   Neither  of  these  template 
classes are particularly complicated; here's the complete definition of unary_function:*

    template <typename ArgType, typename RetType> class unary_function {
    public:
        typedef ArgType argument_type;
        typedef RetType result_type;
    };

This class contains no data members and no member functions.  Instead, it exports two typedefs – one 
renaming ArgType to argument_type and one renaming RetType to result_type.  When you create an 
adaptable function that inherits from unary_function, your class acquires these typedefs.  For example, 
if we write the following adaptable function:

    class IsPositive: public unary_function<double, bool> {
    public:
        bool operator() (double value) const {
            return value > 0.0;
        }
    };

The statement  public unary_function<double, double> imports two  typedefs into  IsPositive: 
argument_type and  return_type, equal to  double and  bool, respectively.  Right now it might not be 
apparent how these types are useful, but as we begin implementing the other pieces of the <functional> 
library it will become more apparent.

Implementing not1

To begin our behind-the-scenes tour of the  <functional> library, let's see how to implement the  not1 
function.  Recall that  not1 accepts as a parameter a unary adaptable predicate function, then returns a 
new  adaptable  function  that  yields  opposite  values  as  the  original  function.   For  example,  
not1(IsPositive()) would return a function that returns whether a value is not positive.

Implementing not1 requires two steps.  First, we'll create a template functor class parameterized over the  
type of the adaptable function to negate.  This functor's constructor will take as a parameter an adaptable  
function of the proper type and store it for later use.  We'll then implement its operator() function such 
that it calls the stored function and returns the negation of the result.  Graphically, this is shown here:

Negation Functor

Stored function Inverter

Input     Output

Once we have designed this functor, we'll have not1 accept an adaptable function, wrap it in our negating 
functor,  then return the resulting object to the caller.   This means that the return value of  not1 is an 
adaptable unary predicate function that returns the opposite value of its parameter, which is exactly what 
we want.

* Technically speaking unary_function and binary_function are structs, but this is irrelevant here.
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Let's begin by writing the template functor class, which we'll call unary_negate (this is the name of the 
functor class generated by the <functional> library's not1 function).  We know that this functor should 
be parameterized over  the  type  of  the  adaptable  function it  negates,  so we can begin by  writing  the 
following:

    template <typename UnaryPredicate> class unary_negate {
    public:
        explicit unary_negate(const UnaryPredicate& pred) : p(pred) {}

        /* ... */
    private:
        UnaryPredicate p;
    };

Here, the constructor accepts an object of type UnaryPredicate, then stores it in the data member p.

Now, let's implement the operator() function, which, as you'll recall, should take in a parameter, feed it 
into the stored function p, then return the inverse result.  The code for this function looks like this:

    template <typename UnaryPredicate> class unary_negate {
    public:
        explicit unary_negate(const UnaryPredicate& pred) : p(pred) {}
    
        bool operator() (const /* what goes here? */& param) const {
            return !p(param); // Call function and return the opposite result.
        }
    private:
        UnaryPredicate p;
    };

We've almost finished writing our unary_negate class, but we have a slight problem – what is the type of 
the parameter to operator()?  This is where adaptable functions come in.  Because UnaryPredicate is 
adaptable, it must export a type called argument_type corresponding to the type of its argument.  We can 
thus  define  our  operator() function  to  accept  a  parameter  of  type  typename 
UnaryPredicate::argume  nt_type to  guarantee  that  it  has  the  same  parameter  type  as  the 
UnaryPredicate class.*  The updated code for unary_negate looks like this:

    template <typename UnaryPredicate> class unary_negate {
    public:
        explicit unary_negate(const UnaryPredicate& pred) : p(pred) {}

        bool 
        operator() (const typename UnaryPredicate::argument_type& param) const {
            return !p(param); // Call stored function and return opposite result.
        }
    private:
        UnaryPredicate p;
    };

That's  quite  a  mouthful,  but  it's  exactly  the  solution we're  looking for.   If  it  weren't  for  the  fact  that  
UnaryPredicate is an adaptable function, we would not have been able to determine the parameter type  
for the operator() member function, and code like this would not have been possible.

* Remember  that  the  type  is  typename  UnaryPredicate::argument_type,  not  UnaryPredicate::argument_type. 
argument_type is nested inside  UnaryPredicate,  and since  UnaryPredicate is a template argument we have to 
explicitly use typename to indicate that argument_type is a type.
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There's one step left to finalize this functor class, and that's to make the functor into an adaptable function 
by having it inherit from the proper  unary_function.  Since the functor's argument type is  typename 
UnaryPredicate::argument_type and  its  return  type  is  bool,  we'll  inherit  from  unary_function 
<typename UnaryPredicate:: argument_type, bool>.  The final code for  unary_negate is shown 
here:

    template <typename UnaryPredicate>
    class unary_negate:
        public unary_function<typename UnaryPredicate::argument_type, bool>
    {
    public:
        explicit unary_negate(const UnaryPredicate& pred) : p(pred) {}

        bool 
        operator() (const typename UnaryPredicate::argument_type& param) const {
            return !p(param); // Call stored function and return opposite result.
        }
    private:
        UnaryPredicate p;
    };

We've now finished writing our functor class to perform the negation, and all that's left to do is write not1. 
not1 is much simpler than  unary_negate, since it simply has to take in a parameter and wrap it in a 
unary_negate functor.  This is shown here:

    template <typename UnaryPredicate>
        unary_negate<UnaryPredicate> not1(const UnaryPredicate& pred) {
        return unary_negate<UnaryPredicate>(pred);
    }

That's all there is to it – we've successfully implemented not1!

You might be wondering why there are two steps involved in writing  not1.  After all, once we have the 
functor that performs negation, why do we need to write an additional function to create it?  The answer is 
simplicity.   We  don't  need  not1,  but  having  it  available  reduces  complexity.   For  example,  using  the 
IsPositive adaptable function from above, let's suppose that we want to write code to find the first 
nonpositive element in a vector.  Using the find_if algorithm and not1, we'd write this as follows:

    vector<double>::iterator itr = 
        find_if(v.begin(), v.end(), not1(IsPositive()));

If instead of using not1 we were to explicitly create a unary_negate object, the code would look like this:

    vector<double>::iterator itr = 
        find_if(v.begin(), v.end(), unary_negate<IsPositive>(IsPositive()));

That's quite a mouthful.  When calling the template function not1, the compiler automatically infers the 
type of the argument and constructs an appropriately parameterized unary_negate object.  If we directly 
use  unary_negate,  C++  will  not  perform  type  inference and  we'll  have  to  spell  out  the  template 
arguments ourselves.  The pattern illustrated here – having a template class and a template function to 
create it – is common in library code because it lets library clients use complex classes without ever having 
to know how they're implemented behind-the-scenes.
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Implementing ptr_fun

Now that we've seen how not1 works, let's see if we can construct the ptr_fun function.  At a high level 
ptr_fun and not1 work the same way – they each accept a parameter, construct a special functor class 
based on the parameter, then return it to the caller.  The difference between not1 and ptr_fun, however, 
is that there are two different versions of ptr_fun – one for unary functions and one for binary functions. 
The two versions work almost identically and we'll see how to implement them both, but for simplicity  
we'll begin with the unary case.

To convert a raw C++ unary function into an adaptable unary function, we need to wrap it in a functor that  
inherits from the proper  unary_function base class.  We'll  make this functor's  operator() function 
simply call the stored function and return its value.  To be consistent with the naming convention of the  
<functional> library, we'll call the functor pointer_to_unary_function and will parameterize it over 
the argument and return types of the function.  This is shown here:

    template <typename ArgType, typename RetType>
    class pointer_to_unary_function: public unary_function<ArgType, RetType>
    {
    public:
        explicit pointer_to_unary_function(ArgType fn(RetType)) : function(fn) {}

        RetType operator() (const ArgType& param) const {
            return function(param);
        }
    private:
        ArgType (*function)(RetType);
    };

There  isn't  that  much  code  here,  but  it's  fairly  dense.   Notice  that  we  inherit  from 
unary_function<ArgType, RetType> so that the resulting functor is adaptable.   Also note that the 
argument  and  return  types  of  operator() are  considerably  easier  to  determine  than  in  the 
unary_negate case because they're specified as template arguments.

Now, how can we implement ptr_fun to return a correctly-constructed pointer_to_unary_function? 
Simple  –  we just  write  a  template  function parameterized  over  argument  and return types,  accept  a 
function pointer of the appropriate type, then wrap it in a pointer_to_unary_function object.  This is 
shown here:

    template <typename ArgType, typename RetType>
        pointer_to_unary_function<ArgType, RetType> 
        ptr_fun(RetType function(ArgType)) {
            return pointer_to_unary_function<ArgType, RetType>(function);
        }

This code is fairly dense, but gets the job done.

The implementation of ptr_fun for binary functions is similar to the implementation for unary functions. 
We'll create a template functor called pointer_to_binary_function parameterized over its argument 
and return types, then provide an implementation of ptr_fun that constructs and returns an object of this 
type.  This is shown here:
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    template <typename Arg1, typename Arg2, typename Ret>
    class pointer_to_binary_function: public binary_function<Arg1, Arg2, Ret> {
    public:
        explicit pointer_to_binary_function(Ret fn(Arg1, Arg2)) : function(fn) {}

        Ret operator() (const Arg1& arg1, const Arg2& arg2) const {
            return function(arg1, arg2);
        }
    private:
        Ret (*function)(Arg1, Arg2);
    };

    template <typename Arg1, typename Arg2, typename Ret>
    pointer_to_binary_function<Arg1, Arg2, Ret> ptr_fun(Ret function(Arg1, Arg2)) {
        return pointer_to_binary_function<Arg1, Arg2, Ret>(function);
    }

Note that we now have two versions of ptr_fun – one that takes in a unary function and one that takes in 
a binary function.  Fortunately, C++ overloading rules allow for the two functions to coexist, since they  
have different signatures.

Implementing bind1st

To wrap up our tour of the  <functional> library, let's see how to implement  bind1st.  If you'll recall, 
bind1st takes in a binary adaptable function and a value, then returns a new unary function equal to the  
input function with the first parameter locked in place.  We'll follow the pattern of not1 and ptr_fun by 
writing a template functor class called  binder1st that actually does the binding, then having  bind1st 
construct and return an object of the proper type.

Before proceeding with our implementation of binder1st, we need to take a quick detour into the inner 
workings of the  binary_function class.  Like  unary_function,  binary_function exports  typedefs 
so that other parts of the <functional> library can recover the argument and return types of adaptable 
functions.   However,  since a binary function has two arguments,  the names of the exported types are  
slightly different.  binary_function provides the following three typedefs:

• first_argument_type, the type of the first argument,

• second_argument_type, the type of the second argument, and

• result_type, the function's return type.

We will need to reference each of these type names when writing bind1st.

Now,  how  do  we  implement  the  binder1st functor?   Here  is  one  possible  implementation.   The 
binder1st constructor  will  accept  and store  an adaptable  binary function and the value for  its  first 
argument.  binder1st then provides an implementation of  operator() that takes a single parameter, 
then invokes the stored function passing in the function parameter and the saved value.  This is shown 
here:
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Let's begin implementing binder1st.  The functor has to be a template, since we'll be storing an arbitrary 
adaptable function and value.  However, we only need to parameterize the functor over the type of the 
binary adaptable function,  since we can determine the type of the first  argument from the adaptable 
function's first_argument_type.  We'll thus begin with the following implementation:

    template <typename BinaryFunction> class binder1st {
        /* ... */
    };

Now, let's implement the constructor.  It should take in two parameters – one representing the binary 
function and the other the value to lock into place.  The first will have type BinaryFunction; the second, 
typename BinaryFunction::first_argument_type.  This is shown here:

    template <typename BinaryFunction> class binder1st {
    public:
        binder1st(const BinaryFunction& fn,
                  const typename BinaryFunction::first_argument_type& arg) :
                      function(fn), first(arg) {}

        /* ... */

    private:
        BinaryFunction function;
        typename BinaryFunction::first_argument_type first;
    };

Phew!  That's quite a mouthful, but is the reality of much library template code.  Look at the declaration of 
the first data member.  Though it may seem strange, this is the correct way to declare a data member whose 
type is a type nested inside a template argument.

We now have the constructor written and all that's left to take care of is operator().  Conceptually, this 
function  isn't  very  difficult,  and  if  we  ignore  the  parameter  and  return  types  have  the  following 
implementation:

Binding Functor

Stored
Function

Param 1

Param 2

Stored                        
Value                        

  Input                                 

Output
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    template <typename BinaryFunction> class binder1st {
    public:
        binder1st(const BinaryFunction& fn,
                  const typename BinaryFunction::first_argument_type& arg) :
                      function(fn), first(arg) {}

        /* ret */ operator() (const /* arg */& param) const {
            return function(first, param);
        }

    private:
        BinaryFunction function;
        typename BinaryFunction::first_argument_type first;
    };

What are the argument and return types for this function?  Well, the function returns whatever object is  
produced  by  the  stored  function,  which  has  type  typename BinaryFunction::result_type.   The 
function accepts a value for use as the second parameter to the stored function, so it must have type  
typename BinaryFunction:: second_argument_type.  This results in the following code:

    template <typename BinaryFunction> class binder1st {
    public:
        binder1st(const BinaryFunction& fn,
                  const typename BinaryFunction::first_argument_type& arg) :
                       function(fn), first(arg) {}

        typename BinaryFunction::result_type
        operator()  (const typename BinaryFunction::second_argument_type& param) const {
            return function(first, param);
        }
    private:
        BinaryFunction function;
        typename BinaryFunction::first_argument_type first;
    };

We're almost finished, and all that's left for binder1st is to make it adaptable.  Using the logic from above, 
we'll have it inherit from the proper instantiation of unary_function, as shown here:

    template <typename BinaryFunction> class binder1st :
       public unary_function<typename BinaryFunction::second_argument_type,
                             typename BinaryFunction::result_type> {
    public:
        binder1st(const BinaryFunction& fn,
                  const typename BinaryFunction::first_argument_type& arg) :
                       function(fn), first(arg) {}

        typename BinaryFunction::result_type
        operator()  (const typename BinaryFunction::second_argument_type& param) const {
            return function(first, param);
        }
    private:
        BinaryFunction function;
        typename BinaryFunction::first_argument_type first;
    };

That's it for the binder1st class.  As you can see, the code is dense and does a lot of magic with typename 
and nested types.  Without adaptable functions, code like this would not be possible.

To finish up our discussion, let's implement bind1st.  This function isn't particularly tricky, though we do 
need to do a bit of work to extract the type of the value to lock in place:
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    template <typename BinaryFunction>
    binder1st<BinaryFunction>
       bind1st(const BinaryFunction& fn, 
               const typename BinaryFunction::first_argument_type& arg) {
        return binder1st<BinaryFunction>(fn, arg);
    }

We now have a complete working implementation of bind1st.  If you actually open up the <functional> 
header and peek around inside, the code you'll find will probably bear a strong resemblance to what we've 
written here.

Limitations of the Functional Library

While the STL functional library is useful in a wide number of cases, the library is unfortunately quite 
limited.  <functional> only provides support for adaptable unary and binary functions, but commonly 
you'll  encounter  situations  where  you  will  need  to  bind  and  negate  functions  with  more  than  two 
parameters.  In these cases, one of your only options is to construct functor classes that accept the extra  
parameters in their constructors.  Similarly, there is no support for function composition, so we could not  
create a function that computes 2x + 1 by calling the appropriate combination of the  plus and  multiplies 
functors.   However,  the next version of  C++,  nicknamed “C++0x,”  promises to have more support for 
functional programming of this sort.  For example, it will provide a general function called bind that lets 
you bind as many values as you'd like to a function of arbitrary arity.  Keep your eyes peeled for the next  
release of C++ – it will be far more functional than the current version!

Practice Problems

We've covered a lot of programming techniques in this chapter and there are no shortage of applications 
for the material.  Here are some problems to get you thinking about how functors and adaptable functions 
can influence your programming style:

1. What is a functor?
 

2. What restrictions, if any, exist on the parameter or return types of operator()? 
 

3. Why are functors more powerful than regular functions?
 

4. How do you define a function that can accept both functions and functors as parameters?
 

5. What is an adaptable function?
 

6. How do you convert a regular C++ function into an adaptable function?
 

7. What does the bind1st function do?
 

8. What does the not2 function do?
 

9. The STL algorithm for_each accepts as parameters a range of iterators and a unary function, then 
calls the function on each argument.  Unusually, the return value of for_each is the unary function 
passed in as a parameter.  Why might this be?
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10. Using the fact that for_each returns the unary function passed as a parameter, write a function 
MyAccumulate that accepts as parameters a range of  vector<int>::iterators and an initial 
value, then returns the sum of all of the values in the range, starting at the specified value.  Do not  
use any loops – instead, use for_each and a custom functor class that performs the addition.

11. Write  a  function  AdvancedBiasedSort that  accepts  as  parameters  a  vector<string> and  a 
string “winner” value, then sorts the range, except that all strings equal to the winner are at the 
front of the  vector.  Do not use any loops.  (Hint: Use the STL  sort algorithm and functor that  
stores the “winner” parameter.)

12. Modify the above implementation of  AdvancedBiasedSort so that it  works over an arbitrary 
range of iterators over strings, not just a vector<string>.  Then modify it once more so that the 
iterators can iterate over any type of value.

13. The  STL  generate algorithm  is  defined  as  void  generate(ForwardIterator  start, 
ForwardIterator end, NullaryFunction fn) and iterates over the specified range storing 
the  return  value  of  the  zero-parameter  function  fn as  it  goes.   For  example,  calling 
generate(v.begin(), v.end(), rand) would fill  the range [v.begin() to  v.end())  with 
random values.  Write a function FillAscending that accepts an iterator range, then sets the first 
element in the range to zero, the second to one, etc.  Do not use any loops.

14. Write a function ExpungeLetter that accepts four parameters – two iterators delineating an input 
range of  strings, one iterator delineating the start of an output range, and a character – then 
copies the strings in the input range that do not contain the specified character into the output 
range. The function should then return an iterator one past the last location written.  Do not use 
loops. (Hint: Use the remove_copy_if algorithm and a custom functor).

15. The standard deviation of a set of data is a measure of how much the data varies from its average 
value.  Data with a small standard deviation tends to cluster around a point, while data with large 
standard deviation will be more spread out.
 
The formula for the standard deviation of a set of data {x1, x2, ..., xn} is
 

 1
n∑i=1

n

x i−x
2  

 
Here, x is the average of the data points.
 
To give a feeling for this formula, given the data points 1, 2, 3, the average of the data points is 2, so  
the standard deviation is given by
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n
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Write a function StandardDeviation that accepts an input range of iterators over  doubles (or 
values implicitly convertible to doubles) and returns its standard deviation.  Do not use any loops 
– instead use the accumulate function to compute the average, then use accumulate once more 
to compute the sum. (Hint: To get the number of elements in the range, you can use the distance 
function)
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16. Write a function ClearAllStrings that accepts as input a range of iterators over  strings that 
sets each string to be the empty string.  If you harness the <functional> library correctly here, 
the function body will be only a single line of code.

17. The ROT128 cipher is a weak encryption cipher that works by adding 128 to the value of each 
character in a string to produce a garbled string.  Since  char can only hold 256 different values, 
two  successive  applications  of  ROT128  will  produce  the  original  string.   Write  a  function 
ApplyROT128 that accepts a string and returns the string's ROT128 cipher equivalent.
 

18. Write a template function CapAtValue that accepts a range of iterators and a value by reference-
to-const and replaces all elements in the range that compare greater than the parameter with a 
copy of the parameter. (Hint: use the replace_if algorithm) 
 

19. One piece of functionality missing from the  <functional> library is the ability to bind the first 
parameter of a unary function to form a nullary function.  In this practice problem, we'll implement 
a function called BindOnly that transforms a unary adaptable function into a nullary function.

a. Write  a  template  functor  class  BinderOnly parameterized  whose  constructor  accepts  an 
adaptable  function  and  a  value  to  bind  and  whose  operator() function  calls  the  stored 
function passing in the stored value as a parameter.  Your class should have this interface:
 
    template <typename UnaryFunction> class BinderOnly {
    public:
        BinderOnly(const UnaryFunction& fn,
                   const typename UnaryFunction::argument_type& value);
        RetType operator() () const;
    };

b. Write a template function  BindOnly that accepts the same parameters as the  BinderOnly 
constructor  and returns a  BinderOnly of  the proper  type.  The signature for this  function 
should be
 
template <typename UnaryFunction>
    BinderOnly<UnaryFunction>
        BindOnly(const UnaryFunction &fn,
                 const typename UnaryFunction::argument_type& value);

 
20. Another operation not supported by the <functional> library is function composition.  For example, 

given two functions f and g, the composition g ○ f is a function such that  g ○ f(x) = g(f(x)). In this 
example, we'll write a function Compose that lets us compose two unary functions of compatible 
types.

a. Write a template  functor  UnaryCompose parameterized over two adaptable function types 
whose constructor accepts and stores two unary adaptable functions and whose operator() 
accepts a single parameter and returns the composition of the two functions applied to that 
argument.  Make sure that UnaryCompose is an adaptable unary function.

b. Write a wrapper function Compose that takes in the same parameters as UnaryCompose and 
returns a properly-constructed UnaryCompose object.

c. Explain how to implement not1 using Compose and logical_not, a unary adaptable function 
exported by <functional> that returns the logical inverse of its argument.



Part Three
More to Explore

Whew!  You've made it through the first three sections and are now a seasoned and competent C++ programmer. 
But your journey has just begun.  There are many parts of the C++ programming language that we have not  
covered, and it's now up to you to begin the rest of your journey.

This last section of the book contains two chapters.  The first, on C++0x, discusses what changes are expected  
for  the  C++ programming  language  over  the  next  few years.   Now that  you've  seen  C++'s  strengths  and 
weaknesses, I hope that this chapter proves enlightening and exciting.  The second chapter is all about how to 
continue your journey into further C++ mastery and hopefully can give you a boost in the right direction.



Chapter 14: C++0x
_________________________________________________________________________________________________________

C++0x feels like a new language: The pieces just fit together better than they used to and I find a  
higher-level style of programming more natural than before and as efficient as ever. If you timidly  
approach C++ as just a better C or as an object-oriented language, you are going to miss the  
point.  The  abstractions  are simply  more  flexible  and  affordable  than  before.  Rely  on the  old  
mantra: If  you think [o]f  it as a separate idea or object,  represent it directly in the program;  
model real-world objects, concepts, and abstractions directly in code. It's easier now: Your ideas  
will  map  to  enumerations,  objects,  classes  (e.g.  control  of  defaults),  class  hierarchies  (e.g.  
inherited  constructors),  templates,  concepts,  concept  maps,  axioms,  aliases,  exceptions,  loops,  
threads, etc., rather than to a single “one size fits all” abstraction mechanism.

My ideal is to use programming language facilities to help programmers think differently about  
system  design  and  implementation.  I  think  C++0x  can  do  that  –  and  do  it  not  just  for  C++  
programmers but for programmers used to a variety of modern programming languages in the  
general and very broad area of systems programming.

In other words, I'm still an optimist.

– Bjarne Stroustrup, inventor of C++. [Str09.3]

C++ is constantly evolving.  Over the past few years the C++ standards body has been developing the next 
revision of C++, nicknamed C++0x.  C++0x is a major upgrade to the C++ programming language and as we 
wrap up our tour of C++, I thought it appropriate to conclude by exploring what C++0x will have in store.  
This chapter covers some of the more impressive features of C++0x and what to expect in the future.

Be aware that C++0x has not yet been finalized, and the material in this chapter may not match the final C+
+0x specification.  However, it should be a great launching point so that you know where to look to learn 
more about the next release of C++.

Automatic Type Inference

Consider the following piece of code:

    void DoSomething(const multimap<string, vector<int> >& myMap) {
        const pair<multimap<string, vector<int> >::const_iterator,
                   multimap<string, vector<int> >::const_iterator> eq =
            myMap.equal_range("String!");
        for(multimap<string, vector<int> >::const_iterator itr = eq.first;
            itr != eq.second; ++itr)
            cout << itr->size() << endl;
    }

This above code takes in a multimap mapping from strings to vector<int>s and prints out the length 
of all vectors in the multimap whose key is “String!”  While the code is perfectly legal C++, it is extremely  
difficult to follow because more than half of the code is spent listing the types of two variables, eq and itr. 
If you'll notice, these variables can only take on one type – the type of the expression used to initialize  
them.  Since the compiler knows all of the types of the other variables in this code snippet, couldn't we just  
ask the compiler to give eq and itr the right types?  Fortunately, in C++0x, the answer is yes thanks to a 
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new language feature called  type inference.  Using type inference, we can rewrite the above function in 
about half as much space:

    void DoSomething(const multimap<string, vector<int>>& myMap) {
        const auto eq = myMap.equal_range("String!");
        for(auto itr = eq.first; itr != eq.second; ++itr)
            cout << itr->size() << endl;
    }

Notice that we've replaced all of the bulky types in this expression with the keyword auto, which tells the 
C++0x compiler that it should infer the proper type for a variable.   The standard iterator loop is now 
considerably  easier  to  write,  since  we  can  replace  the  clunky  multimap<string, vector<int> 
>::const_iterator with the much simpler  auto.   Similarly,  the hideous return type associated with 
equal_range is entirely absent.

Because auto must be able to infer the type of a variable from the expression that initializes it, you can  
only use auto when there is a clear type to assign to a variable.  For example, the following is illegal:

    auto x;

Since x could theoretically be of any type.

auto is also useful because it allows complex libraries to hide implementation details behind-the-scenes. 
For example, recall that the ptr_fun function from the STL <functional> library takes as a parameter a 
regular C++ function and returns an adaptable version of that function.  In our discussion of the library's  
implementation, we saw that the return type of ptr_fun is either pointer_to_unary_function<Arg, 
Ret> or pointer_to_binary_function<Arg1, Arg2, Ret>, depending on whether the parameter is a 
unary or binary function.  This means that if you want to use ptr_fun to create an adaptable function and 
want to store the result for later use, using current C++ you'd have to write something to the effect of

    pointer_to_unary_function<int, bool> ouchies = ptr_fun(SomeFunction);

This is terribly hard to read but more importantly breaks the wall of abstraction of ptr_fun.  The entire 
purpose of ptr_fun is to hide the transformation from function to functor, and as soon as you are required 
to know the return type of ptr_fun the benefits of the automatic wrapping facilities vanish.  Fortunately, 
auto can help maintain the abstraction, since we can rewrite the above as

    auto howNice = ptr_fun(SomeFunction);

C++0x will  provide  a  companion operator  to  auto called  decltype that  returns  the  type  of  a  given 
expression.  For example,  decltype(1 + 2) will evaluate to  int, while  decltype(new char) will be 
char *.  decltype does not evaluate its argument – it simply yields its type – and thus incurs no cost at  
runtime.

One potential use of  decltype arises when writing template functions.  For example, suppose that we 
want to write a template function as follows:

    template <typename T> /* some type */ MyFunction(const T& val) {
        return val.doSomething();
    }

This function accepts a  T as a template argument, invokes that object's  doSomething member function, 
then returns its value (note that if the type T doesn't have a member function doSomething, this results in 
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a compile-time error).  What should we use as the return type of this function?  We can't tell by simply  
looking  at  the  type  T,  since  the  doSomething member  function  could  theoretically  return  any  type. 
However, by using decltype and a new function declaration syntax, we can rewrite this as

    template <typename T>
    auto MyFunction(const T& val) -> decltype(val.doSomething()) {
        return val.doSomething();
    }

Notice that we defined the function's return type as auto, and then after the parameter list said that the 
return type is  decltype(val.doSomething()).  This new syntax for function declarations is optional, 
but will make complicated function prototypes easier to read.

Move Semantics

If you'll recall from our discussion of copy constructors and assignment operators, when returning a value 
from a function,  C++ initializes  the  return value by  invoking the class's  copy constructor.   While  this 
method guarantees that the returned value is always valid,  it  can be grossly inefficient.   For example,  
consider the following code:

    vector<string> LoadAllWords(const string& filename) {
        ifstream input(filename.c_str());
        if(!input.is_open())
            throw runtime_error("File not found!");

        /* Use the vector's insert function, plus some istream_iterators, to
         * load the contents of the file.
         */
        vector<string> result;
        result.insert(result.begin(), istream_iterator<string>(input),
                      istream_iterator<string>());
    
        return result;
    }

Here, we open the file specified by filename, then use a pair of istream_iterators to load the contents 
of the file into the vector.  At the end of this function, before the return result statement executes, the 
memory  associated  with  the  result vector looks  something  like  this  (assuming  a  vector is 
implemented as a pointer to a raw C++ array):

Alpha

Beta

Gamma

...

Chi

Psi

Omega

result

137len

elems

Now, the statement return result executes and C++ initializes the return value by invoking the vector 
copy constructor.  After the copy the program's memory looks like this:
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Alpha

Beta

Gamma

...

Chi

Psi

Omega

result

137len

elems

Alpha

Beta

Gamma

...

Chi

Psi

Omega

return value

137len

elems

After  the  return value is  initialized,  result will  go  out  of  scope  and its  destructor  will  clean up its 
memory.  Memory now looks like this:

Alpha

Beta

Gamma

...

Chi

Psi

Omega

return value

137len

elems

           

Here, we made a full deep copy of the contents of the returned object, then deallocated all of the original  
memory.  This is inefficient, since we needlessly copied a long list of strings.  There is a much better way to 
return the  vector from the function.   Instead of initializing the return value by making a deep copy,  
instead we'll make it a shallow copy of vector we're returning.  The in-memory representations of these 
two vectors thus look like this:

Alpha

Beta

Gamma

...

Chi

Psi

Omega

result

137len

elems

return value

137 len

elems

Although the two vectors share the same memory, the returned  vector has the same contents as the 
source vector and is in fact indistinguishable from the original.  If we then modify the original vector by 
detaching its pointer from the array and having it point to NULL (or, since this is C++0x, the special value 
nullptr), then we end up with a picture like this:
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Alpha

Beta

Gamma

...

Chi

Psi

Omega

result
nullptr

0len

elems

return value

137 len

elems

Now, result is an empty vector whose destructor will not clean up any memory, and the calling function 
will end up with a vector whose contents are exactly those returned by the function.  We've successfully 
returned the value from the function, but avoided the expensive copy.  In our case, if we have a vector of n 
strings of length at most m, then the algorithm for copying the vector will take O(mn).  The algorithm 
for simply transferring the pointer from the source vector to the destination, on the other hand, is O(1) 
for the pointer manipulations.

The difference between the current method of returning a value and this improved version of returning a  
value is the difference between copy semantics and move semantics.  An object has copy semantics if it can 
be duplicated in another location.  An object has move semantics (a feature introduced in C++0x) if it can 
be  moved  from  one  variable  into  another,  destructively  modifying  the  original.   The  key  difference 
between the two is the number of copies at any point.  Copying an object duplicates its data, while moving  
an object transfers the contents from one object to another without making a copy.

To support move semantics, C++0x introduces a new variable type called an rvalue reference whose syntax 
is Type &&.  For example, an rvalue reference to a vector<int> would be a vector<int> &&.  Informally, 
you can view an rvalue reference as a reference to a temporary object, especially one whose contents are 
to be moved from one location to another.

Let's return to the above example with returning a vector from a function.  In the current version of C++, 
we'd define a copy constructor and assignment operator for vector to allow us to return vectors from 
functions and to pass vectors as parameters.  In C++0x, we can optionally define another special function, 
called a move constructor, that initializes a new vector by moving data out of one vector into another.  In 
the above example, we might define a move constructor for the vector as follows:

    /* Move constructor takes a vector&& as a parameter, since we want to move
     * data from the parameter into this vector.
     */
    template <typename T> vector<T>::vector(vector&& other) {
        /* We point to the same array as other and have the same length. */
        elems = other.elems;
        len = other.len;

        /* Destructively modify the source vector to stop sharing the array. */
        other.elems = nullptr;
        other.len = 0;
    }

Now, if we return a vector from a function, the new vector will be initialized using the move constructor 
rather than the regular copy constructor.

We  can  similarly  define  a  move  assignment  operator (as  opposed  to  the  traditional  copy assignment 
operator), as shown here:
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    template <typename T> vector<T>& vector<T>::operator= (vector&& other) {
        if(this != &other) {
            delete [] elems;

            elems = other.elems;
            len = other.len;

            /* Modify the source vector to stop sharing the array. */
            other.elems = nullptr;
            other.len = 0;
        }
        return *this;
    }

The similarity between a copy constructor and copy assignment operator is also noticeable here in the 
move constructor and move assignment operator.  In fact, we can rewrite the pair using helper functions 
clear and moveOther:

    template <typename T> void vector<T>::moveOther(vector&& other) {
        /* We point to the same array as the other vector and have the same
         * length.
         */
        elems = other.elems;
        len = other.len;
    
        /* Modify the source vector to stop sharing the array. */
        other.elems = nullptr;
        other.len = 0;
    }
    
    template <typename T> void vector<T>::clear() {
        delete [] elems;
        len = 0;
    }
    
    template <typename T> vector<T>::vector(vector&& other) {
        moveOther(move(other)); // See later section for move
    }

    template <typename T> vector<T>& vector<T>::operator =(vector&& other) {
        if(this != &other) {
            clear();
            moveOther(move(other));
        }
        return *this;
    }

Move semantics are also useful in situations other than returning objects from functions.  For example,  
suppose that we want to insert an element into an array, shuffling all of the other values down one spot to  
make room for the new value.  Using current C++, the code for this operation is as follows:

    template <typename T>
    void InsertIntoArray(T* elems, int size, int position, const T& toAdd) {
        for(int i = size; i > position; ++i)
            elems[i] = elems[i – 1]; // Shuffle elements down.
        elems[i] = toAdd;
    }
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There is nothing wrong per se with this code as it's written, but if you'll notice we're using copy semantics 
to shuffle the elements down when move semantics is more appropriate.  After all, we don't want to copy 
the elements into the spot one element down; we want to move them.

In C++0x,  we can use an object's  move semantics (if  any)  by using the special  helper function  move, 
exported by <utility>, which simply returns an rvalue reference to an object.  Now, if we write

    a = move(b);

If a has support for move semantics, this will move the contents of b into a.  If a does not have support for 
move  semantics,  however,  C++  will  simply  fall  back  to  the  default  object  copy  behavior  using  the 
assignment operator.  In other words, supporting move operations is purely optional and a class can still  
use the old fashioned copy constructor and assignment operator pair for all of its copying needs.

Here's the rewritten version of InsertIntoArray, this time using move semantics:

    template <typename T>
    void InsertIntoArray(T* elems, int size, int position, const T& toAdd) {
        for(int i = size; i > position; ++i)
            elems[i] = move(elems[i – 1]); // Move elements down.
        elems[i] = toAdd;
    }

Curiously, we can potentially take this one step further by moving the new element into the array rather  
than copying it.  We thus provide a similar function, which we'll call  MoveIntoArray, which moves the 
parameter into the specified position:

    template <typename T>
    void MoveIntoArray(T* elems, int size, int position, T&& toAdd) {
        for(int i = size; i > position; ++i)
            elems[i] = move(elems[i – 1]); // Move elements down.

        /* Note that even though toAdd is an rvalue reference, we still must
         * explicitly move it in.  This prevents us from accidentally using
         * move semantics in a few edge cases.
         */
        elems[i] = move(toAdd);
    }

Move semantics and copy semantics are independent and in C++0x it will be possible to construct objects  
that can be moved but not copied or vice-versa.  Initially this might seem strange, but there are several 
cases where this is exactly the behavior we want.  For example, it is illegal to copy an ofstream because 
the behavior associated with the copy is undefined – should we duplicate the file?  If so, where?  Or should  
we just share the file?  However,  it  is perfectly legitimate to  move an  ofstream from one variable to 
another, since at any instant only one ofstream variable will actually hold a reference to the file stream. 
Thus functions like this one:

    ofstream GetTemporaryOutputFile() {
        /* Use the tmpnam() function from <cstdio> to get the name of a
         * temporary file.  Consult a reference for more detail.
         */
        char tmpnamBuffer[L_tmpnam];
        ofstream result(tmpnam(tmpnamBuffer));
        return result; // Uses move constructor, not copy constructor!
    }
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Will be perfectly legal in C++0x because of move constructors, though the same code will not compile in  
current C++ because ofstream has no copy constructor.

Another  example  of  an  object  that  has  well-defined  move  behavior  but  no  copy behavior  is  the  C++ 
auto_ptr class.  If you'll recall, assigning one  auto_ptr to another destructively modifies the original 
auto_ptr.   This  is  exactly  the  definition  of  move  semantics.   However,  under  current  C++  rules, 
implementing auto_ptr is extremely difficult and leads to all sorts of unexpected side effects.  Using move 
constructors, however, we can eliminate these problems.  C++0x will introduce a replacement to auto_ptr 
called  unique_ptr which,  like  auto_ptr,  represents a smart  pointer that  automatically  cleans up its 
underlying resource when it goes out of scope.  Unlike auto_ptr, however, unique_ptr cannot be copied 
or assigned but can be moved freely.  Thus code of this sort:

    unique_ptr<int> myPtr(new int);
    unique_ptr<int> other = myPtr; // Error!  Can't copy unique_ptr.

Will  not  compile.   However,  by explicitly indicating that the operation is a  move,  we can transfer the 
contents from one unique_ptr to another:

    unique_ptr<int> myPtr(new int);
    unique_ptr<int> other = move(myPtr); // Legal; myPtr is now empty

Move semantics and rvalue references may seem confusing at first,  but promise to be a powerful and 
welcome addition to the C++ family.

Lambda Expressions

Last chapter, we considered the problem of counting the number of strings in a vector whose lengths 
were less than some value determined at runtime.  We explored how to solve this problem using the  
count_if algorithm and a functor.  Our solution was as follows:

    class ShorterThan {
    public:
        explicit ShorterThan(int maxLength) : length(maxLength) {}
        bool operator() (const string& str) const {
            return str.length() < length;
        }
    private:
        int length;
    };

    const int myValue = GetInteger();
    count_if(myVector.begin(), myVector.end(), ShorterThan(myValue));

This functor-based approach works correctly, but has a huge amount of boilerplate code that obscures the  
actual mechanics of the solution.  What we'd prefer instead is the ability to write code to this effect:

    const int myValue = GetInteger()
    count_if(myVector.begin(), myVector.end(), the string is shorter than myValue);

Using a new C++0x language feature known as  lambda expressions (a term those of you familiar with 
languages like Scheme, ML, or Haskell might recognize), we can write code that very closely mirrors this 
structure.  One possibility looks like this:



Chapter 14: C++0x - 437 -

    const int myValue = GetInteger();
    count_if(myVector.begin(), myVector.end(), 
             [myValue](const string& x) { return x.length() < myValue; });

The construct in the final line of code is a  lambda expression, an unnamed (“anonymous”) function that 
exists only as a parameter to count_if.  In this example, we pass as the final parameter to count_if a 
temporary function that accepts a single string parameter and returns a bool indicating whether or not 
its length is less than myValue.  The bracket syntax [myValue] before the parameter declaration (int x) 
is called the capture list and indicates to C++ that the lambda expression can access the value of myValue 
in its body.

Behind the scenes, C++ converts lambda expressions such as the one above into uniquely-named functors, 
so the above code is identical to the functor-based approach outlined above.

For  those of  you with  experience in a  functional  programming language,  the  example  outlined above 
should strike you as an extraordinarily powerful addition to the C++ programming language.  Lambda 
expressions  greatly  simplify  many  tasks  and  represent  an  entirely  different  way  of  thinking  about 
programming.  It will be interesting to see how rapidly lambda expressions are adopted in professional 
code.

Variadic Templates

In  the  previous  chapter  we  implemented  a  class  called  Function that  wrapped  an  arbitrary  unary 
function.  Recall that the definition of Function is as follows:

    template <typename ArgType, typename ReturnType> class Function {
    public:
        /* Constructor and destructor. */
        template <typename UnaryFunction> Function(UnaryFunction);
        ~Function();

        /* Copy support. */
        Function(const Function& other);
        Function& operator= (const Function& other);

        /* Function is a functor that calls into the stored resource. */
        ReturnType operator() (ArgType value) const;
    private:
        /* ... */
    };

What if we want to generalize  Function to work with functions of arbitrary arity?  That is, what if we 
want to create a class that encapsulates a binary, nullary, or ternary function?  Using standard C++, we 
could do this by introducing new classes  BinaryFunction,  NullaryFunction, and  TernaryFunction 
that were implemented similarly to Function but which accepted a different number of parameters.  For 
example, here's one possible interface for BinaryFunction:
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    template <typename ArgType1, typename ArgType2, typename ReturnType>
    class BinaryFunction {
    public:
        /* Constructor and destructor. */
        template <typename BinaryFn> BinaryFunction(BinaryFn);
        ~BinaryFunction();
    
        /* Copy support. */
        BinaryFunction(const BinaryFunction& other);
        BinaryFunction& operator= (const BinaryFunction& other);
    
        /* Function is a functor that calls into the stored resource. */
        ReturnType operator() (ArgType1 arg2, ArgType2 arg2) const;
    private:
        /* ... */
    };

Writing different class templates for functions of each arity is troublesome.  If we write  Function-like 
classes for a fixed number of arities (say, functions between zero and ten arguments) and then discover 
that we need a wrapper for a function with more arguments, we we'll have to write that class from scratch.  
Moreover, the structure of each function wrapper is almost identical.  Compare the BinaryFunction and 
Function class interfaces mentioned above.  If you'll notice, the only difference between the classes is the 
number of template arguments and the number of arguments to operator().  Is there some way that we 
can use this commonality to implement a single class that works with functions of arbitrary arity?  Using 
the current incarnation of C++ this is not possible, but using a C++0x feature called variadic templates we 
can do just this.

A  variadic template is a template that can accept an arbitrary number of template arguments.   These 
arguments are grouped together into arguments called parameter packs that can be expanded out to code 
for  each  argument  in  the  pack.   For  example,  the  following class  is  parameterized  over  an arbitrary 
number of arguments:

    template <typename... Args> class Tuple {
        /* ... */
    };

The syntax  typename... Args indicates that  Args is  a  parameter  pack that represents an arbitrary 
number of arguments.  Since Args represents a list of arguments rather than an argument itself, it is illegal 
to use Args in an expression by itself.  Instead, Args must be used in a pattern expression indicating what 
operation should be applied to each argument in the pack.  For example, if we want to create a constructor 
for Tuple that accepts a list of arguments with one argument for each type in Args, we could write the 
following:

    template <typename... Args> class Tuple {
    public:
        Tuple(const Args& ...);
    };

Here, the syntax  const Args& ... is a pattern expression indicating that for each argument in  Args, 
there should be a parameter to the constructor that's passed by reference-to-const.  For example, if we 
created  a  Tuple<int>,  the  constructor  would  be  Tuple<int>(const  int&),  and  if  we  create  a 
Tuple<int, double>, it would be Tuple<int, double>(const int&, const double&).
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Let's return to the example of  Function.  Suppose that we want to convert  Function from encoding a 
unary function to encoding a function of arbitrary arity.  Then we could change the class interface to look  
like this:

    template <typename ReturnType, typename... ArgumentTypes> class Function {
    public:
        /* Constructor and destructor. */
        template <typename Callable> Function(Callable);
        ~Function();

        /* Copy support. */
        Function(const Function& other);
        Function& operator= (const Function& other);

        /* Function is a functor that calls into the stored resource. */
        ReturnType operator() (ArgumentTypes... args) const;
    private:
        /* ... */
    };

Function is  now  parameterized  such  that  the  first  argument  is  the  return  type  and  the  remaining  
arguments are argument types.  For example, a  Function<int, string> is a function that accepts a 
string and returns an int, while a Function<bool, int, int> would be a function accepting two ints 
and returning a bool.

We've just  seen how the interface  for  Function looks with  variadic templates,  but what about the 
implementation?  If you'll recall, the original implementation of Function's operator() function looked 
as follows:

    template <typename ArgType, typename ReturnType>
    ReturnType Function<ArgType, ReturnType>::operator()(ArgType param) const {
        return function->execute(param);
    }

Let's  begin converting this  to use  variadic  templates.   The first  step is  to adjust  the  signature of  the 
function, as shown here:

    template <typename RetType, typename... ArgTypes>
    RetType Function<RetType, ArgTypes...>::operator()(ArgTypes... args) const {
        /* ... */
    }

Notice that we've specified that this is a member of Function<RetType, ArgTypes...>.

In  the  unary  version of  Function,  we  implemented  operator() by  calling  a  stored  function object's 
execute member function, passing in the parameter given to operator().  But how can we now call execute 
passing in an arbitrary number of parameters?  The syntax for this again uses ... to tell C++ to expand the 
args parameters to the function into an actual list of parameters.  This is shown here:

    template <typename RetType, typename... ArgTypes>
    RetType Function<RetType, ArgTypes...>::operator()(ArgTypes... args) const {
        return function->execute(args...);
    }
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Just as using ... expands out a parameter pack into its individual parameters, using ... here expands out 
the variable-length argument list args into each of its individual parameters.  This syntax might seem a bit 
tricky at first, but is easy to pick up with practice.

Library Extensions

In addition to all of the language extensions mentioned in the above sections, C++0x will provide a new set 
of libraries that should make certain common tasks much easier to perform:

• Enhanced Smart Pointers.   C++0x will  support  a wide variety of  smart pointers,  such as the 
reference-counted shared_ptr and the aforementioned unique_ptr.

• New STL Containers.  The current STL associative containers (map, set, etc.) are layered on top of 
balanced binary trees, which means that traversing the map and set always produce elements in 
sorted order.  However, the sorted nature of these containers means that insertion, lookup, and 
deletion are all O(lg  n), where n is the size of the container.  In C++0x, the STL will be enhanced 
with unordered_map, unordered_set, and multicontainer equivalents thereof.  These containers 
are layered on top of hash tables, which have O(1) lookup and are useful when ordering is not 
important.

• Multithreading Support.  Virtually all major C++ programs these days contain some amount of 
multithreading and concurrency, but the C++ language itself provides no support for concurrent 
programming.  The next incarnation of C++ will  support a threading library, along with atomic 
operations, locks, and all of the bells and whistles needed to write robust multithreaded code.

• Regular Expressions.  The combination of C++ strings and the STL algorithms encompasses a 
good  deal  of  string  processing  functionality  but  falls  short  of  the  features  provided  by  other 
languages like Java, Python, and (especially) Perl.  C++0x will augment the strings library with full 
support  for  regular  expressions,  which should make string  processing and compiler-authoring 
considerably easier in C++.

• Upgraded <functional> library.  C++0x will expand on <functional> with a generic function
type akin to the  one described above,  as  well  as  a  supercharged  bind function that  can bind 
arbitrary parameters in a function with arbitrary values.
 

• Random  Number  Generation.   C++'s  only  random  number  generator  is  rand,  which  has 
extremely low randomness (on some implementations numbers toggle between even and odd) 
and is not particularly useful in statistics and machine learning applications.  C++0x, however, will  
support  a  rich  random  number  generator  library,  complete  with  a  host  of  random  number 
generators and probability distribution functors.

• Metaprogramming Traits Classes.   C++0x will  provide a large number of classes called  traits  
classes that can help generic programmers write optimized code.  Want to know if  a template 
argument is an abstract class?  Just check if is_abstract<T>::type evaluates to true_type or 
false_type.



Chapter 14: C++0x - 441 -

Other Key Language Features

Here's a small sampling of the other upgrades you might find useful:

• Unified Initialization Syntax: It will be possible to initialize C++ classes by using the curly brace 
syntax (e.g. vector<int> v = {1, 2, 3, 4, 5};)

• Delegating Constructors: Currently, if several constructors all need to access the same code, they 
must call a shared member function to do the work.  In C++0x, constructors can invoke each other 
in initializer lists.

• Better Enumerations: Currently,  enum can only be used to create integral constants, and those 
constants can be freely compared against each other.  In C++0x, you will be able to specify what  
type to use in an enumeration, and can disallow automatic conversions to int.

• Angle Brackets: It is currently illegal to terminate a nested template by writing two close brackets  
consecutively, since the compiler confuses it with the stream insertion operator >>.  This will be 
fixed in C++0x.

• C99 Compatibility: C++0x will formally introduce the long long type, which many current C++ 
compilers support, along with various preprocessor enhancements.

C++0x Today

Although C++0x has not yet been adopted as a standard, there are several freely-available compilers that  
support a subset of C++0x features.  For example, g++ versions 4.4 and up have support for much of C++0x, 
and  Microsoft  Visual  Studio  2010  has  a  fair  number  of  features  implemented,  including  lambda 
expressions  and  the  auto keyword.   If  you  want  to  experience  the  future  of  C++  today,  consider 
downloading one of these compilers.
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Congratulations!  You've made it through CS106L.  You've taken the first step on your journey toward a 
mastery of the C++ programming language.  This is no easy feat!  In the course of reading through this far,  
you now have a command of the following concepts:

• The streams library, including how to interface with it through operator overloading.
• STL containers, iterators, algorithms, adapters, and functional programming constructs, including 

a working knowledge of how these objects are put together.
• Pointer arithmetic and how objects are laid out in memory.
• The preprocessor and how to harness it to automatically generate C++ code.
• Generic programming in C++ and just how powerful the C++ template system can be.
• The const keyword and how to use it to communicate function side-effects to other programmers.
• Object layout and in-memory representation.
• Copy semantics and how to define implicit conversions between types.
• Operator overloading and how to make a C++ class act like a primitive type.
• What a functor is and how surprisingly useful and flexible they are.
• Exception handling and how to use objects to automatically manage resources.
• C++0x and what C++ will look like in the future.
• ... and a whole host of real-world examples of each of these techniques.

Despite all of the material we've covered here, there is much more to learn in the world of C++ and your 
journey has just begun.  I feel that it is a fitting conclusion to this course reader to direct you toward other  
C++ resources that will prove invaluable along your journey into the wondrous realm of this language.  In 
particular, there are several excellent C++ resources I would be remiss to omit:

Effective  C++,  More  Effective  C++,  and  Effective  STL by  Scott 
Meyers.  Picking up and reading this trio of books is perhaps the 
best thing you can do for yourself as a C++ programmer.  The 
books in the  Effective C++ series will help you transition from a 
solid C++ programmer into an excellent C++ programmer and are 
widely  regarded as among the best  C++ books on the market. 
What  separates  the  Effective  C++ series  from  most  other  C++ 
books is that  Effective C++ focuses almost exclusively on correct 
usage of core C++ language features and how to avoid common 
pitfalls.  If you plan on using C++ in the professional world, you 
should own copies of this book.
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Exceptional C++ by Herb Sutter.  This book is an invaluable tool in 
any C++ programmer's arsenal.  The book is largely organized as 
a set of puzzles that give you a chance to think about the best way 
to solve a problem and what C++ issues you'll encounter in the 
process.  Along with Effective   C++, Exceptional C++ is one of the 
most highly-recommended C++ books out there.   Herb Sutter's 
personal  website is  also an excellent resource for all  your C++ 
needs.

The Design and Evolution of C++ by Bjarne Stroustrup.  This book, 
affectionately known to hardcore C++ programmers as D&E, is a 
glimpse into Bjarne Stroustrup's thought processes as he went 
about  designing  C++.   D&E  is  not  a  programming  guide,  but 
rather a history of the evolution of C++ from the small language C 
with Classes into the modern language we know and love today. 
D&E was written before C++ had been ISO standardized and even 
predates the STL, meaning that it can offer a new perspective on 
some  of  the  language  features  and libraries  you  may take  for 
granted.  If you want an interesting glimpse into the mind of the 
man behind C++, this is the book for you.

Modern C++ Design:  Generic  Programming and Design  Patterns  
Applied by Andrei Alexandrescu.  Considered the seminal work in 
modern C++ programming, this book is an excellent introduction 
into an entirely new way of thinking in C++.  Alexandrescu takes 
many  advanced  language  features  like  templates  and  multiple 
inheritance,  then  shows  how  to  harness  them  to  achieve 
synergistic  effects  that  are  far  more  powerful  than any  of  the 
individual features used.  As an example, the first chapter shows 
how  to  write  a  single  smart  pointer  class  that  is  capable  of 
storing  any  type  of  value,  performing  any  sort  of  resource 
management,  and  having  any  copy  behavior  that  the  client 
desires.  The book is very language-intensive and requires you to 
have a grasp of C++ slightly beyond the scope of this reader, but is 
a most wonderful text for all who are interested.
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Final Thoughts

It's been quite a trip since we first started with the streams library.  You now know how to program with  
the STL, write well-behaved C++ objects, and even how to use functional programming constructs.  But  
despite the immense amount of material we've covered,  we have barely scratched the surface of C++.  
There are volumes of articles and books out there that cover all sorts of amazing C++ tips and tricks, and 
by taking the initiative and exploring what's out there you can hone your C++ skills until problem solving  
in C++ transforms from “how do I solve this problem?” to “which of these many options is best for solving  
this problem?”

C++ is an amazing language.  It has some of the most expressive syntax of any modern programming 
language, and affords an enormous latitude in programming styles.  Of course, it has its flaws, as critics are 
eager  to  point  out,  but  despite  the  advent  of  more modern languages like  Java  and Python C++ still  
occupies a prime position in the software world.

I hope that you've enjoyed reading this course reader as much as I enjoyed writing it.  If you have any 
comments,  suggestions,  or  criticisms,  feel  free  to  email  me  at  htiek@cs.stanford.edu.   Like  the  C++ 
language, CS106L and this course reader are constantly evolving, and if there's anything I can do to make 
the class more enjoyable, be sure to let me know!

Have fun with C++, and I wish you the best of luck wherever it takes you!

- Keith

mailto:htiek@cs.stanford.edu


Part Four
Object-Oriented Programming
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It's impossible to learn C++ or any other object-oriented language without encountering  inheritance,  a 
mechanism that lets different classes share implementation and interface design.  However, inheritance 
has evolved greatly since it was first introduced to C++, and consequently C++ supports several different 
inheritance schemes.  This chapter introduces and motivates inheritance, then discusses how inheritance 
interacts with other language features.

Inheritance of Implementation and Interface

C++  started  off  as  a  language  called  “C  with  Classes,”  so  named  because  it  was  essentially  the  C  
programming  language  with  support  for  classes  and object-oriented  programming.   C++ is  the  more  
modern incarnation of C with Classes, so most (but not all) of the features of C with Classes also appear in  
C++.

The inheritance introduced in C with Classes allows you to define new classes in terms of older ones.  For  
example, suppose you are using a third-party library that exports a Printer class, as shown below:

class Printer
{
public:
    /* Constructor, destructor, etc. */

    void setFont(const string& fontName, int size);
    void setColor(const string& color);
    void printDocument(const string& document);
private:
    /* Implementation details */
};

This Printer class exports several formatting functions, plus printDocument, which accepts a string of 
the  document  to  print.   Let's  assume  that  printDocument is  implemented  synchronously  –  that  is, 
printDocument will not return until the document has finished printing.  In some cases this behavior is 
fine, but in others it's simply not acceptable.  For example, suppose you're writing database software for a 
large library and want to give users the option to print out call numbers.  Chances are that people using 
your software will print call numbers for multiple books and will be irritated if they have to sit and wait  
for their documents to finish printing before continuing their search.  To address this problem, you decide  
to add a new feature to the printer that lets the users enqueue several documents and print them in a 
single batch job.  That way, users searching for books can enqueue call numbers without long pauses, then 
print them all in one operation.  However, you don't want to force users to queue up documents and then 
do a batch print job at the end – after all, maybe they're just looking for one book – so you want to retain  
all of the original features of the Printer class.  How can you elegantly solve this problem in software?

Let's consider the above problem from a programming perspective.  The important points are:

• We are provided the  Printer class from an external source, so we cannot modify the  Printer 
interface.

• We want to preserve all of the existing functionality from the Printer class.
• We want to extend the Printer class to include extra functionality.
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This is an ideal spot to use inheritance, a means for defining a new class in terms of an older one.  We have 
an existing class that contains most of our needed functionality, but we'd like to add some extra features.

Let's  define  a  BatchPrinter class  that  supports  two  new  functions,  enqueueDocument and 
printAllDocuments, on top of all of the regular Printer functionality.  In C++, we write this as

class BatchPrinter: public Printer // Inherit from Printer
{
public:
    void enqueueDocument(const string& document);
    void printAllDocuments();
private:
    queue<string> documents; // Document queue
};

Here,  the  class  declaration  class BatchPrinter: public Printer indicates  that  the  new  class 
BatchPrinter inherits the functionality of the  Printer class.  Although we haven't explicitly provided 
the  printDocument or  setFont functions, since those functions are defined in  Printer,  they are also 
part of BatchPrinter.  For example:

BatchPrinter myPrinter;
myPrinter.setColor("Red");                          // Inherited from Printer
myPrinter.printDocument("This is a document!");     // Same
myPrinter.enqueueDocument("Print this one later."); // Defined in BatchPrinter
myPrinter.printAllDocuments();                      // Same

While the BatchPrinter can do everything that a Printer can do, the converse is not true – a Printer 
cannot  call  enqueueDocument or  printAllDocuments,  since  we  did  not  modify  the  Printer class 
interface.

In the above setup,  Printer is called a  base class of  BatchPrinter,  which is a  derived class.  In   C++ 
jargon,  the relationship between a derived class  and its  base class  is  the  is-a relationship.   That is,  a 
BatchPrinter is-a Printer because everything the Printer can do, the BatchPrinter can do as well. 
The converse is not true, though, since a Printer is not necessarily a BatchPrinter.

Because  BatchPrinter is-a Printer,  anywhere that a  Printer is expected we can instead provide a 
BatchPrinter.   For example,  suppose we have a function that accepts a  Printer object,  perhaps to 
configure its font rendering, as shown here:

void InitializePrinter(Printer& p);

Then the following code is perfectly legal:

BatchPrinter batch;
InitializePrinter(batch);

Although  InitializePrinter expects  an  argument  of  type  Printer&,  we  can  instead  provide  it  a 
BatchPrinter.  This operations is well-defined and perfectly safe because the BatchPrinter contains all 
of the functionality of a regular  Printer.   If we temporarily forget about all  of the extra functionality 
provided by the  BatchPrinter class, we still have a good old-fashioned Printer.  When working with 
inheritance, you can think of the types of arguments to functions as specifying the minimum requirements  
for the parameter.  A function accepting a Printer& or a const Printer& can take in a object of any type, 
provided of course that it ultimately derives from Printer.
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Note that it is completely legal to have several classes inherit from a single base class.  Thus, if we wanted  
to  develop  another  printer  that  supported  graphics  printing  in  addition  to  text,  we  could  write  the 
following class definition:

class GraphicsPrinter: public Printer
{
public:
    /* Constructor, destructor, etc. */
    void printPicture(const Picture& picture); // For some Picture class
private:
    /* Implementation details */
};

Now, GraphicsPrinter can do everything a regular Printer can do, but can also print Picture objects. 
Again,  GraphicsPrinter is-a Printer,  but  not  vice-versa.   Similarly,  GraphicsPrinter is  not  a 
BatchPrinter.  Although they are both derived classes of Printer, they have nothing else in common.

It  sometimes  help  to  visualize  the  inheritance  relations  between  classes  as  a  tree.   We  adopt  the 
convention that if one class derives from another, the first class is represented as a child of the second.  We  
also label all edges in the tree with arrows pointing from derived classes to base classes.  For example,  
Printer, BatchPrinter, and GraphicsPrinter are all related as follows:

Runtime Costs of Basic Inheritance

The  inheritance  scheme  outlined  above  incurs  no  runtime  penalties.   Programs  using  this  type  of  
inheritance will be just as fast as programs not using inheritance.

In memory, a derived class is simply a base class object with its extra data members tacked on the end.  For 
example, suppose you have the following classes:

class BaseClass
{
private:
    int baseX, baseY;
};

class DerivedClass: public BaseClass
{
private:
   int derX, derY;
};

Then, in memory, a DerivedClass object looks like this:

Printer

BatchPrinter GraphicsPrinter
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Address 1000 baseX

1004 baseY
<- BaseClass members

1008 derX

1012 derY
<- DerivedClass-specific members

Notice that the first eight bytes of this object are precisely the data members of a BaseClass object.  This 
is in part the reason that you can treat instances of a derived class as instances of a base class.  This in-
memory representation of inheritance is extremely efficient and is one of the reasons that C++ was so 
popular in its infancy.  Most competing object-oriented languages represented objects with considerably 
more complicated structures that required complex pointer lookups, so inheritance in those languages 
incurred a steep runtime penalty.  C++, on the other hand, supported this simple form of inheritance with 
zero overhead.

Inheritance of Interface

The inheritance pattern outlined above uses inheritance to add  extensions to existing classes.   This is 
undoubtedly useful, but does not arise frequently in practice.  A different version of inheritance, called 
inheritance of interface, is extraordinarily useful in modern programming.

Let's return to the  Printer class.  Printer exports a  printDocument member function that accepts a 
string parameter,  then  sends  the  string  to  the  printer.   One  of  our  other  derived  classes, 
GraphicsPrinter, has a printPicture member function that accepts some sort of Picture object, then 
sends the picture to the printer.  What if we want to print a document containing a mix of text and pictures 
– for example, this course reader?  We'd then need to introduce yet another subclass of Printer, perhaps 
a  MixedTextPrinter, that supports a  printMixedText member function that prints a combination of 
text and images.  While we could continue to use the style of inheritance introduced above, it will quickly  
spiral out of control for several reasons.  First, each printer can only print out one type of document.  That 
is, a MixedTextPrinter cannot print out pictures, nor a GraphicsPrinter a mixed-text document.  We 
could eliminate this problem by writing a single MixedTextAndGraphicsPrinter class, but this too has 
its  problems  if  we then  introduce  another  type  of  object  to  print  (say,  a  high-resolution photo)  that 
required its own special printing code.  This leads to the second problem, a lack of extensibility.  For any 
new type of object we want to print, we need to introduce another member function or class capable of  
handling that object.  In our case this is inconvenient and does not scale well.  We need to pick another 
plan of attack.

The problem is that everything that might get sent to the printer requires slightly different logic to print  
out.  Text documents need to apply fonts and formatting transformations, graphics documents need to  
convert from some application-specific  format into something readable by the printer,  and mixed-text  
documents need to arrange their text and images into an appropriate layout before processing each piece  
individually.   But each type of  document has one piece of functionality  in common.   Most  printers are 
programmed to accept as input a grid of dots representing the document to print.  That is, whether you're printing 
text or a three-dimensional pie chart, the input to the printer is a grid of pixels representing the dots making up  
the image.  A text document might end up producing different pixels than a high-resolution photo, but they both  
end up as pixels at some point.  Provided that we can transform an object in memory into a mess of pixels, we 
can send it to the printer.

Consider the following class definition for a GenericBatchPrinter object:
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class GenericBatchPrinter
{
public:
    /* Constructor, destructor, etc. */

    void enqueueDocument( /* What goes here? */ );
    void printAllDocuments();
private:
    /* Implementation details */
};

This  GenericBatchPrinter object  exports  an  enqueueDocument function  that  stores  an  arbitrary 
document in a print queue that can then be printed by calling printAllDocuments.  There is one major 
question, though: what should the parameter type be?  We can print any type of document we can think of,  
provided that we can convert it into a grid of pixels.  We might be tempted to accept a grid of pixels as a  
parameter.  This, however, has several drawbacks.  First, pixel grids take up a huge amount of memory.  
Color  printers  usually  store  color  information as  quadruples  of  the  cyan,  magenta,  yellow,  and black 
(CYMK) color components, so a single pixel is usually a four-byte value.  If you have a 200 DPI printer and  
want to print to an 8.5 x 11" page, you'd need to store around 75kb.  That's a lot of memory, and if you  
wanted to enqueue a large number of documents this approach might strain or exhaust system resources.  
Plus,  we  don't  actually  need  the  pixels  until  we  begin  printing,  and  even  then  we  only  need  pixel 
information for one document at a time.  Second, what if later in design we realize that we need extra  
information about the print job?  For example, suppose we want to implement a printing priority system 
where more urgent documents print before less important ones.  In this case, we'd need to add an extra 
parameter to enqueueDocument representing that priority and all existing code using enqueueDocument 
would  stop  working.   Finally,  this  approach  exposes  too  much  of  the  inner  workings  of 
GenericBatchPrinter to the client.  By treating documents as masses of pixels instead of documents, the 
GenericBatchPrinter violates some of the fundamental rules of data abstraction.

Let's review these problems:

• The  above  approach  is  needlessly  memory-intensive  by  catering  to  the  lowest  common 
denominator of all possible printable documents.

• The approach limits later extensions by fixing the parameter as an inflexible pixel array.
• The GenericBatchPrinter should work on documents, not pixels.

Is there a language feature that would let us solve all of these problems?  The answer is yes.  What if we  
simply create an object that looks like this:

class Document
{
public:
    /* Constructor, destructor, etc. */

    grid<pixelT> convertToPixelArray() const; // For some struct pixelT
    int getPriority() const;
private:
    /* Implementation details */
};

This  Document class exports two functions –  convertToPixelArray(),  which converts the document 
from its current  format into a  grid<pixelT> of  the pixels  in the  image,  and  getPriority(),  which 
returns the relative priority of the document.
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We can now have the enqueueDocument function from GenericBatchPrinter accept a Document as a 
parameter.  That way, when the GenericBatchPrinter needs to get an array of pixels, it can simply call 
convertToPixelArray on  any stored  Document.   Similarly,  if  the  GenericBatchPrinter decides to 
implement a priority system, it  can use the information provided by the  Document's  getPriority() 
function.   Moreover,  if  later  on during  implementation we  realize  that  GenericBatchPrinter needs 
access to additional information, we can simply add extra member functions to the Document class.  While 
this still requires us to rewrite code to add these member functions, the actual calls to enqueueDocument 
will  still  work  correctly,  and  the  only  people  who  need  to  modify  any  code  is  the  Document class 
implementer, not the Document class clients.

While this solution might seem elegant, it still has a major problem – how can we write a Document class 
that encompasses all of the possible documents we can try to print?  The answer is simple: we can't.  Using 
the language features we've covered so far, it simply isn't possible to solve this problem.

Consider for a minute what form our problem looks like.  We need to provide a  Document object that 
represents  a  printable  document,  but  we  cannot  write  a  single  umbrella  class  representing  every 
conceivable  document.   Instead of  creating  a  single  Document class,  what  if  we  could  create  several  
different Document classes,  each  of  which  provided  a  working  implementation  of  the 
convertToPixelArray and getDocumentName functions?  That is, we might have a TextDocument class 
that  stores  a  string and  whose  convertToPixelArray converts  the  string  into  a  grid  of  pixels 
representing that string.  We could also have a  GraphicsDocument object with member functions like 
addCircle or addImage whose convertToPixelArray function generates a graphical representation of 
the stored image.  In other words, we want to make the Document class represent an interface rather than 
an implementation.  Document should simply outline what member functions are common to other classes 
like GraphicsDocument or TextDocument without specifying how those functions should work.  In C++ 
code, this means that we will rewrite the Document class to look like this:

 class Document
{
public:
    /* Constructor, destructor, etc. */

    virtual int* convertToPixelArray() const = 0;
    virtual string getDocumentName() const = 0;
private:
    /* Implementation details */
};

If you'll notice, we tagged both of the member functions with the virtual keyword, and put an = 0 after 
each function declaration.  What does this strange syntax mean?  The  = 0 syntax is an odd bit of C++ 
syntax that says “this function does not actually exist.”  In other words, we've prototyped a function that 
we have no intention of ever writing.  Why would we ever want to do this?  The reason is simple.  Because  
we've prototyped the function, other pieces of C++ code know what the parameter and return types are for 
the  convertToPixelArray and  getDocumentName functions.   However,  since  there  is no meaningful 
implementation for either of these functions, we add the = 0 to tell C++ not to expect one.

To understand the virtual keyword, consider this TextDocument class outlined below:
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class TextDocument: public Document // Inherit from Document
{
public:
    /* Constructor, destructor, etc. */
    virtual grid<pixelT> convertToPixelArray() const; // Has an implementation
    virtual int getPriority() const;   // Has an actual implementation

    void setText(const string& text); // Text-specific formatting functions
    void setFont(const string& font);
    void setSize(int size);
private:
    /* Implementation details */
};

This  TextDocument class  inherits  from  Document,  and  although  Document has  a  declaration  of  the 
convertToPixelArray and  getPriority functions,  TextDocument has specified that it too contains 
these functions.  They are marked virtual, as in the Document class, but unlike Document's versions of 
these functions the TextDocument functions do not have the = 0 notation after them.  This indicates that 
the  functions  actually  exist  and  do  have  implementations.   We  won't  cover  how  these  functions  are 
implemented since it's irrelevant to our discussion, but because they have actual implementations code 
like this is perfectly legal:

TextDocument myDocument;
grid<pixelT> array = myDocument.convertToPixelArray();

We've covered the = 0 notation, but what does the virtual keyword mean?  To understand how virtual 
works, consider the following code snippet:

TextDocument* myDocument = new TextDocument;
grid<pixelT> array = myDocument->convertToPixelArray();

This  code should not  be  at  all  surprising  –  we've  just  rewritten the above code using a pointer  to a  
TextDocument rather than a stack-based TextDocument.  However, consider this code snippet below:

Document* myDocument = new TextDocument;        // Note: pointer is a Document *
grid<pixelT> array = myDocument->convertToPixelArray();

This code looks similar to the above code but represents a fundamentally different operation.  In the first  
line, we allocate a new TextDocument object, but store it in a pointer of type Document *.  Initially, this 
might seem nonsensical – pointers of type  Document * should only be able to point to objects of type 
Document.   However,  because  TextDocument is  a  derived  class  of  Document,  TextDocument is-a 
Document.  The is-a relation applies literally here – since TextDocument is-a Document, we can point to 
objects of type TextDocument using pointers of type Document *.

Even if we can point to objects of type TextDocument with objects of type Document *, why is the line 
myDocument->convertToPixelArray() legal?  As mentioned earlier, the Document class definition says 
that  Document does not have an implementation of  convertToPixelArray,  so it seems like this code 
should  not  compile.   This  is  where  the  virtual keyword  comes  in.   Since  we  marked 
convertToPixelArray virtual, when we call the convertToPixelArray function through a Document 
* object,  C++ will  call  the  function  named  convertToPixelArray for  the  class  that's  actually  being 
pointed at, not the convertToPixelArray function defined for objects of the type of the pointer.  In this 
case, since our  Document * is actually pointing at a  TextDocument, the call to  convertToPixelArray 
will call the TextDocument's version of convertToPixelArray.
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The above approach to the problem is known as  polymorphism.   We define a base class (in this  case 
Document) that exports several functions marked virtual.  In our program, we pass around pointers to 
objects of this base class, which may in fact be pointing to a base class object or to some derived class.  
Whenever we make member function calls to the virtual functions of the base class, C++ figures out at  
runtime what type of object is being pointed at and calls its implementation of the virtual function.

Let's return to our GenericBatchPrinter class, which now in its final form looks something like this:

class GenericBatchPrinter
{
public:
    /* Constructor, destructor, etc. */

    void enqueueDocument(Document* doc);
    void printAllDocuments();
private:
    queue<Document *> documents;
};

Our enqueueDocument function now accepts a Document *, and its private data members include an STL 
queue of Document *s.  We can now implement enqueueDocument and printAllDocuments using code 
like this:

void GenericBatchPrinter::enqueueDocument(Document* doc)
{
    documents.push(doc); // Recall STL queue uses push instead of enqueue
}

void GenericBatchPrinter::printAllDocuments()
{
    /* Print all enqueued documents */
    while(!documents.empty())
    {
        Document* nextDocument = documents.front();
        documents.pop(); // Recall STL queue requires explicit pop operation

        sendToPrinter(nextDocument->convertToPixelArray());
        delete nextDocument; // Assume it was allocated with new
    }
}

The enqueueDocument function accepts a Document * and enqueues it in the document queue, and the 
printAllDocuments function continuously  dequeues  documents,  converts  them to  pixel  arrays,  then 
sends them to the printer.   But while this above code might  seem simple,  it's  actually  working some  
wonders behind the scenes.  Notice that when we call  nextDocument->convertToPixelArray(),  the 
object pointed at by nextDocument could be of any type derived from Document.  That is, the above code 
will  work  whether  we've  enqueued  TextDocuments,  GraphicsDocuments,  or  even 
MixedTextDocuments.  Moreover, the  GenericBatchPrinter class does not even need to know of the 
existence of these types of documents; as long as  GenericBatchPrinter knows the generic  Document 
interface, C++ can determine which functions to call.  This is the main strength of inheritance – we can  
write code that works with objects of arbitrary types by identifying the common functionality across those 
types and writing code solely in terms of these operations.
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Virtual Functions, Pure Virtual Functions, and Abstract Classes

In the above example with the Document class, we defined Document as

class Document
{
public:
    /* Constructor, destructor, etc. */

    virtual grid<pixelT> convertToPixelArray() const = 0;
    virtual string getDocumentName() const = 0;
private:
    /* Implementation details */
};

Here, all of the Document member functions are marked virtual and have the = 0 syntax to indicate that 
the  functions  are  not  actually  defined.   Functions  marked  virtual with  = 0 are  called  pure  virtual  
functions and represent functions that exist solely to define how other pieces of C++ code should interact  
with derived classes.*

Classes that contain pure virtual functions are called  abstract classes.   Because abstract classes contain 
code for which there is no implementation, it is illegal to directly instantiate abstract classes.  In the case of  
our document example, this means that both of the following are illegal:

Document myDocument; // Error!
Document* myDocument = new Document; // Error!

Of course,  it's  still  legal to declare  Document * variables,  since those are pointers to abstract classes 
rather than abstract classes themselves.

A derived class whose base class is abstract may or may not implement all of the pure virtual functions  
defined in the base class.  If the derived class does implement each function, then the derived class is non-
abstract (unless, of course, it introduces its own pure virtual functions).  Otherwise, if there is at least one 
pure virtual function declared in the base class and not defined in the derived class, the derived class itself  
will be an abstract class.

There is  no  requirement  that  functions marked  virtual be  pure virtual  functions.   That  is,  you can 
provide  virtual functions  that  have  implementations.   For  example,  consider  the  following  class 
representing a roller-blader:

class RollerBlader
{
public:
    /* Constructor, destructor, etc. */

    virtual void slowDown(); // Virtual, not pure virtual
private:
    /* Implementation details */
};

* Those of you familiar with inheritance in other languages like Java might wonder why C++ uses the awkward = 0 
syntax instead of a clearer keyword like abstract or pure.  The reason was mostly political.  Bjarne Stroustrup 
introduced pure virtual functions to the C++ language several weeks before the planned release of the next set of  
revisions to C++.  Adding a new keyword would have delayed the next language release, so to ensure that C++ had 
support for pure virtual functions, he chose the = 0 syntax.
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void RollerBlader::slowDown() // Implementation doesn't have virtual keyword
{
    applyBrakes();
}

Here,  slowDown is implemented as a virtual function that is not pure virtual.  In the implementation of  
slowDown, you do not repeat the virtual keyword, and for all intents and purposes treat slowDown as a 
regular   C++ function.  Now, suppose we write a InexperiencedRollerBlader class, as shown here:

class InexperiencedRollerBlader: public RollerBlader
{
public:
    /* Constructor, destructor, etc. */

    virtual void slowDown();
private:
    /* Implementation details */
};

void InexperiencedRollerBlader::slowDown()
{
    fallDown();
}

This InexperiencedRollerBlader class provides its own implementation of slowDown that calls some 
fallDown function.*  Now, consider the following code snippet:

RollerBlader* blader = new RollerBlader;
blader->slowDown();

RollerBlader* blader2 = new InexperiencedRollerBlader;
blader2->slowDown();

In both cases, we call the slowDown function through a pointer of type RollerBlader *, so C++ will call 
the  version  of  slowDown for  the  class  that's  actually  pointed  at.   In  the  first  case,  this  will  call  the 
RollerBlader's version of slowDown, which calls applyBrakes.  In the second, since blader2 points to 
an  InexperiencedRollerBlader,  the  slowDown call  will  call  InexperiencedRollerBlader's 
slowDown function, which then calls fallDown.  In general, when calling a virtual function, C++ will invoke 
the version of the function that corresponds to the most derived implementation available in the object 
being pointed at.  Because the InexperiencedRollerBlader implementation of slowDown replaces the 
base  class  version,  InexperiencedRollerBlader's  implementation  slowDown is  said  to  override 
RollerBlader's.

When  inheriting  from  non-abstract  classes  that  contain  virtual  functions,  there  is  no  requirement  to 
provide your own implementation of the virtual functions.  For example, a StuntRollerBlader might be 
able to do tricks a regular RollerBlader can't, but still slows down the same way.  In code we could write 
this as

class StuntRollerBlader: public RollerBlader
{
public:
    /* Note: no mention of slowDown */
    void backflip();
    void tripleAxel();

* Of course, this is not based on personal experience. 
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};

If  we  then  were  to  write  code  that  used  StuntRollerBlader,  calling  slowDown would  invoke 
RollerBlader's version of slowDown since it is the most derived implementation of slowDown available 
to StuntRollerBlader.  For example:

RollerBlader* blader = new StuntRollerBlader;
blader->slowDown(); // Calls RollerBlader::slowDown

Similarly,  if  we were  to  create  a  class  TerriblyInexperiencedRollerBlader that  exports  a  panic 
function but no slowDown function, as shown here:

class TerriblyInexperiencedRollerBlader: public InexperiencedRollerBlader
{
public:
    /* Note: no reference to slowDown */
    void panic();
};

Then the following code will invoke InexperiencedRollerBlader::slowDown, causing the roller blader 
to fall down:

RollerBlader* blader = new TerriblyInexperiencedRollerBlader;
blader->slowDown();

In this last example we wrote a class that derived from a class which itself was a derived class.  This is 
perfectly legal and arises commonly in programming practice.

A Word of Warning

Consider the following two classes:

class NotVirtual
{
public:
    void notAVirtualFunction();
};

class NotVirtualDerived: public NotVirtual
{
public:
    void notAVirtualFunction();
};

Here, the base class NotVirtual exports a function called notAVirtualFunction and its derived class, 
NotVirtualDerived,  also provides a  notAVirtualFunction function.  Although these functions have 
the same name, since notAVirtualFunction is not marked virtual, the derived class version does not 
replace the base class version.  Consider this code snippet:

NotVirtual* nv = new NotVirtualDerived;
nv->notAVirtualFunction();

Here,  since  NotVirtualDerived is-a NotVirtual,  the  above  code  will  compile.   However,  since 
notAVirtualFunction is  (as  its  name  suggests)  not  a  virtual  function,  the  above  code  will  call  the  
NotVirtual version of notAVirtualFunction, not NotVirtualDerived's notAVirtualFunction.
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If  you want  to let  derived classes override functions  in a  base  class,  you  must mark the base class's 
function virtual.  Otherwise, C++ won't treat the function call virtually and will always call the version of  
the function associated with the type of the pointer.  For example:

NotVirtual* nv = new NotVirtualDerived;
nv->notAVirtualFunction();  // Calls NotVirtual::notAVirtualFunction()

NotVirtualDerived *nv2 = new NotVirtualDerived;
nv2->notAVirtualFunction(); // Calls NotVirtualDerived::notAVirtualFunction();

In  general,  it  is  considered  bad programming  practice  to  have  a  derived  class  implement  a  member 
function with the same name as a non-virtual function in its base class.  Doing so leads to the sorts of odd  
behavior shown above and is an easy source of errors.

The protected Access Specifier

Let's return to the Document class from earlier in the chapter.  Suppose that while designing some of the 
Document subclasses, we note that every single subclass ends up having a  width and  height field.  To 
minimize code duplication, we decide to move the width and height fields from the derived classes into 
the Document base class.  Since we don't want Document class clients directly accessing these fields, we 
decide to mark them private, as shown here:

class Document
{
public:
    /* Constructor, destructor, etc. */

    virtual grid<pixelT> convertToPixelArray() const = 0;
    virtual string getDocumentName() const = 0;
private:
    int width, height; // Warning: slight problem here
};

However, by moving  width and  height into the  Document base class, we've accidentally introduced a 
problem into our code.  Since width and height are private, even though TextDocument and the other 
subclasses inherit from Document, the subclasses will not be able to access the width and height fields. 
We want the width and height fields to be accessible only to the derived classes, but not to the outside 
world.  Using only the C++ we've covered up to this point, this is impossible.  However, there is a third  
access specifier beyond  public and  private called  protected that does exactly what we want.  Data 
members and functions marked  protected,  like  private data members,  cannot be accessed by class 
clients.  However, unlike  private variables,  protected functions and data members  are accessible by 
derived classes.

protected is a useful access specifier that in certain circumstances can make your code quite elegant. 
However, you should be very careful when granting derived classes protected access to data members. 
Like  public data  members,  using  protected data  members  locks  your  classes  into  a  single 
implementation and can make code changes down the line difficult to impossible.  Make sure that marking  
a  data  member  protected is  truly  the  right  choice  before  proceeding.   However,  marking  member 
functions protected is a common programming technique that lets you export member functions only 
usable by derived classes.  We will see an example of protected member functions later in this chapter.
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Virtual Destructors

An important topic we have ignored so far is virtual destructors.  Consider the following two classes:

class BaseClass
{
public:
    BaseClass();
    ~BaseClass();
};

class DerivedClass: public BaseClass
{
public:
    DerivedClass();
    ~DerivedClass();
private:
   char* myString;
};

DerivedClass::DerivedClass()
{
    myString = new char[128]; // Allocate some memory
}

DerivedClass::~DerivedClass()
{
    delete [] myString; // Deallocate the memory
}

Here, we have a trivial constructor and destructor for BaseClass.  DerivedClass, on the other hand, has 
a constructor and destructor that allocate and deallocate a block of memory.  What happens if we write the  
following code?

BaseClass* myClass = new DerivedClass;
delete myClass;

Intuitively,  you'd  think  that  since  myClass points  to  a  DerivedClass object,  the  DerivedClass 
destructor would invoke and clean up the dynamically-allocated memory.  Unfortunately, this is not the 
case.   The  myClass pointer  is  statically-typed  as  a  BaseClass * but  points  to  an  object  of  type 
DerivedClass, so delete myClass results in undefined behavior.  The reason for this is that we didn't let 
C++ know that it should check to see if the object pointed at by a BaseClass * is really a DerivedClass 
when  calling  the  destructor.   Undefined  behavior  is  never  a  good  thing,  so  to  fix  this  we  mark  the  
BaseClass destructor  virtual.  Unlike the other virtual functions we've encountered, though, derived 
class destructors do not replace the base class destructors.  Instead, when invoking a destructor virtually, 
C++ will first call the derived class destructor, then the base class destructor.  We thus change the two class  
declarations to look like this:

class BaseClass
{
public:
    BaseClass();
    virtual ~BaseClass();
};
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class DerivedClass: public BaseClass
{
public:
    DerivedClass();
    ~DerivedClass();
private:
   char *myString;
};

There is one more point to address here, the pure virtual destructor.  Because virtual destructors do not act 
like  regular  virtual  functions,  even  if  you  mark  a  destructor  pure  virtual,  you  must  still  provide  an 
implementation.  Thus, if we rewrote BaseClass to look like

class BaseClass
{
public:
    BaseClass();
    virtual ~BaseClass() = 0;
};

We'd then need to write a trivial implementation for the BaseClass destructor, as shown here:

BaseClass::~BaseClass()
{
    // Do nothing
}

This is an unfortunate language quirk, but you should be aware of it since this will almost certainly come 
up in the future.

Runtime Costs of Virtual Functions

Virtual functions are incredibly useful and syntactically concise, but exactly how efficient are they?  After 
all,  a  virtual  function call  invokes one of  many possible  functions,  and somehow the compiler has to  
determine which version of the function to call.  There could be an arbitrarily large number of derived 
classes overriding the particular virtual function, so a naïve switch statement that checks the type of the 
object  would  be  prohibitively  expensive.   Fortunately,  most  C++  compilers  use  a  particularly  clever 
implementation of virtual functions that, while slower than regular function calls, are much faster than 
what you may have initially expected.  Consider the following classes:

class BaseClass
{
public:
    virtual ~BaseClass() {} // Polymorphic classes need virtual destructors
    virtual void doSomething();
private:
    int baseX, baseY;
};

class DerivedClass: public BaseClass
{
public:
    virtual void doSomething(); // Override BaseClass version
private:
    int derX, derY;    
};
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Then the in-memory representation of a DerivedClass object looks like this:

Address 1000 vtable*

1004 baseX

1008 baseY

<- BaseClass members

1012 derX

1016 derY
<- DerivedClass-specific members

As before, we see the  BaseClass members followed by the  DerivedClass members, but there is now 
another piece of data in this object: the vtable*, or vtable-pointer.  This vtable-pointer is a pointer to the  
virtual function table.   Whenever you create a class containing one or more virtual functions,  C++ will 
create a table containing information about that class that includes metadata about the class along with a  
list of function pointers for each of the virtual functions in that class.  For example, here's a diagram of a  
BaseClass object, a DerivedClass object, and their respective virtual function tables:

The virtual function table for BaseClass begins with metadata about the BaseClass type, then has two 
function  pointers  –  one  for  the  BaseClass destructor  and  one  for  BaseClass's  implementation  of 
doSomething.   The  DerivedClass virtual  function  table  similarly  contains  information  about 
DerivedClass, as well as function pointers for the destructor and  doSomething member functions.  If 
you'll notice, the virtual function tables for  BaseClass and  DerivedClass have the member functions 
listed in the same order,  with the destructor first  and then  doSomething.   This allows C++ to invoke 
virtual functions quickly and efficiently.  Suppose that we have the following code:

BaseClass* myPtr = RandomChance(0.5)? new BaseClass : new DerivedClass;
myPtr->doSomething();
delete myPtr;

vtable*
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baseY

BaseClass
Metadata

destructor Code for
BaseClass destructor

Code for
BaseClass::doSomething

doSomething

BaseClass
Object

vtable*
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baseY

DerivedClass
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doSomething
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Object

derX
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We  assign  a  random  object  to  myPtr that  is  either  a  BaseClass or  a  DerivedClass using  the 
RandomChance function we wrote in the chapter on Snake.  We then invoke the  doSomething member 
function on the object and then delete it.  To implement this functionality, the C++ compiler compiles the 
second two lines into machine code that performs the following operations:

// myPtr->doSomething();
1. Look at the first four bytes of the object pointed at by myPtr; this is the vtable* for the object.
2. Follow the vtable* and retrieve the second function pointer from the table; this corresponds to 

doSomething.
3. Call this function.

// delete myPtr;
1. Look at the first four bytes of the object pointed at by myPtr.
2. Follow the vtable* and retrieve the first function pointer from the table; this corresponds to the 

destructor.
3. Call this function.
4. Deallocate the memory pointed at by myPtr.

This sequence of commands can be executed quickly and is efficient no matter how many subclasses of  
BaseClass exist.  If there are millions of derived classes, this code still only has to make a single lookup 
through the virtual function table to call the proper function.

Although this above implementation of virtual function calls is considerably more efficient than a naïve 
approach, it is still noticeably slower than a regular function call because of the necessary virtual function  
table  lookups.   This  extra  overhead  is  the  reason  that  C++  requires  you  to  explicitly  mark  member 
functions you want to treat polymorphically virtual – if all functions were called this way, you would pay 
a performance hit irrespective of whether you actually used inheritance, a violation of the zero-overhead 
principle.

Invoking Virtual Member Functions Non-Virtually

From time to time, you will need to be able to explicitly invoke a base class's version of a virtual function. 
For example, suppose that you're designing a HybridCar that's a specialization of Car, both of which are 
defined below:

class Car
{
public:
    virtual ~Car(); // Polymorphic classes need virtual destructors
    virtual void applyBrakes();
    virtual void accelerate();
};

class HybridCar: public Car
{
public:
    virtual void applyBrakes();
    virtual void accelerate();
private:
    void chargeBattery();
    void dischargeBattery();
};
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The  HybridCar is exactly the same as a regular car, except that whenever a  HybridCar slows down or 
speeds  up,  the  HybridCar charges  and  discharges  its  electric  motor  to  conserve  fuel.   We  want  to 
implement the applyBrakes and accelerate functions inside HybridCar such that they perform exactly 
the  same  tasks  as  the  Car's  version  of  these  functions,  but  in  addition  perform  the  extra  motor 
management.

Initially, we might consider implementing these functions like this:

void HybridCar::applyBrakes()
{
    applyBrakes(); // Uh oh...
    chargeBattery();
}

void HybridCar::accelerate()
{
    accelerate(); // Uh oh...
    dischargeBattery();
}

The above code is well-intentioned but incorrect.  At a high level, we want to have the hybrid car accelerate 
or apply its brakes by doing whatever a regular car does, then managing the motor.  As written, though, 
these  functions  will  cause  a  stack  overflow,  since  the  calls  to  applyBrakes() and  accelerate() 
recursively invoke the  HybridCar's versions of these functions over and over.  Since this doesn't work, 
what other approaches might we try?  First, we could simply copy and paste the code from the Car class 
into the  HybridCar class.  This should cause you to cringe – a good solution to a problem should never 
involve copying and pasting code!  More concretely, though, this approach has several problems.  First, if 
we  change  the  implementation  of  accelerate() or  applyBrakes() in  the  Car class,  we  have  to 
remember to make the same changes inside HybridCar.  If we forget to do so, the code will compile but 
will be incorrect.  Moreover, if the implementation of accelerate() or applyBrakes() in the Car class 
reference private data members or member functions of Car, the resulting code will be illegal.  This clearly 
isn't the right way to solve this problem.  What other options are available?

A second idea is to factor out the code for  applyBrakes and  accelerate into  protected, non-virtual 
functions of the Car class.  For example:

class Car
{
public:
    virtual ~Car();
    virtual void applyBrakes() { doApplyBrakes(); }
    virtual void accelerate()  { doAccelerate(); }
protected:
    void doApplyBrakes(); // Non-virtual function that actually slows down.
    void doAccelerate();  // Non-virtual function that actually accelerates.
};

class HybridCar: public Car
{
public:
    virtual void applyBrakes() { doApplyBrakes(); chargeBattery(); }
    virtual void accelerate()  { doAccelerate();  dischargeBattery(); }
private:
    void chargeBattery();
    void dischargeBattery();
};
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Here, the virtual functions  applyBrakes and  accelerate are wrapped calls to non-virtual,  protected 
functions written in the base class.  To implement the derived versions of applyBrakes and accelerate, 
we can simply call these functions.

This approach is stylistically  pleasing.   The code that's  common to  applyBrakes and  accelerate is 
factored out into helper member functions, so changes to one function appear in the other.  But there's one  
minor problem with this approach: this solution only works if  we can modify the  Car class.   In small 
projects this shouldn't be a problem, but if these classes are pieces in a much larger system the code may  
be off-limits – maybe it's being developed by another team, or perhaps it's been compiled into a program  
that expects the class definition to precisely match a specific pattern.  This idea is clearly on the right track, 
but in some cases cannot work.

The optimal solution to this conundrum, however, is to simply have the HybridCar's implementations of 
these functions directly call the versions of these functions defined in Car.  When calling a virtual function 
through a pointer or reference, C++ ensures that the function call will “fall down” to the most derived  
class's implementation of that function.  However, we can force C++ to call a specific version of a virtual  
function by calling it using the function's fully-qualified name.  For example, consider this version of the  
HybridCar's version of applyBrakes:

void HybridCar::applyBrakes()
{
    Car::applyBrakes(); // Call Car's version of applyBrakes, no polymorphism
    chargeBattery();
}

The syntax Car::applyBrakes instructs C++ to call the Car class's version of applyBrakes.  Even though 
applyBrakes is virtual, since we've used the fully-qualified name, C++ will not resolve the call at runtime  
and we are guaranteed to invoke Car's version of the function.  We can write an accelerate function for 
HybridCar similarly.

When using  the  fully-qualified-name  syntax,  you're  allowed to  access  any superclass's  version  of  the 
function, not just the direct ancestor.  For example, if Car were derived from the even more generic class 
FourWheeledVehicle that itself provides an  applyBrakes method, we could invoke that version from 
HybridCar by writing  FourWheeledVehicle::applyBrakes().    You can also use the fully-qualified 
name syntax as a class client, though it is rare to see this in practice.

Object Initialization in Derived Classes

Recall from several chapters ago that class construction proceeds in three steps – allocating space to hold 
the object, calling the constructors of all data members, and invoking the object constructor.  While this  
picture is mostly correct, it omits an important step – initialization of base classes.  Let's suppose we have 
the following classes:
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class Base
{
public:
    Base() : myInt(137), myString("Base string") {}
    virtual ~Base();
private:
    int myInt;
    string myString;
};

class Derived: public Base
{
private:
    vector<int> myVector;
};

Because we have not defined a constructor for Derived, C++ will automatically supply it with a default, 
zero-argument constructor that  invokes the default  constructor  of  the  Base object.   To see what this 
means, let's trace through the construction of a new Derived object.  First, C++ gives the object a block of 
uninitialized memory with enough space to hold all  of  the parts of the  Derived.   This memory looks 
something like this:

At this point, C++ will initialize the  Base class using its default constructor.  Similarly, if  Base has any 
parent classes, those parent classes would also be initialized.  After this step, the object now looks like this:

int myInt 137

string myString
Length: 11  
Text: "Base String"      

vector<int> myVector Size: ???
Elements: ???            

Base Data Members

From this point forward, construction will proceed as normal.
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By default,  derived class constructors invoke the default  constructor for their  base classes,  or  a zero-
argument constructor if one has explicitly been defined.  This is often, but not always, the desired behavior  
for a class.  But what if you want to invoke a different constructor?  For example, let's return to the Car 
example from earlier in this chapter.  Suppose that Car exports a single constructor that accepts a string 
encoding the license number.  For example:

class Car
{
public:
    explicit Car(const string& licenseNum) : license(licenseNum) {}
    virtual ~Car() {}

    virtual void accelerate();
    virtual void applyBrakes();
private:
    const string license;
};

Because  Car no  longer  has  a  default  constructor,  the  previous  definition  of  HybridCar will  cause  a 
compile-time error because the HybridCar constructor cannot call the nonexistent default constructor for 
Car.  How can we tell HybridCar to invoke the Car constructor with the proper arguments?  The answer 
is similar to how we would construct a data member with a certain value – we use the initializer list.  Here  
is a modified version of the HybridCar class that correctly initializes its Car base class:

class HybridCar: public Car
{
public:
    explicit HybridCar(const string& license) : Car(license) {}
    virtual void applyBrakes();
    virtual void accelerate();
private:
    void chargeBattery();
    void dischargeBattery();
};

Note that when using initializer lists to initialize base classes, you are only allowed to specify the names of  
direct base  classes.   As  an  example,  suppose  that  we  want  to  create  a  class  called 
ExperimentalHybridCar that is similar to a HybridCar except that it contains extra instrumentation to 
monitor the state of the motor.  Because  ExperimentalHybridCar represents a prototype car, the car 
does not have a license plate, and so we want to communicate the string “None” up to Car to represent this 
information.  Then if we define the ExperimentalHybridCar class as follows:

class ExperimentalHybridCar: public HybridCar
{
public:
    ExperimentalHybridCar();
    virtual void applyBrakes();
    virtual void accelerate();
};

It would be illegal to define the constructor as follows:

/* Note: This is not legal C++! */
ExperimentalHybridCar::ExperimentalHybridCar() : Car("None")
{
}
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The problem with this code is that  Car is an indirect base class of  ExperimentalHybridCar and thus 
cannot be initialized from the  ExperimentalHybridCar initializer list.   The reason for this is simple. 
ExperimentalHybridCar inherits from HybridCar, which itself inherits from Car.  What would happen 
if  both  HybridCar and  ExperimentalHybridCar each tried to initialize  Car in their  initializer  lists? 
Which  constructor  should  take  precedence?   If  it's  HybridCar,  then  the  initializer  list  for 
ExperimentalHybridCar would  be  ignored,  leading  to  misleading  code.   If  it's 
ExperimentalHybridCar,  then  if  HybridCar needs  to  call  the  Car constructor  with  particular 
arguments, those arguments would be ignored and HybridCar might not be initialized correctly.  To avoid 
this sort of  confusion, C++ only lets you initialize direct base classes.   Thus the proper version of the 
ExperimentalHybridCar constructor is as follows:

/* Tell HybridCar to initialize itself with the string "None" */
ExperimentalHybridCar::ExperimentalHybridCar() : HybridCar("None")
{
}

Since  HybridCar forwards  its  constructor  argument  up  to  Car,  this  ends  up  producing  the  correct 
behavior.

Virtual Functions in Constructors

Let's take a quick look back at class construction for derived classes.   If  you'll  recall,  base classes are  
initialized before any of the derived class data members are set up.  This means that there is a small 
window when the base class constructor executes where the base class is fully set up, but nothing in the  
derived  class  has  yet  been  initialized.   If  the  base  class  constructor  could  somehow  access  the  data 
members of the derived class, it would  read uninitialized memory and almost certainly crash the program. 
But this seems impossible – after all, the base class has no idea what's deriving from it, so how could it  
access any of  the  derived class's  data members?  Unfortunately,  there is  one way –  virtual  functions.  
Suppose the base class  contains a virtual  function and that  one of  the  derived classes overrides that  
function to read a data member of the derived class.   If  the base class calls the virtual function in its  
constructor, it would be able to read the uninitialized value, causing a potential program crash.

The designers of C++ were well-aware of this edge case, and to prevent this error from occurring they 
added a restriction on the behavior of virtual function calls inside constructors.  If you invoke a virtual 
function  inside  a  class  constructor,  the  function  is  not invoked  polymorphically.   That  is,  the  virtual 
function call will always call the version of the function appropriate for the type of the base class rather 
than the type of the derived class.  To see this in action, consider the following code:

class Base
{
public:
    Base()
    {
        fn();
    }
    virtual void fn()
    {
        cout << "Base" << endl;
    }
};
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class Derived: public Base
{
public:
    virtual void fn()
    {
        cout << "Derived" << endl;
    }
};

Here, the  Base constructor invokes its virtual function  fn.   While normally you would expect that this 
would invoke Derived's version of fn, since we're inside the body of the Base constructor, the code will 
execute Base's version of fn, which prints out “Base” instead of the expected “Derived.”  Cases where you 
would invoke a virtual function in a constructor are rare, but if you plan on doing so remember that it will  
not behave as you might expect.

Everything we've discussed in this section has focused on class  constructors, but these same restrictions 
apply to class  destructors as well.   C++ destructs classes from the outside inward, cleaning up derived 
classes before base classes,  and if  virtual  functions were treated polymorphically inside destructors it  
would be possible to access data members of a derived class after they'd already been cleaned up.

Copy Constructors and Assignment Operators for Derived Classes

Copy constructors and assignment operators are complicated beasts that are even more perilous when 
mixed with inheritance.  In particular, you must make sure to invoke the copy constructor and assignment 
operator for any base classes in addition to any other behavior.  As an example, consider the following 
base class, which has a well-defined copy constructor and assignment operator:

class Base
{
public:
    Base();
    Base(const Base& other);
    Base& operator= (const Base& other);
    virtual ~Base();
private:
    /* ... implementation specific ... */
};

Now, consider the following derived class:

class Derived: public Base
{
public:
    Derived();
    Derived(const Derived& other);
    Derived& operator= (const Derived& other);
    virtual ~Derived();
private:
    char* theString; // Store a C string
    void copyOther(const Derived& other);
    void clear();
};

Using the template outlined in the chapter on copy functions, we might write the following code for the 
Derived assignment operator and copy constructor:
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/* Generic "copy other" member function. */
void Derived::copyOther(const Derived& other)
{
    theString = new char[strlen(other.theString) + 1];
    strcpy(theString, other.theString);
}

/* Clear-out member function. */
void Derived::clear()
{
    delete [] theString;
    theString = NULL;
}

/* Copy constructor. */
Derived::Derived(const Derived& other) // Wrong!
{
    copyOther(other);
}

/* Assignment operator. */
Derived& Derived::operator= (const Derived& other) // Wrong!
{
    if(this != &other)
    {
        clear();
        copyOther(other);
    }
    return *this;
}

Initially, it seems like this code should work, but, alas, it is seriously flawed.  During this copy operation,  
we never instructed C++ to copy over the data from other's base class into the receiver object's base class. 
As a result, we'll end up with half-copied data, where the data specific to Derived is correctly cloned but 
Base's data hasn't changed.  To see this visually, if we have two objects of type Derived that look like this:

After invoking the copy functions implemented above, the objects would end up in this state:

We now have a partially-copied object, which will almost certainly crash at some point down the line.

one's Base

two's
Derived

two's Base

two's
Derived

one's Base

one's
Derived

two's Base

two's
Derived
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When writing  assignment operators and copy constructors for derived classes, you must make sure to 
manually invoke the assignment operators and copy constructors for base classes to guarantee that the 
object is fully-copied.  Fortunately, this is not particularly difficult.  Let's first focus on the copy constructor.  
Somehow,  we  need  to  tell  the  receiver's  base  object  that  it  should  initialize  itself  as  a  copy  of  the  
parameter's base object.  Because Derived is-a Base, so we can pass the parameter to the Derived copy 
constructor as a parameter to Base's copy constructor inside the initializer list.  The updated version of 
the Derived copy constructor looks like this:

/* Copy constructor. */
Derived::Derived(const Derived &other) : Base(other) // Correct
{
    copyOther(other);
}

The code we have so far for the assignment operator correctly clears out the Derived part of the Derived 
class, but leaves the  Base portion untouched.  How should we go about assigning the  Base part of the 
receiver object the Derived part of the parameter?  Simple – we'll invoke the Base's assignment operator 
and have Base do its own copying work.  The code for this is a bit odd and is shown below:

/* Assignment operator. */
Derived& Derived::operator= (const Derived &other)
{
    if(this != &other)
    {
        clear();
        Base::operator= (other); // Invoke the assignment operator from Base.
        copyOther(other);
    }
    return *this;
}

Here we've inserted a call to Base's assignment operator using the full name of the operator = function. 
This is one of the rare situations where you will need to use the full name of an overloaded operator.  In 
case you're curious why just writing  *this = other won't work, remember that this calls  Derived's 
version of operator =, causing infinite recursion.

All of the above discussion has assumed that your classes require their own assignment operator and copy 
constructor.   However,  if  your  derived class  does not  contain  any data  members that  require  manual 
copying and assignment (for example, a derived class that simply holds an int), none of the above code 
will be necessary.      C++'s default assignment operator and copy constructor automatically invoke the 
assignment operator and copy constructor of any base classes, which is exactly what you'd want it to do.

Disallowing Copying

Using inheritance, it's possible to elegantly and concisely disallow copying for objects of a certain type.  As 
mentioned above, a class's default copy constructor and assignment operator automatically invoke the  
copy constructor and assignment operator for any base classes.  But what if for some reason the derived 
class can't call those functions?  For example, suppose that we have the following class:
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class Uncopyable
{
public:
    /* ... */
private:
    Uncopyable(const Uncopyable&);
    Uncopyable& operator= (const Uncopyable&);
};

As mentioned in the chapter on copy constructors and assignment operators, this class cannot be copied 
because the copy constructor and assignment operator are marked private.  What will happen if we then 
create a class that inherits from Uncopyable, as shown here:

class MyClass: public Uncopyable
{
    /* ... */
};

Let's assume that  MyClass does not explicitly declare a copy constructor or assignment operator.  This 
will cause C++ to try to create a default implementation for these functions.  In the process of doing so, the 
compiler will realize that it needs to call the copy constructor and assignment operator of  Uncopyable. 
But these functions are private, meaning that the derived class MyClass can't access them.  Rather than 
reporting this as an error, instead the compiler doesn't create default implementations of these functions. 
This  means  that  MyClass has  no  copy  constructor  or  assignment  operator,  not  even  default 
implementations, and thus can't be copied or assigned.  We've successfully disallowed copying!

However, by inheriting from Uncopyable, we've introduced some undesirable behavior.  It is now legal for 
clients of MyClass to treat MyClass as though it were an Uncopyable, as shown here:

MyClass* mc = new MyClass;
Uncopyable* uPtr = mc;

This is unfortunate, since Uncopyable is an implementation detail of MyClass, not a supertype.

We are now in a rather interesting situation.  We want to absorb the functionality provided by another 
class, but don't want to make our type a subtype of that class in the process.  In other words, we want to  
absorb  an  implementation without  its  corresponding  interface.   Fortunately,  using  a  technique  called 
private inheritance, we can express this notion precisely.

So far, the inheritance you have seen has been public inheritance.  When a class publicly inherits from a 
base class, it absorbs the public interface of the base class along with any implementations of the functions  
in that interface.  In private inheritance,  a derived class inherits from a base class solely to acquire its 
implementation.  While the derived class retains the implementation of all public member functions from 
the base class, those functions become private in the derived class. For example, given these two classes:

class Base
{
public:
    void doSomething();   
};

class Derived: private Base
{
    /* ... */
};
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The following code is illegal:

Derived d;
d.doSomething(); // Error

Even though doSomething was declared public in Base, because Derived inherits privately from Base 
the doSomething member function is private.

Additionally, private inheritance does  not define a subtyping relationship.  That is, the following code is 
illegal:

Base* ptr = new Derived; // Error

While public inheritance models the is-a relationship, private inheritance represents the is-implemented-
in-terms-of relationship.  For example, we might use private inheritance to implement a stack in terms of 
a  deque,  since  a  stack's  entire  functionality  can  be  expressed through  proper  calls  to  push_front, 
front, and pop_front.  This is shown here for a stack of integers:

class stack: private deque<int>
{
public:
    void push(int val)
    {
        push_front(val); // Calls deque<int>::push_front.
    }
    int pop()
    {
        const int result = front();
        pop_front();
        return result;
    }
    /* ... etc. ... */
};

Notice that push is implemented as a call to the deque's push_front function, while pop is implemented 
through a series of calls to front and pop_front.  Because we privately inherited from deque<int>, our 
class contains an implementation of all of the deque's member functions, and it is as if we have our own 
private copy of a deque that we can work with.

Public and private inheritance are designed for entirely different purposes.  We use public inheritance to 
design  a  collection  of  classes  logically  related  to  each  other  by  some  common  behaviors.   Private 
inheritance, on the other hand, is an implementation technique used to define one class's behaviors in 
terms of another's.  One way to remember the difference between public and private inheritance is to 
recognize that they play entirely different roles in class design.  Public inheritance is used during the  
design  of  a  class  interface  (determining  what  behaviors  the  class  should  provide),  while  private 
inheritance is used during design of a class implementation (how those behaviors should be performed). 
This parallels the difference between a function prototype and a function definition – public inheritance  
defines a set of prototypes, while private inheritance provides implementations.

Private  inheritance  is  not  frequently  encountered  in  practice  because  the  is-implemented-in-terms-of 
relationship can be modeled more clearly through composition.  If we wanted to implement a  stack in 
terms of a deque, instead of using private inheritance, we could just have the stack contain a deque as a 
data member, as shown here:
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class stack
{
public:
    void push(int val)
    {
        implementation.push_front(val);
    }
    int pop()
    {
        const int result = implementation.front();
        implementation.pop_front();
        return result;
    }
    /* ... etc. ... */
private:
    deque<int> implementation;
};

In practice it is recommended that you shy away from private inheritance in favor of this more explicit 
form of composition.  However, there are several cases where private inheritance is precisely the tool for  
the job.  Let's return to our discussion of the Uncopyable class.  Recall that to make a class uncopyable, we 
had it publically inherit from a class Uncopyable that has its copy functions marked private.  This led to 
problems  where  we  could  convert  an  object  that  inherited  from  Uncopyable into  an  Uncopyable. 
However, we can remedy this by having the derived class inherit privately from Uncopyable.  That way, it 
is not considered a subtype of Uncopyable and instances of MyClass cannot be converted into instances 
of Uncopyable.  For example:

class MyClass: private Uncopyable
{
    /* ... */
};

Now,  MyClass cannot be copied, nor can it be treated as though it were an object of type  Uncopyable. 
This is precisely the idea we want to express.

In C++, all inheritance is considered private inheritance unless explicitly mentioned otherwise; this is why 
you  must  write  public Base to  publicly  inherit  from  Base.   Thus  we  can  rewrite  the  above  class 
definition omitting the private keyword, as shown here:

class MyClass: Uncopyable
{
   /* ... */
};

This method of disallowing copying is particularly elegant – syntactically, we communicate that MyClass 
cannot be copied at the same time that we actually make it uncopyable through private inheritance.

Before  concluding  this  section,  let's  make  a  quick  change  to  the  Uncopyable class  by  marking  its 
constructor and destructor  protected.  This means that classes that inherit from  Uncopyable can still 
access the constructor and destructor, but otherwise these functions are off-limits.  This prevents us from 
accidentally instantiating Uncopyable directly and only lets us use it as a base class.  The code for this is 
shown here:
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class Uncopyable
{
protected:
    Uncopyable() {}
    ~Uncopyable() {}
private:
    Uncopyable(const Uncopyable&);
    Uncopyable& operator= (const Uncopyable&);
};

Classes like Uncopyable are sometimes referred to as mixin classes since they are designed to be “mixed” 
into other classes to provide a particular functionality.

Slicing

In  our  discussion of  copy constructor  and assignment  operators  for  derived classes,  we encountered 
problems when we copied over the the data of the Derived class but not the Base class.  However, there's 
a far more serious problem we can run into called slicing where we copy only the base class of an object 
while leaving its derived classes unmodified.

Suppose we have two Base * pointers called one and two that point to objects either of type Base or of 
type Derived.  What happens if we write code like *one = *two?  Here, we're copying the value of the 
object  pointed  at  by  two into  the  variable  pointed at  by  one.   While  at  first  glance this  might  seem 
harmless,  the above statement is one of the most potentially dangerous mistakes you can make when 
working with C++ inheritance.  The problem is that this line expands into a call to

one->operator =(*two);

Note that the version of operator = we're calling here is the one defined in Base, not Derived, so this 
line will only copy over the  Base portion of  two into the  Base portion of  one, resulting in half-formed 
objects that are almost certainly not in the correct state and may be entirely corrupted.

Slicing can be even more insidious in scenarios like this one:

void DoSomething(Base baseObject)
{
    // Do something
}

Derived myDerived
DoSomething(myDerived);

Recall  that  the  parameter  baseObject will  be  initialized  using  the  Base copy  constructor,  not  the 
Derived copy constructor, so the object in DoSomething will not be a correct copy myDerived.  Instead, it 
will only hold a copy of the Base part of the myDerived object.

You should almost never assign a base class object the value of a derived class.  The second you do, you  
will open the door to runtime errors as your code tries to use incompletely-formed objects.  While it may  
sound simple to follow this rule, at many times it might not be clear that you're slicing an object.  For  
example, consider this code snippet:

vector<Base> myBaseVector;
Base* myBasePtr = SomeFunction();
myBaseVector.push_back(*myBasePtr);
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Here, the object pointed at by myBasePtr could be of type Base or any type inheriting from Base.  When 
we call  myBaseVector.push_back(*myBasePtr),  there is a good chance that we will slice the object 
pointed at by myBasePtr, storing only its  Base component in the  vector and dropping the rest.  You'll 
need  to  be  extra  vigilant  when  working  with  derived  classes,  since  it's  easy  to  generate  dangerous, 
difficult-to-track bugs.

The C++ Casting Operators

One of the most useful features of C++ inheritance is the ability to use an object of one type in place of 
another.  For example, a pointer of type Derived * can be used whenever a Base * would be expected, 
and  the  conversion  is  automatic.   However,  in  many  circumstances,  we  may  want  to  perform  this 
conversion in reverse.  Suppose that we have a pointer that's statically typed as a Base *, but we know 
that the object it points to is actually of typed Derived *.  How can we use the Derived features of the 
pointee?  Because the pointer to the object is a Base *, not a Derived *, we will have to use a typecast to 
convert the pointer from the base type to the derived type.  Using the typecasts most familiar to us in C++,  
the code to perform this conversion looks as follows:

Base* myBasePtr; // Assume we know that this points to a Derived object.
Derived* myDerivedPtr = (Derived *)myBasePtr;

There  is  nothing  wrong  with  the  above  code  as  written,  but  it  is  risky  because  of  the  typecast 
(Derived *)myBasePtr.  In C++, using a typecast of the form  (Type) is extremely dangerous because 
there are only minimal compile-time checks to ensure that the typecast makes any sense.  For example, 
consider the following C++ code:

Base* myBasePtr; // Assume we know that this points to a Derived object.
vector<double>* myVectorPtr = (vector<double> *)myBasePtr; // Uh oh!

This code is completely nonsensical, since there is no reasonable way that a pointer of type Base * can 
end up pointing to an object of type vector<double>.  However, because of the explicit pointer-to-pointer 
typecast, this code is entirely legal.  In the above case, it's clear that the conversion we're performing is 
incorrect, but in others it might be more subtle.  Consider the following code:

const Base* myBasePtr; // Assume we know that this points to a Derived object.
Derived* myDerivedPtr = (Derived *)myBasePtr;

This code again is totally legal  and at first  glance might seem correct,  but unfortunately it  contains a  
serious error.  In this example, our initial pointer was a pointer to a const Base object, but in the second 
line we removed that constness with a typecast and the resulting pointer is free to modify the object it 
points at.  We've just subverted const, which could lead to a whole host of problems down the line.

The problem with the above style of C++ typecast is that it's just too powerful.  If C++ can figure out a way  
to convert the source object to an object of the target type, it will, even if it's clear from the code that the  
conversion is an error.  To resolve this issue, C++ has four special operators called casting operators that 
you can use to perform safer typecasts.  When working with inheritance, two of these casting operators  
are  particularly  useful,  the  first  of  which  is  static_cast.   The  static_cast operator  performs  a 
typecast in the same way that the more familiar C++ typecast does, except that it checks at compile time 
that  the  cast  “makes  sense.”   More  specifically,  static_cast can  be  used  to  perform  the  following 
conversions:*

* There are several other conversions that you can perform with static_cast, especially when working with void * 
pointers, but we will not discuss them here.
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1. Converting between primitive types (e.g. int to float or char to double).
2. Converting between pointers or references of a derived type to pointers or references of a base 

type (e.g. Derived * to Base *) where the target is at least as const as the source.
3. Converting between pointers or references of a base type to pointers or references of a derived 

type (e.g. Base * to Derived *) where the target is at least as const as the source.

If  you'll  notice,  neither  of  the  errors  we  made  in  the  previous  code  snippets  are  possible  with  a  
static_cast.  We can't convert a Base * to a vector<double> *, since Base and vector<double> are 
not related to each other via inheritance.  Similarly, we cannot convert from a const Base * to a Derived 
*, since Derived * is less const than const Base *.

The syntax for the static_cast operator looks resembles that of templates and is illustrated below:

Base* myBasePtr; // Assume we know this points to a Derived object.
Derived* myDerivedPtr = static_cast<MyDerived *>(myBasePtr);

That is, static_cast, followed by the type to convert the pointer to, and finally the expression to convert  
enclosed in parentheses.

Throughout  this  discussion  of  typecasts,  when  converting  between  pointers  of  type  Base  * and 
Derived *, we have implicitly assumed that the Base * pointer we wanted to convert was pointing to an 
object of type Derived.  If this isn't the case, however, the typecast can succeed but lead to a Derived * 
pointer pointing to a Base object, which can cause all sorts of problems at runtime when we try to invoke 
nonexistent member functions or access data members of the Derived class that aren't present in Base. 
The problem is that the  static_cast operator doesn't  check to see that the typecast it's  performing 
makes  any  sense  at  runtime.   To  provide  this  functionality,  you  can  use  another  of  the  C++  casting 
operators,  dynamic_cast,  which acts  like  static_cast but which performs additional  checks before 
performing the cast.  dynamic_cast,  like  static_cast,  can be used to convert between pointer types 
related by inheritance (but not to convert between primitive types).  However, if the typecast requested of  
dynamic_cast is  invalid  at  runtime  (e.g.  attempting  to  convert  a  Base object  to  a  Derived object), 
dynamic_cast will return a NULL pointer instead of a pointer to the derived type.  For example, consider 
the following code:

Base* myBasePtr = new Base;
Derived* myDerivedPtr1 = (Derived *)myBasePtr;
Derived* myDerivedPtr2 = static_cast<Derived *>(myBasePtr);
Derived* myDerivedPtr3 = dynamic_cast<Derived *>(myBasePtr);

In this example, we use three different typecasts to convert a pointer that points to an object of type Base 
to a pointer to a  Derived.  In the above example, the first two casts will perform the type conversion, 
resulting in pointers of type  Derived * that actually point to a  Base object, which can be dangerous. 
However, the final typecast, which uses dynamic_cast, will return a NULL pointer because the cast cannot 
succeed.

When performing downcasts (casts from a base type to a derived type), unless you are absolutely sure that 
the cast will succeed, you should consider using dynamic_cast over a static_cast or raw C++ typecast. 
Because of the extra check at runtime,  dynamic_cast is slower than the other two casts, but the extra 
safety is well worth the cost.

There are two more interesting points to take note of when working with dynamic_cast.  First, you can 
only use  dynamic_cast to  convert between types if  the base class  type contains at least  one virtual  
member function.  This may seem like a strange requirement, but greatly improves the efficiency of the 
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language as a whole and makes sense when you consider that it's rare to hold a pointer to a Derived in a 
pointer  of  type  Base when  Base isn't  polymorphic.   The  other  important  note  is  that  if  you  use 
dynamic_cast to convert between references rather than pointers, dynamic_cast will throw an object of 
type  bad_cast rather than returning a “NULL reference” if the cast fails.  Consult a reference for more 
information on bad_cast.

Implicit Interfaces and Explicit Interfaces

In the chapter on templates we discussed the concept of  an  implicit interface,  behaviors required of a 
template argument.  For example, consider a function that returns the average of the values in an STL 
container of doubles, as shown here:

template <typename ContainerType> double GetAverage(const ContainerType& c)
{
    return accumulate(c.begin(), c.end(), 0.0) / c.size();
}

The function GetAverage may be parameterized over an arbitrary type, but will only compile if the type 
ContainerType exports functions begin and end that return iterators over doubles (or objects implicitly 
convertible to doubles) and a size function that returns some integer type.

Contrast this with a similar function that uses inheritance:

class Container
{
public:
    typedef something-dereferencable-to-a-double const_iterator;
    virtual const_iterator begin() const = 0;
    virtual const_iterator end() const = 0;
};

double GetAverage(const Container& c)
{
    return accumulate(c.begin(), c.end(), 0.0) / c.size();
}

This function is no longer  a template an instead accepts  as an argument an object  that  derives from  
Container.

In  many  aspects  these  functions  are  similar.   Both  of  the  implementations  have  a  set  of  constraints  
enforced on their parameter, which can be of any type satisfying these constraints.  But these similarities 
obscure a fundamental difference between how the two functions work – at what point the function calls 
are resolved.  In the inheritance-based version of  GetAverage,  the calls to  begin,  end,  and  size are 
virtual function calls which are resolved at  runtime using the system described earlier in this chapter. 
With the template-based version of GetAverage, the version of the begin, end, and size functions to call 
are resolved at compile-time.

When you call a template function, C++ instantiates the template by replacing all instances of the template  
argument with a concrete type.  Thus if we call the template function GetAverage on a vector<int>, the 
compiler will instantiate GetAverage on vector<int> to yield the following code:

double GetAverage<vector<int> >(const vector<int>& c)
{
    return accumulate(c.begin(), c.end(), 0.0) / c.size();
}
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Now that the template has been instantiated, it's clear what functions c.begin() and the like correspond 
to  –  they're  the  vector<int>'s  versions  of  those functions.   Since  those  functions  aren't  virtual,  the 
compiler can hardcode which function is being called and can optimize appropriately.

The template version of this function is desirable from a performance perspective but is not always the  
best option.  In particular, while we can pass as a parameter to GetAverage any object that conforms to 
the implicit interface, we cannot treat those classes polymorphically.  For example, in the above case it's 
perfectly legal to call  GetAverage on a  vector<double> or a  set<double>, but we cannot write code 
like this:

Container* ptr = RandomChance(0.5) ? new vector<double> : new set<double>;

Templates and inheritance are designed to solve fundamentally different problems.  If you want to write 
code that operates over any type that meets some minimum requirements, the template system can help  
you do so efficiently and concisely provided that you know what types are being used at compile-time.  If  
the types cannot be determined at compile-time, you can use inheritance to describe what behaviors are 
expected of function arguments.

More to Explore

1. Multiple Inheritance: Unlike other object-oriented languages like Java, C++ lets classes inherit 
from multiple base classes.  You can use this build classes that act like objects of multiple types, or  
in conjunction with mixin classes to build highly-customizable classes.   In most cases multiple  
inheritance  is  straightforward  and  simple,  but  there  are  many  situations  where  it  acts 
counterintuitively.  If you plan on pursuing C++ more seriously, be sure to read up on multiple  
inheritance.

2. const_cast and  reinterpret_cast:  C++  has  two  other  conversion  operators,  const_cast, 
which  can  add  or  remove  const from  a  pointer,  and  reinterpret_cast,  which  performs 
fundamentally unsafe typecasts (such as converting an  int * to a  string *).   While the use 
\cases of these operators are far beyond the scope of this class, they do arise in practice and you  
should be aware of their existences.  Consult a reference for more information.

3. The Curiously Recurring Template Pattern (CRTP): Virtual functions make your programs run 
slightly slower than programs with non-virtual functions because of the extra overhead of the 
dynamic lookup.  In certain situations where you want the benefits of inheritance without the cost  
of virtual functions,  you can use an advanced C++ trick called the  curiously recurring template  
pattern,  or CRTP.  The CRTP is also known as “static interfacing” and lets you get some of the  
benefits of inheritance without any runtime cost.

4. Policy  Classes:  A  nascent  but  popular  C++  technique  called  policy  classes combines  multiple 
inheritance and templates to design classes that are simultaneously customizable and efficient.  A  
full treatment of policy classes is far beyond the scope of this reader, but if you are interested in 
seeing exactly how customizable C++ can be I strongly encourage you to read more about them.

Practice Problems

1. In the GenericBatchPrinter example from earlier in this chapter, recall that the Document base 
class had several methods defined purely virtually, meaning that they don't actually have any code 
for those member functions.  Inside GenericBatchPrinter, why don't we need to worry that the 
Document * pointer from the queue points to an object of type Document and thus might cause 
problems if we tried invoking those purely virtual functions? ♦

2. In the next  exercises,  we'll  explore  a set  of  classes that let  you build and modify functions at 
runtime using tools similar to those in the STL <functional> programming library.
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Consider the following abstract class:

class Function
{
public:
    virtual ~Function() = 0;
    virtual double evaluateAt(double value) = 0;
};
This  class  exports  a  single  function,  evaluateAt,  that  accepts  a  double as  a  parameter  and 
returns the value of some function evaluated at that point.  Write a derived class of  Function, 
SimpleFunction,  whose constructor accepts a regular C++ function that accepts and returns a 
double and whose evaluateAt function returns the value of the stored function evaluated at the 
parameter.

3. The composition of two functions F and G is defined as F(G(x)) – that is, the function F applied to 
the value of G applied to x.  Write a class CompositionFunction whose constructor accepts two 
Function * pointers  and  whose  evaluateAt returns  the  composition  of  the  two  functions 
evaluated at a point.

4. The derivative  of  a  function is  the  slope of  the  tangent  line  to  that  function at  a  point.   The 
derivative of a function F can be approximated as F'(x) ≈ (F(x + Δx) – F(x - Δx)) / 2Δx for small 
values  of  Δx.   Write  a  class  DerivativeFunction whose  constructor  accepts  a  Function * 
pointer and a double representing Δx and whose evaluateAt approximates the derivative of the 
stored function using the initial value of Δx. ♦

5. For the above classes, why did we make a function named  evaluateAt instead of providing an 
implementation of  operator()?  (Hint: Will we be using actual  Function objects, or pointers to  
them?)

6. A common mistake is to try to avoid problems with slicing by declaring operator = as a virtual 
function in a base class.  Why won't this solve the slicing problem? (Hint: what is the parameter  
type to operator =?)

7. Suppose you have three classes, Base,  Derived, and VeryDerived where Derived inherits from 
Base and  VeryDerived inherits from  Derived.   Assume all  three have copy constructors and 
assignment operators.  Inside the body of  VeryDerived's assignment operator, why shouldn't it 
invoke  Base::operator = on the other object?  What does this tell you about long inheritance 
chains, copying, and assignment?

8. The C++ casting operators were deliberately designed to take up space to discourage programmers 
from using typecasts.  Explain why the language designers frown upon the use of typecasts.

9. The  unary_function and  binary_function classes  from  <functional> do  not  define 
operator() as a virtual member function.  Considering that every adaptable function must be a 
subclass of one of these two classes, it seems logical for the two classes to do so.  Why don't they?  
(Hint: the STL is designed for maximum possible efficiency.  What would happen if  operator() 
was virtual?)
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C++ owes a great debt to the C programming language.  Had it not been rooted in C syntax, C++ would have 
attracted fewer earlier adopters and almost certainly would have vanished into the mists of history.  Had it  
not kept C's emphasis on runtime efficiency, C++ would have lost relevance over time and would have gone 
extinct.  But despite C++'s history in C, C and C++ are very different languages with their own idioms and  
patterns.  It is a common mistake to think that knowledge of C entails a knowledge of C++ or vice-versa,  
and experience with  one language often leads to suboptimal  coding skills  in the  other.   In particular,  
programmers with a background in pure C often use C constructs in C++ code where there is a safer or  
more elegant alternative.  This is not to say that C programmers are somehow worse coders than C++  
programmers, but rather that some patterns engrained into the C mentality are often incompatible with 
the language design goals of C++.

This appendix lists ten idiomatic C patterns that are either deprecated or unsafe in C++ and suggests 
replacements.  There is no new C++ content here that isn't already covered in the main body of the course  
reader, but I highly recommend reading through it anyway if you have significant background in C.  This by 
no means an exhaustive list of differences between C and C++, but should nonetheless help you transition 
between the languages.

Tip 0: Prefer streams to stdio.h

C++ contains  the  C  runtime library in  its  standard  library,  so  all  of  the  I/O functions  you've  seen in 
<stdio.h> (printf, scanf, fopen) are available in C++ through the <cstdio> header file.  While you're 
free to use printf and scanf for input and output in C++, I strongly advise you against doing so because 
the functions are inherently unsafe.  For example, consider the following C code:

char myString[1024] = {'\0'};
int  myInt;

printf("Enter an integer and a string: ");
scanf("%d %1023s", &myInt, myString);
printf("You entered %d and %s\n", myInt, myString);

Here, we prompt the user for an integer and a string, then print them back out if the user entered them  
correctly.  As written there is nothing wrong with this code.  However, consider the portions of the code 
I've highlighted here:

char myString[1024] = {'\0'};
int  myInt;

printf("Enter an integer and a string: ");
scanf("%d %1023s", &myInt, myString);
printf("You entered %d and %s\n", myInt, myString);

Consider the size of the buffer, 1024.  When reading input from the user, if we don't explicitly specify that  
we want to read at most 1023 characters of input, we risk a buffer overrun that can trash the stack and  
allow an attacker to fully compromise the system.  What's worse,  if  there is a  mismatch between the 
declared size of the buffer (1024) and the number of characters specified for reading (1023), the compiler 
will not provide any warnings.  In fact, the only way we would discover the problem is if we were very  
careful to read over the code checking for this sort of mistake, or to run an advanced tool to double-check 
the code for consistency.
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Similarly, consider the highlighted bits here:
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char myString[1024] = {'\0'};
int  myInt;

printf("Enter an integer and a string: ");
scanf("%d %1023s", &myInt, myString);
printf("You entered %d and %s\n", myInt, myString);

Notice that when reading values from the user or writing values to the console,  we have to explicitly  
mention what types of variables we are reading and writing.  The fact that myInt is an int and myString 
is a char* is insufficient for printf and scanf; we have to mention to read in an int with %d and a string 
with  %s.   If we get these backwards or omit one, the program contains a bug but will compile with no  
errors.*  Another vexing point along these lines is the parameter list in scanf – we must pass in a pointer 
to myInt, but can just specify myString by itself.  Confusing these or getting them backwards will cause a 
crash or a compiler warning, which is quite a price to pay for use input.

The problem with the C I/O libraries is that they completely bypass the type system.  Recall  that the 
signatures of printf and scanf are

int printf(const char* formatting, ...);
int scanf (const char* formatting, ...);

The ... here means that the caller can pass in any number of arguments of any type, and in particular this  
means that the C/C++ compiler cannot do any type analysis to confirm that you're using the arguments 
correctly.  Don't get the impression that C or C++ are type-safe – they're not – but the static type systems they  
have  are  designed to  prevent  runtime  errors  from occuring  and subverting  this  system opens  the  door  for  
particularly nasty errors.

In pure C, code like the above is the norm.  In C++, however, we can write the following code instead:

int myInt;
string myString;

cout << "Enter an int and a string: ";
cin >> myInt >> myString;
cout << "You entered " << myInt << " and " << myString << endl;

If you'll notice, the only time that the types of myInt and myString are mentioned is at the point of declaration. 
When  reading  and  writing  myInt and  myString,  the  C++  can  automatically  infer  which  version  of 
operator >> and operator << to call to perform I/O and thus there is no chance that we can accidentally 
read a  string value into an  int or vice-versa.  Moreover, since we're using a C++-style string, there is no 
chance that we'll encounter a buffer overflow.  In short, the C++ streams library is just plain safer than the  
routines in <stdio.h>.

When working in pure C++, be wary of the <stdio.h> functions.  You are missing out on the chance to use the 
streams library and are exposing yourself and your code to all sorts of potential security vulnerabilities.

Tip 1: Use C++ strings instead of C-style strings

Life is short, nasty, and brutish, and with C strings it will be even worse.  C strings are notoriously tricky to  
get right, have a cryptic API, and are the cause of all sorts of security bugs.  C++ strings, on the other 
hand, are elegant, pretty, and difficult to use incorrectly.  If you try truncating a C++ string at an invalid 
index with erase, the string will throw an exception rather than clobbering memory.  If you append data 

* Many compilers will report errors if you make this sort of mistake, but they are not required to do so.
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to a C++ string, you don't need to worry about reallocating any memory – the object does that for you.  In 
short, C strings are tricky to get  right, and C++ strings are tricky to get  wrong.  “But wait!,” you might 
exclaim, “Because C strings are so low-level, I can sometimes outperform the heavyweight C++ string.” 
This is absolutely true – because C strings are so exposed, you have a great deal of flexibility and control 
over how the memory is managed and what operations go on behind the scenes.  But is it really worth it?  
Here's a small sampling of what can go wrong if you're not careful with C strings:

1. You might write off the end of a buffer, clobbering other data in memory and paving the way for a  
massive security breach.

2. You might forget to deallocate the memory, causing a memory leak.
3. You  might  overwrite  the  terminating  null  character,  leading  to  a  runtime  error  or 

incomprehensible program outputs.

Are C strings faster than their C++ counterparts?  Of course.  But should you nonetheless sacrifice a little  
speed  for  the  peace  of  mind  that  your  program  isn't  going  to  let  hackers  take  down  your  system? 
Absolutely.

Tip 2: Use C++ typecasts instead of C typecasts

Both C and C++ have static type systems – that is, if you try to use a variable of one type where a variable  
of another type is expected, the compiler will report an error.  Both C and C++ let you use typecasts to  
convert between types when needed, sometimes safely and sometimes unsafely.

C has only one style of typecast, which is conveniently dubbed a “C-style typecast.”  As mentioned in the 
chapter on inheritance, C-style typecasts are powerful almost to a fault.  Converting between a double and 
an  int uses  the  same  syntax  for  unsafe  operations  like  converting  pointers  to  integers,  integers  to  
pointers, const variables to non-const variables, and pointers of one type to pointers of another type.  As 
a result, it is easy to accidentally perform a typecast other than the one you wanted.  For example, suppose  
we want to convert a char* pointer to an int* pointer, perhaps because we're manually walking over a 
block of memory.  We write the following code:

const char* myPtr = /* ... */
int* myIntPtr = (int *)myPtr;

Notice that in this typecast we've converted a  const char* to an  int*, subverting  constness.  Is this 
deliberate?  Is this a mistake?  Given the above code there's no way to know because the typecast does not  
communicate what sort of cast is intended.  Did we mean to strip off constness, convert from a char* to 
an int*, or both?

C++  provides  three  casting  operators  (const_cast,  static_cast,  reinterpret_cast)  that  are 
designed to clarify the sorts of typecasts performed in your code.  Each performs exactly one function and 
causes a compile-time error if used incorrectly.  For example, if in the above code we only meant to convert 
from a const char* to a const int* without stripping constness, we could write it like this:

const char* myPtr = /* ... */
const int* myIntPtr = reinterpret_cast<const int*>(myPtr);

Now, if we leave off the const in the typecast, we'll get a compile-time error because reinterpret_cast 
can't strip off constness.  If, on the other hand, we want to convert the pointer from a const char* to a 
regular int*, we could write it as follows:

const char* myPtr = /* ... */
int* myIntPtr = const_cast<int*>(reinterpret_cast<const int*>(myPtr));
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This is admittedly much longer and bulkier than the original C version, but it is also more explicit about 
exactly what it's doing.  It also is safer, since the compiler can check that the casts are being used correctly.
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When writing C++ code that uses typecasts, make sure that you use the C++-style casting operators.  Are 
they lengthy and verbose?  Absolutely.  But the safety and clarity guarantees they provide will more than 
make up for it.

Tip 3: Prefer new and delete to malloc and free

In C++, you can allocate and deallocate memory either using new and delete or using malloc and free. 
If you're used to C programming, you may be tempted to use malloc and free as you have in the past. 
This can lead to very subtle errors because new and delete do not act the same as malloc and free.  For 
example, consider the following code:

string* one = new string;
string* two = static_cast<string*>(malloc(sizeof string));

Here, we create two string objects on the heap – one using new and one using malloc.  Unfortunately, the 
string allocated with malloc is a ticking timebomb waiting to explode.  Why is this?  The answer has to do 
with a subtle but critical difference between the two allocation routines.

When you write new string, C++ performs two steps.  First, it conjures up memory from the heap so that  
the new  string object has a place to go.  Second, it calls the  string constructor on the new memory 
location  to  initialize  the  string data  members.   On  the  other  hand,  if  you  write  malloc(sizeof 
string),  you only perform the memory allocation.  In the above example, this means that the  string 
object pointed at by two has the right size for a string object, but isn't actually a string because none of 
its data members have been set appropriately.  If you then try using the string pointed at by two, you'll 
get a nasty crash since the object is in a garbage state.  To avoid problems like this, make sure that you 
always allocate objects using new rather than malloc.

If you do end up using both  new and  malloc in a C++ program (perhaps because you're working with 
legacy  code),  make  sure  that  you  are  careful  to  deallocate  memory  with  the  appropriate  deallocator  
function.   That is,  don't  free an object allocated with  new,  and don't  delete  an object  allocated with 
malloc.  malloc and new are not the same thing, and memory allocated with one is not necessarily safe to 
clean up with the other.  In fact, doing so leads to undefined behavior, which can really ruin your day.

Tip 4: Avoid void* Pointers

Code in pure C abounds with  void* pointers, particularly in situations where a function needs to work 
with data of any type.  For example, the C library function qsort is prototyped as

void qsort(void* elems, size_t numElems, size_t elemSize,
           int (*cmpFn)(const void*, const void*));

That's quite a mouthful and uses void* three times – once for the input array and twice in the comparison 
function.  The reason for the void* here is that C lacks language-level support for generic programming 
and consequently algorithms that need to operate on arbitrary data have to cater to the lowest common 
denominator – raw bits and bytes.

When using C's qsort, you have to be extremely careful to pass in all of the arguments correctly.  When 
sorting an array of  ints,  you must take care to specify that  elemSize is  sizeof(int) and that your 
comparison function knows to interpret  its  arguments as  pointers to  ints.   Passing in a comparison 
function which tries to treat its arguments as being of some other type (perhaps char**s or double*s) 
will cause runtime errors, and specifying the size of the elements in the array incorrectly will probably  
cause incorrect behavior or a bus error.
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Contrast this with C++'s sort algorithm:
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template <typename RandomAccessIterator, typename Comparator>
void sort(RandomAccessIterator begin, RandomAccessIterator end, Comparator c);

With C++'s sort, the compiler can determine what types of elements are stored in the range [begin, end) 
by looking at the type of the iterator passed as a parameter.  The compiler can thus automatically figure  
out the size of the elements in the range.  Moreover, if there is a type mismatch between what values the  
Comparator parameter accepts and what values are actually stored in the range, you'll get a compile-time 
error directing you to the particular template instantiation instead of a difficult-to-diagnose runtime error.

This example highlights the key weakness of void* – it completely subverts the C/C++ type system.  When 
using a  void* pointer,  you are telling the compiler to forget  all  type information about what's  being 
pointed at and therefore have to explicitly keep track of all of the relevant type information yourself.  If you 
make a mistake,  the compiler won't  recognize your error and you'll  have to diagnose the problem at  
runtime.  Contrast this with C++'s template system.  C++ templates are strongly-typed and the compiler 
will ensure that everything type-checks.  If the program has a type error, it won't compile, and you can 
diagnose and fix the problem without having to run the program.

Whenever you're thinking about using a void* in C++ programming, make sure that it's really what you 
want to do.  There's almost always a way to replace the void* with a template.  Then again, if you want to 
directly manipulate raw bits and bytes, void* is still your best option.

One point worth noting: In pure C, you can implicitly convert between a void* pointer and a pointer of 
any type.  In C++, you can implicitly convert any pointer into a  void*, but you'll have to use an explicit 
typecast to convert the other way.  For example, the C code

int* myArray = malloc(numElems * sizeof(int));

Does not compile in C++ since malloc returns a void*.  Instead, you'll need to write

int* myArray = (int *)malloc(numElems * sizeof(int));

Or, even better, as

int* myArray = static_cast<int *>(malloc(numElems * sizeof(int)));

Using the C++ static_cast operator.

Tip 5: Prefer vector to raw arrays

Arrays live in a sort of nether universe.  They aren't quite variables, since you can't assign them to one  
another,  and they're not  quite pointers,  since you can't  reassign where they're pointing.   Arrays can't  
remember how big they are, but when given a static array you can use  sizeof to get the total space it 
occupies.  Functions that operate on arrays have to either guess the correct size or rely on the caller to  
supply it.  In short, arrays are a bit of a mess in C and C++.

Contrast this with the C++ vector.  vectors know exactly how large they are, and can tell you if you ask. 
They are  first-class  variables  that  you  can  assign to  one  another,  and aren't  implicitly  convertible  to  
pointers.  On top of that, they clean up their own messes, so you don't need to worry about doing your own 
memory management.  In short, the vector is everything that the array isn't.

In addition to being safer than regular arrays, vectors can also be much cleaner and easier to read.  For  
example, consider the following C code:
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void MyFunction(int size)
{
    int* arr = malloc(size * sizeof(int));
    memset(arr, 0, size * sizeof(int));

    /* ... */

    free(arr);
};

Compare this to the equivalent C++ code:

void MyFunction(int size)
{
    vector<int> vec(size);

    /* ... */
};

No ugly computations about the size of each element, no messy cleanup code at the end, and no memsets. 
Just a single line and you get the same effect.  Moreover, since the vector always cleans up its memory 
after it goes out of scope, the compiler will ensure that no memory is leaked.  Isn't that nicer?

Of course, there are times that you might want to use a fixed-size array, such as if you know the size in 
advance and can fit the array into a struct.  But in general, when given the choice between using arrays and 
using vectors, the vector is the more natural choice in C++.

Tip 6: Avoid goto

For  a  number  of  years  I  have  been  familiar  with  the  observation  that  the  quality  of  
programmers is a decreasing function of the density of go to statements in the programs they  
produce. More recently I discovered why the use of the go to statement has such disastrous  
effects, and I became convinced that the go to statement should be abolished from all "higher  
level" programming languages (i.e. everything except, perhaps, plain machine code)

– Edsger Dijkstra [Dij68]

The goto keyword been widely criticised since Dijkstra published “Go To Statement Considered Harmful” 
in 1968, yet still managed to make its way into C and consequently C++.  Despite its apparent simplicity,  
goto can cause all sorts of programming nightmares because it is inherently unstructured.  goto can jump 
pretty  much  anywhere  and  consequently  can  lead  to  unintuitive  or  even  counterintuitive  code.   For 
example, here's some code using goto:

int x = 0;
start:
    if (x == 10) goto out;
    printf("%d\n", x);
    ++x;
    goto start;
out:
    printf("Done!\n");

This is completely equivalent to the much more readable

for(int x = 0; x < 10; ++x)
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    printf("%d\n", x);
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Despite goto's bad reputation, modern C programming still has several places in which goto can still be 
useful.  First, goto can be used as a sort of “super break” to break out of multiple levels of loop nesting. 
This use is still legitimate in C++, but is frowned upon stylistically.  Second, goto can be used as a way of 
performing necessary cleanup in an error condition.  For example:

/* Returns a string of the first numChars characters from a file or NULL in an
 * error case.
 */
char* ReadFromFile(const char* filename, size_t numChars)
{
    FILE* f;
    char* buffer;

    /* Allocate some space. */
    buffer = malloc(numChars + 1);
    if(buffer == NULL) return NULL;

    /* Open the file, abort on error. */
    f = fopen(filename, "rb");
    if(f == NULL)
        goto error;

    /* Read the first numChars characters, failing if we don't read enough. */
    if(fread(buffer, numChars, 1, f) != numChars)
        goto error;
    
    /* Close the file, null-terminate the string, and return. */
    fclose(f);
    buffer[numChars] = '\0';
    return buffer;

    /* On error, clean up the resources we opened. */
error:
    free(buffer);
    if(f != NULL)
        fclose(f);

    return NULL;
}

Here, there are several error conditions in which we need to clean up the temporary buffer and potentially  
close an open file.  When this happens, rather than duplicating the cleanup code, we use goto to jump to 
the error-handling subroutine.

In pure C this is perfectly fine, but in C++ would be considered a gross error because there are much better  
alternatives.   As  mentioned in the  chapter  on exception handling,  we  could  instead use  a  catch-and-
rethrow 
strategy to get the exact same effect without goto, as shown here:
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/* Returns a string of the first numChars characters from a file.
 * Throws a runtime_error on error.
 */
char* ReadFromFile(const char* filename, size_t numChars)
{
    FILE* f;
    char* buffer = NULL;

    try
    {
        /* Allocate some space.  This will throw on error rather than returning
         * NULL.
         */
        buffer = new char[numChars + 1];

        /* Open the file, abort on error. */
        f = fopen(filename, "rb");
        if(f == NULL)
            throw runtime_error("Can't open file!");

        /* Read the first numChars characters, failing if we don't read enough. */
        if(fread(buffer, numChars, 1, f) != numChars)
            throw runtime_error("Can't read enough characters!");
    
        /* Close the file, null-terminate the string, and return. */
        fclose(f);
        buffer[numChars] = '\0';
        return buffer;
    }
    catch(...)
    {
        /* On error, clean up the resources we opened. */
        delete [] buffer;
        if(f != NULL)
            fclose(f);

        throw;
    }
}

Now that we're using exception-handling instead of goto, the code is easier to read and allows the caller 
to get additional error information out of the function.

An even better alternative here would be to use an ifstream and a string to accomplish the same result. 
Since the ifstream and string classes have their own destructors, we don't need to explicitly clean up 
any memory.  This is shown here:
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/* Returns a string of the first numChars characters from a file.
 * Throws a runtime_error on error.
 */
string ReadFromFile(const char* filename, size_t numChars)
{
    string buffer(numChars);

    /* Open the file, abort on error. */
    ifstream input(filename);
    if(input.fail())
        throw runtime_error("Can't open the file!");

    /* Read the first numChars characters, failing if we don't read enough. */
    input.read(&buffer[0], numChars);
    if(input.fail())
        throw runtime_error("Couldn't read enough data");

    return buffer;
}

This version is very clean and concise and doesn't require any goto-like structure at all.  Since the object 
destructors take care of all of the cleanup, we don't need to worry about doing that ourselves.

My advice against goto also applies to setjmp and longjmp.  These functions are best replaced with C++'s 
exception-handling system, which is far safer and easier to use.

Tip 7: Use C++'s bool type when applicable

Prior to C99, the C programming language lacked a standard bool type and it was common to find idioms 
such as

enum bool {true, false};

Or

#define bool int
#define true 1
#define false 0

Similarly, to loop indefinitely, it was common to write

while(1)
{
   /* ... */
}

Or

for(;;)
{
   /* ... */
}

Defining your own custom bool type is risky in C++ because a custom type will not interact with language 
features  like  templates  and  overloading  correctly.   Similarly,  while  both  of  the  “loop  forever”  loop 
constructs listed above are legal C++ code, they are both less readable than the simpler
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while(true)
{
   /* ... */
}

If you aren't already used to working with bools, I suggest that you begin doing so when working in C++. 
Sure, you can emulate the functionality of a bool using an int, but doing so obscures your intentions and 
leads to all sorts of other messes.  For example, if you try to emulate bools using ints, you can get into 
nasty scrapes where two ints each representing  true don't compare equal because they hold different 
nonzero values.  This isn't possible with the bool type.  To avoid subtle sources of error and to make your 
code more readable, try to use bool whenever applicable.

Tip 8: Avoid “typedef struct”

In pure C, if you define a struct like this:

struct pointT
{
    int x, y;
};

Then to create an instance of the struct you would declare a variable as follows:

struct pointT myPoint;

In C++, this use of  struct is unnecessary.  It is also bad practice, since veteran C++ programmers will 
almost  certainly  have  to  pause  and  think  about  exactly  what  the  code  means.   Of  course,  most  C 
programmers are also not particularly fond of this syntax, and to avoid having to spell out  struct each 
time would write

typedef struct pointT_
{
    int x, y;
} pointT;

This syntax is still valid C++, but is entirely unnecessary and makes the code significantly trickier to read. 
Moreover, if you want to add constructors or destructors to the struct you would have to use the name 
pointT_ even though externally the object would be called pointT without the underscore.  This makes 
the code more difficult to read and may confuse class clients.  In the interests of clarity, avoid this use of  
typedef when writing C++ code.

Tip 9: Avoid memcpy and memset

In pure C, code like the following is perfectly normal:

struct pointT
{
    int x, y;
};
struct pointT myPoint;
memset(&myPoint, 0, sizeof(pointT));
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Here,  the  call  to  memset is  used  to  initialize  all  the  variables  in  the  pointT to  zero.   Since  C  lacks 
constructors and destructors, this code is a reasonably good way to ensure that the pointT is initialized 
before use.
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Because C++ absorbed C's standard library, the functions memset, memcpy, and the like are all available in 
C++.  However, using these functions can lead to subtle but dangerous errors that can cause all sorts of  
runtime woes.  For example, consider the following code:

string one = "This is a string!";
string two = "I like this string more.";
memcpy(&one, &two, sizeof(string)); // Set one equal to two – does this work?

Here,  we  use  memcpy to  set  one equal  to  two.   Initially,  it  might  seem  like  this  code  works,  but 
unfortunately this memcpy results in undefined behavior and will almost certainly cause a runtime crash.  
The  reason  is  that  the  string object  contains  pointers  to  dynamically-allocated  memory,  and  when 
memcpying the data from two into one we've made both of the string objects point to the same memory. 
After each pointer goes out of scope, both will try to reclaim the memory, causing problems when the  
underlying string buffer is  doubly-deleted.   Moreover,  if  this  doesn't immediately crash the program, 
we've also leaked the memory  one was originally using since all of its data members were overwritten 
without first being cleaned up.

If we wanted to set one equal to two, we could have just written this instead:

string one = "This is a string!";
string two = "I like this string more.";
two = one;

This uses the string's assignment operator, which is designed to safely perform a deep copy.

In general, mixing memcpy with C++ classes is just asking for trouble.  Most classes maintain some complex 
invariants about their data members and what memory they reference, and if you memcpy a block of data 
over  those  data  members  you  might  destroy  those  invariants.   memcpy doesn't  respect  public and 
private, and thus completely subverts the encapsulation safeguards C++ tries to enforce.

But the problem runs deeper than this.  Suppose that we have a polymorphic class representing a binary 
tree node:

class BinaryTreeNode
{
public:
    BinaryTreeNode();
    virtual ~BinaryTreeNode(); // Polymorphic classes need virtual destructors

    /* ... etc. ... */
private:
    BinaryTreeNode* left, *right;
};

We want to implement the constructor so that it sets left and right to NULL, indicating that the node has 
no children.  Initially, you might think that the following code is safe:

BinaryTreeNode::BinaryTreeNode()
{
    /* Zero out this object.  Is this safe? */
    memset(this, 0, sizeof(BinaryTreeNode));
}

Since the null pointer has value zero, it seems like this should work – after all, if we overwrite the entire  
object with zeros, we've effectively nulled out all of its pointer data members.  But this code is a recipe for  
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disaster  because  the  class  contains  more  than  just  a  left and  right pointer.   In  the  chapter  on 
inheritance, we outlined how virtual functions are implemented using a virtual function table pointer that 
sits at the beginning of the class.  If we use  memset to clear out the object, we'll overwrite this virtual 
function table pointer with  NULL, meaning that any attempt to call a virtual function on this object will 
result in a null pointer dereference and a program crash.*

The key problem with memset and memcpy is that they completely subvert the abstractions C++ provides 
to increase program safety.  Encapsulation is supposed to prevent clients from clobbering critical class 
components and object layout is done automatically specifically to prevent programmers from having to  
explicitly manipulate low-level machinery.  memset and memcpy remove these barriers and expose you to 
dangerous you could otherwise do without.

This is not to say, of course, that memset and memcpy have no place in C++ code – they certainly do – but 
their role is considerably less prominent than in pure C.  Before you use low-level manipulation routines,  
make  sure  that  there  isn't  a  better  way to  accomplish  the  same  goal  through  more  “legitimate”  C++  
channels.

With that said, welcome to C++!  Enjoy your stay!

* This example is based on a conversation I had with Edward Luong, who encountered this very problem when 
writing a large program in C++.
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Streams

Problem 2. There  are  two steps  necessary to  get  HasHexLetters working.   First,  we transform the input 
number  into  a  string  representation  of  its  hexadecimal  value.   Next,  using  techniques  similar  to  that  for  
GetInteger,  we check to see if this string can be interpreted as an  int when read in base 10.  If so, the 
hexadecimal representation of the number must not contain any letters (since letters can't be interpreted as a  
decimal value), otherwise the representation has at least one letter in it.

One possible implementation is given here:

bool HasHexLetters(int value)
{
    /* Funnel the data into a stringstream, using the hex manipulator to represent
     * it in hexadecimal.
     */
    stringstream converter;
    converter << hex << value;

    /* Now, try extracting the string as an int, using the dec manipulator to read
     * it in decimal.
     */
    int dummy;
    converter >> dec >> dummy;

    /* If the stream failed, we couldn't read an int and we're done. */
    if(converter.fail()) return true;

    /* Otherwise, try reading something else from the stream.  If we succeed, it
     * must have been a letter and we know that the integer has letters in its hex
     * representation.
     */
    char leftover;
    converter >> leftover;

    return !converter.fail();
}

STL Containers, Part I

Problem 5a.  If we want to cycle the elements of a container, then our best options are the deque and the queue. 
Both of these choices let  us quickly move the front  element of the container to the back;  the  deque with 
pop_front and push_back and the queue with push and pop.

Cycling the elements of a stack is impossible without having some external structure that can store the stack's 
data, so this is not a good choice.  While it's possible to cycle the elements of a vector using push_back and 
erase, doing so is very inefficient because the vector will have to shuffle all of its elements down to fill in the 
gap at the beginning of the container.  Remember, if you ever want to add and remove elements at the beginning 
or end of a vector, the deque is a better choice.
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Problem 5b.  For this solution we'll use an STL queue, since we don't need access to any element of the key list  
except the first.  Then one solution is as follows:

string VigenereCipher(string toEncode, queue<int> values)
{
    for(int k = 0; k < toEncode.length(); ++k)
    {
        toEncode[k] += values.front(); // Encrypt the current character
        values.push(values.front());   // Add the current key to the back.
        values.pop();                  // Remove the current key from the front.
    }
}

STL Iterators

Problem 5. One possible implementation of the function is as follows:

vector<string> LoadAllTokens(string filename)
{
    vector<string> result;

    /* Open the file, if we can't, just return the empty vector. */
    ifstream input(filename.c_str());
    if(input.fail()) return result;

    /* Using the istream_iterator iterator adapter, read everything out of the
     * file.  Since by default the streams library uses whitespace as a separator
     * character, this reads in all of the tokens.
     */
    result.insert(result.begin(),
                  istream_iterator<string>(input), istream_iterator<string>());

    return result;
}

STL Containers, Part II

Problem 2.  We can solve this problem by loading all of the values in the  map into a  map<string, int> 
associating a value in the initial map with its frequency.  We then can get the number of duplicates by adding up 
all of the entries in the second map whose value is not one (i.e. at least two elements have the same value).  This 
can be implemented as follows:
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int NumDuplicateValues(map<string, string>& input)
{
    map<string, int> counter;

    /* Iterate over the map updating the frequency count.  Notice that we are
     * checking for the number of duplicate values, so we'll index into the map by
     * looking at itr->second.  Also note that we don't check for the case where
     * the map doesn't already contain this key.  Since STL containers initialize
     * all stored integers to zero, if the key doesn't exist a fresh pair will be
     * created with value zero.
     */
    for(map<string, string>::iterator itr = input.begin();
        itr != input.end(); ++itr)
        ++counter[itr->second];

    int result = 0;
    /* Now iterate over the entries and accumulate those that have at least value
     * two.
     */
    for(map<string, string>::iterator itr = input.begin();
        itr != input.end(); ++itr)
        if(itr->second > 1) result += itr->second;

    return result;
}

Problem 5.  There are many good solutions to this problem.  My personal favorite is this one:

void CountLetters(ifstream& input, map<char, int>& freqMap)
{
    char ch;
    while(input.get(ch)) ++freqMap[ch];
}

This code is dense and relies on several properties of the stream library and the STL.  First, the member 
function get accepts as input a char by reference, then reads in a single character from the stream.  On 
success, the function fills the char with the read value.  On failure, the value is unchanged and the stream 
goes into a fail state.  The get function then returns a reference to the stream object that did the reading, 
meaning that while(input.get(ch)) is equivalent to

while(true)
{
    input.get(ch);
    if(!input) break;

    /* ... body of loop ... */
}

And since !input is equivalent to input.fail(), this one-liner will read in a character from the file, then 
break out of the loop if the read failed.

Once we've read in the character, we can simply write  ++freqMap[ch], since if the key already exists we're 
incrementing the  older  value and if  not  a  new key/value pair  will  be  created with  value  0,  which is  then 
incremented up to one.
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Problem 6. As mentioned in the hint, the trick is to use the structure of lexicographic comparisons to construct a  
pair of strings lower- and upper-bounding all strings with the given prefix.  For example, suppose that we want 
to  find  all  words  beginning  with  the  prefix  anti.   Now,  any word  beginning  with  anti must  compare 
lexicographically greater than or equal to anti, since the first four characters will match but the word beginning 
with anti must also be longer than anti.  For example,  antigen and antidisestablishmentarianism 
both compare greater than anti since they have the same prefix as anti but are longer.

The next observation is that any word that doesn't start with anti falls into one of two categories – those that 
compare lexicographically less than anti and those that compare lexicographically greater than anti.  The first 
of  these  sets  can  be  ignored,  but  how  can  we  filter  out  words  with  non-anti prefixes  that  compare 
lexicographically greater than anti?  The trick is to note that if the word doesn't have anti as a prefix, then 
somewhere in its first four letters it must disagree with anti.  If we take the next lexicographically-higher prefix 
than anti (which is formed by incrementing the last letter), we get antj.  This is the smallest possible prefix 
any  word  not  starting  by  anti can  have.   Moreover,  every  word  that  starts  with  anti compares 
lexicographically less than antj, and so if we only look at words that compare lexicographically greater than or 
equal to anti and lexicographically less than antj, we have all of the words that start with anti.  Using the 
set's  lower_bound function, we can find which words in the set match these criteria efficiently (in O(lg n)  
time) using the following code:

void PrintMatchingPrefixes(set<string>& lexicon, string prefix)
{
    /* We'll assume the prefix is nonempty in this next step. */
    string nextPrefix = prefix;
    ++nextPrefix[nextPrefix.size() - 1];

    /* Compute the range to iterate over.  We store these iterators outside of the
     * loop so that we don't have to recompute them every time.
     */
    set<string>::iterator end = lexicon.lower_bound(nextPrefix);
    for(set<string>::iterator itr = lexicon.lower_bound(prefix); itr != end; ++itr)
        cout << *itr << endl;
}

STL Algorithms

Problem  1.  Printing  out  a  vector is  easy  thanks  to  ostream_iterator and  copy.   Recall  that  an 
ostream_iterator is an iterator which prints out the values stored in it to cout, and that the copy algorithm 
accepts three inputs – two iterators defining a range to copy and one iterator representing the destination – then  
copies the input range to the output source.  Thus we can print out a vector as follows:

void PrintVector(vector<int>& v)
{
    copy(v.begin(), v.end(), ostream_iterator<int>(cout, " "));
}

Problem 4.  By default, if you compare two strings to one another using <, the result is whether the first string 
lexicographically  precedes  the  second  string.   Thus  if  we  have  a  vector<string> called  v,  calling 
sort(v.begin(), v.end()) will sort the input lexicographically.  In our case, though, we want to “hack” 
the sort function so that it always puts “Me First!” at the front of the sorted ordering.  To do this, we'll write a  
custom callback function that performs a default string comparison if neither string is “Me First!” but which 
skews the result otherwise.  Here's one implementation:
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const string kWinnerString = "Me First!";
bool BiasedSortHelper(string one, string two)
{
    /* Case one: Neither string is the winner string.  Just do a default
     * comparison.
     */
    if(one != kWinnerString && two != kWinnerString)
        return one < two;

    /* Case two: Both strings are the winner string.  Then return false because the
     * string isn't less than itself.
     */
    if(one == kWinnerString && two == kWinnerString)
        return false;

    /* Case three: one is the winner string, two isn't.  Return true to bias
     * the sort so that the winner string comes first.
     */
    if(one == kWinnerString)
        return true;

    /* Otherwise, two is the winner string and one isn't */
    return false;
}

The implementation of BiasedSort is then

void BiasedSort(vector<string>& v)
{
    sort(v.begin(), v.end(), BiasedSortHelper)
}

Problem 6: One implementation is as follows:

int count(vector<int>::iterator start, vector<int>::iterator end, int value)
{
    int result = 0;
    for(; start != end; ++start)
        if(*start == value) ++result;

    return result;
}

In the chapter on templates, you'll see how to generalize this function to operate over any type of iterators.

Pointers and References

Problem 5.  If we allocate memory by writing int* myIntPtr = new int, C++ will only give us space to 
hold a single integer.  However, the code  myIntPtr[0] = 42 is perfectly safe.  Recall that  myIntPtr[0] 
means to go to the address pointed at by myIntPtr, move forward zero elements, then return the value there. 
But  this  is  equivalent  to  just  looking  up  the  object  directly  pointed  at  by  myIntPtr,  and  in  fact 
myIntPtr[0] = 42 is completely equivalent to *myIntPtr = 42.

However,  myIntPtr[1] = 42 instructs  C++  to  access  the  element  one  after  the  element  pointed  at  by 
myIntPtr.  We don't own the memory after our single int, so this line writes 42 into a memory location.  It 
probably will  result  in  some sort  of  crash,  either  immediately or  later  on when the memory allocator  gets  
confused.
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C Strings

Problem 1.   The code  myString = "String" + '!' just  looks right,  doesn't  it?  It seems like we're 
concatenating  an  exclamation  point  on  to  the  end  of  a  string  and  then  assigning  the  new  string  to  
myString.   Had we  been  working  with  C++  string objects,  this  would  be  true,  but  remember  that 
"String" is a C string and that + means pointer arithmetic rather than concatenation.  In fact, what this 
code does is obtain a pointer to the string "String" somewhere in memory, then advance that pointer by 
the numerical value of the exclamation point character (thirty-three) and store the resulting pointer in  
myString.   This  results  in  a  string  that's  pointing  into  random  memory  we  don't  own,  resulting  in 
(surprise!) undefined behavior.

The Preprocessor

Problem 5.  This restriction exists because the preprocessor is a compile-time construct whereas functions 
are a runtime construct.  That is, the code that you write for a function is executed only when the program  
already  runs,  and  preprocessor  directives  execute  before  the  program  begins  running  (or  has  even 
finished compiling,  for  that  matter).   If  a  preprocessor  directive  were  to  execute  a  C++ function,  the 
compiler  would  need  to  compile  and  run  that  function  during  preprocessing,  which  might  cause 
dependency issues if the function referenced code that hadn't yet been preprocessed, or would have to 
defer preprocessing to runtime, defeating the entire purpose of the preprocessor.

Problem 9.  The code for a not-reached macro is actually simpler than that for an assert macro because we don't  
need to verify any conditions and instead can immediately abort.  We can begin by writing the code that actually 
performs the action associated with the not-reached statement:

void DoCS106LNotReached(string message, int line, string filename)
{
    cerr << "CS106LNotReached failed: " << message << endl;
    cerr << "Line number: " << line << endl;
    cerr << "Filename: " << filename << endl;
    abort();
}

#define CS106LNotReached(msg) DoCS106LNotReached(msg, __LINE__, __FILE__)

Next, we need to disable the macro in case NO_CS106L_NOTREACHED is defined.  This can be done as follows:

#ifndef NO_CS106L_NOTREACHED

void DoCS106LNotReached(string message, int line, string filename)
{
    cerr << "CS106LNotReached failed: " << message << endl;
    cerr << "Line number: " << line << endl;
    cerr << "Filename: " << filename << endl;
    abort();
}

#define CS106LNotReached(msg) DoCS106LNotReached(msg, __LINE__, __FILENAME__)

#else

#define CS106LNotReached(msg) /* Nothing */

#endif
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Problem 11.  Adding a NOT_A_COLOR sentinel to the Color enumeration is much easier than it sounds.  The X 
Macro code we have for generating the Color enumeration is currently

enum Color {
    #define DEFINE_COLOR(color, opposite) color, // Name followed by comma
    #include "color.h"
    #undef DEFINE_COLOR
};

These preprocessor directives expand out to the full list of colors with a comma following the name of the last  
color.  Thus all we need to do is change the code to look like this:

enum Color {
    #define DEFINE_COLOR(color, opposite) color, // Name followed by comma
    #include "color.h"
    #undef DEFINE_COLOR
    NOT_A_COLOR
};

Now, the enum contains a constant called NOT_A_COLOR that follows all other colors.

Problem 13.  We want to change the definition of the  Color enumeration so that the names of the colors are 
prefaced with eColor_.  Thus the code we want to generate should look like this:

enum Color {
    eColor_Red,
    eColor_Green,
    /* ... */
    eColor_White
};

Recall that the original X Macro code we had for automatically generating the Color enumeration was

enum Color {
    #define DEFINE_COLOR(color, opposite) color, // Name followed by comma
    #include "color.h"
    #undef DEFINE_COLOR
};

We can modify this to generate the above code by using the token-pasting operator ## to concatenate eColor_ 
before the name of each of the colors.  The resulting code is

enum Color {
    #define DEFINE_COLOR(color, opposite) eColor_##color,
    #include "color.h"
    #undef DEFINE_COLOR
};

Introduction to Templates

Problem 1.  copy_if accepts four parameters – two iterators defining an input range, one iterator defining the  
output range, and a predicate function determining whether we should copy a particular element.  Since we can 
provide any sort of input iterator, any sort of output iterator, and a predicate that could theoretically accept any  
type, we'll templatize copy_if over the types of the arguments, as shown here:
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template <typename InputIterator, typename OutputIterator, typename Predicate>
inline OutputIterator copy_if(InputIterator start,
                              InputIterator end,
                              OutputIterator where,
                              Predicate fn)
{
    /* ... */
}

Note that although the type of the predicate function depends on the type of iterators (that is, if we're iterating 
over strings we can't give a function accepting an int), we've templatized the function with respect to the 
predicate.  This gives the client more leeway in what predicates they can provide.  For example, if the iterators 
iterate over a vector<int>, they could provide a predicate function accepting a double.  Later when we cover 
functors you'll see a more general reason to templatize the predicate parameter.

Now all that's left to do is write the function body.  Fortunately this isn't too tricky – we just keep advancing the 
start iterator forward, checking if the element iterated over passes the predicate and copying the element if 
necessary.  The final code looks like this:

template <typename InputIterator, typename OutputIterator, typename Predicate>
inline OutputIterator copy_if(InputIterator start,
                              InputIterator end,
                              OutputIterator where,
                              Predicate fn)
{
    for(; start != end; ++start)
    {
        if(fn(*start))
        {
            *where = *start;
            ++where;
        }
    }
    return where;
}

As an FYI, you will sometimes see the code

*where = *start;
++where;

Written as

*where++ = *start;

This is a trick that relies on the fact that the ++ operator binds more tightly than the * operator.  Thus the code is 
interpreted as *(where++) = *start, meaning that we advance the where iterator by one step, then store in 
the location it  use to point  at  the value of  *start.   I  personally find this syntax more attractive than the 
longhand version, but it is admittedly more confusing.
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Problem 6. Recall that the code for GetInteger is as follows:

int GetInteger()
{
    while(true)
    {
        stringstream converter(GetLine());
        int result;

        converter >> result;
        if(!converter.fail())
        {
            char leftover;
            converter >> leftover;

            if(converter.fail()) return result;
            cout << "Unexpected character: " << leftover << endl;
        }
        else cout << "Please enter an integer." << endl;

        cout << "Retry: ";
    }
}

To templatize this function over an arbitrary type, we need to change the return type, the type of result, and 
the error message about entering an integer.  The modified code is shown here:

template <typename ValueType> ValueType GetValue(string type)
{
    while(true)
    {
        stringstream converter(GetLine());
        ValueType result;

        converter >> result;
        if(!converter.fail())
        {
            char leftover;
            converter >> leftover;

            if(converter.fail()) return result;
            cout << "Unexpected character: " << leftover << endl;
        }
        else cout << "Please enter " << type << endl;

        cout << "Retry: ";
    }
}

const

Problem 5. At first it seems like it should be safe to convert an int ** into a const int **.  After all, we're 
just adding more  consts to the pointer, which restricts what we should be able to do with the pointer.  How 
could we possibly use this to subvert the type system?  The answer is the following chain of assignments that 
allow us to overwrite a const int:
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const int myConstant = 137; // Legal
int * evilPtr; // Legal, uninitialized

/* This next line is not legal C++ because &evilPtr is an int** and badPtr is a
 * const int **.  Watch what happens if we allow this.
 */
const int** badPtr = &evilPtr;

/* Dereference badPtr and assign it the address of myConstant.  &myConstant is a
 * const int * and badPtr is a const int*, so the assignment is legal.  However,
 * since badPtr points to evilPtr, this assigns evilPtr the address of the
 * myConstant variable, which is const!
 */
*badPtr = &myConstant;

/* This would overwrite a const variable. */
*evilPtr = 42;

This is a subtle edge case, but because it's possible C++ explicitly disallows it.

Problem 6. The initial interface for the CS106B/X Vector class is reprinted here:

template <typename ElemType> class Vector
{
public:
    Vector(int sizeHint = 0);
    
    int size();
    bool isEmpty();

    ElemType getAt(int index);
    void setAt(int index, ElemType value);
    
    ElemType & operator[](int index);
    
    void add(ElemType elem);
    void insertAt(int index, ElemType elem);
    void removeAt(int index);
    
    void clear();

    void mapAll(void (*fn)(ElemType elem));
    template <typename ClientDataType>
        void mapAll(void (*fn)(ElemType elem, ClientDataType & data),
                    ClientDataType & data);

    Iterator iterator();
};

The  first  task  in  const-correcting  this  is  marking  non-mutating  operations  const.   This  is  reasonably 
straightforward for most of the functions.  The interesting case is the  operator[] function, which returns a 
reference to the element at a given position.  This function needs to be const-overloaded since if the Vector is 
const we want to hand back a const reference and if the Vector is non-const we want to hand back a non-
const reference.  The updated interface is shown here:
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template <typename ElemType> class Vector
{
public:
    Vector(int sizeHint = 0);
    
    int size() const;
    bool isEmpty() const;

    ElemType getAt(int index) const;
    void setAt(int index, ElemType value);
    
    ElemType & operator[](int index);
    const ElemType & operator[](int index) const;
    
    void add(ElemType elem);
    void insertAt(int index, ElemType elem);
    void removeAt(int index);
    
    void clear();

    void mapAll(void (*fn)(ElemType elem)) const;
    template <typename ClientDataType>
        void mapAll(void (*fn)(ElemType elem, ClientDataType & data),
                    ClientDataType & data) const;

    Iterator iterator() const;
};

Next, we'll update the class by passing all appropriate parameters by reference-to-const rather than by value. 
This results in the following interface:

template <typename ElemType> class Vector
{
public:
    Vector(int sizeHint = 0);
    
    int size() const;
    bool isEmpty() const;

    ElemType getAt(int index) const;
    void setAt(int index, const ElemType& value);
    
    ElemType & operator[](int index);
    const ElemType & operator[](int index) const;
    
    void add(const ElemType& elem);
    void insertAt(int index, const ElemType& elem);
    void removeAt(int index);
    
    void clear();

    void mapAll(void (*fn)(const ElemType& elem)) const;
    template <typename ClientDataType>
        void mapAll(void (*fn)(const ElemType& elem, ClientDataType & data),
                    ClientDataType & data) const;

    Iterator iterator() const;
};
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Finally, we'll change the return type of getAt to return a const reference to the element in the Vector rather 
than a full copy, since this reduces the cost of the function.  The final version of the Vector is shown below:

template <typename ElemType> class Vector
{
public:
    Vector(int sizeHint = 0);
    
    int size() const;
    bool isEmpty() const;

    const ElemType& getAt(int index) const;
    void setAt(int index, const ElemType& value);
    
    ElemType & operator[](int index);
    const ElemType & operator[](int index) const;
    
    void add(const ElemType& elem);
    void insertAt(int index, const ElemType& elem);
    void removeAt(int index);
    
    void clear();

    void mapAll(void (*fn)(const ElemType& elem)) const;
    template <typename ClientDataType>
        void mapAll(void (*fn)(const ElemType& elem, ClientDataType & data),
                    ClientDataType & data) const;

    Iterator iterator() const;
};

static

Problem 2. The UniquelyIdentified class can be implemented by having a static variable inside the class 
that tracks the most recently used ID, as well as a non-static variable for each instance that tracks the particular 
class's unique ID.  This can be implemented as follows:

class UniquelyIdentified
{
public:
    UniquelyIdentified();

    int getUniqueID() const;
private:
    static int lastUsedID;
    const int currentID;
};

/* Remember, this must go outside the class! */
int UniquelyIdentified::lastUsedID = 1;

UniquelyIdentified::UniquelyIdentified() : currentID(lastUsedID)
{
    ++lastUsedID;
}
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int UniquelyIdentified::getUniqueID() const
{
    return currentID;
}

Conversion Constructors

Problem 5.  C++ will only apply at most one conversion constructor at a time to avoid getting into ambiguous 
situations.  For example, suppose that we start off with types A, B, and C such that A is convertible to B and B is  
convertible to C.  Then we can think of this graphically as follows:

Now, suppose we introduce another conversion into this mix, this time directly from A to C, as shown here:

If we try to implicitly convert from an A to a C, which sequence of conversions is correct?  Do we first convert  
the A to a B and then convert that to a C, or just directly convert the A to a C?  There's no clear right answer here,  
and to avoid confusions like this C++ sidesteps the issue by only applying one implicit conversion at a time.

Copy Constructors and Assignment Operators

Problem 1. The reason that this code is problematic is that at some point in the assignment operator, all of the  
resources that were allocated by the current class instance need to be cleaned up.  However, we never allocated  
any resources, and none of the class's data members have been initialized.  Trying to clean up garbage almost  
always  results  in  a  program crash.    In  general,  you  should  not  implement  copy constructors  in  terms  of  
assignment operators

Problem 2.  It is illegal to write a copy constructor that accepts its parameter by value because this causes a 
circular dependency.  Recall that the copy constructor is invoked whenever a function is passed by value into a  
function, so if the copy constructor itself took its parameter by value it would need to call itself to initialize the  
parameter by value, but then it would have to initialize the parameter in that function call by invoking itself, etc. 
This causes a compile-time error rather than a runtime error, by the way.

A CB

A CB
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The  assignment  operator  doesn't  have  this  problem because  if  the  assignment  operator  were  to  accept  its 
parameter by value, the copy is made by the copy constructor, which is an entirely different function.

Operator Overloading

Problem 3. The other operators can be defined as follows:

A < B ⇔ A < B

A <= B ⇔ !(B < A)

A == B ⇔ !(A < B || B < A)

A != B ⇔ A < B || B < A

A >= B ⇔ !(A < B)

A > B ⇔ B < A

Problem 7.  For reference, here's the broken interface of the iterator class:

class iterator
{
public:
    bool operator== (const iterator& other);
    bool operator!= (const iterator& other);

    iterator operator++ ();

    ElemType* operator* () const;
    ElemType* operator-> () const;
};

There are five problems in this implementation.  The first two have to do with the declarations of the == and != 
operators.  Since these functions don't modify the state of the iterator (or at least, no sensible implementation 
should), they should both be marked const, as shown here:

class iterator
{
public:
    bool operator== (const iterator& other) const;
    bool operator!= (const iterator& other) const;

    iterator operator++ ();

    ElemType* operator* () const;
    ElemType* operator-> () const;
};

Next, take a look at the return type of operator*.  Remember that operator* is called whenever the iterator 
is dereferenced.  Thus if the iterator is pretending to point to an element of type ElemType, this function should 
return an ElemType& (a reference to the value) rather than an ElemType* (a pointer to the value).  Otherwise 
code like this:

*myItr = 137;

Wouldn't compile.  The updated interface now looks like this:
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class iterator
{
public:
    bool operator== (const iterator& other) const;
    bool operator!= (const iterator& other) const;

    iterator operator++ ();

    ElemType& operator* () const;
    ElemType* operator-> () const;
};

Next, look at the return type of operator++.  Recall that operator++ is the prefix ++ operator, meaning that 
we should be able to write code like this:

++(++itr)

To increment the iterator twice.  Unfortunately, with the above interface this code compiles but does something  
totally different.  Since the return type is iterator, the returned object is a copy of the receiver object rather 
than  the  receiver  object  itself.   Thus  the  code  ++(++itr) means  to  increment  itr by one  step,  then  to 
increment the temporary iterator object by one step.  This isn't at all what we want to do, so we'll fix this by 
having operator++ return a reference to an iterator, as shown here:

class iterator
{
public:
    bool operator== (const iterator& other) const;
    bool operator!= (const iterator& other) const;

    iterator& operator++ ();

    ElemType& operator* () const;
    ElemType* operator-> () const;
};

We've now fixed four of the five errors, so what's left?  The answer's a bit subtle – there's nothing technically 
wrong with this interface any more, but we've left out an important function that makes the interface unintuitive.  
In particular, we've only defined a prefix operator++ function, meaning that code like ++itr is legal but not 
code like itr++.  We should thus add support for a postfix operator++ function.  The final version of the 
iterator class thus looks like this:

class iterator
{
public:
    bool operator== (const iterator& other) const;
    bool operator!= (const iterator& other) const;

    iterator& operator++ ();
    const iterator operator++ (int);

    ElemType& operator* () const;
    ElemType* operator-> () const;
};
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Functors

Problem 1. for_each returns the function passed in as a final parameter so that you can pass in a functor that  
updates internal state during the loop and then retrieve the updated functor at the end of the loop.  For example,  
suppose that we want to compute the minimum, maximum, and average of a range of data in a single pass.  Then  
we could write the following functor class:

class DataSample
{
public:
    /* Constructor initializes minVal and maxVal so that they're always updated,
     * sets the total to zero, and the number of elements to zero.
     */
    DataSample() : minVal(INT_MAX), maxVal(INT_MIN), total(0.0), count(0) {}

    /* Accessor methods. */
    int getMin() const
    {
         return minVal;
    }
    int getMax() const
    {
        return maxVal;
    }
    double getAverage() const
    {
        return total / count;
    }
    int getNumElems() const
    {
        return count;
    }

    /* operator() accepts a piece of input and updates state appropriately. */
    void operator() (int val)
    {
        minVal = min(minVal, val);
        maxVal = max(maxVal, val);
        total += val;
        ++count;
    }
private:
    int minVal, maxVal;
    double total;
    int count;
};

Then we can write a function which accepts a range of iterators (presumed to be iterating over int values) and 
then returns a DataSample object which contains a summary of that data:
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template <typename InputIterator>
DataSample AnalyzeSample(InputIterator begin, InputIterator end)
{
    /* Create a temporary DataSample object and pass it through for_each.  This
     * then invokes operator() once for each element in the range, resulting in a
     * DataSample with its values set appropriately.  We then return the result of
     * for_each, which is the updated DataSample.  Isn't that nifty?
     */
    return for_each(begin, end, DataSample());
}

Problem  3.  AdvancedBiasedSort is  similar  to  the  BiasedSort example  from  the  chapter  on  STL 
algorithms.   If  you'll  recall,  if  we assume that  the  string that  should be the winner  is  stored in  a  constant  
kWinnerString,  the following comparison function can be used to bias the sort  so that  kWinnerString 
always comes in front:

bool BiasedSortHelper(const string& one, const string& two)
{
    /* Case one: Neither string is the winner string.  Just do a default
     * comparison.
     */
    if(one != kWinnerString && two != kWinnerString)
        return one < two;

    /* Case two: Both strings are the winner string.  Then return false because the
     * string isn't less than itself.
     */
    if(one == kWinnerString && two == kWinnerString)
        return false;

    /* Case three: one is the winner string, two isn't.  Then return true to bias
     * the sort.
     */
    if(one == kWinnerString)
        return true;

    /* Otherwise, two is the winner string and one isn't, so return false to bias
     * the sort.
     */
    return false;
}

To update this code so that any string can be set as the winner string, we'll need to convert this function into a 
functor that stores the string as a data member.  This can be done as follows:

class BiasedSortHelper
{
public:
    explicit BiasedSortHelper(const string& winner) : winnerString(winner) {}
    bool operator() (const string& one, const string& two) const;
private:
    string winnerString;
};
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bool BiasedSortHelper::operator()(const string& one, const string& two) const
{
    /* Case one: Neither string is the winner string.  Just do a default
     * comparison.
     */
    if(one != winnerString && two != winnerString)
        return one < two;

    /* Case two: Both strings are the winner string.  Then return false because the
     * string isn't less than itself.
     */
    if(one == winnerString && two == winnerString)
        return false;

    /* Case three: one is the winner string, two isn't.  Then return true to bias
     * the sort.
     */
    if(one == winnerString)
        return true;

    /* Otherwise, two is the winner string and one isn't, so return false to bias
     * the sort.
     */
    return false;
}

We can then implement AdvancedBiasedSort as follows:

void AdvancedBiasedSort(vector<string>& v, const string& winner)
{
    sort(v.begin(), v.end(), BiasedSortHelper(winner));
}

Problem 7.  We want to compute the value of  1
n∑i=1

n

x i−x
2

 as applied to a range of data.  This breaks down 
into four smaller tasks:

1. Compute the average of the data set.
2. Compute the value of the inner sum.
3. Divide the total by the number of elements.
4. Return the square root of this value.

We can use the sqrt function exported by <cmath> to perform the square root and accumulate for the rest of 
the work.  We'll begin by computing the average of the data, as shown here:

template <typename ForwardIterator> 
double StandardDeviation(ForwardIterator begin, ForwardIterator end)
{
    const ptrdiff_t numElems = distance(begin, end);
    const double average = accumulate(begin, end, 0.0) / numElems;
    /* ... */
}

Note that we've computed the size of the range using the  distance function, which efficiently returns the 
number  of  elements  between  two  iterators.   We've  stored  the  number  of  elements  in  a  variable  of  type  
ptrdiff_t,  which,  as  the  name  suggests,  is  a  type  designed  to  hold  the  distance  between  two  pointers. 
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Technically speaking we should query the iterator for the type of value returned when computing the distance  
between the iterators, but doing so is beyond the scope of this text.

Now, let's see how we can use  accumulate to evaluate the sum.  Recall that the four-parameter version of 
accumulate allows us to specify what operation to apply pairwise to the current accumulator and any element  
of the range.  In our case, we'll want to add up the sum of the values of (xi –  x)2 for each element, so we'll 
construct a functor that stores the value of the average and whose operator() function takes the accumulator 
and the current element, computes (xi – x)2, then adds it to the current accumulator.  This is shown here:

class StandardDeviationHelper
{
public:
    explicit StandardDeviationHelper(double average) : mean(average) {}
    double operator() (double accumulator, double currentValue) const
    {
        const double expr = currentValue – mean; //  xi - x
        return accumulator + expr * expr;        // (xi – x)2

    }
private:
    const double mean;
};

Given this helper functor, we can now write the following:

template <typename ForwardIterator> 
double StandardDeviation(ForwardIterator begin, ForwardIterator end)
{
    const ptrdiff_t numElems = distance(begin, end);
    const double average = accumulate(begin, end, 0.0) / numElems;
    const double sum = 
          accumulate(begin, end, 0.0, StandardDeviationHelper(average));
    return sqrt(sum / numElems);
}

Problem 8.  If we were given an arbitrary C string and told to set it to the empty string, we could do so by calling 
strcpy(myStr, ""), where  myStr is the string variable.  To do this to every string in a range, we can use 
for_each to apply the function everywhere and bind2nd to lock the second parameter of  strcpy in place. 
This is shown here:

template <typename ForwardItr> 
void ClearAllStrings(ForwardItr begin, ForwardItr end)
{
    for_each(begin, end, bind2nd(ptr_fun(strcpy), ""));
}

This works because bind2nd(ptr_fun(strcpy), "") is a one-parameter function that passes the argument 
as the first parameter into strcpy with the second parameter locked as the empty string.

Problem 9.  Now that  we're  dealing  with  regular  C++  strings,  we  can  clear  the  strings  by calling  the 
.clear() member function on each of them.  Recalling that the mem_fun_ref function transforms a member 
function  into  a  one-parameter  function  that  calls  the  specified  function  on  the  argument,  we  can  write  
ClearAllStrings as follows:
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template <typename ForwardItr> 
void ClearAllStrings(ForwardItr begin, ForwardItr end)
{
    for_each(begin, end, mem_fun_ref(&string::clear));
}

Problem 11. The replace_if algorithm takes four parameters – two iterators defining a range of elements, a 
predicate function, and a value – then replaces all elements in the range for which the predicate returns true with  
the specified value.  In our case, we're given a value as a parameter to the CapAtValue function and want to 
replace elements in the range that compare greater than the parameter with the parameter.  Using bind2nd and 
the greater operator function, we have the following:

template <typename ForwardItr, typename ValueType>
void CapAtValue(ForwardItr begin, ForwardItr end, ValueType maxValue)
{
    replace_if(begin, end, bind2nd(greater<ValueType>(), maxValue), maxValue);
}

Introduction to Exception Handling

Problem 1.  If you put a  catch(...) clause at the top of a  catch cascade, then none of the other  catch 
handlers will ever catch exceptions thrown by the  try block.  C++ evaluates each catch clause in sequence 
until it discovers a match, and if the first is a catch(...) it will always choose that one first.

Problem 4.  We want to modify the code

void ManipulateStack(stack<string>& myStack)
{
    if(myStack.empty())
        throw invalid_argument("Empty stack!");

    string topElem = myStack.top();
    myStack.pop();

    /* This might throw an exception! */
    DoSomething(myStack);

    myStack.push(topElem);
}

So that if the DoSomething function throws an exception we're sure to put the element topElem back on the 
stack before propagating the exception.  This can be done as follows:
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void ManipulateStack(stack<string>& myStack)
{
    if(myStack.empty())
        throw invalid_argument("Empty stack!");

    string topElem = myStack.top();
    myStack.pop();

    try
    {
        /* This might throw an exception! */
        DoSomething(myStack);
        myStack.push(topElem);
    }
    catch(...)
    {
        myStack.push(topElem);
        throw;
    }

     myStack.push(topElem);
}

Problem 5.  We want to solve the same problem as in the above case, but by using RAII to manage the resource  
instead  of  manually  catching  and  rethrowing  any  exceptions.   We'll  begin  by  defining  an  
AutomaticStackManager class that takes in a reference to a  stack, then pops the top and stores the result 
internally.  When the destructor executes, we'll push the element back on.  This looks like this:

template <typename ElemType> class AutomaticStackManager
{
public:
    explicit AutomaticStackManager(stack<ElemType>& s) :
        toManage(s), topElem(s.top())
    {
        toManage.pop();
    }

    ~AutomaticStackManager()
    {
        toManage.push(topElem);
    }
private:
    stack<ElemType>& toManage;
    const ElemType topElem;
};

Notice that we've templatized this class with respect to the type of element stored in the  stack, since there's 
nothing special about string.  This is in general a good design philosophy – if you don't need to specialize your 
code over a single type, make it a template.

We can then rewrite the function as follows:
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void ManipulateStack(stack<string>& myStack)
{
    if(myStack.empty())
        throw invalid_argument("Empty stack!");

    AutomaticStackManager<string> autoCleanup(myStack);
    DoSomething(myStack);
}

Notice how much cleaner and shorter this code is than before – by having objects manage our resources we're 
sure that we won't leak any resources here.  True, we had to write a bit of code for AutomaticStackManager, 
but provided that we use it in more than one circumstance the savings in code simplicity over the manual catch-
and-rethrow approach are impressive.

Introduction to Inheritance

Problem 1.  We don't have to worry that a pointer of type  Document* points to an object of concrete type 
Document because Document is an abstract class and thus can't be instantiated.  You do not need to worry about 
a pure virtual function call realizing that there's no actual code to execute since C++ will raise a compile-time 
error if you try to instantiate an abstract class.

Problem 4.  One possible implementation for DerivativeFunction is shown here:

class DerivativeFunction: public Function
{
public:
    explicit DerivativeFunction(Function* toCall) : function(toCall) {}

    virtual double evaluateAt(double where) const
    {
        const double kEpsilon = 0.00001; // Small Δx
        return (function->evaluateAt(where + kEpsilon) –
                function->evaluateAt(where - kEpsilon)) / (2 * kEpsilon);
    }
private:
    Function *const function;
}

Here,  the constructor accepts and stores a  pointer to an arbitary  Function,  and the  evaluateAt function 
invokes  the  virtual  evaluateAt function  of  the  stored  function  at  the  proper  points  to  approximate  the 
derivative.
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Vigenère cipher, 52
virtual, 434

in constructors and destructors, 449
virtual destructors, 441

= 0, 434
virtual function table, 443, 474

X
X Macro trick, 173

Z
zero-overhead principle, 133

__DATE__, 169
__FILE__, 169
__LINE__, 169
__TIME__, 169
?: operator, 70, 166
# (stringizing operator), 169
## (token-pasting operator), 170
#define, 158

dangers of, 159
#elif, 162
#else, 162
#endif, 162
#if, 162
#ifdef, 163
#ifndef, 163
#include, 157
#undef, 173
<algorithm>, 113
<cassert>, 170
<cctype>, 118, 123
<cmath>, 123, 532
<complex>, 426
<cstddef>, 142
<cstdio>, 503
<cstdlib>, 64, 66, 172, 254
<cstring>, 149
<ctime>, 63, 254, 266
<fstream>, 26
<functional>, 375

implementation of, 381
<iomanip>, 29
<iostream>, 17
<iterator>, 86
<limits>, 373
<memory>, 398
<numeric>, 113
<sstream>, 36
<stdexcept>, 394
<string>, 19
<utility>, 94
<valarray>, 313
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