
Course Reader
Fall 2010

Keith Schwarz
Stanford University

class FunctionBase
{
public:

/* Polymorphic classes need virtual destructors. */
virtual ~FunctionBase() {}

/* Calls the stored function. */
virtual Ret execute(const Arg& val) = 0;
virtual FunctionBase* clone() const = 0;

};

/* Template derived class that executes a specific type of function. */
template <typename UnaryFunction> class FunctionImpl: public FunctionBase
{
public:

explicit FunctionImpl(UnaryFunction fn) : fn(fn) {}
virtual Ret execute(const Arg& val)
{

return fn(val);
}
virtual FunctionImpl* clone() const
{

return new FunctionImpl(*this);
}
UnaryFunction fn;

};

CS106L
Standard C++ Programming Laboratory

Acknowledgements

This course reader represents the culmination of two years' work on CS106L and its course handouts.
Neither the class nor this reader would have been possible without Julie Zelenski's support and generosity
during CS106L's infancy. I strongly encourage you to take one of Julie's classes – you will not be
disappointed.

I'd also like to extend thanks to all of the CS106L students I've had the pleasure of teaching over the years.
It is truly a joy to watch students light up when they see exactly what C++ can do. The long hours that
went into this course reader would not have been possible without the knowledge that students are
genuinely interested in the material.

Additionally, I would like to thank the brave souls who were generous enough to proofread draft versions
of this course reader. Yin Huang and Steven Wu offered particularly apt advice on style and grammar. Ilya
Sherman gave wonderful suggestions on typesetting and layout and caught many errors that slipped
under my radar. Kyle Knutson helped double-check the correctness of the code in the extended examples.
David Goldblatt helped me stay on top of recent developments in C++0x and pointed out how to make
many of the STL practice problems truer to the spirit of the library. Sam Schreiber provided excellent
advice about the overall structure of the reader and was the inspiration for the “Critiquing Class Design”
chapter. Leonid Shamis astutely suggested that I expand the section on development environments.
Brittney Fraser's amazing feedback made many of the examples easier to understand and prevented
several major errors from making it into this reader.

This is the third edition of this course reader. There are certainly layout
problems, typoz, grammatically errors,

and speling misstakes that have made it into this version. If you have any comments, corrections, or
suggestions, please send me an email at htiek@cs.stanford.edu.

This course reader and its contents, except for quotations from other sources, are all © 2009 – 2010 Keith
Schwarz. If you would like to copy this course reader or its contents, send me an email and I'd be glad to
see how I can help out.

mailto:htiek@cs.stanford.edu

Table of Contents
Introduction.. 1

Chapter 0: What is C++?... 5
Chapter 1: Getting Started.. 11
Chapter 2: C++ Without genlib.h... 19

A Better C... 23
Chapter 3: Streams.. 25
Chapter 4: Multi-File Programs, Abstraction, and the Preprocessor..47
Chapter 5: STL Sequence Containers... 79
Chapter 6: STL Associative Containers and Iterators... 121
Chapter 7: STL Algorithms.. 175
Chapter 8: C Strings.. 203

Data Abstraction... 217
Chapter 9: Abstraction and Classes... 219
Chapter 10: Refining Abstractions... 257
Chapter 11: Operator Overloading... 319
Chapter 12: Resource Management... 363

Generic Programming... 395
Chapter 13: What is Generic Programming?.. 397
Chapter 14: Concepts.. 399
Chapter 15: Functors... 401

Object-Oriented Programming... 443
Chapter 16: Introduction to Inheritance... 445

More to Explore... 485
Chapter 17: C++0x.. 487
Chapter 18: Where to Go From Here... 505

Appendices... 509
Appendix 0: Moving from C to C++.. 511
Appendix 1: Solutions to Practice Problems.. 529

Bibliography.. 551
Index... 553

Part Zero
Introduction

Suppose we want to write a function that computes the average of a list of numbers. One implementation
is given here:

 double GetAverage(double arr[], int numElems) {
 double total = 0.0;
 for(int h = 0; h < numElems; ++h)
 total += arr[h] / numElems;

 return total;
 }

An alternative implementation is as follows:

 template <typename ForwardIterator>
 double GetAverage(ForwardIterator begin, ForwardIterator end) {
 return accumulate(begin, end, 0.0) / distance(begin, end);
 }

Don't panic if you don't understand any of this code – you're not expected to at this point – but even
without an understanding of how either of these functions work it's clear that they are implemented
differently. Although both of these functions are valid C++ and accurately compute the average,
experienced C++ programmers will likely prefer the second version to the first because it is safer, more
concise, and more versatile. To understand why you would prefer the second version of this function
requires a solid understanding of the C++ programming language. Not only must you have a firm grasp of
how all the language features involved in each solution work, but you must also understand the benefits
and weaknesses of each of the approaches and ultimately which is a more versatile solution.

The purpose of this course is to get you up to speed on C++'s language features and libraries to the point
where you are capable of not only writing C++ code, but also critiquing your design decisions and arguing
why the cocktail of language features you chose is appropriate for your specific application. This is an
ambitious goal, but if you take the time to read through this reader and work out some of the practice
problems you should be in excellent C++ shape.

Who this Course is For

This course is designed to augment CS106B/X by providing a working knowledge of C++ and its
applications. C++ is an industrial-strength tool that can be harnessed to solve a wide array of problems,
and by the time you've completed CS106B/X and CS106L you should be equipped with the skill set
necessary to identify solutions to complex problems, then to precisely and efficiently implement those
solutions in C++.
This course reader assumes a knowledge of C++ at the level at which it would be covered in the first two
weeks of CS106B/X. In particular, I assume that you are familiar with the following:

- 2 - Introduction

0. How to print to the console (i.e. cout and endl)
1. Primitive variable types (int, double, etc.)
2. The string type.
3. enums and structs.
4. Functions and function prototypes.
5. Pass-by-value and pass-by-reference.
6. Control structures (if, for, while, do, switch).
7. CS106B/X-specific libraries (genlib.h, simpio.h, the ADTs, etc.)

If you are unfamiliar with any of these terms, I recommend reading the first chapter of Programming
Abstractions in C++ by Eric Roberts and Julie Zelenski, which has an excellent treatment of the material.
These concepts are fundamental to C++ but aren't that particular to the language – you'll find similar
constructs in C, Java, Python, and other languages – and so I won't discuss them at great length. In
addition to the language prerequisites, you should have at least one quarter of programming experience
under your belt (CS106A should be more than enough). We'll be writing a lot of code, and the more
programming savvy you bring to this course, the more you'll take out of it.

How this Reader is Organized

The course reader is logically divided into six sections:

0. Introduction: This section motivates and introduces the material and covers information
necessary to be a working C++ programmer. In particular, it focuses on the history of C++, how to
set up a C++ project for compilation, and how to move away from the genlib.h training wheels
we've provided you in CS106B/X.

1. A Better C: C++ supports imperative programming, a style of programming in which programs are
sequences of commands executed in order. In this sense, C++ can be viewed as an extension to the
C programming language which makes day-to-day imperative programming more intuitive and
easier to use. This section of the course reader introduces some of C++'s most common libraries,
including the standard template library, and shows how to use these libraries to build imperative
programs. In addition, it explores new primitives in the C++ language that originally appeared in
the C programming language, namely pointers, C strings, and the preprocessor.

2. Data Abstraction. What most distinguishes C++ from its sibling C is the idea of data abstraction,
that the means by which a program executes can be separated from the ways in which
programmers talk about that program. This section of the course reader explores the concept of
abstraction, how to model it concretely in C++ using the class keyword, and an assortment of
language features which can be used to refine abstractions more precisely.

3. Object-Oriented Programming. Object-oriented programming is an entirely different way of
thinking about program design and can dramatically simplify complex software systems. The key
concepts behind object-orientation are simple, but to truly appreciate the power of object-oriented
programming you will need to see it in action time and time again. This section of the course
reader explores major concepts in object-oriented programming and how to realize it in C++ with
inheritance and polymorphism.

4. Generic Programming. Generic programming is a style of programming which aims to build
software that can tackle an array of problems far beyond what it was initially envisioned to
perform. While a full treatment of generic programming is far beyond the scope of an introductory
C++ programming class, many of the ideas from generic programming are accessible and can
fundamentally change the ways in which you think about programming in C++. This section

Introduction - 3 -

explores the main ideas behind generic programming and covers several advanced C++
programming techniques not typically found in an introductory text.

5. More to Explore. C++ is an enormous language and there simply isn't enough time to cover all of
its facets in a single course. To help guide further exploration into C++ programming, this course
reader ends with a treatment of the future of C++ and a list of references for further reading.

Notice that this course reader focuses on C++'s standard libraries before embarking on a detailed tour of
its language features. This may seem backwards – after all, how can you understand libraries written in a
language you have not yet studied? – but from experience I believe this is the best way to learn C++. A
comprehensive understanding of the streams library and STL requires a rich understanding of templates,
inheritance, functors, and operator overloading, but even without knowledge of these techniques it's still
possible to write nontrivial C++ programs that use these libraries. For example, after a quick tour of the
streams library and basic STL containers, we'll see how to write an implementation of the game Snake
with an AI-controlled player. Later, once we've explored the proper language features, we'll revisit the
standard libraries and see how they're put together.

To give you a feel for how C++ looks in practice, this course reader contains several extended examples
that demonstrate how to harness the concepts of the previous chapters to solve a particular problem. I
strongly suggest that you take the time to read over these examples and play around with the code. The
extended examples showcase how to use the techniques developed in previous chapters, and by seeing
how the different pieces of C++ work together you will be a much more capable coder. In addition, I've
tried to conclude each chapter with a few practice problems. Take a stab at them – you'll get a much more
nuanced view of the language if you do. Solutions to some of my favorite problems are given in Appendix
One. Exercises with solutions are marked with a diamond ().♦

C++ is a large language and it is impossible to cover all of its features in a single course. To help guide
further exploration into C++ techniques, most chapters contain a “More to Explore” section listing
important topics and techniques that may prove useful in your future C++ career.

Supplemental Reading

This course reader is by no means a complete C++ reference and there are many libraries and language
features that we simply do not have time to cover. However, the portions of C++ we do cover are among
the most-commonly used and you should be able to pick up the remaining pieces on a need-to-know basis.
If you are interested in a more complete reference text, Bjarne Stroustrup's The C++ Programming
Language, Third Edition is an excellent choice. Be aware that TC++PL is not a tutorial – it's a reference –
and so you will probably want to read the relevant sections from this course reader before diving into it. If
you're interested in a hybrid reference/tutorial, I would recommend C++ Primer, Fourth Edition by
Lippman, Lajoie, and Moo. As for online resources, the C++ FAQ Lite at www.parashift.com/c++-faq-lite/
has a great discussion of C++'s core language features. cplusplus.com has perhaps the best coverage of the
C++ standard library on the Internet, though its discussion of the language as a whole is fairly limited.

Onward and Forward!

http://www.cplusplus.com/
http://www.parashift.com/c++-faq-lite/

Chapter 0: What is C++?

C++ is a general purpose programming language with a bias towards systems programming that
• is a better C.
• supports data abstraction.
• supports object-oriented programming.
• supports generic programming

– Bjarne Stroustrup, inventor of C++ [Str09.2]

Every programming language has its own distinct flavor influenced by its history and design. Before
seriously studying a programming language, it's important to learn why the language exists and what its
objectives are. This chapter covers a quick history of C++, along with some of its design principles.

An Abbreviated History of C++*

The story of C++ begins with Bjarne Stroustrup, a Danish computer scientist working toward his PhD at
Cambridge University. Stroustrup's research focus was distributed systems, software systems split across
several computers that communicated over a network to solve a problem. At one point during his
research, Stroustrup came up with a particularly clever idea for a distributed system. Because designing
distributed systems is an enormously complicated endeavor, Stroustrup decided to test out his idea by
writing a simulation program, which is a significantly simpler task. Stroustrup chose to write this
simulation program in a language called Simula, one of the earliest object-oriented programming
languages. As Stroustrup recalled, initially, Simula seemed like the perfect tool for the job:

It was a pleasure to write that simulator. The features of Simula were almost ideal for the
purpose, and I was particularly impressed by the way the concepts of the language helped me
think about the problems in my application. The class concept allowed me to map my
application concepts into the language constructs in a direct way that made my code more
readable than I had seen in any other language...

I had used Simula before... but was very pleasantly surprised by the way the mechanisms of the
Simula language became increasingly helpful as the size of the program increased. [Str94]

In Simula, it was possible to model a physical computer using a computer object and a physical network
using a network object, and the way that physical computers sent packets over physical networks
corresponded to the way computer objects sent and received messages from network objects. But while
Simula made it easier for Stroustrup to develop the simulator, the resulting program was so slow that it
failed to produce any meaningful results. This was not the fault of Stroustrup's implementation, but of the
language Simula itself. Simula was bloated and language features Stroustrup didn't use in his program
were crippling the simulator's efficiency. For example, Stroustrup found that eighty percent of his
program time was being spent on garbage collection despite the fact that the simulation didn't create any
garbage. [Str94] In other words, while Simula had decreased the time required to build the simulator, it
dramatically increased the time required for the simulator to execute.

Stroustrup realized that his Simula-based simulator was going nowhere. To continue his research,
Stroustrup scrapped his Simula implementation and rewrote the program in a language he knew ran
quickly and efficiently: BCPL. BCPL has since gone the way of the dodo, but at the time was a widely used,

* This section is based on information from The Design and Evolution of C++ by Bjarne Stroustrup.

- 6 - Chapter 0: What is C++?

low-level systems programming language. Stroustrup later recalled that writing the simulator in BCPL
was “horrible.” [Str94] As a low-level language, BCPL lacked objects and to represent computers and
networks Stroustrup had to manually lay out and manipulate the proper bits and bytes. However, BCPL
programs were far more efficient than their Simula counterparts, and Stroustrup's updated simulator
worked marvelously.

Stroustrup's experiences with the distributed systems simulator impressed upon him the need for a more
suitable tool for constructing large software systems. Stroustrup sought a hybridization of the best
features of Simula and BCPL – a language with both high-level constructs and low-level runtime efficiency.
After receiving his PhD, Stroustrup accepted a position at Bell Laboratories and began to create such a
language. Settling on C as a base language, Stroustrup incorporated high-level constructs in the style of
Simula while still maintaining C's underlying efficiency. After several revisions, C with Classes, as his
language was known, accumulated other high-level features and was officially renamed C++. C++ was an
overnight success and spread rapidly into the programming community; for many years the number of C+
+ programmers was doubling every seven months. By 2007, there were over three million C++
programmers worldwide, and despite competition from other languages like Java and Python the number
of C++ programmers is still increasing. [Str09] What began as Stroustrup's project at Bell Laboratories
became an ISO-standardized programming language found in a variety of applications.

C++ as a Language

When confronted with a new idea or concept, it's often enlightening to do a quick Wikipedia search to see
what others have to say on the subject. If you look up C++ this way, one of the first sentences you'll read (at
least, at the time of this writing) will tell you that C++ is a general-purpose, compiled, statically-typed,
multiparadigm, mid-level programming language. If you are just learning C++, this description may seem
utterly mystifying. However, this sentence very aptly captures much of the spirit of C++, and so before
continuing our descent into the realm of C++ let's take a few minutes to go over exactly what this
definition entails.

C++ is a General-Purpose Programming Language

Programming languages can be broadly categorized into two classes – domain-specific programming
languages and general-purpose programming languages. A language is domain-specific if it is designed to
solve a certain class of problems in a particular field. For example, the MATLAB programming language is a
domain-specific language designed for numerical and mathematical computing, and so has concise and
elegant support for matrix and vector operations. Domain-specific languages tend to be extremely easy to
use, particularly because these languages let programmers express common operations concisely and
elegantly because the language has been designed with them in mind. As an example, in MATLAB it is
possible to solve a linear system of equations using the simple syntax x = A\b. The equivalent C++ or Java
code would be significantly more complex. However, because domain-specific languages are optimized on
a particular class of problems, it can be difficult if not impossible to adapt those languages into other
problem domains. This has to do with the fact that domain-specific languages are custom-tailored to the
problems they solve, and consequently lack the vocabulary or syntactic richness to express structures
beyond their narrow scope. This is best illustrated by analogy – an extraordinary mathematician with
years of training would probably have great difficulty holding a technical discussion on winemaking with
the world's expert oenologist simply because the vocabularies of mathematics and winemaking are
entirely different. It might be possible to explain viticulture to the mathematician using terms from
differential topology or matrix theory, but this would clearly be a misguided effort.

Contrasting with domain-specific languages are general-purpose languages which, as their name suggests,
are designed to tackle all categories of problems, not just one particular class. This means that general-
purpose languages are more readily adapted to different scenarios and situations, but may have a harder
time describing some of the fundamental concepts of those domains than a language crafted specifically

Chapter 0: What is C++? - 7 -

for that purpose. For example, an American learning German as a second language may be fluent enough
in that language to converse with strangers and to handle day-to-day life, but might have quite an
experience trying to hold a technical conversation with industry specialists. This is not to say, of course,
that the American would not be able to comprehend the ideas that the specialist was putting forth, but
rather that any discussion the two would have would require the specialist to define her terms as the
conversation unfolded, rather than taking their definitions for granted at the start.

C++ is a general-purpose programming language, which means that it is robust enough to adapt to handle
all sorts of problems without providing special tools that simplify tasks in any one area. This is a trade-off,
of course. Because C++ is general-purpose, it will not magically provide you a means for solving a
particular problem; you will have to think through a design for your programs in order for them to work
correctly. But because C++ is general-purpose, you will be hard-pressed to find a challenge for which C++
is a poor choice for the solution. Moreover, because C++ is a general-purpose language, once you have
learned the structures and techniques of C++, you can apply your knowledge to any problem domain
without having to learn new syntax or structures designed for that domain.

C++ is a Compiled Language

The programs that actually execute on a computer are written in machine language, an extremely low-
level and hardware-specific language that encodes individual instructions for the computer's CPU.
Machine languages are indecipherable even to most working programmers because these languages are
designed to be read by computer hardware rather than humans. Consequently, programmers write
programs in programming languages, which are designed to be read by humans. In order to execute a
program written in a programming language, that program must somehow be converted from its source
code representation into equivalent machine code for execution. How this transformation is performed is
not set in stone, and in general there are two major approaches to converting source code to machine
code. The first of these is to interpret the program. In interpreted languages,a special program called the
interpreter takes in the program's source code and translates the program as it is being executed.
Whenever the program needs to execute a new piece of code, the interpreter reads in the next bit of the
source code, converts it into equivalent machine code, then executes the result. This means that if the
same interpreted program is run several times, the interpreter will translate the program anew every
time. The other option is to compile the program. In a compiled language, before running the program, the
programmer executes a special program called the compiler on the source code which translates the entire
program into machine code. This means that no matter how many times the resulting program is run, the
compiler is only invoked once. In general, interpreted languages tend to run more slowly than compiled
languages because the interpreter must translate the program as it is being executed, whereas the
translation work has already been done in the case of compiled languages. Because C++ places a premium
on efficiency, C++ is a compiled language. While C++ interpreters do exist, they are almost exclusively for
research purposes and rarely (if at all) used in professional settings.

What does all of this mean for you as a C++ programmer? That is, why does it matter whether C++ is
compiled or interpreted? A great deal, it turns out; this will be elaborated upon in the next segment on
static type checking. However, one way that you will notice immediately is that you will have to compile
your programs every time you make a change to the source code that you want to test out. When working
on very large software projects (on the order of millions to hundreds of millions of lines of code), it is not
uncommon for a recompilation to take hours to complete, meaning that it is difficult to test out lots of
minor changes to a C++ program. After all, if every change takes three minutes to test, then the number of
possible changes you can make to a program in hopes of eliminating a bug or extending functionality can
be greatly limited. On the other hand, though, because C++ is compiled, once you have your resulting
program it will tend to run much, much faster than programs written in other languages. Moreover, you
don't need to distribute an interpreter for your program in addition to the source – because C++ programs
compile down directly to the machine code, you can just ship an executable file to whoever wants to run
your program and they should be able to run it without any hassle.

- 8 - Chapter 0: What is C++?

C++ is a Statically-Typed Language

One of the single most important aspects of C++ is that it is a statically-typed language. If you want to
manipulate data in a C++ program, you must specify in advance what the type of that data is (for example,
whether it's an integer, a real number, English text, a jet engine, etc.). Moreover, this type is set in stone and
cannot change elsewhere in the source code. This means that if you say that an object is a coffee mug, you
cannot treat it as a stapler someplace else.

At first this might seem silly – of course you shouldn't be able to convert a coffee mug into a stapler or a
ball of twine into a jet engine; those are entirely different entities! You are completely correct about this.
Any program that tries to treat a coffee mug as though it is a stapler is bound to run into trouble because a
coffee mug isn't a stapler. The reason that static typing is important is that these sorts of errors are caught
at compile-time instead of at runtime. This means that if you write a program that tries to make this sort of
mistake, the program won't compile and you won't even have an executable containing a mistake to run. If
you write a C++ program that tries to treat a coffee mug like a stapler, the compiler will give you an error
and you will need to fix the problem before you can test out the program. This is an extremely powerful
feature of compiled languages and will dramatically reduce the number of runtime errors that your
programs encounter. As you will see later in this book, this also enables you to have the compiler verify
that complex relationships hold in your code and can conclude that if the program compiles, your code
does not contain certain classes of mistakes.

C++ is a Multi-Paradigm Language

C++ began as a hybrid of high- and low-level languages but has since evolved into a distinctive language
with its own idioms and constructs. Many programmers treat C++ as little more than an object-oriented C,
but this view obscures much of the magic of C++. C++ is a multiparadigm programming language, meaning
that it supports several different programming styles. C++ supports imperative programming in the style
of C, meaning that you can treat C++ as an upgraded C. C++ supports object-oriented programming, so you
can construct elaborate class hierarchies that hide complexity behind simple interfaces. C++ supports
generic programming, allowing you to write code reusable in a large number of contexts. Finally, C++
supports a limited form of higher-order programming, allowing you to write functions that construct and
manipulate other functions at runtime.

C++ being a multiparadigm language is both a blessing and a curse. It is a blessing in that C++ will let you
write code in the style that you feel is most appropriate for a given problem, rather than rigidly locking
you into a particular framework. It is also a blessing in that you can mix and match styles to create
programs that are precisely suited for the task at hand. It is a curse, however, in that multiparadigm
languages are necessarily more complex than single-paradigm languages and consequently C++ is more
difficult to pick up than other languages. Moreover, the interplay among all of these paradigms is complex,
and you will need to learn the subtle but important interactions that occur at the interface between these
paradigms.

This book is organized so that it covers a mixture of all of the aforementioned paradigms one after
another, and ideally you will be comfortable working in each by the time you've finished reading.

C++ is a Mid-Level Language

Computer programs ultimately must execute on computers. Although computers are capable of executing
programs which perform complex abstract reasoning, the computers themselves understand only the
small set of commands necessary to manipulate bits and bytes and to perform simple arithmetic. Low-
level languages are languages like C and assembly language that provide minimal structure over the actual
machine and expose many details about the inner workings of the computer. To contrast, high-level
languages are languages that abstract away from the particulars of the machine and let you write

Chapter 0: What is C++? - 9 -

programs independently of the computer's idiosyncrasies. As mentioned earlier, low-level languages make
it hard to represent complex program structure, while high-level languages often are too abstract to
operate efficiently on a computer.

C++ is a rare language in that it combines the low-level efficiency and machine access of C with high-level
constructs like those found in Java. This means that it is possible to write C++ programs with the strengths
of both approaches. It is not uncommon to find C++ programs that model complex systems using object-
oriented techniques (high level) while taking advantage of specific hardware to accelerate that simulation
(low-level). One way to think about the power afforded by C++ is to recognize that C++ is a language that
provides a set of abstractions that let you intuitively design large software systems, but which lets you
break those abstractions when the need to optimize becomes important. We will see some ways to
accomplish this later in this book.

Design Philosophy

C++ is a comparatively old language; its first release was in 1985. Since then numerous other
programming languages have sprung up – Java, Python, C#, and Javascript, to name a few. How exactly has
C++ survived so long when others have failed? C++ may be useful and versatile, but so were BCPL and
Simula, neither of which are in widespread use today.

One of the main reasons that C++ is still in use (and evolving) today has been its core guiding principles.
Stroustrup has maintained an active interest in C++ since its inception and has steadfastly adhered to a
particular design philosophy. Here is a sampling of the design points, as articulated in Stroustrup's The
Design and Evolution of C++.

• C++'s evolution must be driven by real problems. When existing programming styles prove
insufficient for modern challenges, C++ adapts. For example, the introduction of exception
handling provided a much-needed system for error recovery, and abstract classes allowed
programmers to define interfaces more naturally.

• Don't try to force people. C++ supports multiple programming styles. You can write code similar
to that found in pure C, design class hierarchies as you would in Java, or develop software
somewhere in between the two. C++ respects and trusts you as a programmer, allowing you to
write the style of code you find most suitable to the task at hand rather than rigidly locking you
into a single pattern.

• Always provide a transition path. C++ is designed such that the programming principles and
techniques developed at any point in its history are still applicable. With few exceptions, C++ code
written ten or twenty years ago should still compile and run on modern C++ compilers. Moreover,
C++ is designed to be mostly backwards-compatible with C, meaning that veteran C coders can
quickly get up to speed with C++.

The Goal of C++

There is one quote from Stroustrup ([Str94]) I believe best sums up C++:

C++ makes programming more enjoyable for serious programmers.

What exactly does this mean? Let's begin with what constitutes a serious programmer. Rigidly defining
“serious programmer” is difficult, so instead I'll list some of the programs and projects written in C++ and
leave it as an exercise to the reader to infer a proper definition. For example, you'll find C++ in:

- 10 - Chapter 0: What is C++?

Mozilla Firefox. The core infrastructure underlying all Mozilla
projects is written predominantly in C++. While much of the code
for Firefox is written in Javascript and XUL, these languages are
executed by interpreters written in C++.

The WebKit layout engine used by Safari and Google Chrome is
also written in C++. Although it's closed-source, I suspect that
Internet Explorer is also written in C++. If you're browsing the
web, you're seeing C++ in action.

Java HotSpot. The widespread success of Java is in part due to
HotSpot, Sun's implementation of the Java Virtual Machine.
HotSpot supports just-in-time compilation and optimization and
is a beautifully engineered piece of software. It's also written in
C++. The next time that someone engages you in a debate about
the relative merits of C++ and Java, you can mention that if not for
a well-architected C++ program Java would not be a competitive
language.

NASA / JPL. The rovers currently exploring the surface of Mars
have their autonomous driving systems written in C++. C++ is on
Mars!

C++ makes programming more enjoyable for serious programmers. Not only does C++ power all of the
above applications, it powers them in style. You can program with high-level constructs yet enjoy the
runtime efficiency of a low-level language like C. You can choose the programming style that's right for
you and work in a language that trusts and respects your expertise. You can write code once that you will
reuse time and time again. This is what C++ is all about, and the purpose of this book is to get you up to
speed on the mechanics, style, and just plain excitement of C++.

With that said, let's dive into C++. Our journey begins!

Chapter 1: Getting Started

Every journey begins with a single step, and in ours it's getting to the point where you can compile, link,
run, and debug C++ programs. This depends on what operating system you have, so in this section we'll
see how to get a C++ project up and running under Windows, Mac OS X, and Linux.

Compiling C++ Programs under Windows

This section assumes that you are using Microsoft Visual Studio 2005 (VS2005). If you are a current
CS106B/X student, you can follow the directions on the course website to obtain a copy. Otherwise, be
prepared to shell out some cash to get your own copy, though it is definitely a worthwhile investment.*
Alternatively, you can download Visual C++ 2008 Express Edition, a free version of Microsoft's
development environment sporting a fully-functional C++ compiler. The express edition of Visual C++
lacks support for advanced Windows development, but is otherwise a perfectly fine C++ compiler. You can
get Visual C++ 2008 Express Edition from http://www.microsoft.com/express/vc/. With only a few minor
changes, the directions for using VS2005 should also apply to Visual C++ 2008 Express Edition, so this
section will only cover VS2005.

VS2005 organizes C++ code into “projects,” collections of source and header files that will be built into a
program. The first step in creating a C++ program is to get an empty C++ project up and running, then to
populate it with the necessary files. To begin, open VS2005 and from the File menu choose New >
Project.... You should see a window that looks like this:

* I first began programming in C++ in 2001 using Microsoft Visual C++ 6.0, which cost roughly eighty dollars. I
recently (2008) switched to Visual Studio 2005. This means that the compiler cost just over ten dollars a year.
Considering the sheer number of hours I have spent programming, this was probably the best investment I have
made.

http://www.microsoft.com/express/vc/

- 12 - Chapter 1: Getting Started

As you can see, VS2005 has template support for all sorts of different projects, most of which are for
Microsoft-specific applications such as dynamic-link libraries (DLLs) or ActiveX controls. We're not
particularly interested in most of these choices – we just want a simple C++ program! To create one, find
and choose Win32 Console Application. Give your project an appropriate name, then click OK. You
should now see a window that looks like this, which will ask you to configure project settings:

Note that the window title will have the name of the project you entered in the previous step in its title;
“Yet Another C++ Program” is a placeholder.

At this point, you do not want to click Finish. Instead, hit Next > and you'll be presented with the
following screen:

Chapter 1: Getting Started - 13 -

Keep all of the default settings listed here, but make sure that you check the box marked Empty Project.
Otherwise VS2005 will give you a project with all sorts of Microsoft-specific features built into it. Once
you've checked that box, click Finish and you'll have a fully functional (albeit empty) C++ project.

Now, it's time to create and add some source files to this project so that you can enter C++ code. To do this,
go to Project > Add New Item... (or press CTRL+SHIFT+A). You'll be presented with the following dialog
box:

- 14 - Chapter 1: Getting Started

Choose C++ File (.cpp) and enter a name for it inside the Name field. VS2005 automatically appends .cpp
to the end of the filename, so don't worry about manually entering the extension. Once you're ready, click
Add and you should have your source file ready to go. Any C++ code you enter in here will be considered
by the compiler and built into your final application.

Once you've written the source code, you can compile and run your programs by pressing F5, choosing
Debug> Start Debugging, or clicking the green “play” icon. By default VS2005 will close the console
window after your program finishes running, and if you want the window to persist after the program
finishes executing you can run the program without debugging by pressing CTRL+F5 or choosing Debug >
Start Without Debugging. You should be all set to go!

Compiling C++ Programs in Mac OS X

If you're developing C++ programs on Mac OS X, your best option is to use Apple's Xcode development
environment. You can download Xcode free of charge from the Apple Developer Connection website at
http://developer.apple.com/.

Once you've downloaded and installed Xcode, it's reasonably straightforward to create a new C++ project.
Open Xcode. The first time that you run the program you'll get a nice welcome screen, which you're free to
peruse but which you can safely dismiss. To create a C++ project, choose File > New Project.... You'll be
presented with a screen that looks like this:

http://developer.apple.com/

Chapter 1: Getting Started - 15 -

There are a lot of options here, most of which are Apple-specific or use languages other than C++ (such as
Java or Objective-C). In the panel on the left side of the screen, choose Command Line Utility and you will
see the following options:

Select C++ Tool and click the Choose... button. You'll be prompted for a project name and directory; feel
free to choose whatever name and location you'd like. In this example I've used the name “Yet Another C+

- 16 - Chapter 1: Getting Started

+ Project,” though I suggest you pick a more descriptive name. Once you've made your selection, you'll see
the project window, which looks like this:

Notice that your project comes prepackaged with a file called main.cpp. This is a C++ source file that will
be compiled and linked into the final program. By default, it contains a skeleton implementation of the
Hello, World! program, as shown here:

Chapter 1: Getting Started - 17 -

Feel free to delete any of the code you see here and rewrite it as you see fit.

Because the program we've just created is a command-line utility, you will need to pull up the console
window to see the output from your program. You can do this by choosing Run > Console or by pressing

�

⌘R. Initially the console will be empty, as shown here:

Once you've run your program, the output will be displayed here in the console. You can run the program
by clicking the Build and Go button (the hammer next to a green circle containing an arrow). That's it!
You now have a working C++ project.

If you're interested in compiling programs from the Mac OS X terminal, you might find the following
section on Linux development useful.

Compiling C++ Programs under Linux

For those of you using a Linux-based operating system, you're in luck – Linux is extremely developer-
friendly and all of the tools you'll need are at your disposal from the command-line.

Unlike the Windows or Mac environments, when compiling code in Linux you won't need to set up a
development environment using Visual Studio or Xcode. Instead, you'll just set up a directory where you'll
put and edit your C++ files, then will directly invoke the GNU C++ Compiler (g++) from the command-line.

If you're using Linux I'll assume that you're already familiar with simple commands like mkdir and chdir
and that you know how to edit and save a text document. When writing C++ source code, you'll probably
want to save header files with the .h extension and C++ files with the .cc, .cpp, .C, or .c++ extension. The .cc
extension seems to be in vogue these days, though .cpp is also quite popular.

To compile your source code, you can execute g++ from the command line by typing g++ and then a list of
the files you want to compile. For example, to compile myfile.cc and myotherfile.cc, you'd type

 g++ myfile.cc myotherfile.cc

- 18 - Chapter 1: Getting Started

By default, this produces a file named a.out, which you can execute by entering ./a.out. If you want to
change the name of the program to something else, you can use g++'s -o switch, which produces an output
file of a different name. For example, to create an executable called myprogram from the file myfile.cc, you
could write

 g++ myfile.cc -o myprogram

g++ has a whole host of other switches (such as -c to compile but not link a file), so be sure to consult the
man pages for more info.

It can get tedious writing out the commands to compile every single file in a project to form a finished
executable, so most Linux developers use makefiles, scripts which allow you to compile an entire project
by typing the make command. A full tour of makefiles is far beyond the scope of an introductory C++ text,
but fortunately there are many good online tutorials on how to construct a makefile. The full manual for
make is available online at http://www.gnu.org/software/make/manual/make.html.

Other Development Tools

If you are interested in using other development environments than the ones listed above, you're in luck.
There are dozens of IDEs available that work on a wide range of platforms. Here's a small sampling:

• NetBeans: The NetBeans IDE supports C++ programming and is highly customizable. It also is
completely cross-platform compatible, so you can use it on Windows, Mac OS X, and Linux.

• MinGW: MinGW is a port of common GNU tools to Microsoft Windows, so you can use tools like
g++ without running Linux. Many large software projects use MinGW as part of their build
environment, so you might want to explore what it offers you.

• Eclipse: This popular Java IDE can be configured to run as a C++ compiler with a bit of additional
effort. If you're using Windows you might need to install some additional software to get this IDE
working, but otherwise it should be reasonably straightforward to configure.

• Sun Studio: If you're a Linux user and command-line hacking isn't your cup of tea, you might want
to consider installing Sun Studio, Sun Microsystem's C++ development environment, which has a
wonderful GUI and solid debugging support.

• Qt Creator: This Linux-based IDE is designed to build C++ programs using the open-source Qt
libraries, but is also an excellent general-purpose C++ IDE. It is a major step above what the
terminal and your favorite text editor have to offer, and I highly recommend that you check this
program out if you're a Linux junkie.

http://www.gnu.org/software/make/manual/make.html

Chapter 2: C++ Without genlib.h

When you arrived at your first CS106B/X lecture, you probably learned to write a simple “Hello, World”
program like the one shown below:

 #include "genlib.h"
 #include <iostream>

 int main() {
 cout << "Hello, world!" << endl;
 return 0;
 }

Whether or not you have previous experience with C++, you probably realized that the first line means
that the source code references an external file called genlib.h. For the purposes of CS106B/X, this is
entirely acceptable (in fact, it's required!), but once you migrate from the educational setting to
professional code you will run into trouble because genlib.h is not a standard header file; it's included in
the CS106B/X libraries to simplify certain language features so you can focus on writing code, rather than
appeasing the compiler.

In CS106L, none of our programs will use genlib.h, simpio.h, or any of the other CS106B/X library files.
Don't worry, though, because none of the functions exported by these files are “magical.” In fact, in the
next few chapters you will learn how to rewrite or supersede the functions and classes exported by the
CS106B/X libraries.* If you have the time, I encourage you to actually open up the genlib.h file and peek
around at its contents.

To write “Hello, World” without genlib.h, you'll need to add another line to your program. The “pure” C+
+ version of “Hello, World” thus looks something like this:

 #include <iostream>
 using namespace std;

 int main() {
 cout << "Hello, World!" << endl;
 return 0;
 }

We've replaced the header file genlib.h with the cryptic statement “using namespace std;” Before
explaining exactly what this statement does, we need to take a quick diversion to lessons learned from
development history. Suppose you're working at a company that produces two types of software: graphics
design programs and online gunfighter duels (admittedly, this combination is pretty unlikely, but humor
me for a while). Each project has its own source code files complete with a set of helper functions and
classes. Here are some sample header files from each project, with most of the commenting removed:

* The exceptions are the graphics and sound libraries. C++ does not have natural language support for multimedia,
and although many such libraries exist, we won't cover them in this text.

- 20 - Chapter 2: C++ Without genlib.h

GraphicsUtility.h:
/* File: graphicsutility.h
 * Graphics utility functions.
 */

/* ClearScene: Clears the current scene. */
void ClearScene();

/* AddLine: Adds a line to the current scene. */
void AddLine(int x0, int y0, int x1, int y1);

/* Draw: Draws the current scene. */
void Draw();

GunfighterUtility.h:
/* File: gunfighterutility.h
 * Gunfighter utility functions.
 */

/* MarchTenPaces: Marches ten paces, animating each step. */
void MarchTenPaces(PlayerObject &toMove);

/* FaceFoe: Turns to face the opponent. */
void FaceFoe();

/* Draw: Unholsters and aims the pistol. */
void Draw();

Suppose the gunfighter team is implementing MarchTenPaces and needs to animate the gunfighters
walking away from one another. Realizing that the graphics team has already implemented an entire
library geared toward this, the gunfighter programmers import graphicsutility.h into their project, write
code using the graphics functions, and try to compile. However, when they try to test their code, the linker
reports errors to the effect of “error: function 'void Draw()' already defined.”

The problem is that the graphics and gunfighter modules each contain functions named Draw() with the
same signature and the compiler can't distinguish between them. It's impractical for either team to
rename their Draw function, both because the other programming teams expect them to provide functions
named Draw and because their code is already filled with calls to Draw. Fortunately, there's an elegant
resolution to this problem. Enter the C++ namespace keyword. A namespace adds another layer of
naming onto your functions and variables. For example, if all of the gunfighter code was in the namespace
“Gunfighter,” the function Draw would have the full name Gunfighter::Draw. Similarly, if the graphics
programmers put their code inside namespace “Graphics,” they would reference the function Draw as
Graphics::Draw. If this is the case, there is no longer any ambiguity between the two functions, and the
gunfighter development team can compile their code.

But there's still one problem – other programming teams expect to find functions named ClearScene and
FaceFoe, not Graphics::ClearScene and Gunfighter::FaceFoe. Fortunately, C++ allows what's
known as a using declaration that lets you ignore fully qualified names from a namespace and instead use
the shorter names.

Back to the Hello, World example, reprinted here:

Chapter 2: C++ Without genlib.h - 21 -

 #include <iostream>
 using namespace std;

 int main() {
 cout << "Hello, World!" << endl;
 return 0;
 }

The statement “using namespace std;” following the #include directive tells the compiler that all of
the functions and classes in the namespace std can be used without their fully-qualified names. This “std”
namespace is the C++ standard namespace that includes all the library functions and classes of the
standard library. For example, cout is truly named std::cout, and without the using declaration importing
the std namespace, Hello, World would look something like this:

 #include <iostream>

 int main() {
std::cout << "Hello, World!" << std::endl;
return 0;

 }

While some programmers prefer to use the fully-qualified names when using standard library
components, repeatedly writing std:: can be a hassle. To eliminate this problem, in genlib.h, we
included the using declaration for you. But now that we've taken the training wheels off and genlib.h is
no more, you'll have to remember to include it yourself!

There's one more important part of genlib.h, the string type. Unlike other programming languages,
C++ lacks a primitive string type.* Sure, there's the class string, but unlike int or double it's not a built-
in type and must be included with a #include directive. Specifically, you'll need to write #include
<string> at the top of any program that wants to use C++-style strings. And don't forget the using
declaration, or you'll need to write std::string every time you want to use C++ strings!

* Technically speaking there are primitive strings in C++, but they aren't objects. See the chapter on C strings for
more information.

Part One
A Better C

Chapter 3: Streams

It's time to begin our serious foray into the magical world of C++ programming. In this first chapter, we'll
explore C++'s streams library, a collection of functions that allow you to read and write formatted data
from a variety of sources. The streams library allows your program to print text to the user and read back
responses. It also lets you load persistent data from external files and to save custom information on-disk.
As you continue your exploration of C++, you will use the contents of this chapter time and time again,
whether for simple error-reporting or more complex data management.

Streams: An Overview

In the physical world, all interesting devices have some way of interacting with their environment. Take a
common alcohol thermometer, for example. The thermometer has a liquid-filled bulb that is warmed up
by the environment and a graduated meter which allows the user to read off the temperature near the
bulb. Or consider a car, which has an accelerator, brake, gearbox, and steering wheel to control the
direction and speed of the vehicle and a dashboard which reports the current state of the automobile. C+
+'s streams library is the primary means by which a C++ program can interact with its environment,
namely the user and the file system.

The basic unit of communication between a program and its environment is a stream. A stream is a
channel between a source and a destination which allows the source to push formatted data to the
destination. The type of the source and the sink varies from stream to stream. In some streams the source
is the program itself and the destination is a file on disk, and the stream can be used to write persistent
data to the user's hard drive. In others, the source is the keyboard and the destination is the program, and
the stream can be used to read user input from the physical world into the computer.

The use of the term “stream” in the context of the streams library is similar to the use of “stream” in the
context of “streaming video.” When a data provider (for example, YouTube) streams video over the
Internet, the video is not sent all at once. Instead, the program receiving the video continuously queries
the server for more and more information, and the video is sent in fixed-size chunks and reassembled by
the video player. When using the streams library to read or write data, you do not need to read or write all
of the data at once. It's perfectly legal (and quite common) to read the data one piece at a time. For
example, if you want to read data from a file, instead of loading all of the file contents at once, you can read
the file line-by-line, or character-by-character, or using some hybrid approach. This gives you great
flexibility, since you can read different pieces of the file in different ways to get the data in a format
appropriate to your application.

To give you a better sense of how streams work in practice, let's consider an actual stream, cout. cout
(for character output) is a stream connected to the console, a text window that displays plain text data.
Any information pushed across cout displays in the console, and so you can think of cout as a way of
displaying data to the user. For example, here's a simple program which displays a message to the user
and then quits:

 #include <iostream>
 using namespace std;

 int main() {
 cout << "I'm sorry Dave, I'm afraid I can't do that." << endl;
 return 0;
 }

- 26 - Chapter 3: Streams

There's a lot of code here, so let's take a few minutes to dissect it. The first line of the program, #include
<iostream>, instructs the C++ compiler to import the cout stream into the program. The line using
namespace std is covered in the previous chapter and makes the cout stream available. Inside of main,
we have the following line of code:

 cout << "I'm sorry Dave, I'm afraid I can't do that." << endl;

The special << operator is called the stream insertion operator and is a C++ operator that is used to push
data into a stream object. Here, we push the text string I'm sorry Dave, I'm afraid I can't do
that into the cout stream. This causes the this text to display on-screen. Afterwards, we push the special
object endl into the stream. endl stands for “end line” and prints a newline character to the cout stream.
This means that the next time we push text into cout, the text will display on the next line, rather than
directly after the text string we just printed. We'll discuss endl in more detail later in this chapter.

Streams are very versatile and you can write data of multiple types to stream objects. In fact, you can push
data of any primitive type into a stream. For example, here's a program showing off the sorts of data that
can move across a stream:

 #include <iostream>
 using namespace std;

 int main() {
 cout << "Streams can take in text." << endl;
 cout << 137 << endl; // Streams can take in integers.
 cout << 2.71828 << endl; // Streams can take in real numbers.
 cout << "Here is text followed by a number: " << 31415 << endl;
 return 0;
 }

Running this program will produce the following output:

 Streams can take in text.
 137
 2.71828
 Here is text followed by a number: 31415

In the first line of this program, we sent a text string to the console. In the second and third, we sent an
integer and a natural number, respectively. The last line is perhaps the most interesting. In it, we push
both a string and an integer to the console by chaining together the stream insertion operator. The
designers of the streams library were fairly clever, and so it's perfectly legal to chain together as many
stream insertions as you'd like.

To give you a better feel for why each of the stream operations in the above program end by pushing endl
into the stream, let's consider what would happen if this weren't the case. Here's a revised version of the
above program will all instances of endl removed:

Chapter 3: Streams - 27 -

 #include <iostream>
 using namespace std;

 int main() {
 cout << "Streams can take in text.";
 cout << 137;
 cout << 2.71828;
 cout << "Here is text followed by a number: " << 31415;
 return 0;
 }

This produces the following output:

 Streams can take in text.1372.71828Here is text followed by a number: 31415

Notice that all of this text runs together. C++ will not “automatically” insert newlines into any text you
write, and when outputting data to the console you will need to manually insert line breaks. As a general
rule, most of the time that you use cout to push data to the console, you will need to append endl to
ensure the output doesn't all run together.

All of the stream examples we have seen so far have revolved around cout and pushing data from the
program to the console. To build a truly interactive program, however, we'll need to get input from the
user. In CS106B/X, we provide the simpio.h header file, which exports the input functions GetLine,
GetInteger, GetReal, and GetLong. Though useful, these functions are not part of the C++ standard
library and will not be available outside of CS106B/X. Don't worry, though, because by the end of this
chapter we'll see how to implement them using only standard C++.

The streams library exports another stream object called cin (character input) which lets you read values
directly from the user. To read a value from cin, you use the stream extraction operator >>. Syntactically,
the stream extraction operator mirrors the stream insertion operator. For example, here's a code snippet
to prompt the user for an integer.

 cout << "Please enter an integer: ";

 int myInteger;
 cin >> myInteger; // Value stored in myInteger

When the program encounters the highlighted line, it will pause and wait for the user to type in a number
and hit enter. Provided that the user actually enters an integer, its value will be stored inside the
myInteger variable. What happens if the user doesn't enter an integer is a bit more complicated, and we'll
return to this later in the chapter.

You can also read multiple values from cin by chaining together the stream extraction operator in the
same way that you can write multiple values to cout by chaining the stream insertion operator:

 int myInteger;
 string myString;
 cin >> myInteger >> myString; // Read an integer and string from cin

This will pause until the user enters an integer, hits enter, then enters a string, then hits enter once more.
These values will be stored in myInteger and myString, respectively.

Note that when using cin, you should not read into endl the way that you write endl when using cout.
Hence the following code is illegal:

- 28 - Chapter 3: Streams

 int myInteger;
 cin >> myInteger >> endl; // Error: Cannot read into endl.

Intuitively, this makes sense because endl means “print a newline.” Reading a value into endl is therefore
a nonsensical operation.

In practice, it is not a good idea to read values directly from cin. Unlike GetInteger and the like, cin
does not perform any safety checking of user input and if the user does not enter valid data, cin will begin
behaving unusually. Later in this chapter, we will see how the GetInteger function is implemented and
you will be able to use the function in your own programs. In the meantime, though, feel free to use cin,
but make sure that you always type in input correctly!

Reading and Writing Files

So far, we have seen two examples of streams – cout, which sends data to the console, and cin, which
reads data from the keyboard. In this next section we'll see two new kinds of streams – ifstreams and
ofstreams – which can be used to read or write files on disk. This will allow your program to save data
indefinitely, or to read in configuration data from an external source.

C++ provides a header file called <fstream> (file stream) that exports the ifstream and ofstream
types, streams that perform file I/O. The naming convention is unfortunate – ifstream stands for input
file stream (not “something that might be a stream”) and ofstream for output file stream. There is also a
generic fstream class which can do both input and output, but we will not cover it in this chapter. Unlike
cin and cout, which are concrete stream objects, ifstream and ofstream are types. To read or write
from a file, you will create an object of type ifstream or ofstream, much in the same way that you would
create an object of type string to store text data or a variable of type double to hold a real number. Once
you have created the file stream object, you can read or write to it using the stream insertion and
extraction operators just as you would cin or cout.

To create an ifstream that reads from a file, you can use this syntax:

 ifstream myStream("myFile.txt");

This creates a new stream object named myStream which reads from the file myFile.txt, provided of
course that the file exists. We can then read data from myStream just as we would from cin, as shown
here:

 ifstream myStream("myFile.txt");
 int myInteger;
 myStream >> myInteger; // Read an integer from myFile.txt

Notice that we wrote myStream >> myInteger rather than ifstream >> myInteger. When reading
data from a file stream, you must read from the stream variable rather than the ifstream type. If you
read from ifstream instead of your stream variable, the program will not compile and will give you a
fairly cryptic error message.

You can also open a file by using the ifstream's open member function, as shown here:

 ifstream myStream; // Note: did not specify the file
 myStream.open("myFile.txt"); // Now reading from myFile.txt

When opening a file using an ifstream, there is a chance that the specified file can't be opened. The
filename might not specify an actual file, you might not have permission to read the file, or perhaps the file

Chapter 3: Streams - 29 -

is locked. If you try reading data from an ifstream that is not associated with an open file, the read will
fail and you will not get back meaningful data. After trying to open a file, you should check if the stream is
valid by using the .is_open() member function. For example, here's code to open a file and report an
error to the user if a problem occurred:

 ifstream input("myfile.txt");
 if(!input.is_open())
 cerr << "Couldn't open the file myfile.txt" << endl;

Notice that we report the error to the cerr stream. cerr, like cout, is an output stream, but unlike cout,
cerr is designed for error reporting and is sometimes handled differently by the operating system.

The output counterpart to ifstream is ofstream. As with ifstream, you specify which file to write to
either by using the .open() member function or by specifying the file when you create the ofstream, as
shown below:

 ofstream myStream("myFile.txt"); // Write to myFile.txt

A word of warning: if you try writing to a nonexistent file with an ofstream, the ofstream will create the
file for you. However, if you open a file that already exists, the ofstream will overwrite all of the contents
of the file. Be careful not to write to important files without first backing them up!

The streams library is one of the older libraries in C++ and the open functions on the ifstream and
ofstream classes predate the string type. If you have the name of a file stored in a C++ string, you will
need to convert the string into a C-style string (covered in the second half of this book) before passing it
as a parameter to open. This can be done using the .c_str() member function of the string class, as
shown here:

 ifstream input(myString.c_str()); // Open the filename stored in myString

When a file stream object goes out of scope, C++ will automatically close the file for you so that other
processes can read and write the file. If you want to close the file prematurely, you can use the .close()
member function. After calling close, reading or writing to or from the file stream will fail.

As mentioned above in the section on cin, when reading from or writing to files you will need to do
extensive error checking to ensure that the operations succeed. Again, we'll see how to do this later.

Stream Manipulators

Consider the following code that prints data to cout:

 cout << "This is a string!" << endl;

What exactly is endl? It's an example of a stream manipulator, an object that can be inserted into a stream
to change some sort of stream property. endl is one of the most common stream manipulators, though
others exist as well. To motivate some of the more complex manipulators, let's suppose that we have a file
called table-data.txt containing four lines of text, where each line consists of an integer value and a
real number. For example:

- 30 - Chapter 3: Streams

File: table-data.txt
137 2.71828
42 3.14159
7897987 1.608
1337 .01101010001

We want to write a program which reads in this data and prints it out in a table, as shown here:

---------------------+----------------------+---------------------
 1 | 137 | 2.71828
 2 | 42 | 3.14159
 3 | 7897987 | 1.608
 4 | 1337 | 0.01101

Here, the first column is the one-indexed line number, the second the integer values from the file, and the
third the real-numbered values from the file.

Let's begin by defining a few constants to control what the output should look like. Since there are four
lines in the file, we can write

 const int NUM_LINES = 4;

And since there are three columns,

 const int NUM_COLUMNS = 3;

Next, we'll pick an arbitrary width for each column. We'll choose twenty characters, though in principle
we could pick any value as long as the data fit:

 const int COLUMN_WIDTH = 20;

Now, we need to read in the table data and print out the formatted table. We'll decompose this problem
into two smaller steps, resulting in the following source code:

 #include <iostream>
 #include <fstream>
 using namespace std;

 const int NUM_LINES = 4;
 const int NUM_COLUMNS = 3;
 const int COLUMN_WIDTH = 20;

 int main() {
 PrintTableHeader();
 PrintTableBody();
 return 0;
 }

PrintTableHeader is responsible for printing out the top part of the table (the row of dashes and pluses)
and PrintTableBody will load the contents of the file and print them to the console.

Despite the fact that PrintTableHeader precedes PrintTableBody in this program, we'll begin by
implementing PrintTableBody as it illustrates exactly how much firepower we can get from the stream
manipulators. We know that we need to open the file table-data.txt and that we'll need to read four
lines of data from it, so we can begin writing this function as follows:

Chapter 3: Streams - 31 -

 void PrintTableBody() {
 ifstream input("table-data.txt");
 /* No error-checking here, but you should be sure to do this in any real
 * program.
 */

 /* Loop over the lines in the file reading data. */
 for(int k = 0; k < NUM_LINES; ++k) {
 /* ... process data ... */
 }
 }

You may have noticed that at the end of this for loop I've written ++k instead of k++. There's a slight
difference between the two syntaxes, but in this context they are interchangeable. When we talk about
operator overloading in a later chapter we'll talk about why it's generally considered better practice to use
the prefix increment operator instead of the postfix.

Now, we need to read data from the file and print it as a table. We can start by actually reading the values
from the file, as shown here:

 void PrintTableBody() {
 ifstream input("table-data.txt");
 /* No error-checking here, but you should be sure to do this in any real
 * program.
 */

 /* Loop over the lines in the file reading data. */
 for(int k = 0; k < NUM_LINES; ++k) {
 int intValue;
 double doubleValue;
 input >> intValue >> doubleValue;
 }
 }

Next, we need to print out the table row. This is where things get tricky. If you'll recall, the table is
supposed to be printed as three columns, each a fixed width, that contain the relevant data. How can we
ensure that when we print the values to cout that we put in the appropriate amount of whitespace?
Manually writing space characters would be difficult, so instead we'll use a stream manipulator called
setw (set width) to force cout to pad its output with the right number of spaces. setw is defined in the
<iomanip> header file and can be used as follows:

 cout << setw(10) << 137 << endl;

This tells cout that the next item it prints out should be padded with spaces so that it takes up at least ten
characters. Similarly,

 cout << setw(20) << "Hello there!" << endl;

Would print out Hello there! with sufficient leading whitespace.

By default setw pads the next operation with spaces on the left side. You can customize this behavior with
the left and right stream manipulators, as shown here:

 cout << '[' << left << setw(10) << "Hello!" << ']' << endl; // [Hello!]
 cout << '[' << right << setw(10) << "Hello!" << ']' << endl; // [Hello!]

- 32 - Chapter 3: Streams

Back to our example. We want to ensure that every table column is exactly COLUMN_WIDTH spaces across.
Using setw, this is relatively straightforward and can be done as follows:

 void PrintTableBody() {
 ifstream input("table-data.txt");
 /* No error-checking here, but you should be sure to do this in any real
 * program.
 */

 /* Loop over the lines in the file reading data. */
 for(int k = 0; k < NUM_LINES; ++k) {
 int intValue;
 double doubleValue;
 input >> intValue >> doubleValue;

 cout << setw(COLUMN_WIDTH) << (k + 1) << " | ";
 cout << setw(COLUMN_WIDTH) << intValue << " | ";
 cout << setw(COLUMN_WIDTH) << doubleValue << endl;
 }
 }

This produces the following output when run on the input file described above:

 1 | 137 | 2.71828
 2 | 42 | 3.14159
 3 | 7897987 | 1.608
 4 | 1337 | 0.01101

The body of the table looks great, and now we just need to print the table header, which looks like this:

---------------------+----------------------+---------------------

If you'll notice, this is formed by printing twenty dashes, then the pattern -+-, another twenty dashes, the
pattern -+-, and finally another twenty dashes. We could thus implement PrintTableHeader like this:

 void PrintTableHeader() {
 /* Print the ---...---+- pattern for all but the last column. */
 for(int column = 0; column < NUM_COLUMNS – 1; ++column) {
 for(int k = 0; k < COLUMN_WIDTH; ++k)
 cout << '-';
 cout << "-+-";
 }

 /* Now print the ---...--- pattern for the last column. */
 for(int k = 0; k < COLUMN_WIDTH; ++k)
 cout << '-';

 /* Print a newline... there's nothing else on this line. */
 cout << endl;
 }

As written there's nothing wrong with this code and the program will work just fine, but we can simplify
the implementation by harnessing stream manipulators. Notice that at two points we need to print out
COLUMN_WIDTH copies of the dash character. When printing out the table body, we were able to use the
setw stream manipulator to print multiple copies of the space character; is there some way that we can
use it here to print out multiple dashes? The answer is yes, thanks to setfill. The setfill manipulator

Chapter 3: Streams - 33 -

accepts a parameter indicating what character to use as a fill character for setw, then changes the stream
such that all future calls to setw pad the stream with the specified character. For example:

 cout << setfill('0') << setw(8) << 1000 << endl; // Prints 00001000
 cout << setw(8) << 1000 << endl; // Prints 00001000 because of last setfill

Note that setfill does not replace all space characters with instances of some other character. It is only
meaningful in conjunction with setw. For example:

 cout << setfill('X') << "Some Spaces" << endl; // Prints Some Spaces

Using setfill and setw, we can print out COLUMN_WIDTH copies of the dash character as follows:

 cout << setfill('-') << setw(COLUMN_WIDTH) << "" << setfill(' ');

This code is dense, so let's walk through it one step at a time. The first part, setfill('-'), tells cout to
pad all output with dashes instead of spaces. Next, we use setw to tell cout that the next operation should
take up at least COLUMN_WIDTH characters. The trick is the next step, printing the empty string. Since the
empty string has length zero and the next operation will always print out at least COLUMN_WIDTH
characters padded with dashes, this code prints out COLUMN_WIDTH dashes in a row. Finally, since
setfill permanently sets the fill character, we use setfill(' ') to undo the changes we made to cout.

Using this code, we can rewrite PrintTableHeader as follows:

 void PrintTableHeader() {
 /* Print the ---...---+- pattern for all but the last column. */
 for(int column = 0; column < NUM_COLUMNS – 1; ++column)
 cout << setfill('-') << setw(COLUMN_WIDTH) << "" << "-+-";

 /* Now print the ---...--- pattern for the last column and a newline. */
 cout << setw(COLUMN_WIDTH) << "" << setfill(' ') << endl;
 }

Notice that we only call setfill(' ') once, at the end of this function, since there's no reason to clear it at
each step. Also notice that we've reduced the length of this function dramatically by having the library take care
of the heavy lifting for us. The code to print out a table header is now three lines long!

There are many stream manipulators available in C++. The following table lists some of the more
commonly-used ones:

boolalpha cout << true << endl; // Output: 1
cout << boolalpha << true << endl; // Output: true

Determines whether or not the stream should output boolean values as 1 and 0 or
as “true” and “false.” The opposite manipulator is noboolalpha, which reverses
this behavior.

setw(n) cout << 10 << endl; // Output: 10
cout << setw(5) << 10 << endl; // Output: 10

Sets the minimum width of the output for the next stream operation. If the data
doesn't meet the minimum field requirement, it is padded with the default fill
character until it is the proper size.

- 34 - Chapter 3: Streams

Common stream manipulators, contd.
hex, dec, oct cout << 10 << endl; // Output: 10

cout << dec << 10 << endl; // Output: 10
cout << oct << 10 << endl; // Output: 12
cout << hex << 10 << endl; // Output: a
cin >> hex >> x; // Reads a hexadecimal value.

Sets the radix on the stream to either octal (base 8), decimal (base 10), or
hexadecimal (base 16). This can be used either to format output or change the base
for input.

ws myStream >> ws >> value;

Skips any whitespace stored in the stream. By default the stream extraction
operator skips over whitespace, but other functions like getline do not. ws can
sometimes be useful in conjunction with these other functions.

When Streams Go Bad

Because stream operations often involve transforming data from one form into another, stream operations
are not always guaranteed to succeed. For example, consider the following code snippet, which reads
integer values from a file:

 ifstream in("input.txt"); // Read from input.txt
 for(int i = 0; i < NUM_INTS; ++i) {
 int value;
 in >> value;
 /* ... process value here ... */
 }

If the file input.txt contains NUM_INTS consecutive integer values, then this code will work correctly.
However, what happens if the file contains some other type of data, such as a string or a real number?

If you try to read stream data of one type into a variable of another type, rather than crashing the program
or filling the variable with garbage data, the stream fails by entering an error state and the value of the
variable will not change. Once the stream is in this error state, any subsequent read or write operations
will automatically and silently fail, which can be a serious problem.

You can check if a stream is in an error state with the .fail() member function. Don't let the name
mislead you – fail checks if a stream is in an error state, rather than putting the stream into that state.
For example, here's code to read input from cin and check if an error occurred:

 int myInteger;
 cin >> myInteger;
 if(cin.fail()) { /* ... error ... */ }

If a stream is in a fail state, you'll probably want to perform some special handling, possibly by reporting the
error. Once you've fixed any problems, you need to tell the stream that everything is okay by using the
.clear() member function to bring the stream out of its error state. Note that clear won't skip over the input
that put the stream into an error state; you will need to extract this input manually.

Streams can also go into error states if a read operation fails because no data is available. This occurs
most commonly when reading data from a file. Let's return to the table-printing example. In the
PrintTableData function, we hardcoded the assumption that the file contains exactly four lines of data.

Chapter 3: Streams - 35 -

But what if we want to print out tables of arbitrary length? In that case, we'd need to continuously read
through the file extracting and printing numbers until we exhaust its contents. We can tell when we've run
out of data by checking the .fail() member function after performing a read. If .fail() returns true,
something prevented us from extracting data (either because the file was malformed or because there was
no more data) and we can stop looping.

Recall that the original code for reading data looks like this:

 void PrintTableBody() {
 ifstream input("table-data.txt");

 /* Loop over the lines in the file reading data. */
 for(int k = 0; k < NUM_LINES; ++k) {
 int intValue;
 double doubleValue;
 input >> intValue >> doubleValue;

 cout << setw(COLUMN_WIDTH) << (k + 1) << " | ";
 cout << setw(COLUMN_WIDTH) << intValue << " | ";
 cout << setw(COLUMN_WIDTH) << doubleValue << endl;
 }
 }

The updated version of this code, which reads all of the contents of the file, is shown here:

 void PrintTableBody() {
 ifstream input("table-data.txt");

 /* Loop over the lines in the file reading data. */
 int rowNumber = 0;
 while(true) {
 int intValue;
 double doubleValue;
 input >> intValue >> doubleValue;

 if(input.fail()) break;

 cout << setw(COLUMN_WIDTH) << (rowNumber + 1) << " | ";
 cout << setw(COLUMN_WIDTH) << intValue << " | ";
 cout << setw(COLUMN_WIDTH) << doubleValue << endl;

 rowNumber++;
 }
 }

Notice that we put the main logic into a while(true) loop that breaks when input.fail() returns
true instead of a while(!input.fail()) loop. These two structures may at first appear similar, but are
quite different from one another. In a while(!input.fail()) loop, we only check to see if the stream
encountered an error after reading and processing the data in the body of the loop. This means that the
loop will execute once more than it should, because we don't notice that the stream malfunctioned until
the top of the loop. On the other hand, in the above loop structure (while(true) plus break), we stop
looping as soon as the stream realizes that something has gone awry. Confusing these two loop structures
is a common error, so be sure that you understand why to use the “loop-and-a-half” idiom rather than a
simple while loop.

- 36 - Chapter 3: Streams

A Useful Shorthand

In the above code, we used the loop-and-a-half idiom to determine whether we should continue reading
and printing data out of the file or whether we should stop looping. The general pattern for this idiom is
as follows:

 while(true) {
 int intValue;
 double doubleValue;
 input >> intValue >> doubleValue;

 if(input.fail()) break;

 /* ... process values here ... */
 }

This code is perfectly valid, but it's a bit clunky. The outermost loop is a while(true) loop, which means
“loop forever,” but in reality the idea we want to represent is “loop until there is no more available data.”
The designers of the streams library anticipated this use case and provided a remarkably simple
shorthand to alleviate this complexity. The above code is entirely equivalent to

 int intValue;
 double doubleValue;

 while(input >> intValue >> doubleValue) {
 /* ... process values here ... */
 }

Notice that the condition of the while loop is now input >> intValue >> doubleValue. Recall that in
C++, any nonzero value is interpreted as “true” and any zero value is interpreted as “false.” The streams
library is configured so that most stream operations, including stream insertion and extraction, yield a
nonzero value if the operation succeeds and zero otherwise. This means that code such as the above,
which uses the read operation as the looping condition, is perfectly valid. One particular advantage of this
approach is that while the syntax is considerably more dense, the code is more intuitive. You can read this
while loop as “while I can successfully read data into intValue and doubleValue, continue executing the
loop.” Compared to our original implementation, this is much cleaner.

This syntax shorthand is actually a special case of a more general technique. In any circumstance where a
boolean value is expected, it is legal to place a stream object or a stream read/write operation. We will see
this later in this chapter when we explore the getline function.

When Streams Do Too Much

Consider the following code snippet, which prompts a user for an age and hourly salary:

 int age;
 double hourlyWage;

 cout << "Please enter your age: ";
 cin >> age;

 cout << "Please enter your hourly wage: ";
 cin >> hourlyWage;

Chapter 3: Streams - 37 -

As mentioned above, if the user enters a string or otherwise non-integer value when prompted for their
age, the stream will enter an error state. There is another edge case to consider. Suppose the input is
2.71828. You would expect that, since this isn't an integer (it's a real number), the stream would go into
an error state. However, this isn't what happens. The first call, cin >> age, will set age to 2. The next
call, cin >> hourlyWage, rather than prompting the user for a value, will find the .71828 from the
earlier input and fill in hourlyWage with that information. Despite the fact that the input was malformed
for the first prompt, the stream was able to partially interpret it and no error was signaled.

As if this wasn't bad enough, suppose we have this program instead, which prompts a user for an
administrator password and then asks whether the user wants to format her hard drive:

 string password;
 cout << "Enter administrator password: ";

 cin >> password;
 if(password == "password") { // Use a better password, by the way!
 cout << "Do you want to erase your hard drive (Y or N)? ";

 char yesOrNo;
 cin >> yesOrNo;

 if(yesOrNo == 'y')
 EraseHardDrive();
 }

What happens if someone enters password y? The first call, cin >> password, will read only
password. Once we reach the second cin read, it automatically fills in yesOrNo with the leftover y, and
there goes our hard drive! Clearly this is not what we intended.

As you can see, reading directly from cin is unsafe and poses more problems than it solves. In CS106B/X
we provide you with the simpio.h library primarily so you don't have to deal with these sorts of errors.
In the next section, we'll explore an entirely different way of reading input that avoids the above problems.

An Alternative: getline

Up to this point, we have been reading data using the stream extraction operator, which, as you've seen,
can be dangerous. However, there are other functions that read data from a stream. One of these
functions is getline, which reads characters from a stream until a newline character is encountered, then
stores the read characters (minus the newline) in a string. getline accepts two parameters, a stream to
read from and a string to write to. For example, to read a line of text from the console, you could use this
code:

 string myStr;
 getline(cin, myStr);

No matter how many words or tokens the user types on this line, because getline reads until it
encounters a newline, all of the data will be absorbed and stored in myStr. Moreover, because any data
the user types in can be expressed as a string, unless your input stream encounters a read error, getline
will not put the stream into a fail state. No longer do you need to worry about strange I/O edge cases!

- 38 - Chapter 3: Streams

You may have noticed that the getline function acts similarly to the CS106B/X GetLine function. This is
no coincidence, and in fact the GetLine function from simpio.h is implemented as follows:*

 string GetLine() {
 string result;
 getline(cin, result);
 return result;
 }

At this point, getline may seem like a silver-bullet solution to our input problems. However, getline
has a small problem when mixed with the stream extraction operator. When the user presses return after
entering text in response to a cin prompt, the newline character is stored in the cin internal buffer.
Normally, whenever you try to extract data from a stream using the >> operator, the stream skips over
newline and whitespace characters before reading meaningful data. This means that if you write code like
this:

 int first, second;
 cin >> first;
 cin >> second;

The newline stored in cin after the user enters a value for first is eaten by cin before second is read.
However, if we replace the second call to cin with a call to getline, as shown here:

 int dummyInt;
 string dummyString;
 cin >> dummyInt;
 getline(cin, dummyString);

getline will return an empty string. Why? Unlike the stream extraction operator, getline does not skip
over the whitespace still remaining in the cin stream. Consequently, as soon as getline is called, it will
find the newline remaining from the previous cin statement, assume the user has pressed return, and
return the empty string.

To fix this problem, your best option is to replace all normal stream extraction operations with calls to
library functions like GetInteger and GetLine that accomplish the same thing. Fortunately, with the
information in the next section, you'll be able to write GetInteger and almost any Get____ function
you'd ever need to use. When we cover templates and operator overloading in later chapters, you'll see
how to build a generic read function that can parse any sort of data from the user.

Reading Files with getline

Our treatment of getline so far has only considered using getline to read data from cin, but getline
is in fact much more general and can be used to read data from any stream object, including file streams.
To give a better feel for how the getline function works in practice, let's go over a quick example of how
to use getline to read data from files. In this example, we'll write a program that takes in a data file
containing some useful information and display it in a nice, pretty format. In particular, we'll write a
program that reads a data file called world-capitals.txt containing a list of all the world's countries
and their capitals, then displays them to the user. We will assume that the world-capitals.txt file is
formatted as follows:

* Technically, the implementation of GetLine from simpio.h is slightly different, as it checks to make sure that cin
is not in an error state before reading.

Chapter 3: Streams - 39 -

File: world-capitals.txt
Abu Dhabi
United Arab Emirates
Abuja
Nigeria
Accra
Ghana
Addis Ababa
Ethiopia
...

In this file, every pair of lines represents a capital city and the country of which it is the capital. For
example, the first two lines indicate that Abu Dhabi is the capital of the United Arab Emirates, the second
two that Abuja is the capital of Nigeria, etc. Our goal is to write a program that prints this data in the
following format:

 Abu Dhabi is the capital of United Arab Emirates
 Abuja is the capital of Nigeria
 Accra is the capital of Ghana
 ...

How can we go about writing a program like this? Well, we can start by opening the file and printing an
error if we can't find it:

 int main() {
 ifstream capitals("world-capitals.txt")
 if (!capitals.is_open()) {
 cerr << "Cannot find the file world-capitals.txt" << endl;
 return -1;
 }

 /* ... */
 }

Now, we need to process pairs of lines in the file. Using the concepts from this chapter, we have two
general lines of attack to consider. First, we could use the stream extraction operator >> to read the data
from the file. Second, we could use the getline function to read lines of text from the file. In this
particular circumstance, it is not a particularly good idea to use the stream extraction operator.
Remember that the extraction operator reads data from files one token at a time, rather than one line at a
time. Not all world capitals are a single token long (for example, Abu Dhabi or Addis Ababa) nor are all
countries one token long (for example, United Arab Emirates). If we were to try to read the file data using
the stream extraction operator, we would have no way of knowing when we had read in the complete
name of a capital city or country, and it would be all but impossible to print the data out in a meaningful
format. However, getline does not have this problem, since getline blindly reads lines of text and has
no notion of whitespace-delineated tokens. Thus for this particular program, we'll use the getline
function to read file data.

As with most file reading operations, we will need to keep looping until we've exhausted all of the data in
the file. This can usually be done with the loop-and-a-half idiom. In our case, one possible version of the
code is as follows:

- 40 - Chapter 3: Streams

 int main() {
 ifstream capitals("world-capitals.txt")
 if (!capitals.is_open()) {
 cerr << "Cannot find the file world-capitals.txt" << endl;
 return -1;
 }

 while (true) {
 string capital, country;
 getline(capitals, capital);
 getline(capitals, country);

 if (capitals.fail()) break;

 cout << capital << " is the capital of " << country << endl;
 }
 }

The above code creates two strings, capital and country, and populates them with data from the file. It
then checks whether the read succeeded, and, if so, prints out the formatted data string.

This code is perfectly correct, but it's clunky. The loop-and-a-half idiom is never pretty, and there has to be
a better way to structure this code. Fortunately, there is a wonderful shorthand we can use to condense
this code. Recall that when using the stream extraction operator >>, we could write code to the following
effect to read data from a file and continue looping while the read operation succeeds:

 while (myStream >> myValue) {
 /* ... process myValue here ... */
 }

We can use a similar trick with getline. In particular, the getline function returns a nonzero value if
data can be read from a file and a zero value otherwise. Consequently, we can rewrite the above code as
follows:

 int main()
 {
 ifstream capitals("world-capitals.txt")
 if (!capitals.is_open()) {
 cerr << "Cannot find the file world-capitals.txt" << endl;
 return -1;
 }

 string capital, country;
 while (getline(capitals, capital) && getline(capitals, country))
 cout << capital << " is the capital of " << country << endl;
 }

This code is considerably more concise than our original version and arguably easier to read. The
condition of the while loop now reads “while we can read a line from the file into capital and a line from
the file into country, keep executing the loop.” If you ever find yourself reading a file line-by-line, feel free
to adapt this trick into your own code – you'll save yourself a great deal of typing if you do.

Chapter 3: Streams - 41 -

A String Buffer: stringstream

Before we discuss writing GetInteger, we'll need to take a diversion to another type of C++ stream.

Often you will need to construct a string composed both of plain text and numeric or other data. For
example, suppose you wanted to call this hypothetical function:

 void MessageBoxAlert(string message);

and have it display a message box to the user informing her that the level number she wanted to warp to is
out of bounds. At first thought, you might try something like

 int levelNum = /* ... */;
 MessageBoxAlert("Level " + levelNum + " is out of bounds."); // Error

For those of you with Java experience this might seem natural, but in C++ this isn't legal because you can't
add numbers to strings (and when you can, it's almost certainly won't do what you expected; see the
chapter on C strings).

One solution to this problem is to use another kind of stream object known as a stringstream, exported
by the <sstream> header. Like console streams and file streams, stringstreams are stream objects and
consequently all of the stream operations we've covered above work on stringstreams. However,
instead of reading or writing data to an external source, stringstreams store data in temporary string
buffers. In other words, you can view a stringstream as a way to create and read string data using
stream operations.

For example, here is a code snippet to create a stringstream and put text data into it:

 stringstream myStream;
 myStream << "Hello!" << 137;

Once you've put data into a stringstream, you can retrieve the string you've created using the .str()
member function. Continuing the above example, we can print out an error message as follows:

 int levelNum = /* ... */;
 stringstream messageText;

 messageText << "Level " << levelNum << " is out of bounds.";
 MessageBoxAlert(messageText.str());

stringstreams are an example of an iostream, a stream that can perform both input and output. You
can both insert data into a stringstream to convert the data to a string and extract data from a
stringstream to convert string data into a different format. For example:

 stringstream myConverter;
 int myInt;
 string myString;
 double myDouble;

 myConverter << "137 Hello 2.71828"; // Insert string data
 myConverter >> myInt >> myString >> myDouble; // Extract mixed data

- 42 - Chapter 3: Streams

The standard rules governing stream extraction operators still apply to stringstreams, so if you try to
read data from a stringstream in one format that doesn't match the character data, the stream will fail.
We'll exploit this functionality in the next section.

Putting it all together: Writing GetInteger

Using the techniques we covered in the previous sections, we can implement a set of robust user input
functions along the lines of those provided by simpio.h. In this section we'll explore how to write
GetInteger, which prompts the user to enter an integer and returns only after the user enters valid input.

Recall from the above sections that reading an integer from cin can result in two types of problems. First,
the user could enter something that is not an integer, causing cin to fail. Second, the user could enter too
much input, such as 137 246 or Hello 37, in which case the operation succeeds but leaves extra data in
cin that can garble future reads. We can immediately eliminate these sorts of problems by using the
getline function to read input, since getline cannot put cin into a fail state and grabs all of the user's
data, rather than just the first token.

The main problem with getline is that the input is returned as a string, rather than as formatted data.
Fortunately, using a stringstream, we can convert this text data into another format of our choice. This
suggests an implementation of GetInteger. We read data from the console using getline and funnel it
into a stringstream. We then use standard stream manipulations to extract the integer from the
stringstream, reporting an error and reprompting if unable to do so. We can start writing GetInteger
as follows:

 int GetInteger() {
 while(true) { // Read input until user enters valid data
 stringstream converter;
 converter << GetLine();

 /* Process data here. On error: */
 cout << "Retry: "
 }
 }

At this point, we've read in all of the data we need, and simply need to check that the data is in the proper
format. As mentioned above, there are two sorts of problems we might run into – either the data isn't an
integer, or the data contains leftover information that isn't part of the integer. We need to check for both
cases. Checking for the first turns out to be pretty simple – because stringstreams are stream objects,
we can see if the data isn't an integer by extracting an integer from our stringstream and checking if this
puts the stream into a fail state. If so, we know the data is invalid and can alert the user to this effect.

The updated code for GetInteger is as follows:

Chapter 3: Streams - 43 -

 int GetInteger() {
 while(true) { // Read input until user enters valid data
 stringstream converter;
 converter << GetLine();

 /* Try reading an int, continue if we succeeded. */
 int result;
 if(converter >> result) {
 /* ... check that there isn't any leftover data ... */
 } else
 cout << "Please enter an integer." << endl;

 cout << "Retry: "
 }
 }

Finally, we need to check if there's any extra data left over. If so, we need to report to the user that
something is wrong with the input, and can otherwise return the value we read. While there are several
ways to check this, one simple method is to read in a single char from the stringstream. If it is possible
to do so, then we know that there must have been something in the input stream that wasn't picked up
when we extracted an integer and consequently that the input is bad. Otherwise, the stream must be out
of data and will enter a fail state, signaling that the user's input was valid. The final code for GetInteger,
which uses this trick, is shown here:

 int GetInteger() {
 while(true) { // Read input until user enters valid data
 stringstream converter;
 converter << GetLine();

 /* Try reading an int, continue if we succeeded. */
 int result;
 if(converter >> result) {
 char remaining;
 if(converter >> remaining) // Something's left, input is invalid
 cout << "Unexpected character: " << remaining << endl;
 else
 return result;
 } else
 cout << "Please enter an integer." << endl;

 cout << "Retry: "
 }
 }

- 44 - Chapter 3: Streams

More To Explore

C++ streams are extremely powerful and encompass a huge amount of functionality. While there are many
more facets to explore, I highly recommend exploring some of these topics:

• Random Access: Most of the time, when performing I/O, you will access the data sequentially;
that is, you will read in one piece of data, then the next, etc. However, in some cases you might
know in advance that you want to look up only a certain piece of data in a file without considering
all of the data before it. For example, a ZIP archive containing a directory structure most likely
stores each compressed file at a different offset from the start of the file. Thus, if you wanted to
write a program capable of extracting a single file from the archive, you'd almost certainly need the
ability to jump to arbitrary locations in a file. C++ streams support this functionality with the
seekg, tellg, seekp, and tellp functions (the first two for istreams, the latter for ostreams).
Random access lets you quickly jump to single records in large data blocks and can be useful in
data file design.

• read and write: When you write numeric data to a stream, you're actually converting them into
sequences of characters that represent those numbers. For example, when you print out the four-
byte value 78979871, you're using eight bytes to represent the data on screen or in a file – one for
each character. These extra bytes can quickly add up, and it's actually possible to have on-disk
representations of data that are more than twice as large as the data stored in memory. To get
around this, C++ streams let you directly write data from memory onto disk without any
formatting. All ostreams support a write function that writes unformatted data to a stream, and
istreams support read to read unformatted data from a stream into memory. When used well,
these functions can cut file loading times and reduce disk space usage. For example, The
CS106B/X Lexicon class uses read to quickly load its data file into memory.

Practice Problems

Here are some questions to help you play around with the material from this chapter. Try some of these
out; you'll be a better coder for the effort.

1. How do you write data to a file in C++?

2. What does the setw manipulator do? What does the setfill manipulator do? How do you use
them?

3. What is stream failure? How do you check for it?

4. What is a stringstream?

5. Using a stringstream, write a function that converts an int into a string.

6. Modify the code for GetInteger to create a function GetReal that reads a real number from the
user. How much did you need to modify to make this code work?

7. Using the code for GetInteger and the boolalpha stream manipulator, write a function
GetBoolean that waits for the user to enter “true” or “false” and returns the corresponding
boolean value.

Chapter 3: Streams - 45 -

8. In common usage, numbers are written in decimal or base 10. This means that a string of digits is
interpreted as a sum of multiples of powers of ten. For example, the number 137 is 1·100 + 3·10 +
7·1, which is the same as 1·102 + 3·101 + 7·100. However, it is possible to write numbers in other
bases as well. For example, octal, or base 8, encodes numbers as sums of multiples of powers of
eight. For example, 137 in octal would be 1·82 + 3·81 + 7·80 = 64 + 24 + 7 = 95 in decimal.*
Similarly, binary, or base 2, uses powers of two.

When working in a particular base, we only use digits from 0 up to that base. Thus in base 10 we
use the digits zero through nine, while in base five the only digits would be 0, 1, 2, 3, and 4. This
means that 57 is not a valid base-five number and 93 is not a valid octal number. When working in
bases numbered higher than ten, it is customary to use letters from the beginning of the alphabet
as digits. For example, in hexadecimal, or base 16, one counts 0, 1, 2, ..., 9, A, B, C, D, E, F, 10. This
means that 3D45E is a valid hexadecimal number, as is DEADBEEF or DEFACED.

Write a function HasHexLetters that accepts an int and returns whether or not that integer's
hexadecimal representation contains letters. (Hint: you'll need to use the hex and dec stream
manipulators in conjunction with a stringstream. Try to solve this problem without brute-forcing
it: leverage off the streams library instead of using loops.) ♦

9. Although the console does not naturally lend itself to graphics programming, it is possible to draw
rudimentary approximations of polygons by printing out multiple copies of a character at the
proper location. For example, we can draw a triangle by drawing a single character on one line,
then three on the next, five on the line after that, etc. For example:

 #
 ###
 #####
 #######
 #########

Using the setw and setfill stream manipulators, write a function DrawTriangle that takes in
an int corresponding to the height of the triangle and a char representing a character to print,
then draws a triangle of the specified height using that character. The triangle should be aligned so
that the bottom row starts at the beginning of its line.

10. Write a function OpenFile that accepts as input an ifstream by reference and prompts the user
for the name of a file. If the file can be found, OpenFile should return with the ifstream opened
to read that file. Otherwise, OpenFile should print an error message and reprompt the user.
(Hint: If you try to open a nonexistent file with an ifstream, the stream goes into a fail state and you
will need to use .clear() to restore it before trying again).

* Why do programmers always confuse Halloween and Christmas? Because 31 Oct = 25 Dec. ☺

Chapter 4: Multi-File Programs, Abstraction, and the Preprocessor

All of the programs we saw in the previous chapter were fairly short – the most complex of them ran at
just under one hundred lines of code. In industrial settings, though, programs are far bigger, and in fact it
is common for programs to be tens of millions of lines of code. When code becomes this long, it is simply
infeasible to store all of the source code in a single file. Were all the code to be stored in a single file, it
would be next to impossible to find a particular function or constant declaration, and it would be
incredibly difficult to discern any of the high-level structure of the program. Consequently, most large
programs are split across multiple files.

When splitting a program into multiple files, there are many considerations to take into account. First,
what support does C++ have for partitioning a program across multiple files? That is, how do we
communicate to the C++ compiler that several source files are all part of the same program? Second, what
is the best way to logically partition the program into multiple files? In other words, of all of the many
ways we could break the program apart, which is the most sensible?

In this chapter, we will address these questions, plus several related problems that arise. First, we will talk
about the C++ compilation model – the way that C++ source files are compiled and linked together. Next,
we will explore the most common means for splitting a project across files by seeing how to write custom
header and implementation files. Finally, we will see how header files work by discussing the
preprocessor, a program that assists the compiler in generating C++ code.

The C++ Compilation Model

C++ is a compiled language, meaning that before a C++ program executes, a special program called the
compiler converts the C++ program directly to machine code. Once the program is compiled, the resulting
executable can be run any number of times, even if the source code is nowhere to be found.

C++ compilation is a fairly complex process that involves numerous small steps. However, it can generally
be broken down into three larger processes:

• Preprocessing, in which code segments are spliced and inserted,
• Compilation, in which code is converted to object code, and
• Linking, in which compiled code is joined together into a final executable.

During the preprocessing step, a special program called the preprocessor scans over the C++ source code
and applies various transformations to it. For example, #include directives are resolved to make various
libraries available, special tokens like __FILE__ and __LINE__ (covered later) are replaced by the file and
line number in the source file, and #define-d constants and macros (also covered later) are replaced by
their appropriate values.

In the compilation step, the C++ source file is read in by the compiler, optimized, and transformed into an
object file. These object files are machine-specific, but usually contain machine code which executes the
instructions specified in the C++ file, along with some extra information. It's at this stage where the
compiler will report any syntax errors you make, such as omitting semicolons, referencing undefined
variables, or passing arguments of the wrong types into functions.

Finally, in the linking phase, a program called the linker gathers together all of the object files necessary to
build the final executable, bundles them together with OS-specific information, and finally produces an

- 48 - Chapter 4: Multi-File Programs, Abstraction, and the Preprocessor

executable file that you can run and distribute. During this phase, the linker may report some final errors
that prevent it from generating a working C++ program. For example, consider the following C++
program:

 #include <iostream>
 using namespace std;

 int Factorial(int n); // Prototype for a function to compute n!

 int main() {
 cout << Factorial(10) << endl;
 return 0;
 }

This program prototypes a function called Factorial, calls it in main, but never actually defines it.
Consequently, this program is erroneous and will not run. However, the error is not detected by the
compiler; rather, it shows up as a linker error. During linking, the linker checks to see that every function
that was prototyped and called has a corresponding implementation. If it finds that some function has no
implementation, it reports an error. In order to understand why this is, consider the following diagram,
which portrays the relationships between the three main phases of compilation:

C++

1101110010
1110111100

Preprocessor

Compiler

C++

1101110010
1110111100

Preprocessor

Compiler

C++

1101110010
1110111100

Preprocessor

Compiler

C++

1101110010
1110111100

Preprocessor

Compiler

Linker

Executable
Program

Notice that during compilation, each C++ source file is treated independently the others, but during linking
all of the files are glued together. Consequently, it's possible (and, in fact, extremely common) for a
function to be prototyped in one C++ file but implemented in another. For this reason, if the compiler sees a
prototype for a function but no implementation, it doesn't report an error – the definition might just be in
a different file it hasn't seen yet. Only when all of the files are pulled together by the linker is there an
opportunity to check that all of the prototyped functions have some sort of implementation.

What does this mean for you as a C++ programmer? In practice, this distinction usually only manifests
itself in the types of error messages you may get compilation. In particular, a program may compile
perfectly well but fail to link because you prototyped a function that was never defined. Understanding
the source of these errors and why they are reported during linking will help you diagnose these errors
more handily.

Chapter 4: Multi-File Programs, Abstraction, and the Preprocessor - 49 -

As an example, consider the following C++ program, which contains a subtle error:

 #include <iostream>
 #include <string>
 #include <cctype> // For tolower
 using namespace std;

 /* Prototype a function called ConvertToLowerCase, which returns a lower-case
 * version of the input string.
 */
 string ConvertToLowerCase(string input);

 int main() {
 string myString = "THIS IS A STRING!";
 cout << ConvertToLowerCase(myString);
 }

 /* Implementation of ConvertToLowerCase. */
 string ConvertToLowerCase(string& input) { // Error: Doesn't link; see below
 for (int k = 0; k < input.size(); ++k)
 input[k] = tolower(input[k]); // tolower converts a char to lower-case

 return input;
 }

If you compile this program in g++, the program compiles but the linker will produce this mysterious
error:

main.cpp:(.text+0x14d): undefined reference to
 `ConvertToLowerCase(std::basic_string<char, std::char_traits<char>,
 std::allocator<char> >)'

If you compile this program in Microsoft Visual Studio 2005, it will similarly compile and produce this
monstrosity of an error:

error LNK2019: unresolved external symbol "class std::basic_string<char,struct
 std::char_traits<char>,class std::allocator<char> > __cdecl
 ConvertToLowerCase(class std::basic_string<char,struct
 std::char_traits<char>,class std::allocator<char> >)"
 (?ConvertToLowerCase@@YA?AV?$
 basic_string@DU?$char_traits@D@std@@V?$allocator@D@2@@std@@V12@@Z) referenced
 in function _main

What's going on here? This error is tricky to decipher, but as you can see from the highlighting has
something to do with ConvertToLowerCase. Let's try to see if we can get to the root of the problem.
Since this is a linker error, we can immediately rule out any sort of syntax error. If we had made a
syntactic mistake, the compiler, not the linker, would have caught it. Moreover, since this is a linker error, it
means that we somehow prototyped a function that we never got around to implementing. This seems
strange though – we prototyped the function ConvertToLowerCase and it seems like we implemented it
later on in the program. The problem, though, is that the function we implemented doesn't match the
prototype. Here are the prototype and the implementation, reprinted right next to each other:

- 50 - Chapter 4: Multi-File Programs, Abstraction, and the Preprocessor

 string ConvertToLowerCase(string input); // Prototype

 string ConvertToLowerCase(string& input) { // Implementation
 for (int k = 0; k < input.size(); ++k)
 input[k] = tolower(input[k]); // tolower converts a char to lower-case

 return input;
 }

Notice that the function we've prototyped takes in a string as a parameter, while the implementation
takes in a string&. That is, the prototype takes its argument by value, and the implementation by
reference. Because these are different parameter-passing schemes, the compiler treats the
implementation as a completely different function than the one we've prototyped. Consequently, during
linking, the linker can't locate an implementation of the prototyped function, which takes in a string by
value. Although the functions have the same name, their signatures are different, and they are treated as
entirely different entities.

To fix this problem, we must either update the prototype to match the implementation or the
implementation to match the prototype. In this case, we'll change the implementation so that it no longer
takes in the parameter by reference. This results in the following program, which compiles and links
without error:

 #include <iostream>
 #include <string>
 #include <cctype> // For tolower
 using namespace std;

 /* Prototype a function called ConvertToLowerCase, which returns a lower-case
 * version of the input string.
 */
 string ConvertToLowerCase(string input);

 int main() {
 string myString = "THIS IS A STRING!";
 cout << ConvertToLowerCase(myString);
 }

 /* Implementation of ConvertToLowerCase. */
 string ConvertToLowerCase(string input) { // Now corrected.
 for (int k = 0; k < input.size(); ++k)
 input[k] = tolower(input[k]); // tolower converts a char to lower-case

 return input;
 }

Running this program produces the output

 this is a string!

If you ever write a program and discover that it produces a linker error, always check to make sure that
you've implemented all functions you've prototyped and that those implementations match the
prototypes. Otherwise, you might be directing your efforts toward catching a nonexistent syntax error.

Modularity and Abstraction

Chapter 4: Multi-File Programs, Abstraction, and the Preprocessor - 51 -

Because compilation and linking are separate steps in C++, it is possible to split up a C++ program across
multiple files. To do so, we must first answer two questions:

1. How do you split a program up? That is, syntactically, how do you communicate to the C++
compiler that you want to build a single program from a collection of files?

2. What is the best way to split a program up? In other words, given how a single C++ program
can be built from many files, what is the best way to logically partition the program code across
those files?

To answer these questions, we first must take a minute to reflect on the structure of most C++ programs. *
When writing a C++ program to perform a particular task or solve a particular problem, one usually begins
by starting with a large, difficult problem and then solves that problem by breaking it down into smaller
and smaller pieces. For example, suppose we want to write a program that allows the user to send and
receive emails. Initially, we can think of this as one, enormous task:

Send/Receive
Email

How might we go about building such a program? Well, we might begin by realizing that to write an email
client, we will need to be able to communicate over a network, since we'll be transmitting and receiving
data. Also, we will need some way to store the emails we've received on the user's hard disk so that she
can read messages while offline. We'll also need to be able to display graphics contained in those emails,
as well as create windows for displaying content. Each one of these tasks is itself a fairly complex problem
which needs to be solved, and so if we rethink our strategy for writing the email client, we might be able to
visualize it as follows:

Send/Receive
Email

Networking Graphics Storage

Of course, these tasks in of themselves might have some related subproblems. For example, when reading
and writing from disk, we will need some tools to allow us to read and write general data from disk,
another set of libraries to structure the data stored on disk, another to recover gracefully from errors, etc.
Here is one possible way of breaking each of the subproblems down into smaller units:

* In fact, programs in virtually any language will have the structure we're about to describe.

- 52 - Chapter 4: Multi-File Programs, Abstraction, and the Preprocessor

Send/Receive
Email

Networking Graphics Storage

TCP/IP UDP Window
Mgmt User Input Disk

Storage
Error

Recovery

In general, we write programs to solve large, complicated tasks by breaking the task down into
successively smaller and smaller pieces, then combining all of those pieces back together into a coherent
whole.* When using this setup, though, one must be extremely careful. Refer to the above diagram and
notice that the abstract problem at the top depends directly on three subproblems. Each of those
subproblems depends in turn on even more subproblems, etc. If the top-level program needed to explicitly
know how each of these sub-subproblems were to work, it would be all but impossible to write. A
programmer tasked with designing the email program shouldn't have to understand exactly how the
networking module works, but should instead only need to know how to use it. Similarly, in order to use
the windowing module, the programmer shouldn't have to understand all of its internal workings.

In order for each part of the program to use its subcomponents without getting overwhelmed by
complexity, there must be some way to separate out how each subproblem is solved from the way that
each subproblem is used. For example, think back to the streams library from the previous chapter. As you
saw, you can use the ifstream and ofstream classes to read and write files. But how exactly are
ifstream and ofstream put together behind the scenes? Internally, these classes are incredibly
complicated and are composed of numerous different pieces of C++ code that fit together in intricate ways.
From your perspective, though, all of this detail is irrelevant; you only care about how you use these
stream classes to do input and output.

This distinction between the inner workings of a module (a collection of source code that solves a
problem) and the way in which a client use it is an example of abstraction. An abstraction is a
simplification of a complex object – whether physical or in software – that allows it to be used without an
understanding of its underlying mechanism. For example, the iPhone is an incredibly complex piece of
hardware with billions of transistors and gates. Even the simplest of tasks, such as making a phone call or
sending email, triggers a flurry of electrical activity in the underlying device. But despite the
implementation complexity, the iPhone is incredibly easy to use because the interface works at a high
level, with tasks like “send text message” or “play music.” In other words, the complexity of the
implementation is hidden behind a very simple interface.

When designing software, you should strive to structure your software in a similar manner. Whenever you
write code to solve a particular task, you should try to package that code so that it communicates
primarily what it does, rather than how it does it. This has several advantages:

* For those of you familiar with recursion, you might recognize that this general structure follows a simple
recursive formulation: if the problem is simple enough, solve it; otherwise break it down into smaller pieces, solve
those pieces, and then glue them all together again.

Chapter 4: Multi-File Programs, Abstraction, and the Preprocessor - 53 -

• Simplicity. If you package your code by giving it a simple interface, you make it easier for yourself
and other programmers to use. Moreover, if you take a break from a project and then return to it
later, it is significantly easier to resume if the interface clearly communicates its intention.

• Extensibility. If you design a simple, elegant interface, then you can change the implementation as
the program evolves over time without breaking client code. We'll see examples of this later in the
chapter.

• Reusability. If your interface is sufficiently generic, then you may be able to reuse the code you've
written in multiple projects. As an example, the streams library is sufficiently flexible that you can
use it to write both a simple “Hello, World!” and a complex program with detailed file-processing
requirements.

A Sample Module: String Utilities

To give you a sense for how interfaces and implementations look in software, let's take a quick diversion to
build a sample C++ module to simplify common string operations. In particular, we'll write a collection of
functions that simplify conversion of several common types to strings and vice-versa, along with
conversions to lower- and upper-case.*

In C++, to create a module, we create two files – a header file saying what functions and classes a module
exports, and an implementation file containing the implementations of those functions and classes. Header
files usually have the extension .h, though the extension .hh is also sometimes used. Implementation files
are regular C++ files, so they often use the extensions .cpp, .cc, or (occasionally) .C or .cpp. Traditionally, a
header file and its associated implementation file will have the same name, ignoring the extension. For
example, in our string processing library, we might name the header file strutils.h and the
implementation file strutils.cpp.

To give you a sense for what a header file looks like, consider the following code for strutils.h:

File: strutils.h
#ifndef StrUtils_Included
#define StrUtils_Included

#include <string>
using namespace std;

string ConvertToUpperCase(string input);
string ConvertToLowerCase(string input);

string IntegerToString(int value);
string DoubleToString(double value);

#endif

Notice that the highlighted part of this file looks just like a regular C++ file. There's a #include directive
to import the string type, followed by several prototypes for functions. However, none of these functions
are implemented – the purpose of this file is simply to say what the module exports, not to provide the
implementations of those functions.

However, this header file contains some code that you have not yet seen in C++ programs: the lines

* In other words, we'll be writing the strutils.h library from CS106B/X.

- 54 - Chapter 4: Multi-File Programs, Abstraction, and the Preprocessor

 #ifndef StrUtils_Included
 #define StrUtils_Included

and the line

 #endif

These lines are called an include guard. Later in this chapter, we will see exactly why they are necessary
and how they work. In the meantime, though, you should note that whenever you create a header file, you
should surround that file using an include guard. There are many ways to write include guards, but one
simple approach is as follows. When creating a file named file.h, you should surround the file with the
lines

 #ifndef File_Included
 #define File_Included

 #endif

Now that you've seen how to write a header file, let's write the matching implementation file. This is
shown here:

File: strutils.cpp
#include "strutils.h"
#include <cctype> // For tolower, toupper
#include <sstream> // For stringstream

string ConvertToUpperCase(string input) {
 for (size_t k = 0; k < input.size(); ++k)
 input[k] = toupper(input[k]);
 return input;
}

string ConvertToUpperCase(string input) {
 for (size_t k = 0; k < input.size(); ++k)
 input[k] = toupper(input[k]);
 return input;
}

string IntegerToString(int input) {
 stringstream converter;
 converter << input;
 return converter.str();
}

string DoubleToString(double input) {
 stringstream converter;
 converter << input;
 return converter.str();
}

This C++ source file does not contain any new language constructs – it's just your standard, run-of-the-mill
C++ file. However, do note that it provides an implementation of every file exported in the header file.
Moreover, the file begins with the line

 #include "strutils.h"

Chapter 4: Multi-File Programs, Abstraction, and the Preprocessor - 55 -

Traditionally, an implementation file #includes its corresponding header file. When we discuss the
preprocessor in the latter half of this chapter, the rationale behind this should become more clear.

Now that we've written the strutils.h/.cpp pair, we can use these functions in other C++ source files.
For example, consider the following simple C++ program:

 #include <iostream>
 #include <string>
 #include "strutils.h"
 using namespace std;

 int main() {
 cout << ConvertToLowerCase("THIS IS A STRING!");
 return 0;
 }

This program produces the output

 this is a string!

Notice that nowhere in this file did we implement or define the ConvertToLowerCase function. It suffices
to #include "strutils.h" to gain access to this functionality.

Behind the Curtain: The Preprocessor

One of the most exciting parts of writing a C++ program is pressing the “compile” button and watching as
your code transforms from static text into dynamic software. As mentioned earlier, this process proceeds
in several steps. One of the first of these steps is preprocessing, where a special program called the
preprocessor reads in commands called directives and modifies your code before handing it off to the
compiler for further analysis. You have already seen one of the more common preprocessor directives,
#include, which imports additional code into your program. However, the preprocessor has far more
functionality and is capable of working absolute wonders on your code. But while the preprocessor is
powerful, it is difficult to use correctly and can lead to subtle and complex bugs. The rest of this chapter
introduces the preprocessor, highlights potential sources of error, and concludes with advanced
preprocessor techniques.

A word of warning: the preprocessor was developed in the early days of the C programming language,
before many of the more modern constructs of C and C++ had been developed. Since then, both C and C++
have introduced new language features that have obsoleted or superseded much of the preprocessor's
functionality and consequently you should attempt to minimize your use of the preprocessor. This is not
to say, of course, that you should never use the preprocessor – there are times when it's an excellent tool
for the job, as you'll see later in the chapter – but do consider other options before adding a hastily-crafted
directive.

#include Explained

In both CS106B/X and CS106L, every program you've encountered has begun with several lines using the
#include directive; for example, #include <iostream> or #include "genlib.h". Intuitively, these
directives tell the preprocessor to import library code into your programs. Literally, #include instructs
the preprocessor to locate the specified file and to insert its contents in place of the directive itself. Thus,
when you write #include "genlib.h" at the top of your CS106B/X assignments, it is as if you had
copied and pasted the contents of genlib.h into your source file. These header files usually contain

- 56 - Chapter 4: Multi-File Programs, Abstraction, and the Preprocessor

prototypes or implementations of the functions and classes they export, which is why the directive is
necessary to access other libraries.

Chapter 4: Multi-File Programs, Abstraction, and the Preprocessor - 57 -

You may have noticed that when #include-ing CS106B/X-specific libraries, you've surrounded the name
of the file in double quotes (e.g. "genlib.h"), but when referencing C++ standard library components,
you surround the header in angle brackets (e.g. <iostream>). These two different forms of #include
instruct the preprocessor where to look for the specified file. If a filename is surrounded in angle brackets,
the preprocessor searches for it a compiler-specific directory containing C++ standard library files. When
filenames are in quotes, the preprocessor will look in the current directory.

#include is a preprocessor directive, not a C++ statement, and is subject to a different set of syntax
restrictions than normal C++ code. For example, to use #include (or any preprocessor directive, for that
matter), the directive must be the first non-whitespace text on its line. For example, the following is
illegal:

 cout << #include <iostream> << endl; // Error: #include must start a line.

Second, because #include is a preprocessor directive, not a C++ statement, it must not end with a
semicolon. That is, #include <iostream>; will probably cause a compiler error or warning. Finally, the
entire #include directive must appear on a single line, so the following code will not compile:

 #include
 <iostream> // Error: Multi-line preprocessor directives are illegal.

The #define Directive

One of the most commonly used (and abused) preprocessor directives is #define, the equivalent of a
“search and replace” operation on your C++ source files. While #include splices new text into an existing
C++ source file, #define replaces certain text strings in your C++ file with other values. The syntax for
#define is

 #define phrase replacement

After encountering a #define directive, whenever the preprocessor find phrase in your source code, it
will replace it with replacement. For example, consider the following program:

 #define MY_CONSTANT 137

 int main() {
 int x = MY_CONSTANT - 3;
 return 0;
 }

The first line of this program tells the preprocessor to replace all instances of MY_CONSTANT with the
phrase 137. Consequently, when the preprocessor encounters the line

 int x = MY_CONSTANT - 3;

It will transform it to read

 int x = 137 - 3;

So x will take the value 134.

- 58 - Chapter 4: Multi-File Programs, Abstraction, and the Preprocessor

Because #define is a preprocessor directive and not a C++ statement, its syntax can be confusing. For
example, #define determines the stop of the phrase portion of the statement and the start of the
replacement portion by the position of the first whitespace character. Thus, if you write

 #define TWO WORDS 137

The preprocessor will interpret this as a directive to replace the phrase TWO with WORDS 137, which is
probably not what you intended. The replacement portion of the #define directive consists of all text
after phrase that precedes the newline character. Consequently, it is legal to write statements of the form
#define phrase without defining a replacement. In that case, when the preprocessor encounters the
specified phrase in your code, it will replace it with nothingness, effectively removing it.

Note that the preprocessor treats C++ source code as sequences of strings, rather than representations of
higher-level C++ constructs. For example, the preprocessor treats int x = 137 as the strings “int,” “x,”
“=,” and “137” rather than a statement creating a variable x with value 137.* It may help to think of the
preprocessor as a scanner that can read strings and recognize characters but which has no understanding
whatsoever of their meanings, much in the same way a native English speaker might be able to split Czech
text into individual words without comprehending the source material.

That the preprocessor works with text strings rather than language concepts is a source of potential
problems. For example, consider the following #define statements, which define margins on a page:

 #define LEFT_MARGIN 100
 #define RIGHT_MARGIN 100
 #define SCALE .5

 /* Total margin is the sum of the left and right margins, multiplied by some
 * scaling factor.
 */
 #define TOTAL_MARGIN LEFT_MARGIN * SCALE + RIGHT_MARGIN * SCALE

What happens if we write the following code?

 int x = 2 * TOTAL_MARGIN;

Intuitively, this should set x to twice the value of TOTAL_MARGIN, but unfortunately this is not the case.
Let's trace through how the preprocessor will expand out this expression. First, the preprocessor will
expand TOTAL_MARGIN to LEFT_MARGIN * SCALE + RIGHT_MARGIN * SCALE, as shown here:

 int x = 2 * LEFT_MARGIN * SCALE + RIGHT_MARGIN * SCALE;

Initially, this may seem correct, but look closely at the operator precedence. C++ interprets this statement
as

 int x = (2 * LEFT_MARGIN * SCALE) + RIGHT_MARGIN * SCALE;

Rather the expected

 int x = 2 * (LEFT_MARGIN * SCALE + RIGHT_MARGIN * SCALE);

* Technically speaking, the preprocessor operates on “preprocessor tokens,” which are slightly different from the
whitespace-differentiated pieces of your code. For example, the preprocessor treats string literals containing
whitespace as a single object rather than as a collection of smaller pieces.

Chapter 4: Multi-File Programs, Abstraction, and the Preprocessor - 59 -

And the computation will be incorrect. The problem is that the preprocessor treats the replacement for
TOTAL_MARGIN as a string, not a mathematical expression, and has no concept of operator precedence.
This sort of error – where a #defined constant does not interact properly with arithmetic expressions – is
a common mistake. Fortunately, we can easily correct this error by adding additional parentheses to our
#define. Let's rewrite the #define statement as

 #define TOTAL_MARGIN (LEFT_MARGIN * SCALE + RIGHT_MARGIN * SCALE)

We've surrounded the replacement phrase with parentheses, meaning that any arithmetic operators
applied to the expression will treat the replacement string as a single mathematical value. Now, if we
write

 int x = 2 * TOTAL_MARGIN;

It expands out to

 int x = 2 * (LEFT_MARGIN * SCALE + RIGHT_MARGIN * SCALE);

Which is the computation we want. In general, if you #define a constant in terms of an expression
applied to other #defined constants, make sure to surround the resulting expression in parentheses.

Although this expression is certainly more correct than the previous one, it too has its problems. What if
we redefine LEFT_MARGIN as shown below?

 #define LEFT_MARGIN 200 – 100

Now, if we write

 int x = 2 * TOTAL_MARGIN

It will expand out to

 int x = 2 * (LEFT_MARGIN * SCALE + RIGHT_MARGIN * SCALE);

Which in turn expands to

 int x = 2 * (200 – 100 * .5 + 100 * .5)

Which yields the incorrect result because (200 – 100 * .5 + 100 * .5) is interpreted as

 (200 – (100 * .5) + 100 * .5)

Rather than the expected

 ((200 – 100) * .5 + 100 * .5)

The problem is that the #defined statement itself has an operator precedence error. As with last time, to
fix this, we'll add some additional parentheses to the expression to yield

 #define TOTAL_MARGIN ((LEFT_MARGIN) * (SCALE) + (RIGHT_MARGIN) * (SCALE))

This corrects the problem by ensuring that each #defined subexpression is treated as a complete entity
when used in arithmetic expressions. When writing a #define expression in terms of other #defines,

- 60 - Chapter 4: Multi-File Programs, Abstraction, and the Preprocessor

make sure that you take this into account, or chances are that your constant will not have the correct
value.

Another potential source of error with #define concerns the use of semicolons. If you terminate a
#define statement with a semicolon, the preprocessor will treat the semicolon as part of the replacement
phrase, rather than as an “end of statement” declaration. In some cases, this may be what you want, but
most of the time it just leads to frustrating debugging errors. For example, consider the following code
snippet:

 #define MY_CONSTANT 137; // Oops-- unwanted semicolon!

 int x = MY_CONSTANT * 3;

During preprocessing, the preprocessor will convert the line int x = MY_CONSTANT * 3 to read

 int x = 137; * 3;

This is not legal C++ code and will cause a compile-time error. However, because the problem is in the
preprocessed code, rather than the original C++ code, it may be difficult to track down the source of the
error. Almost all C++ compilers will give you an error about the statement * 3 rather than a malformed
#define.

As you can tell, using #define to define constants can lead to subtle and difficult-to-track bugs.
Consequently, it's strongly preferred that you define constants using the const keyword. For example,
consider the following const declarations:

 const int LEFT_MARGIN = 200 - 100;
 const int RIGHT_MARGIN = 100;
 const int SCALE = .5;
 const int TOTAL_MARGIN = LEFT_MARGIN * SCALE + RIGHT_MARGIN * SCALE;
 int x = 2 * TOTAL_MARGIN;

Even though we've used mathematical expressions inside the const declarations, this code will work as
expected because it is interpreted by the C++ compiler rather than the preprocessor. Since the compiler
understands the meaning of the symbols 200 – 100, rather than just the characters themselves, you will
not need to worry about strange operator precedence bugs.

Include Guards Explained

Earlier in this chapter when we covered header files, you saw that when creating a header file, you should
surround the header file using an include guard. What is the purpose of the include guard? And how does
it work? To answer this question, let's see what happens when a header file lacks an include guard.

Suppose we make the following header file, mystruct.h, which defines a struct called MyStruct:

File: mystruct.h
struct MyStruct {
 int x;
 double y;
 char z;
};

What happens when we try to compile the following program?

Chapter 4: Multi-File Programs, Abstraction, and the Preprocessor - 61 -

 #include "mystruct.h"
 #include "mystruct.h" // #include the same file twice

 int main() {
 return 0;
 }

This code looks innocuous, but produces a compile-time error complaining about a redefinition of struct
MyStruct. The reason is simple – when the preprocessor encounters each #include statement, it copies
the contents of mystruct.h into the program without checking whether or not it has already included the
file. Consequently, it will copy the contents of mystruct.h into the code twice, and the resulting code
looks like this:

 struct MyStruct {
 int x;
 double y;
 char z;
 };
 struct MyStruct {// <-- Error occurs here
 int x;
 double y;
 char z;
 };

 int main() {
 return 0;
 }

The indicated line is the source of our compiler error – we've doubly-defined struct MyStruct. To solve
this problem, you might think that we should simply have a policy of not #include-ing the same file twice.
In principle this may seem easy, but in a large project where several files each #include each other, it may
be possible for a file to indirectly #include the same file twice. Somehow, we need to prevent this
problem from happening.

The problem we're running into stems from the fact that the preprocessor has no memory about what it
has done in the past. Somehow, we need to give the preprocessor instructions of the form “if you haven't
already done so, #include the contents of this file.” For situations like these, the preprocessor supports
conditional expressions. Just as a C++ program can use if ... else if ... else to change program flow
based on variables, the preprocessor can use a set of preprocessor directives to conditionally include a
section of code based on #defined values.

There are several conditional structures built into the preprocessor, the most versatile of which are #if,
#elif, #else, and #endif. As you might expect, you use these directives according to the pattern

 #if statement
 ...
 #elif another-statement
 ...
 #elif yet-another-statement
 ...
 #else
 ...
 #endif

There are two details we need to consider here. First, what sorts of expressions can these preprocessor
directives evaluate? Because the preprocessor operates before the rest of the code has been compiled,

- 62 - Chapter 4: Multi-File Programs, Abstraction, and the Preprocessor

preprocessor directives can only refer to #defined constants, integer values, and arithmetic and logical
expressions of those values. Here are some examples, supposing that some constant MY_CONSTANT is
defined to 42:

 #if MY_CONSTANT > 137 // Legal
 #if MY_CONSTANT * 42 == MY_CONSTANT // Legal
 #if sqrt(MY_CONSTANT) < 4 // Illegal, cannot call function sqrt
 #if MY_CONSTANT == 3.14 // Illegal, can only use integral values

In addition to the above expressions, you can use the defined predicate, which takes as a parameter the
name of a value that may have previously been #defined. If the constant has been #defined, defined
evaluates to 1; otherwise it evaluates to 0. For example, if MY_CONSTANT has been previously #defined
and OTHER_CONSTANT has not, then the following expressions are all legal:

 #if defined(MY_CONSTANT) // Evaluates to true.
 #if defined(OTHER_CONSTANT) // Evaluates to false.
 #if !defined(MY_CONSTANT) // Evaluates to false.

Now that we've seen what sorts of expressions we can use in preprocessor conditional expressions, what
is the effect of these constructs? Unlike regular if statements, which change control flow at execution,
preprocessor conditional expressions determine whether pieces of code are included in the resulting
source file. For example, consider the following code:

 #if defined(A)
 cout << "A is defined." << endl;
 #elif defined(B)
 cout << "B is defined." << endl;
 #elif defined(C)
 cout << "C is defined." << endl;
 #else
 cout << "None of A, B, or C is defined." << endl;
 #endif

Here, when the preprocessor encounters these directives, whichever of the conditional expressions
evaluates to true will have its corresponding code block included in the final program, and the rest will be
ignored. For example, if A is defined, this entire code block will reduce down to

 cout << "A is defined." << endl;

And the rest of the code will be ignored.

One interesting use of the #if ... #endif construct is to comment out blocks of code. Since C++
interprets all nonzero values as true and zero as false, surrounding a block of code in a #if 0 ... #endif
block causes the preprocessor to eliminate that block. Moreover, unlike the traditional /* ... */ comment
type, preprocessor directives can be nested, so removing a block of code using #if 0 ... #endif doesn't
run into the same problems as commenting the code out with /* ... */.

In addition to the above conditional directives, C++ provides two shorthand directives, #ifdef and
#ifndef. #ifdef (if defined) is a directive that takes as an argument a symbol and evaluates to true if the
symbol has been #defined. Thus the directive #ifdef symbol is completely equivalent to
#if defined(symbol). C++ also provides #ifndef (if not defined), which acts as the opposite of
#ifdef; #ifndef symbol is equivalent to #if !defined(symbol). Although these directives are
strictly weaker than the more generic #if, it is far more common in practice to see #ifdef and #ifndef
rather than #if defined and #if !defined, primarily because they are more concise.

Chapter 4: Multi-File Programs, Abstraction, and the Preprocessor - 63 -

Using the conditional preprocessor directives, we can solve the problem of double-including header files.
Let's return to our example with #include "mystruct .h" appearing twice in one file. Here is a slightly
modified version of the mystruct.h file that introduces some conditional directives:

File: mystruct.h (version 2)
#ifndef MyStruct_Included
#define MyStruct_Included

struct MyStruct {
 int x;
 double y;
 char z;
};

#endif

Here, we've surrounded the entire file in a block #ifndef MyStruct_Included ... #endif. The specific
name MyFile_Included is not particularly important, other than the fact that it is unique to the
myfile.h file. We could have just as easily chosen something like #ifndef sdf39527dkb2 or another
unique name, but the custom is to choose a name determined by the file name. Immediately after this
#ifndef statement, we #define the constant we are considering inside the #ifndef. To see exactly what
effect this has on the code, let's return to our original source file, reprinted below:

 #include "mystruct.h"
 #include "mystruct.h" // #include the same file twice

 int main() {
 return 0;
 }

With the modified version of mystruct.h, this code expands out to

 #ifndef MyStruct_Included
 #define MyStruct_Included

 struct MyStruct {
 int x;
 double y;
 char z;
 };

 #endif
 #ifndef MyStruct_Included
 #define MyStruct_Included

 struct MyStruct {
 int x;
 double y;
 char z;
 };

 #endif
 int main() {
 return 0;
 }

- 64 - Chapter 4: Multi-File Programs, Abstraction, and the Preprocessor

Now, as the preprocessor begins evaluating the #ifndef statements, the first #ifndef ... #endif block
from the header file will be included since the constant MyStruct_Included hasn't been defined yet. The
code then #definesMyStruct_Included, so when the program encounters the second #ifndef block,
the code inside the #ifndef ... #endif block will not be included. Effectively, we've ensured that the
contents of a file can only be #included once in a program. The net program thus looks like this:

 struct MyStruct {
 int x;
 double y;
 char z;
 };
 int main() {
 return 0;
 }

Which is exactly what we wanted. This technique, known as an include guard, is used throughout
professional C++ code, and, in fact, the boilerplate #ifndef / #define / #endif structure is found in
virtually every header file in use today. Whenever writing header files, be sure to surround them with the
appropriate preprocessor directives.

Macros

One of the most common and complex uses of the preprocessor is to define macros, compile-time
functions that accepts parameters and output code. Despite the surface similarity, however, preprocessor
macros and C++ functions have little in common. C++ functions represent code that executes at runtime to
manipulate data, while macros expand out into newly-generated C++ code during preprocessing.

To create macros, you use an alternative syntax for #define that specifies a parameter list in addition to
the constant name and expansion. The syntax looks like this:

 #define macroname(parameter1, parameter2, ... , parameterN) macro-body*

Now, when the preprocessor encounters a call to a function named macroname, it will replace it with the
text in macro-body. For example, consider the following macro definition:

 #define PLUS_ONE(x) ((x) + 1)

Now, if we write

 int x = PLUS_ONE(137);

The preprocessor will expand this code out to

 int x = ((137) + 1);

So x will have the value 138.

If you'll notice, unlike C++ functions, preprocessor macros do not have a return value. Macros expand out
into C++ code, so the “return value” of a macro is the result of the expressions it creates. In the case of
PLUS_ONE, this is the value of the parameter plus one because the replacement is interpreted as a

* Note that when using #define, the opening parenthesis that starts the argument list must not be preceded by
whitespace. Otherwise, the preprocessor will treat it as part of the replacement phrase for a #defined constant.

Chapter 4: Multi-File Programs, Abstraction, and the Preprocessor - 65 -

mathematical expression. However, macros need not act like C++ functions. Consider, for example, the
following macro:

 #define MAKE_FUNCTION(fnName) void fnName()

Now, if we write the following C++ code:

 MAKE_FUNCTION(MyFunction) {
 cout << "This is a function!" << endl;
 }

The MAKE_FUNCTION macro will convert it into the function definition

 void MyFunction() {
 cout << "This is a function!" << endl;
 }

As you can see, this is entirely different than the PLUS_ONE macro demonstrated above. In general, a
macro can be expanded out to any text and that text will be treated as though it were part of the original
C++ source file. This is a mixed blessing. In many cases, as you'll see later in the chapter, it can be
exceptionally useful. However, as with other uses of #define, macros can lead to incredibly subtle bugs
that can be difficult to track down. Perhaps the most famous example of macros gone wrong is this MAX
macro:

 #define MAX(a, b) ((a) > (b) ? (a) : (b))

Here, the macro takes in two parameters and uses the ?: operator to choose the larger of the two. If
you're not familiar with the ?: operator, the syntax is as follows:

 expression ? result-if-true : result-if-false

In our case, ((a) > (b) ? (a) : (b)) evaluates the expression (a) > (b). If the statement is true,
the value of the expression is (a); otherwise it is (b).

At first, this macro might seem innocuous and in fact will work in almost every situation. For example:

 int x = MAX(100, 200);

Expands out to

 int x = ((100) > (200) ? (100) : (200));

Which assigns x the value 200. However, what happens if we write the following?

 int x = MAX(MyFn1(), MyFn2());

This expands out to

 int x = ((MyFn1()) > (MyFn2()) ? (MyFn1()) : (MyFn2()));

While this will assign x the larger of MyFn1() and MyFn2(), it will not evaluate the parameters only once,
as you would expect of a regular C++ function. As you can see from the expansion of the MAX macro, the
functions will be called once during the comparison and possibly twice in the second half of the statement.

- 66 - Chapter 4: Multi-File Programs, Abstraction, and the Preprocessor

If MyFn1() or MyFn2() are slow, this is inefficient, and if either of the two have side effects (for example,
writing to disk or changing a global variable), the code will be incorrect.

The above example with MAX illustrates an important point when working with the preprocessor – in
general, C++ functions are safer, less error-prone, and more readable than preprocessor macros. If you
ever find yourself wanting to write a macro, see if you can accomplish the task at hand with a regular C++
function. If you can, use the C++ function instead of the macro – you'll save yourself hours of debugging
nightmares.

Inline Functions

One of the motivations behind macros in pure C was program efficiency from inlining. For example,
consider the MAX macro from earlier, which was defined as

 #define MAX(a, b) ((a) > (b) ? (a) : (b))

If we call this macro, then the code for selecting the maximum element is directly inserted at the spot
where the macro is used. For example, the following code:

 int myInt = MAX(one, two);

Expands out to

 int myInt = ((one) > (two) ? (one) : (two));

When the compiler sees this code, it will generate machine code that directly performs the test. If we had
instead written MAX as a regular function, the compiler would probably implement the call to MAX as
follows:

1. Call the function called MAX (which actually performs the comparison)
2. Store the result in the variable myInt.

This is considerably less efficient than the macro because of the time required to set up the function call.
In computer science jargon, the macro is inlined because the compiler places the contents of the “function”
at the call site instead of inserting an indirect jump to the code for the function. Inlined functions can be
considerably more efficient that their non-inline counterparts, and so for many years macros were the
preferred means for writing utility routines.

Bjarne Stroustrup is particularly opposed to the preprocessor because of its idiosyncrasies and potential
for errors, and to entice programmers to use safer language features developed the inline keyword,
which can be applied to functions to suggest that the compiler automatically inline them. Inline functions
are not treated like macros – they're actual functions and none of the edge cases of macros apply to them –
but the compiler will try to safely inline them if at all possible. For example, the following Max function is
marked inline, so a reasonably good compiler should perform the same optimization on the Max function
that it would on the MAX macro:

 inline int Max(int one, int two) {
 return one > two ? one : two;
 }

The inline keyword is only a suggestion to the compiler and may be ignored if the compiler deems it
either too difficult or too costly to inline the function. However, when writing short functions it sometimes
helps to mark the function inline to improve performance.

Chapter 4: Multi-File Programs, Abstraction, and the Preprocessor - 67 -

A #define Cautionary Tale

#define is a powerful directive that enables you to completely transform C++. However, many C/C++
experts agree that you should not use #define unless it is absolutely necessary. Preprocessor macros and
constants obfuscate code and make it harder to debug, and with a few cryptic #defines veteran C++
programmers will be at a loss to understand your programs. As an example, consider the following code,
which references an external file mydefines.h:

 #include "mydefines.h"

 Once upon a time a little boy took a walk in a park
 He (the child) found a small stone and threw it (the stone) in a pond
 The end

Surprisingly, and worryingly, it is possible to make this code compile and run, provided that mydefines.h
contains the proper #defines. For example, here's one possible mydefines.h file that makes the code
compile:

File: mydefines.h
#ifndef mydefines_included
#define mydefines_included

#include <iostream>
using namespace std;

#define Once
#define upon
#define a
#define time upon
#define little
#define boy
#define took upon
#define walk
#define in walk
#define the
#define park a
#define He(n) n MyFunction(n x)
#define child int
#define found {
#define small return
#define stone x;
#define and in
#define threw }
#define it(n) int main() {
#define pond cout << MyFunction(137) << endl;
#define end return 0; }
#define The the

#endif

After preprocessing (and some whitespace formatting), this yields the program

- 68 - Chapter 4: Multi-File Programs, Abstraction, and the Preprocessor

 #include <iostream>
 using namespace std;

 int MyFunction(int x) {
 return x;
 }

 int main() {
 cout << MyFunction(137) << endl;
 return 0;
 }

While this example is admittedly a degenerate case, it should indicate exactly how disastrous it can be for
your programs to misuse #defined symbols. Programmers expect certain structures when reading C++
code, and by obscuring those structures behind walls of #defines you will confuse people who have to
read your code. Worse, if you step away from your code for a short time (say, a week or a month), you may
very well return to it with absolutely no idea how your code operates. Consequently, when working with
#define, always be sure to ask yourself whether or not you are improving the readability of your code.

Advanced Preprocessor Techniques

The previous section ended on a rather grim note, giving an example of preprocessor usage gone awry.
But to entirely eschew the preprocessor in favor of other language features would also be an error. In
several circumstances, the preprocessor can perform tasks that other C++ language features cannot
accomplish. The remainder of this chapter explores where the preprocessor can be an invaluable tool for
solving problems and points out several strengths and weaknesses of preprocessor-based approaches.

Special Preprocessor Values

The preprocessor has access to several special values that contain information about the state of the file
currently being compiled. The values act like #defined constants in that they are replaced whenever
encountered in a program. For example, the values __DATE__ and __TIME__ contain string
representations of the date and time that the program was compiled. Thus, you can write an
automatically-generated “about this program” function using syntax similar to this:

 string GetAboutInformation() {
 stringstream result;
 result << "This program was compiled on " << __DATE__;
 result << " at time " << __TIME__;
 return result.str();
 }

Similarly, there are two other values, __LINE__ and __FILE__, which contain the current line number
and the name of the file being compiled. We'll see an example of where __LINE__ and __FILE__ can be
useful later in this chapter.

String Manipulation Functions

While often dangerous, there are times where macros can be more powerful or more useful than regular
C++ functions. Since macros work with source-level text strings instead of at the C++ language level, some
pieces of information are available to macros that are not accessible using other C++ techniques. For
example, let's return to the MAX macro we used in the previous chapter:

 #define MAX(a, b) ((a) > (b) ? (a) : (b))

Chapter 4: Multi-File Programs, Abstraction, and the Preprocessor - 69 -

Here, the arguments a and b to MAX are passed by string – that is, the arguments are passed as the strings
that compose them. For example, MAX(10, 15) passes in the value 10 not as a numeric value ten, but as
the character 1 followed by the character 0. The preprocessor provides two different operators for
manipulating the strings passed in as parameters. First is the stringizing operator, represented by the #
symbol, which returns a quoted, C string representation of the parameter. For example, consider the
following macro:

 #define PRINTOUT(n) cout << #n << " has value " << (n) << endl

Here, we take in a single parameter, n. We then use the stringizing operator to print out a string
representation of n, followed by the value of the expression n. For example, given the following code
snippet:

 int x = 137;
 PRINTOUT(x * 42);

After preprocessing, this yields the C++ code

 int x = 137;
 cout << "x * 42" << " has value " << (x * 42) << endl;

Note that after the above program has been compiled from C++ to machine code, any notions of the
original variable x or the individual expressions making up the program will have been completely
eliminated, since variables exist only at the C++ level. However, through the stringizing operator, it is
possible to preserve a string version of portions of the C++ source code in the final program, as
demonstrated above. This is useful when writing diagnostic functions, as you'll see later in this chapter.

The second preprocessor string manipulation operator is the string concatenation operator, also known as
the token-pasting operator. This operator, represented by ##, takes the string value of a parameter and
concatenates it with another string. For example, consider the following macro:

 #define DECLARE_MY_VAR(type) type my_##type

The purpose of this macro is to allow the user to specify a type (for example, int), and to automatically
generate a variable declaration of that type whose name is my_type, where type is the parameter type.
Here, we use the ## operator to take the name of the type and concatenate it with the string my_. Thus,
given the following macro call:

 DECLARE_MY_VAR(int);

The preprocessor would replace it with the code

 int my_int;

Note that when working with the token-pasting operator, if the result of the concatenation does not form a
single C++ token (a valid operator or name), the behavior is undefined. For example, calling
DECLARE_MY_VAR(const int) will have undefined behavior, since concatenating the strings my_ and
const int does not yield a single string (the result is const int my_const int).

Advanced Preprocessor Techniques: The X Macro Trick

Because the preprocessor gives C++ programs access to their own source code at compile-time, it is
possible to harness the preprocessor to do substantial code generation at compile-time. One uncommon

- 70 - Chapter 4: Multi-File Programs, Abstraction, and the Preprocessor

programming technique that uses the preprocessor is known as the X Macro trick, a way to specify data in
one format but have it available in several formats.

Before exploring the X Macro trick, we need to cover how to redefine a macro after it has been declared.
Just as you can define a macro by using #define, you can also undefine a macro using #undef. The
#undef preprocessor directive takes in a symbol that has been previously #defined and causes the
preprocessor to ignore the earlier definition. If the symbol was not already defined, the #undef directive
has no effect but is not an error. For example, consider the following code snippet:

 #define MY_INT 137
 int x = MY_INT; // MY_INT is replaced
 #undef MY_INT;
 int MY_INT = 42; // MY_INT not replaced

The preprocessor will rewrite this code as

 int x = 137;
 int MY_INT = 42;

Although MY_INT was once a #defined constant, after encountering the #undef statement, the
preprocessor stopped treating it as such. Thus, when encountering int MY_INT = 42, the preprocessor
made no replacements and the code compiled as written.

To introduce the X Macro trick, let's consider a common programming problem and see how we should go
about solving it. Suppose that we want to write a function that, given as an argument an enumerated type,
returns the string representation of the enumerated value. For example, given the enum

 enum Color {Red, Green, Blue, Cyan, Magenta, Yellow};

We want to write a function called ColorToString that returns a string representation of the color. For
example, passing in the constant Red should hand back the string "Red", Blue should yield "Blue", etc.
Since the names of enumerated types are lost during compilation, we would normally implement this
function using code similar to the following:

 string ColorToString(Color c) {
 switch(c) {
 case Red: return "Red";
 case Blue: return "Blue";
 case Green: return "Green";
 case Cyan: return "Cyan";
 case Magenta: return "Magenta";
 case Yellow: return "Yellow";
 default: return "<unknown>";
 }
 }

Now, suppose that we want to write a function that, given a color, returns the opposite color. * We'd need
another function, like this one:

* For the purposes of this example, we'll work with additive colors. Thus red is the opposite of cyan, yellow is the
opposite of blue, etc.

Chapter 4: Multi-File Programs, Abstraction, and the Preprocessor - 71 -

 Color GetOppositeColor(Color c) {
 switch(c) {
 case Red: return Cyan;
 case Blue: return Yellow;
 case Green: return Magenta;
 case Cyan: return Red;
 case Magenta: return Green;
 case Yellow: return Blue;
 default: return c; // Unknown color, undefined result
 }
 }

These two functions will work correctly, and there's nothing functionally wrong with them as written. The
problem, though, is that these functions are not scalable. If we want to introduce new colors, say, White
and Black, we'd need to change both ColorToString and GetOppositeColor to incorporate these new
colors. If we accidentally forget to change one of the functions, the compiler will give no warning that
something is missing and we will only notice problems during debugging. The problem is that a color
encapsulates more information than can be expressed in an enumerated type. Colors also have names and
opposites, but the C++ enum Color knows only a unique ID for each color and relies on correct
implementations of ColorToString and GetOppositeColor for the other two. Somehow, we'd like to be
able to group all of this information into one place. While we might be able to accomplish this using a set
of C++ struct constants (e.g. defining a color struct and making const instances of these structs for
each color), this approach can be bulky and tedious. Instead, we'll choose a different approach by using X
Macros.

The idea behind X Macros is that we can store all of the information needed above inside of calls to
preprocessor macros. In the case of a color, we need to store a color's name and opposite. Thus, let's
suppose that we have some macro called DEFINE_COLOR that takes in two parameters corresponding to
the name and opposite color. We next create a new file, which we'll call color.h, and fill it with calls to
this DEFINE_COLOR macro that express all of the colors we know (let's ignore the fact that we haven't
actually defined DEFINE_COLOR yet; we'll get there in a moment). This file looks like this:

File: color.h
DEFINE_COLOR(Red, Cyan)
DEFINE_COLOR(Cyan, Red)
DEFINE_COLOR(Green, Magenta)
DEFINE_COLOR(Magenta, Green)
DEFINE_COLOR(Blue, Yellow)
DEFINE_COLOR(Yellow, Blue)

Two things about this file should jump out at you. First, we haven't surrounded the file in the traditional
#ifndef ... #endif boilerplate, so clients can #include this file multiple times. Second, we haven't
provided an implementation for DEFINE_COLOR, so if a caller does include this file, it will cause a compile-
time error. For now, don't worry about these problems – you'll see why we've structured the file this way
in a moment.

Let's see how we can use the X Macro trick to rewrite GetOppositeColor, which for convenience is
reprinted below:

- 72 - Chapter 4: Multi-File Programs, Abstraction, and the Preprocessor

 Color GetOppositeColor(Color c) {
 switch(c) {
 case Red: return Cyan;
 case Blue: return Yellow;
 case Green: return Magenta;
 case Cyan: return Red;
 case Magenta: return Green;
 case Yellow: return Blue;
 default: return c; // Unknown color, undefined result
 }
 }

Here, each one of the case labels in this switch statement is written as something of the form

 case color: return opposite;

Looking back at our color.h file, notice that each DEFINE_COLOR macro has the form
DEFINE_COLOR(color, opposite). This suggests that we could somehow convert each of these
DEFINE_COLOR statements into case labels by crafting the proper #define. In our case, we'd want the
#define to make the first parameter the argument of the case label and the second parameter the return
value. We can thus write this #define as

 #define DEFINE_COLOR(color, opposite) case color: return opposite;

Thus, we can rewrite GetOppositeColor using X Macros as

 Color GetOppositeColor(Color c) {
 switch(c) {
 #define DEFINE_COLOR(color, opposite) case color: return opposite;
 #include "color.h"
 #undef DEFINE_COLOR
 default: return c; // Unknown color, undefined result.
 }
 }

This is pretty cryptic, so let's walk through it one step at a time. First, let's simulate the preprocessor by
replacing the line #include "color.h" with the full contents of color.h:

 Color GetOppositeColor(Color c) {
 switch(c) {
 #define DEFINE_COLOR(color, opposite) case color: return opposite;
 DEFINE_COLOR(Red, Cyan)
 DEFINE_COLOR(Cyan, Red)
 DEFINE_COLOR(Green, Magenta)
 DEFINE_COLOR(Magenta, Green)
 DEFINE_COLOR(Blue, Yellow)
 DEFINE_COLOR(Yellow, Blue)
 #undef DEFINE_COLOR
 default: return c; // Unknown color, undefined result.
 }
 }

Now, we replace each DEFINE_COLOR by instantiating the macro, which yields the following:

Chapter 4: Multi-File Programs, Abstraction, and the Preprocessor - 73 -

 Color GetOppositeColor(Color c) {
 switch(c) {
 case Red: return Cyan;
 case Blue: return Yellow;
 case Green: return Magenta;
 case Cyan: return Red;
 case Magenta: return Green;
 case Yellow: return Blue;
 #undef DEFINE_COLOR
 default: return c; // Unknown color, undefined result.
 }
 }

Finally, we #undef the DEFINE_COLOR macro, so that the next time we need to provide a definition for
DEFINE_COLOR, we don't have to worry about conflicts with the existing declaration. Thus, the final code
for GetOppositeColor, after expanding out the macros, yields

 Color GetOppositeColor(Color c) {
 switch(c) {
 case Red: return Cyan;
 case Blue: return Yellow;
 case Green: return Magenta;
 case Cyan: return Red;
 case Magenta: return Green;
 case Yellow: return Blue;
 default: return c; // Unknown color, undefined result.
 }
 }

Which is exactly what we wanted.

The fundamental idea underlying the X Macros trick is that all of the information we can possibly need
about a color is contained inside of the file color.h. To make that information available to the outside
world, we embed all of this information into calls to some macro whose name and parameters are known.
We do not, however, provide an implementation of this macro inside of color.h because we cannot
anticipate every possible use of the information contained in this file. Instead, we expect that if another
part of the code wants to use the information, it will provide its own implementation of the
DEFINE_COLOR macro that extracts and formats the information. The basic idiom for accessing the
information from these macros looks like this:

 #define macroname(arguments) /* some use for the arguments */
 #include "filename"
 #undef macroname

Here, the first line defines the mechanism we will use to extract the data from the macros. The second
includes the file containing the macros, which supplies the macro the data it needs to operate. The final
step clears the macro so that the information is available to other callers. If you'll notice, the above
technique for implementing GetOppositeColor follows this pattern precisely.

We can also use the above pattern to rewrite the ColorToString function. Note that inside of
ColorToString, while we can ignore the second parameter to DEFINE_COLOR, the macro we define to
extract the information still needs to have two parameters. To see how to implement ColorToString,
let's first revisit our original implementation:

- 74 - Chapter 4: Multi-File Programs, Abstraction, and the Preprocessor

 string ColorToString(Color c) {
 switch(c) {
 case Red: return "Red";
 case Blue: return "Blue";
 case Green: return "Green";
 case Cyan: return "Cyan";
 case Magenta: return "Magenta";
 case Yellow: return "Yellow";
 default: return "<unknown>";
 }
 }

If you'll notice, each of the case labels is written as

 case color: return "color";

Thus, using X Macros, we can write ColorToString as

 string ColorToString(Color c) {
 switch(c) {
 /* Convert something of the form DEFINE_COLOR(color, opposite)
 * into something of the form 'case color: return "color"';
 */
 #define DEFINE_COLOR(color, opposite) case color: return #color;
 #include "color.h"
 #undef DEFINE_COLOR

 default: return "<unknown>";
 }
 }

In this particular implementation of DEFINE_COLOR, we use the stringizing operator to convert the color
parameter into a string for the return value. We've used the preprocessor to generate both
GetOppositeColor and ColorToString!

There is one final step we need to take, and that's to rewrite the initial enum Color using the X Macro
trick. Otherwise, if we make any changes to color.h, perhaps renaming a color or introducing new
colors, the enum will not reflect these changes and might result in compile-time errors. Let's revisit
enum Color, which is reprinted below:

 enum Color {Red, Green, Blue, Cyan, Magenta, Yellow};

While in the previous examples of ColorToString and GetOppositeColor there was a reasonably
obvious mapping between DEFINE_COLOR macros and case statements, it is less obvious how to generate
this enum using the X Macro trick. However, if we rewrite this enum as follows:

 enum Color {
 Red,
 Green,
 Blue,
 Cyan,
 Magenta,
 Yellow
 };

Chapter 4: Multi-File Programs, Abstraction, and the Preprocessor - 75 -

It should be slightly easier to see how to write this enum in terms of X Macros. For each DEFINE_COLOR
macro we provide, we'll simply extract the first parameter (the color name) and append a comma. In code,
this looks like

 enum Color {
 #define DEFINE_COLOR(color, opposite) color, // Name followed by comma
 #include "color.h"
 #undef DEFINE_COLOR
 };

This, in turn, expands out to

 enum Color {
 #define DEFINE_COLOR(color, opposite) color,
 DEFINE_COLOR(Red, Cyan)
 DEFINE_COLOR(Cyan, Red)
 DEFINE_COLOR(Green, Magenta)
 DEFINE_COLOR(Magenta, Green)
 DEFINE_COLOR(Blue, Yellow)
 DEFINE_COLOR(Yellow, Blue)
 #undef DEFINE_COLOR
 };

Which in turn becomes

 enum Color {
 Red,
 Green,
 Blue,
 Cyan,
 Magenta,
 Yellow,
 };

Which is exactly what we want. You may have noticed that there is a trailing comma at after the final color
(Yellow), but this is not a problem – it turns out that it's totally legal C++ code.

Analysis of the X Macro Trick

The X Macro-generated functions have several advantages over the hand-written versions. First, the X
macro trick makes the code considerably shorter. By relying on the preprocessor to perform the necessary
expansions, we can express all of the necessary information for an object inside of an X Macro file and only
need to write the syntax necessary to perform some task once. Second, and more importantly, this
approach means that adding or removing Color values is simple. We simply need to add another
DEFINE_COLOR definition to color.h and the changes will automatically appear in all of the relevant
functions. Finally, if we need to incorporate more information into the Color object, we can store that
information in one location and let any callers that need it access it without accidentally leaving one out.

That said, X Macros are not a perfect technique. The syntax is considerably trickier and denser than in the
original implementation, and it's less clear to an outside reader how the code works. Remember that
readable code is just as important as correct code, and make sure that you've considered all of your
options before settling on X Macros. If you're ever working in a group and plan on using the X Macro trick,

- 76 - Chapter 4: Multi-File Programs, Abstraction, and the Preprocessor

be sure that your other group members are up to speed on the technique and get their approval before
using it.*

More to Explore / Practice Problems

I've combined the “More to Explore” and “Practice Problems” sections because many of the topics we
didn't cover in great detail in this chapter are best understood by playing around with the material. Here's
a sampling of different preprocessor tricks and techniques, mixed in with some programming puzzles:

1. List three major differences between #define and the const keyword for defining named
constants.

2. Give an example, besides preventing problems from #include-ing the same file twice, where
#ifdef and #ifndef might be useful. (Hint: What if you're working on a project that must run on
Windows, Mac OS X, and Linux and want to use platform-specific features of each?)

3. Write a regular C++ function called Max that returns the larger of two int values. Explain why it
does not have the same problems as the macro MAX covered earlier in this chapter.

4. Give one advantage of the macro MAX over the function Max you wrote in the previous problem.
(Hint: What is the value of Max(1.37, 1.24)? What is the value of MAX(1.37, 1.24)?)

5. The following C++ code is illegal because the #if directive cannot call functions:

 bool IsPositive(int x) {
 return x < 0;
 }

 #if IsPositive(MY_CONSTANT) // <-- Error occurs here
 #define result true
 #else
 #define result false
 #endif

Given your knowledge of how the preprocessor works, explain why this restriction exists. ♦

6. Compilers rarely inline recursive functions, even if they are explicitly marked inline. Why do you
think this is?

7. Most of the STL algorithms are inlined. Considering the complexity of the implementation of
accumulate from the chapter on STL algorithms, explain why this is.

8. Modify the earlier definition of enum Color such that after all of the colors defined in color.h,
there is a special value, NOT_A_COLOR, that specifies a nonexistent color. (Hint: Do you actually
need to change color.h to do this?) ♦

* The X Macro trick is a special case of a more general technique known as preprocessor metaprogramming. If
you're interested in learning more about preprocessor metaprogramming, consider looking into the Boost
Metaprogramming Library (MPL), a professional C++ package that simplifies common metaprogramming tasks.

Chapter 4: Multi-File Programs, Abstraction, and the Preprocessor - 77 -

9. Using X Macros, write a function StringToColor which takes as a parameter a string and
returns the Color object whose name exactly matches the input string. If there are no colors with
that name, return NOT_A_COLOR as a sentinel. For example, calling StringToColor("Green")
would return the value Green, but calling StringToColor("green") or
StringToColor("Olive") should both return NOT_A_COLOR.

10. Suppose that you want to make sure that the enumerated values you've made for Color do not
conflict with other enumerated types that might be introduced into your program. Modify the
earlier definition of DEFINE_COLOR used to define enum Color so that all of the colors are
prefaced with the identifier eColor_. For example, the old value Red should change to
eColor_Red, the old Blue would be eColor_Blue, etc. Do not change the contents of color.h.
(Hint: Use one of the preprocessor string-manipulation operators) ♦

11. The #error directive causes a compile-time error if the preprocessor encounters it. This may
sound strange at first, but is an excellent way for detecting problems during preprocessing that
might snowball into larger problems later in the code. For example, if code uses compiler-specific
features (such as the OpenMP library), it might add a check to see that a compiler-specific
#define is in place, using #error to report an error if it isn't. The syntax for #error is #error
message, where message is a message to the user explaining the problem. Modify color.h so
that if a caller #includes the file without first #define-ing the DEFINE_COLOR macro, the
preprocessor reports an error containing a message about how to use the file.

- 78 - Chapter 4: Multi-File Programs, Abstraction, and the Preprocessor

12. If you're up for a challenge, consider the following problem. Below is a table summarizing various
units of length:

Unit Name #meters / unit Suffix System

Meter 1.0 m Metric

Centimeter 0.01 cm Metric

Kilometer 1000.0 km Metric

Foot 0.3048 ft English

Inch 0.0254 in English

Mile 1609.344 mi English

Astronomical Unit 1.496 x 1011 AU Astronomical

Light Year 9.461 × 1015 ly Astronomical

Cubit* 0.55 cubit Archaic

 a) Create a file called units.h that uses the X macro trick to encode the above table as calls to a
macro DEFINE_UNIT. For example, one entry might be DEFINE_UNIT(Meter, 1.0, m,
Metric).

 b) Create an enumerated type, LengthUnit, which uses the suffix of the unit, preceded by
eLengthUnit_, as the name for the unit. For example, a cubit is eLengthUnit_cubit, while a
mile would be eLengthUnit_mi. Also define an enumerated value eLengthUnit_ERROR that
serves as a sentinel indicating that the value is invalid.

 c) Write a function called SuffixStringToLengthUnit that accepts a string representation of
a suffix and returns the LengthUnit corresponding to that string. If the string does not
match the suffix, return eLengthUnit_ERROR.

 d) Create a struct, Length, that stores a double and a LengthUnit. Write a function
ReadLength that prompts the user for a double and a string representing an amount and a
unit suffix and stores data in a Length. If the string does not correspond to a suffix, reprompt
the user. You can modify the code for GetInteger from the chapter on streams to make an
implementation of GetReal.

 e) Create a function, GetUnitType, that takes in a Length and returns the unit system in which it
occurs (as a string)

 f) Create a function, PrintLength, that prints out a Length in the format
amount suffix (amount unitnames). For example, if a Length stores 104.2 miles, it
would print out 104.2mi (104.2 Miles)

 g) Create a function, ConvertToMeters, which takes in a Length and converts it to an equivalent
length in meters.

Surprisingly, this problem is not particularly long – the main challenge is the user input, not the unit
management!

* There is no agreed-upon standard for this unit, so this is an approximate average of the various lengths.

Chapter 5: STL Sequence Containers

In October of 1976 I observed that a certain algorithm – parallel reduction – was associated with
monoids: collections of elements with an associative operation. That observation led me to believe
that it is possible to associate every useful algorithm with a mathematical theory and that such
association allows for both widest possible use and meaningful taxonomy. As mathematicians
learned to lift theorems into their most general settings, so I wanted to lift algorithms and data
structures.

– Alex Stepanov, inventor of the STL. [Ste07]

The Standard Template Library (STL) is a programmer's dream. It offers efficient ways to store, access,
manipulate, and view data and is designed for maximum extensibility. Once you've gotten over the initial
syntax hurdles, you will quickly learn to appreciate the STL's sheer power and flexibility.

To give a sense of exactly where we're going, here are a few quick examples of code using the STL:

• We can create a list of random numbers, sort it, and print it to the console in four lines of code!

 vector<int> myVector(NUM_INTS);
 generate(myVector.begin(), myVector.end(), rand);
 sort(myVector.begin(), myVector.end());
 copy(myVector.begin(), myVector.end(), ostream_iterator<int>(cout, "\n"));

• We can open a file and print its contents in two lines of code!

 ifstream input("my-file.txt");
 copy(istreambuf_iterator<char>(input), istreambuf_iterator<char>(),
 ostreambuf_iterator<char>(cout));

• We can convert a string to upper case in one line of code!

 transform(s.begin(), s.end(), s.begin(), ::toupper);

If you aren't already impressed by the possibilities this library entails, keep reading. You will not be
disappointed.

Overview of the STL

The STL is logically divided into six pieces, each consisting of generic components that interoperate with
the rest of the library:

• Containers. At the heart of the STL are a collection of container classes, standard C++'s analog to
the CS106B/X ADTs. For example, you can store an associative collection of key/value pairs in an
STL map, or a growing list of elements in an STL vector.

• Iterators. Each STL container exports iterators, objects that view and modify ranges of stored
data. Iterators have a common interface, allowing you to write code that operates on data stored
in arbitrary containers.

• Algorithms. STL algorithms are functions that operate over ranges of data specified by iterators.
The scope of the STL algorithms is staggering – there are algorithms for searching, sorting,
reordering, permuting, creating, and destroying sets of data.

- 80 - Chapter 5: STL Sequence Containers

• Adapters. STL adapters are objects which transform an object from one form into another. For
example, the stack adapter transforms a regular vector or list into a LIFO container, while the
istream_iterator transforms a standard C++ stream into an STL iterator.

• Functors. Because so much of the STL relies on user-defined callback functions, the STL provides
facilities for creating and modifying functions at runtime. We will defer our discussion of functors
to much later in this text, as they require a fairly nuanced understanding of C++.

• Allocators. The STL allows clients of the container classes to customize how memory is allocated
and deallocated, either for diagnostic or performance reasons. While allocators are fascinating
and certainly worthy of discussion, they are beyond the scope of this text and we will not cover
them here.

Diagrammatically, these pieces are related as follows:

Here, the containers rely on the allocators for memory and produce iterators. Iterators can then be used
in conjunction with the algorithms. Functors provide special functions for the algorithms, and adapters
can produce functors, iterators, and containers. If this seems a bit confusing now, don't worry, you'll
understand this relationship well by the time you've finished the next few chapters.

Why the STL is Necessary

Up until this point, all of the programs you've encountered have declared a fixed number of variables that
correspond to a fixed number of values. If you declare an int, you get a single variable back. If you need
to create multiple different ints for some reason, you have to declare each of the variables independently.
This has its drawbacks. For starters, it means that you need to know how exactly how much data your
program will be manipulating before the program begins running. Here's a quick programming challenge
for you:

Write a program that reads in three integers from the user, then prints them in sorted order.

How could you go about writing a program to do this? There are two main technical hurdles to overcome.
First, how would we store the numbers the user enters? Second, how do we sort them? Because we know
that the user will be entering three distinct values, we could simply store each of them in their own int
variable. Thus the first step of writing code for this program might look like this:

ITERATORS

ALGORITHMS FUNCTORS

CONTAINERSALLOCATORS

ADAPTERS

Chapter 5: STL Sequence Containers - 81 -

 #include <iostream>
 #include <sstream>
 #include <string>
 using namespace std;

 int GetInteger(); // From the streams chapter

 int main() {
 int val1 = GetInteger();
 int val2 = GetInteger();
 int val3 = GetInteger();

 /* Sort, then print out. */
 }

We now have our three values; how can we sort them? It turns out that sorting a list of integers is a classic
algorithms question and there are many elegant solutions to the problem. Some algorithms like quicksort
and heapsort run extremely quickly, but are rather difficult to implement. Instead, we'll use a variant
algorithm called selection sort. The idea behind selection sort is as follows. If we want to sort a list of
numbers, we can find the smallest element in the list, then move it to the front of the list. We can then find
the second-smallest value, then put it in the second position, find the third-smallest and put it in the third
position, etc. Amazingly, with just the tools we've seen so far this simple algorithm is extremely hard to
implement. Here's some code for the operation:

 int main() {
 int val1 = GetInteger();
 int val2 = GetInteger();
 int val3 = GetInteger();

 /* Three cases: Either val1 is the smallest, val2 is the smallest, or
 * val3 is the smallest. Whichever ends up being the case, we'll put
 * the smallest value into val1. This uses the swap() function, which is
 * defined in the <algorithm> header and simply swaps the values of
 * two variables.
 */
 if (val2 <= val1 && val2 <= val3) // val2 is smallest
 swap (val1, val2);
 else if (val3 <= val1 && val3 <= val2) // val3 is smallest
 swap (val1, val3);
 // Otherwise, val1 is smallest, and can remain at the front.

 /* Now, sort val2 and val3. Since there's just two elements, we can do a
 * simple comparison to determine which is the smaller of the two.
 */
 if (val3 <= val2) // val3 is smaller
 swap (val2, val3);
 // Otherwise, val2 is smallest and we don't need to do anything.

 cout << val1 << ' ' << val2 << ' ' << val3 << endl;
 }

This code is incredibly dense. Don't panic if you don't understand it – part of the purpose of this example
is to illustrate how difficult it can be to write good code for this problem without the STL!

But of course, there's another major problem with this code. Let's modify the problem statement a bit by
allowing the user to enter four numbers. If we make this change, using just the techniques we've covered
so far we'll be forced to write code along the following lines:

- 82 - Chapter 5: STL Sequence Containers

 int main() {
 int val1 = GetInteger();
 int val2 = GetInteger();
 int val3 = GetInteger();
 int val4 = GetInteger();

 /* Find the smallest. */
 if (val2 <= val1 && val2 <= val3 && val2 <= val4) // val2 is smallest
 swap (val1, val2);
 else if (val3 <= val1 && val3 <= val2 && val3 <= val4) // val3 is smallest
 swap (val1, val3);
 else if (val4 <= val1 && val4 <= val2 && val4 <= val3) // val4 is smallest
 swap (val1, val4);
 // Otherwise, val1 is smallest, and can remain at the front.

 /* Find the second-smallest. */
 if (val3 <= val2 && val3 <= val4) // val3 is smallest
 swap (val2, val3);
 else if (val4 <= val2 && val4 <= val3) // val4 is smallest
 swap (val2, val4);
 // Otherwise, val2 is smallest, and can remain at the front.

 /* Find the third-smallest. */
 if (val4 <= val3) // val4 is smaller
 swap (val3, val4);
 // Otherwise, val3 is smallest and we don't need to do anything.

 cout << val1 << ' ' << val2 << ' ' << val3 << ' ' << val4 << endl;
}

This code is just downright awful! It's cryptic, difficult to read, and not the sort of code you'd like to bring
home to mom and dad. Now imagine what the code would look like if we had five numbers instead of four.
It will keep growing and growing, becoming progressively more impossible to read until eventually we'd
give up in frustration. What's worse, though, is that each of these programs is a special case of a general
problem – read in n integers from the user and print them in sorted order – but the code for each case
bears little to no resemblance to the code for each other case.

Introducing the vector

What's missing from our programming repertoire right now is the ability to create and access a variable
number of objects. Right now, if we want to store a sequence of five integers, we must create five
independent integer variables and have no way of accessing them uniformly. Fortunately, the STL provides
us a versatile tool called the vector that allows us to store sequences of elements using a single variable.
As you'll see, the vector is nothing short of extraordinary and will arise time and again throughout your
programming career.

At a high level, a vector is an object that represents a sequence of elements. This means that you can use
a vector to store a grocery list, a list of Olympic figure skating scores, or a set of files to read. The elements
in a vector are indexed, meaning that they have a well-defined position in the sequence. For example,
given the sequence

Chapter 5: STL Sequence Containers - 83 -

Value 137 42 2718 3141 410

Index 0 1 2 3 4

The first element (137) is at position zero, the second (42) at position one, etc. Notice that elements in the
sequence appear in the order 0, 1, 2, etc. rather than the more intuitive 1, 2, 3, You have seen this
already in your exploration of the string class, so hopefully this notation isn't too startling.

The major difference between the vector and the string is that the vector can be configured to store
elements of any type. That is, you can have a vector of ints, a vector of strings, or even a vector of
vectors of strings. However, while the vector can store elements of any type, any single vector can
only store elements of a single type. It is illegal to create a vector that stores a sequence of many
different types of elements, meaning that you can't represent the list 0, Apple, 2.71828 because each of the
list elements has a different type. This may seem like a rather arbitrary restriction – theoretically
speaking, there's no reason that you shouldn't be able to have lists of all sorts of elements – but fortunately
in most cases this restriction does not pose too much of a problem.

Because vectors can only store elements of a fixed type, when you create a vector in your programs you
will need to explicitly indicate to the compiler what type of elements you aim to store in the vector. As an
example, to create a vector of ints, you would write

 vector<int> myVector;

Here, we declare a local variable called myVector that has type vector<int>. The type inside of the
angle brackets is called a template argument and indicates to C++ what type of elements are stored in the
vector. Here, the type is int, but it's legal to put pretty much whatever type you would like in the
brackets. For example, all of the following declarations are legal:

 vector<int> intVector; // Stores ints
 vector<string> strVector; // Stores strings
 vector<double> realVector; // Stores real numbers

It is also perfectly legal to store your own custom structs in a vector, as seen here:

 struct MyStruct {
 int myInt;
 double myDouble;
 string myString;
 };

 vector<MyStruct> myStructVector; // Stores MyStructs

In order to use the vector type, you will need to #include <vector> at the top of your program. As we
explore some of the other STL containers, this pattern will also apply.

We now know how to create vectors, but how do we use them? To give you a feel for how the vector
works, let's return to our previous example of reading in numbers and printing them out in sorted order.
Using a vector, this can be accomplished very elegantly. We'll begin by defining a constant, kNumValues,
which will represent the number of elements to read in. This is shown here:

- 84 - Chapter 5: STL Sequence Containers

 #include <iostream>
 #include <vector> // Necessary to use vector
 #include <string>
 #include <sstream>
 using namespace std;

 string GetLine(); // As defined in the previous chapter
 int GetInteger(); // As defined in the previous chapter

 const int kNumValues = 10;

 int main() {
 /* ... still more work to come ... */
 }

Now, we'll show to how to read in kNumValues values from the user and store them inside a vector.
First, we'll have to create the vector, as shown here:

 int main() {
 vector<int> values;

 /* ... */
 }

A freshly-constructed vector, like a freshly-constructed string, is initially empty. Consequently, we'll
need to get some values from the user, then store them inside the vector. Reading the values is fairly
easy; we simply sit in a for loop reading data from the user. But how do we store them in the vector?
There are several ways to do this, of which the simplest is the push_back function. The push_back
function can be invoked on a vector to add a new element to the end of vector's sequence. For example,
given a vector managing the following sequence:

Value 1 2 6 10

Index 0 1 2 3

Then calling push_back on the vector to store the value fifteen would cause the vector to manage the new
sequence

Value 1 2 6 10 15

Index 0 1 2 3 4

Syntactically, push_back can be used as follows:

 int main() {
 vector<int> values;

 for (int i = 0; i < kNumValues; ++i) {
 cout << "Enter another value: ";
 int val = GetInteger();

 values.push_back(val);
 }
 }

Chapter 5: STL Sequence Containers - 85 -

Notice that we write values.push_back(val) to append the number val to the sequence stored inside
the vector.

Now that we have read in our sequence of values, let's work on the next part of the program, sorting the
elements in the vector and printing them to the user. For this we'll still use the selection sort algorithm, but
it will be miraculously easier to follow when implemented on top of the vector. Recall that the general
description of the selection sort algorithm is as follows:

• Find the smallest element of the list.
• Put that element at the front of the list.
• Repeat until all elements are in place.

Let's see how to implement this function. We'll begin simply by writing out the function signature, which
looks like this:

 void SelectionSort(vector<int>& v) {
 /* ... */
 }

This function is named SelectionSort and takes as a parameter a vector<int> by reference. There are
two key points to note here. First, we still have to explicitly indicate what type of elements are stored in
the vector parameter. That is, it's illegal to write code of this sort:

 void SelectionSort(vector& v) { // Error: What kind of vector?
 /* ... */
 }

As a general rule, you will never see vector unless it's immediately followed with a type in angle brackets.
The reason is simple – every vector can only store one type of element, and unless you explicitly indicate
what that type is the compiler will have no way of knowing.

The other important detail about this function is that it takes its parameter by reference. We will be
sorting the vector in-place, meaning that we will be reordering the elements of the vector rather than
creating a new vector containing a sorted copy of the input.

We now have the function prototype set up, so let's get into the meat of the algorithm. To implement
selection sort, we'll need to find the smallest element and put it in front, the the second-smallest element
and put it in the second position, etc. The code for this is as follows:

 void SelectionSort(vector<int>& v) {
 for (size_t i = 0; i < v.size(); ++i) {
 size_t smallestIndex = GetSmallestIndex(v, i); // We'll write this
 // function momentarily
 swap (v[i], v[smallestIndex]);
 }
 }

This code is fairly dense and introduces some syntax you have not yet seen before, so let's take a few
moments to walk through exactly how it works. The first detail that might have caught your eye is this
one:

 for (size_t i = 0; i < v.size(); ++i)

- 86 - Chapter 5: STL Sequence Containers

This for loop looks strange for two reasons. First, instead of creating an int variable for the iteration, we
create a variable of type size_t. A size_t is a special type of variable that can hold values that represent
sizes of things (size_t stands for “size type”). In many aspects size_t is like a regular int – it holds an
integer value, can be incremented with ++, compared using the relational operators, etc. However, unlike
regular ints, size_ts cannot store negative values. The intuition behind this idea is that no collection of
elements can have a negative size. You may have a list of no elements, or a list of billions of elements, but
you'll never encounter a list with -1 elements in it. Consequently, when iterating over an STL container, it
is customary to use the special type size_t to explicitly indicate that your iteration variable should
always be nonnegative. The other detail of this for loop is that the loop iterates from 0 to v.size(). The
size() member function on the STL vector returns the number of elements stored in the sequence, just
like the size() and length() functions on the standard string class. In this particular case we could
have iterated from 0 to kNumValues, since we're guaranteed that the main function will produce a vector
of that many elements, but in general when iterating over a vector it's probably a wise idea to use the
vector's size as an upper bound so that the code works for vectors of arbitrarily many elements.

Let's continue onward through the code. The body of the loop is this code here:

 size_t smallestIndex = GetSmallestIndex(v, i);
 swap (v[i], v[smallestIndex]);

This calls some function called GetSmallestIndex (which we have not yet defined) which takes in the
vector and the current index. We will implement this function shortly, and its job will be to return the
index of the smallest element in the vector occurring no earlier than position i. We then use the swap
function to exchange the values stored in at positions i and smallestIndex of the vector. Notice that, as
with the standard string class, the syntax v[i] means “the element in vector v at position i.” Let's take a
minute to think about how this code works. The variable i counts up from 0 to v.size() - 1 and visits
every element of the vector exactly once. On each iteration, the code finds the smallest element in the
vector occurring no earlier than position i, then exchanges it with the element at position i. This means
that the code will

1. Find the smallest element of the vector and put it in position 0.
2. Find the smallest element of the remainder of the vector and put it in position 1.
3. Find the smallest element of the remainder of the vector and put it in position 2.

 ...

This is precisely what we set out to do, and so the code will work marvelously. Of course, this assumes
that we have a function called GetSmallestIndex which returns the index of the smallest element in the
vector occurring no earlier than position i. To finalize our implementation of SelectionSort, let's go
implement this function. Again, we'll start with the prototype, which is shown here:

 size_t GetSmallestIndex(vector<int>& v, size_t startIndex) {
 /* ... */
 }

This function accepts as input a vector<int> by reference and a size_t containing the start index, then
returns a size_t containing the result. There's an important but subtle detail to note here. At a high
level, the GetSmallestIndex function has no business modifying the vector it takes as input. Its task is
to find the smallest element and return it, no more. So why exactly does this function take the
vector<int> parameter by reference? The answer is efficiency. In C++, if you pass a parameter to a
function by value, then whenever that function is called C++ will make a full copy of the argument. When
working with the STL containers, which can contain thousands (if not millions or tens of millions) of
elements, the cost of copying the container can be staggering. Consequently, it is considered good

Chapter 5: STL Sequence Containers - 87 -

programming practice to pass STL containers into functions by reference rather than by value, since this
avoids an expensive copy.*

The implementation of this function is rather straightforward:

 size_t GetSmallestIndex(vector<int>& v, size_t startIndex) {
 size_t bestIndex = startIndex;

 for (size_t i = startIndex; i < v.size(); ++i)
 if (v[i] < v[bestIndex])
 bestIndex = i;

 return bestIndex;
 }

This function iterates over the elements of the vector starting with position i, checking whether the
element at the current position is less than the smallest element we've seen so far. If so, the function
updates where in the vector that element appears. At the end of the function, once we've looked at every
element in range, the bestIndex variable will hold the index of the smallest element in vector v
occurring no earlier than startIndex, and so we return the value. We've implemented the
GetSmallestIndex function, meaning that we have a working implementation of SelectionSort.

To finalize our program, let's update the main function to print out the sorted vector. This is shown here:

 int main() {
 vector<int> values;

 for (int i = 0; i < kNumValues; ++i) {
 cout << "Enter another value: ";
 int val = GetInteger();
 values.push_back(val);
 }

 SelectionSort(values);

 for (size_t i = 0; i < kNumValues; ++i)
 cout << values[i] << endl;
 }

Compare this implementation of the program to the previous version, which did not have the luxury of
using vector. As you can see, the code in this program is significantly clearer than before. Moreover, it's
much more scalable. If we want to read in a different number of values from the user, we can do so simply
by adjusting the value of the kNumValues constant, and the rest of the code will update automatically.

An Alternative Implementation

In the previous section, we wrote a program which reads in some number of values from the user, sorts
them, and then prints them out. Of course, the program we wrote was just one method for solving the
problem. In particular, there is another implementation strategy we could have considered that lends
itself to a substantially shorter implementation. Notice that in the above program, we read in a list of
values from the user and blindly added them to the end of the list we wanted to sort. These values weren't
necessarily in sorted order, and so we had to run a postprocessing step to sort the vector before displaying

* In practice you would almost certainly pass the parameter by reference-to-const, which indicates that the
parameter cannot be modified. We will take this issue up in a later chapter, but for now pass-by-reference should
be good enough for our purposes.

- 88 - Chapter 5: STL Sequence Containers

it to the user. But what if we opt for a different approach? In particular, suppose that whenever we read a
value from the user, instead of putting that value at the end of the sequence, we find where in the vector the
element should go, then insert the value at that point? For example, suppose that the user has entered the
following four values:

Value 100 200 300 400

Index 0 1 2 3

Now suppose that she enters the number 137. If we append 137 to the vector, then the numbers will not
all be in sorted order. Instead, we'll find the location where 137 should go in the sorted vector, then
insert it directly into that location. This is shown here:

Value 100 137 200 300 400

Index 0 1 2 3 4

This strategy ends up being a bit simpler to implement than our previous program, which relied on
selection sort. Of course, to implement the program using the above strategy, we need to answer two
questions. First, how do we find out where in the vector the user's element should go? Second, how do
we insert an element into a vector directly at that position? This first question is algorithmic; the second
is simply a question of what operations are legal on the vector. Consequently, we'll begin our discussion
with how to find the insertion point, and will then see how to add an element to a vector at a particular
point.

Suppose that we are given a sorted list of integers and some value to insert into the list. We are curious to
find at what index the new value should go. This is an interesting algorithmic challenge, since there are
many valid solutions. However, there's one particular simple way to find where the element should go. In
order for a list to be in sorted order, every element has to be smaller than the element that comes one
position after it. Therefore, if we find the first element in the vector that is bigger than the element we
want to insert, we know that the element we want to insert must come directly before that element. This
suggests the following algorithm:

 /* Watch out! This code contains a bug! */
 size_t InsertionIndex(vector<int>& v, int toInsert) {
 for(size_t i = 0; i < v.size(); ++i)
 if (toInsert < v[i])
 return i;
 }

This code is mostly correct, but contains a pretty significant flaw. In particular, what happens if the
element we want to insert is bigger than every element in the vector? In that case, the if statement inside
of the for loop will never evaluate to true, and so the function will not return a value. If a function finishes
without returning a value, the program has undefined behavior. This means that the function might return
zero, it might return garbage, or your program might immediately crash outright. This certainly isn't what
we want to have happen, so how can we go about fixing it? Notice that the only way that the above
function never returns a value is if the element to be inserted is at least as big as every element in the
vector. In that case, the correct behavior should be to put the element on the end of the vector. We'll
signal this by having the function return v.size() if the element is bigger than every element in the
sequence. This is shown here:

Chapter 5: STL Sequence Containers - 89 -

 size_t InsertionIndex(vector<int>& v, int toInsert) {
 for(size_t i = 0; i < v.size(); ++i)
 if (toInsert < v[i])
 return i;
 return v.size();
 }

All that's left to do now is use this function to build a sleek implementation of the program. But before we
can do that, we have to see how to insert an element into a vector at an arbitrary position. The good
news is that the vector supports this operation naturally, and in fact you can insert an element into a
vector at any position. The bad news is that the syntax for doing so is nothing short of cryptic and
without an understanding of STL iterators will look entirely alien. We'll talk about iterators more next
chapter, but in the meantime you can just take it for granted that the following syntax is legal. Given a
vector v and an element e, to insert e into v at position n, we use the syntax

 v.insert(v.begin() + n, e);

For example, to insert the element 137 at position zero in the vector, you would write

 v.insert(v.begin(), 137);

Similarly, to insert the element 42 at position five, we could write

 v.insert(v.begin() + 5, 42);

One of the trickier parts of the insert function is determining exactly where the element will be inserted.
Recall that vectors are zero-indexed, the above statement will insert the number 42 as the sixth element
of the sequence, not the fifth. When an element is inserted at a position, all of the elements after it are
shuffled down one spot to make room, so calling insert will never overwrite a value.

Given this syntax and the above implementation of InsertionIndex, we can write a program to read in a
list of values and print them out in sorted order as follows:

 int main() {
 vector<int> values;

 /* Read the values. */
 for (int i = 0; i < kNumValues; ++i) {
 cout << "Enter an integer: ";
 int val = GetInteger();

 /* Insert the element at the correct position. */
 values.insert(values.begin() + InsertionIndex(values, val), val);
 }

 /* Print out the sorted list. */
 for (size_t i = 0; i < values.size(); ++i)
 cout << values[i] << endl;
 }

This code is much shorter than before, even when you factor in the code for InsertionIndex.

- 90 - Chapter 5: STL Sequence Containers

Additional vector Operations

The previous section on sorting numbers with the vector showcased many of operations that can be
performed on a vector, but was by no means a complete survey of what the vector can do. While some
vector operations require a nuanced understanding of iterators, which we will cover next chapter, there
are a few common operations on the vector that we will address in this section before moving on to other
container classes.

One of the key distinctions between the vector and other data types we've seen so far is that the vector
has a variable size. It can contain no elements, dozens of elements, or even millions of elements. In the
preceding examples, we explored two ways to change the number of elements in the vector: push_back,
which appends new elements to the back of the vector, and insert, which adds an element to the
vector at an arbitrary position. However, there are several more ways to add and remove elements from
the vector, some of which are discussed here.

When creating a new vector to represent a list of values, by default C++ will make the vector store an
empty list. That is, a newly-created vector is by default empty. However, at times you might want to
initialize the vector to a certain size. C++ allows you to do this by specifying the starting size of the
vector at the point where the vector is created. For example, to create a vector of integers that initially
holds fifteen elements, you could write this as

 vector<int> myVector(15);

That is, you declare the vector as normal, and put the default size in parentheses afterwards. Note that
this only changes the starting size of the vector, and you are free to add additional elements to the
vector later in your program.

When creating a vector that holds primitive types, such as int or double, the elements in the vector
will default to zero (or false in the case of bools). This means that the above line of code means “create a
vector of integers called myVector that initially holds fifteen entries, all zero.” Similarly, this line of code:

 vector<string> myStringVector(10);

Will create a vector of strings that initially holds ten copies of the empty string.

In some cases, you may want to initialize the vector to a certain size where each element holds a value
other than zero. You may wish, for example, to construct a vector<string> holding five copies of the
string “(none),” or a vector<double> holding twenty copies of the value 137. In these cases, C++ lets
you specify both the number and default value for the elements in the vector using the following syntax:

 vector<double> myReals(20, 137.0);
 vector<string> myStrings(5, "(none)");

Notice that we've enclosed in parentheses both the number of starting elements in the vector and the value
of these starting elements.

An important detail is that this syntax is only legal when initially creating a vector. If you have an
existing vector and try to use this syntax, you will get a compile-time error. That is, the following code is
illegal:

 vector<double> myReals;
 myReals(20, 137.0); // Error: Only legal to do this when the object is created

Chapter 5: STL Sequence Containers - 91 -

If you want to change the number of elements in a vector after it has already been created, you can
always use the push_back and insert member functions. However, if you'd like to make an abrupt
change in the number of elements in the vector (perhaps by adding or deleting a large number of
elements all at once), you can use the vector's resize member function. The resize function is very
similar to the syntax we've just encountered: you can specify either a number of elements or a number of
elements and a value, and the vector will be resized to hold that many elements. However, resize
behaves somewhat differently from the previous construct because when using resize, the vector might
already contain elements. Consequently, resize works by adding or removing elements from the end of
the vector until the desired size is reached. To get a better feel for how resize works, let's suppose that
we have a function called PrintVector that looks like this:

 void PrintVector(vector<int>& elems) {
 for (size_t i = 0; i < elems.size(); ++i)
 cout << elems[i] << ' ';
 cout << endl;
 }

This function takes in a vector<int>, then prints out the elements in the vector one at a time, followed
by a newline. Given this function, consider the following code snippet:

 vector<int> myVector; // Defaults to empty vector
 PrintVector(myVector); // Output: [nothing]

 myVector.resize(10); // Grow the vector, setting new elements to 0
 PrintVector(myVector); // Output: 0 0 0 0 0 0 0 0 0 0

 myVector.resize(5); // Shrink the vector
 PrintVector(myVector); // Output: 0 0 0 0 0

 myVector.resize(7, 1); // Grow the vector, setting new elements to 1
 PrintVector(myVector); // Output: 0 0 0 0 0 1 1

 myVector.resize(1, 7); // The second parameter is effectively ignored.
 PrintVector(myVector); // Output: 0

In the first line, we construct a new vector, which is by default empty. Consequently, the call to
PrintVector will produce no output. We then invoke resize to add ten elements to the vector. These
elements are added to the end of the vector, and because we did not specify a default value are all
initialized to zero. On our next call to resize, we shrink the vector down to five elements. Next, we use
resize to expand the vector to hold seven elements. Because we specified a default value, the newly-
created elements default to 1, and so the sequence is now 0, 0, 0, 0, 0, 1, 1. Finally, we use resize to trim
the sequence. Because the second argument to resize is only considered if new elements are added, it is
effectively ignored.

We've seen several vector operations so far, but there is a wide class of operations we have not yet
considered – operations which remove elements from the vector. As you saw, the push_back and
insert functions can be used to splice new elements into the vector's sequence. These two functions
are balanced by the pop_back and erase functions. pop_back is the opposite of push_back, and
removes the last element from the vector's sequence. erase is the deletion counterpart to insert, and
removes an element at a particular position from the vector. As with insert, the syntax for erase is a
bit tricky. To remove a single element from a random point in a vector, use the erase method as follows:

 myVector.erase(myVector.begin() + n);

- 92 - Chapter 5: STL Sequence Containers

where n represents the index of the element to erase.

In some cases, you may feel compelled to completely erase the contents of the vector. In that case, you
can use the clear function, which completely erases the vector contents. clear can be invoked as
follows:

 myVector.clear();

Summary of vector

The following table lists some of the more common operations that you can perform on a vector. We
have not talked about iterators or the const keyword yet, so don't worry if you're confused by those
terms. This table is designed as a reference for any point in your programming career, so feel free to skip
over entries that look too intimidating.

Constructor: vector<T> () vector<int> myVector;

Constructs an empty vector.

Constructor: vector<T> (size_type size) vector<int> myVector(10);

Constructs a vector of the specified size where all elements
use their default values (for integral types, this is zero).

Constructor: vector<T> (size_type size,
 const T& default)

vector<string> myVector(5, "blank");

Constructs a vector of the specified size where each
element is equal to the specified default value.

size_type size() const; for(int i = 0; i < myVector.size(); ++i) { ... }

Returns the number of elements in the vector.

bool empty() const; while(!myVector.empty()) { ... }

Returns whether the vector is empty.

void clear(); myVector.clear();

Erases all the elements in the vector and sets the size to
zero.

 T& operator [] (size_type position);
const T& operator [] (size_type position) const;

 T& at(size_type position);
const T& at(size_type position) const;

myVector[0] = 100;
int x = myVector[0];
myVector.at(0) = 100;
int x = myVector.at(0);

Returns a reference to the element at the specified position.
The bracket notation [] does not do any bounds checking
and has undefined behavior past the end of the data. The at

member function will throw an exception if you try to
access data beyond the end. We will cover exception
handling in a later chapter.

Chapter 5: STL Sequence Containers - 93 -

void resize(size_type newSize);
void resize(size_type newSize, T fill);

myVector.resize(10);
myVector.resize(10, "default");

Resizes the vector so that it's guaranteed to be the specified
size. In the second version, the vector elements are
initialized to the value specified by the second parameter.
Elements are added to and removed from the end of the
vector, so you can't use resize to add elements to or remove
elements from the start of the vector.

void push_back(); myVector.push_back(100);

Appends an element to the vector.

 T& back();
const T& back() const;

myVector.back() = 5;
int lastElem = myVector.back();

Returns a reference to the last element in the vector.

 T& front();
const T& front() const;

myVector.front() = 0;
int firstElem = myVector.front();

Returns a reference to the first element in the vector.

void pop_back(); myVector.pop_back();

Removes the last element from the vector.

iterator begin();
const_iterator begin() const;

vector<int>::iterator itr = myVector.begin();

Returns an iterator that points to the first element in the
vector.

iterator end();
const_iterator end() const;

while(itr != myVector.end());

Returns an iterator to the element after the last. The
iterator returned by end does not point to an element in the
vector.

iterator insert(iterator position,
 const T& value);
void insert(iterator start,
 size_type numCopies,
 const T& value);

myVector.insert(myVector.begin() + 4, "Hello");
myVector.insert(myVector.begin(), 2, "Yo!");

The first version inserts the specified value into the vector,
and the second inserts numCopies copies of the value into
the vector. Both calls invalidate all outstanding iterators for
the vector.

iterator erase(iterator position);
iterator erase(iterator start,
 iterator end);

myVector.erase(myVector.begin());
myVector.erase(startItr, endItr);

The first version erases the element at the position pointed
to by position. The second version erases all elements in the
range [startItr, endItr). Note that this does not erase
the element pointed to by endItr. All iterators after the
remove point are invalidated. If using this member
function on a deque (see below), all iterators are
invalidated.

deque: A New Kind of Sequence

For most applications where you need to represent a sequence of elements, the vector is an ideal tool. It
is fast, lightweight, and intuitive. However, there are several aspects of the vector that can be troublesome
in certain applications. In particular, the vector is only designed to grow in one direction; calling

- 94 - Chapter 5: STL Sequence Containers

push_back inserts elements at the end of the vector, and resize always appends elements to the end.
While it's possible to insert elements into other positions of the vector using the insert function, doing
so is fairly inefficient and relying on this functionality can cause a marked slowdown in your program's
performance. For most applications, this is not a problem, but in some situations you will need to manage
a list of elements that will grow and shrink on both ends. Doing this with a vector would be prohibitively
costly, and we will need to introduce a new container class: the deque.

deque is a strange entity. It is pronounced “deck,” as in a deck of cards, and is named as a contraction of
“double-ended queue.” It is similar to the vector in almost every way, but supports a few operations that
the vector has trouble with. Because of its similarity to vector, many C++ programmers don't even
know that the deque exists. In fact, of all of the standard STL containers, deque is probably the least-used.
But this is not to say that it is not useful. The deque packs significant firepower, and in this next section
we'll see some of the basic operations that you can perform on it.

What's interesting about the deque is that all operations supported by vector are also provided by
deque. Thus we can resize a deque, use the bracket syntax to access individual elements, and erase
elements at arbitrary positions. In fact, we can rewrite the number-sorting program to use a deque simply
by replacing all instances of vector with deque. For example:

 int main() {
 deque<int> values; // Use deque instead of vector

 /* Read the values. */
 for (int i = 0; i < kNumValues; ++i)
 {
 cout << "Enter an integer: ";
 int val = GetInteger();

 /* Insert the element at the correct position. */
 values.insert(values.begin() + InsertionIndex(values, val), val);
 }

 /* Print out the sorted list. */
 for (size_t i = 0; i < values.size(); ++i)
 cout << values[i] << endl;
 }

However, deques also support two more functions, push_front and pop_front, which work like the
vector's push_back and pop_back except that they insert and remove elements at the front of the
deque. But this raises an interesting question: if deque has strictly more functionality than vector, why
use vector? The main reason is speed. deques and vectors are implemented in two different ways.
Typically, a vector stores its elements in contiguous memory addresses. deques, on the other hand,
maintain a list of different “pages” that store information. This is shown here:

Chapter 5: STL Sequence Containers - 95 -

These different implementations impact the efficiency of the vector and deque operations. In a vector,
because all elements are stored in consecutive locations, it is possible to locate elements through simple
arithmetic: to look up the nth element of a vector, find the address of the first element in the vector, then
jump forward n positions. In a deque this lookup is more complex: the deque has to figure out which page
the element will be stored in, then has to search that page for the proper item. However, inserting
elements at the front of a vector requires the vector to shuffle all existing elements down to make room
for the new element (slow), while doing the same in the deque only requires the deque to rearrange
elements in a single page (fast).

If you're debating about whether to use a vector or a deque in a particular application, you might
appreciate this advice from the C++ ISO Standard (section 23.1.1.2):

vector is the type of sequence that should be used by default... deque is the data structure of
choice when most insertions and deletions take place at the beginning or at the end of the
sequence.

If you ever find yourself about to use a vector, check to see what you're doing with it. If you need to
optimize for fast access, keep using a vector. If you're going to be inserting or deleting elements at the
beginning or end of the container frequently, consider using a deque instead.

Extended Example: Snake

Few computer games can boast the longevity or addictive power of Snake. Regardless of your background,
chances are that you have played Snake or one of its many variants. The rules are simple – you control a
snake on a two-dimensional grid and try to eat food pellets scattered around the grid. You lose if you crash
into the walls or into your own body. True to Newton's laws, the snake continues moving in a single
direction until you explicitly change its bearing by ninety degrees. Every time the snake eats food, a new
piece of food is randomly placed on the grid and the snake's length increases. Over time, the snake's body
grows so long that it becomes an obstacle, and if the snake collides with itself the player loses.

Here's a screenshot from QBasic Nibbles, a Microsoft implementation of Snake released with MS-DOS
version 5.0. The snake is the long yellow string, and the number 8 is the food:

vector deque

- 96 - Chapter 5: STL Sequence Containers

Because the rules of Snake are so simple, it's possible to implement the entire game in only a few hundred
lines of C++ code. In this extended example, we'll write a Snake program in which the computer controls
the snake according to a simple AI. In the process, we'll gain experience with the STL vector and deque,
the streams library, and a sprinkling of C library functions. Once we've finished, we'll have a rather snazzy
program that can serve as a launching point for further C++ exploration.

Our Version of Snake

There are many variants of Snake, so to avoid confusion we'll explicitly spell out the rules of the game
we're implementing:

1. The snake moves by extending its head in the direction it's moving and pulling its tail in one space.
2. The snake wins if it eats twenty pieces of food.
3. The snake loses if it crashes into itself or into a wall.
4. If the snake eats a piece of food, its length grows by one and a new piece of food is randomly

placed.
5. There is only one level, the starting level.

While traditionally Snake is played by a human, our Snake will be computer-controlled so that we can
explore some important pieces of the C runtime library. We'll discuss the AI we'll use when we begin
implementing it.

Representing the World

In order to represent the Snake world, we need to keep track of the following information:

Chapter 5: STL Sequence Containers - 97 -

1. The size and layout of the world.
2. The location of the snake.
3. How many pieces of food we've consumed.

Let's consider this information one piece at a time. First, how should we represent the world? The world
is two-dimensional, but all of the STL containers we've seen so far only represent lists, which are
inherently one-dimensional. Unfortunately, the STL doesn't have a container class that encapsulates a
multidimensional array, but we can emulate this functionality with an STL vector of vectors. For
example, if we represent each square with an object of type WorldTile, we could use a
vector<vector<WorldTile> >. Note that there is a space between the two closing angle brackets – this
is deliberate and is an unfortunate bug in the C++ specification. If we omit the space, C++ would interpret
the closing braces on vector<vector<WorldTile>> as the stream extraction operator >>, as in cin >>
myValue. Although most compilers will accept code that uses two adjacent closing braces, it's bad
practice to write it this way.

While we could use a vector<vector<WorldTile> >, there's actually a simpler option. Since we need to
be able to display the world to the user, we can instead store the world as a vector<string> where each
string encodes one row of the board. This also simplifies displaying the world; given a vector<string>
representing all the world information, we can draw the board by outputting each string on its own line.
Moreover, since we can use the bracket operator [] on both vector and string, we can use the familiar
syntax world[row][col] to select individual locations. The first brackets select the string out of the
vector and the second the character out of the string.

We'll use the following characters to encode game information:

• A space character (' ') represents an empty tile.
• A pound sign ('#') represents a wall.
• A dollar sign ('$') represents food.
• An asterisk ('*') represents a tile occupied by a snake.

For simplicity, we'll bundle all the game data into a single struct called gameT. This will allow us to pass all
the game information to functions as a single parameter. Based on the above information, we can begin
writing this struct as follows:

 struct gameT {
 vector<string> world;
 };

We also will need quick access to the dimensions of the playing field, since we will need to be able to check
whether the snake is out of bounds. While we could access this information by checking the dimensions of
the vector and the strings stored in it, for simplicity we'll store this information explicitly in the gameT
struct, as shown here:

 struct gameT {
 vector<string> world;
 int numRows, numCols;
 };

For consistency, we'll access elements in the vector<string> treating the first index as the row and the
second as the column. Thus world[3][5] is row three, column five (where indices are zero-indexed).

- 98 - Chapter 5: STL Sequence Containers

Now, we need to settle on a representation for the snake. The snake lives on a two-dimensional grid and
moves at a certain velocity. Because the grid is discrete, we can represent the snake as a collection of its
points along with its velocity vector. For example, we can represent the following snake:

As the points (2, 0), (2, 1), (2, 2), (3, 2), (4, 2), (4, 3) and the velocity vector (-1, 0).

The points comprising the snake body are ordered to determine how the snake moves. When the snake
moves, the first point (the head) moves one step in the direction of the velocity vector. The second piece
then moves into the gap left by the first, the third moves into the gap left by the second piece, etc. This
leaves a gap where the tail used to be. For example, after moving one step, the above snake looks like this:

To represent the snake in memory, we thus need to keep track of its velocity and an ordered list of the
points comprising it. The former can be represented using two ints, one for the Δx component and one
for the Δy component. But how should we represent the latter? We've just learned about the vector and
deque, each of which could represent the snake. To see what the best option is, let's think about how we
might implement snake motion. We can think of snake motion in one of two ways – first, as the head
moving forward a step and the rest of the points shifting down one spot, and second as the snake getting a
new point in front of its current head and losing its tail. The first approach requires us to update every
element in the body and is not particularly efficient. The second approach can easily be implemented with
a deque through an appropriate combination of push_front and pop_back. We will thus use a deque to
encode the snake body.

If we want to have a deque of points, we'll first need some way of encoding a point. This can be done with
this struct:

0

1

2

3

2 3 4 50 1

0

1

2

3

0 1 2 3 4 5

Chapter 5: STL Sequence Containers - 99 -

 struct pointT {
 int row, col;
 };

Taking these new considerations into account, our new gameT struct looks like this:

 struct gameT {
 vector<string> world;
 int numRows, numCols;

 deque<pointT> snake;
 int dx, dy;
 };

Finally, we need to keep track of how many pieces of food we've munched so far. That can easily be stored
in an int, yielding this final version of gameT:

 struct gameT {
 vector<string> world;
 int numRows, numCols;

 deque<pointT> snake;
 int dx, dy;

 int numEaten;
 };

The Skeleton Implementation

Now that we've settled on a representation for our game, we can start thinking about how to organize the
program. There are two logical steps – setup and gameplay – leading to the following skeleton
implementation:

- 100 - Chapter 5: STL Sequence Containers

 #include <iostream>
 #include <string>
 #include <deque>
 #include <vector>
 using namespace std;

 /* Number of food pellets that must be eaten to win. */
 const int kMaxFood = 20;

 /* Constants for the different tile types. */
 const char kEmptyTile = ' ';
 const char kWallTile = '#';
 const char kFoodTile = '$';
 const char kSnakeTile = '*';

 /* A struct encoding a point in a two-dimensional grid. */
 struct pointT {
 int row, col;
 };

 /* A struct containing relevant game information. */
 struct gameT {
 vector<string> world; // The playing field
 int numRows, numCols; // Size of the playing field

 deque<pointT> snake; // The snake body
 int dx, dy; // The snake direction

 int numEaten; // How much food we've eaten.
 };

 /* The main program. Initializes the world, then runs the simulation. */
 int main() {
 gameT game;
 InitializeGame(game);
 RunSimulation(game);
 return 0;
 }

Atop this program are the necessary #includes for the functions and objects we're using, followed by a
list of constants for the game. The pointT and gameT structs are identical to those described above. main
creates a gameT object, passes it into InitializeGame for initialization, and finally hands it to
RunSimulation to play the game.

We'll begin by writing InitializeGame so that we can get a valid gameT for RunSimulation. But how
should we initialize the game board? Should we use the same board every time, or let the user specify a
level of their choosing? Both of these are resaonable, but for the this extended example we'll choose the
latter. In particular, we'll specify a level file format, then let the user specify which file to load at runtime.

There are many possible file formats to choose from, but each must contain at least enough information to
populate a gameT struct; that is, we need the world dimensions and layout, the starting position of the
snake, and the direction of the snake. While I encourage you to experiment with different structures, we'll
use a simple file format that encodes the world as a list of strings and the rest of the data as integers in a
particular order. Here is one possible file:

Chapter 5: STL Sequence Containers - 101 -

File: level.txt
15 15
1 0
###############
#$ $#
#
#
$ #
#
#
*
#
#
$ #
#
#
#$ $#
###############

The first two numbers encode the number of rows and columns in the file, respectively. The next line
contains the initial snake velocity as Δx, Δy. The remaining lines encode the game board, using the same
characters we settled on for the world vector. We'll assume that the snake is initially of length one and its
position is given by a * character.

There are two steps necessary to let the user choose the level layout. First, we need to prompt the user for
the name of the file to open, reprompting until she chooses an actual file. Second, we need to parse the
contents of the file into a gameT struct. In this example we won't check that the file is formatted correctly,
though in professional code we would certainly need to check this. If you'd like some additional practice
with the streams library, this would be an excellent exercise.

Let's start writing the function responsible for loading the file from disk, InitializeGame. Since we need
to prompt the user for a filename until she enters a valid file, we'll begin writing:

 void InitializeGame(gameT& game) {
 ifstream input;
 while(true) {
 cout << "Enter filename: ";
 string filename = GetLine();

 /* ... */
 }
 /* ... */
 }

The while(true) loop will continuously prompt the user until she enters a valid file. Here, we assume
that GetLine() is the version defined in the chapter on streams. Also, since we're now using the
ifstream type, we'll need to #include <fstream> at the top of our program.

Now that the user has given us the a filename, we'll try opening it using the .open() member function. If
the file opens successfully, we'll break out of the loop and start reading level data:

- 102 - Chapter 5: STL Sequence Containers

 void InitializeGame(gameT& game) {
 ifstream input;
 while(true) {
 cout << "Enter filename: ";
 string filename = GetLine();

 input.open(filename.c_str()); // See Chapter 3 for info on .c_str().
 if(input.is_open()) break;

 /* ... */
 }
 /* ... */
 }

If the file did not open, however, we need to report this to the user. Additionally, we have to make sure to
reset the stream's error state, since opening a nonexistent file causes the stream to fail. Code for this is
shown here:

 void InitializeGame(gameT& game) {
 ifstream input;
 while(true) {
 cout << "Enter filename: ";
 string filename = GetLine();

 input.open(filename.c_str()); // See Chapter 3 for info on .c_str().
 if(input.is_open()) break;

 cout << "Sorry, I can't find the file " << filename << endl;
 input.clear();
 }
 /* ... */
 }

Now we need to parse the file data into a gameT struct. Since this is rather involved, we'll decompose it
into a helper function called LoadWorld, then finish InitializeGame as follows:

 void InitializeGame(gameT& game) {
 ifstream input;
 while(true) {
 cout << "Enter filename: ";
 string filename = GetLine();

 input.open(filename.c_str()); // See Chapter 3 for info on .c_str().
 if(input.is_open()) break;

 cout << "Sorry, I can't find the file " << filename << endl;
 input.clear();
 }
 LoadWorld(game, input);
 }

Notice that except for the call to LoadWorld, nothing in the code for InitializeGame actually pertains to
our Snake game. In fact, the code we've written is a generic routine for opening a file specified by the user.
We'll thus break this function down into two functions – OpenUserFile, which prompts the user for a
filename, and InitializeGame, which opens the specified file, then hands it off to LoadWorld. This is
shown here:

Chapter 5: STL Sequence Containers - 103 -

 void OpenUserFile(ifstream& input) {
 while(true) {
 cout << "Enter filename: ";
 string filename = GetLine();

 input.open(filename.c_str()); // See Chapter 3 for .c_str().
 if(input.is_open()) return;

 cout << "Sorry, I can't find the file " << filename << endl;
 input.clear();
 }
 }

 void InitializeGame(gameT& game) {
 ifstream input;
 OpenUserFile(input);
 LoadWorld(game, input);
 }

Let's begin working on LoadWorld. The first line of our file format encodes the number of rows and
columns in the world, and we can read this data directly into the gameT struct, as seen here:

 void LoadWorld(gameT& game, ifstream& input) {
 input >> game.numRows >> game.numCols;
 game.world.resize(game.numRows);

 /* ... */
 }

We've also resized the vector to hold game.numRows strings, guaranteeing that we have enough strings
to store the entire world. This simplifies the implementation, as you'll see momentarily.

Next, we'll read the starting velocity for the snake, as shown here:

 void LoadWorld(gameT& game, ifstream& input) {
 input >> game.numRows >> game.numCols;
 game.world.resize(game.numRows);

 input >> game.dx >> game.dy;

 /* ... */
 }

At this point, we've read in the parameters of the world, and need to start reading in the actual world data.
Since each line of the file contains one row of the grid, we'll use getline for the remaining read
operations. There's a catch, however. Recall that getline does not mix well with the stream extraction
operator (>>), which we've used exclusively so far. In particular, the first call to getline after using the
stream extraction operator will return the empty string because the newline character delimiting the data
is still waiting to be read. To prevent this from gumming up the rest of our input operations, we'll call
getline here on a dummy string to flush out the remaining newline:

- 104 - Chapter 5: STL Sequence Containers

 void LoadWorld(gameT& game, ifstream& input) {
 input >> game.numRows >> game.numCols;
 game.world.resize(game.numRows);

 input >> game.dx >> game.dy;

 string dummy;
 getline(input, dummy);

 /* ... */
 }

Now we're ready to start reading in world data. We'll read in game.numRows lines from the file directly
into the game.world vector. Since earlier we resized the vector, there already are enough strings to
hold all the data we'll read. The reading code is shown below:

 void LoadWorld(gameT& game, ifstream& input) {
 input >> game.numRows >> game.numCols;
 game.world.resize(game.numRows);

 input >> game.dx >> game.dy;

 string dummy;
 getline(input, dummy);

 for(int row = 0; row < game.numRows; ++row) {
 getline(input, game.world[row]);
 /* ... */
 }

 /* ... */
 }

Recall that somewhere in the level file is a single * character indicating where the snake begins. To make
sure that we set up the snake correctly, after reading in a line of the world data we'll check to see if it
contains a star and, if so, we'll populate the game.snake deque appropriately. Using the .find()
member function on the string simplifies this task, as shown here:

Chapter 5: STL Sequence Containers - 105 -

 void LoadWorld(gameT& game, ifstream& input) {
 input >> game.numRows >> game.numCols;
 game.world.resize(game.numRows);

 input >> game.dx >> game.dy;

 string dummy;
 getline(input, dummy);

 for(int row = 0; row < game.numRows; ++row) {
 getline(input, game.world[row]);
 int col = game.world[row].find(kSnakeTile);
 if(col != string::npos) {
 pointT head;
 head.row = row;
 head.col = col;
 game.snake.push_back(head);
 }
 }

 /* ... */
 }

The syntax for creating and filling in the pointT data is a bit bulky here. When we cover classes in the
second half of this course you'll see a much better way of creating this pointT. In the meantime, we can
write a helper function to clean this code up, as shown here:

 pointT MakePoint(int row, int col) {
 pointT result;
 result.row = row;
 result.col = col;
 return result;
 }

 void LoadWorld(gameT& game, ifstream& input) {
 input >> game.numRows >> game.numCols;
 game.world.resize(game.numRows);

 input >> game.dx >> game.dy;

 string dummy;
 getline(input, dummy);

 for(int row = 0; row < game.numRows; ++row) {
 getline(input, game.world[row]);
 int col = game.world[row].find(kSnakeTile);
 if(col != string::npos)
 game.snake.push_back(MakePoint(row, col));
 }

 /* ... */
 }

There's one last step to take care of, and that's to ensure that we set the numEaten field to zero. This edit
completes LoadWorld and the final version of the code is shown here:

- 106 - Chapter 5: STL Sequence Containers

 void LoadWorld(gameT& game, ifstream& input) {
 input >> game.numRows >> game.numCols;
 game.world.resize(game.numRows);

 input >> game.dx >> game.dy;

 string dummy;
 getline(input, dummy);

 for(int row = 0; row < game.numRows; ++row) {
 getline(input, game.world[row]);
 int col = game.world[row].find(kSnakeTile);
 if(col != string::npos)
 game.snake.push_back(MakePoint(row, col));
 }

 game.numEaten = 0;
 }

Great! We've just finished setup and it's now time to code up the actual game. We'll begin by coding a
skeleton of RunSimulation which displays the current state of the game, runs the AI, and moves the
snake:

 void RunSimulation(gameT& game) {
 /* Keep looping while we haven't eaten too much. */
 while(game.numEaten < kMaxFood) {
 PrintWorld(game); // Display the board
 PerformAI(game); // Have the AI choose an action

 if(!MoveSnake(game)) // Move the snake and stop if we crashed.
 break;

 Pause(); // Pause so we can see what's going on.
 }
 DisplayResult(game); // Tell the user what happened
 }

We'll implement the functions referenced here out of order, starting with the simplest and moving to the
most difficult. First, we'll begin by writing Pause, which stops for a short period of time to make the game
seem more fluid. The particular implementation of Pause we'll use is a busy loop, a while loop that does
nothing until enough time has elapsed. Busy loops are frowned upon in professional code because they
waste CPU power, but for our purposes are perfectly acceptable.

The <ctime> header exports a function called clock() that returns the number of “clock ticks” that have
elapsed since the program began. The duration of a clock tick varies from system to system, so C++
provides the constant CLOCKS_PER_SEC to convert clock ticks to seconds. We can use clock to implement
a busy loop as follows:

1. Call clock() to get the current time in clock ticks and store the result.
2. Continuously call clock() and compare the result against the cached value. If enough time has

passed, stop looping.

This can be coded as follows:

Chapter 5: STL Sequence Containers - 107 -

 const double kWaitTime = 0.1; // Pause 0.1 seconds between frames
 void Pause() {
 clock_t startTime = clock(); // clock_t is a type which holds clock ticks.

 /* This loop does nothing except loop and check how much time is left.
 * Note that we have to typecast startTime from clock_t to double so
 * that the division is correct. The static_cast<double>(...) syntax
 * is the preferred C++ way of performing a typecast of this sort;
 * see the chapter on
 * inheritance for more information.
 */
 while(static_cast<double>(clock() - startTime) / CLOCKS_PER_SEC <
 kWaitTime);
 }

Next, let's implement the PrintWorld function, which displays the current state of the world. We chose to
represent the world as a vector<string> to simplify this code, and as you can see this design decision
pays off well:

 void PrintWorld(gameT& game) {
 for(int row = 0; row < game.numRows; ++row)
 cout << game.world[row] << endl;
 cout << "Food eaten: " << game.numEaten << endl;
 }

This implementation of PrintWorld is fine, but every time it executes it adds more text to the console
instead of clearing what's already there. This makes it tricky to see what's happening. Unfortunately,
standard C++ does not export a set of routines for manipulating the console. However, every major
operating system exports its own console manipulation routines, primarily for developers working on a
command line. For example, on a Linux system, typing clear into the console will clear its contents, while
on Windows the command is CLS.

C++ absorbed C's standard library, including the system function (header file <cstdlib>). system
executes an operating system-specific instruction as if you had typed it into your system's command line.
This function can be very dangerous if used incorrectly,* but also greatly expands the power of C++. We
will not cover how to use system in detail since it is platform-specific, but one particular application of
system is to call the appropriate operating system function to clear the console. We can thus upgrade our
implementation of PrintWorld as follows:

 /* The string used to clear the display before printing the game board.
 * Windows systems should use "CLS"; Mac OS X or Linux users should use
 * "clear" instead.
 */
 const string kClearCommand = "CLS";

 void PrintWorld(gameT& game) {
 system(kClearCommand.c_str());
 for(int row = 0; row < game.numRows; ++row)
 cout << game.world[row] << endl;
 cout << "Food eaten: " << game.numEaten << endl;
 }

Because system is from the days of pure C, we have to use .c_str() to convert the string parameter into a
C-style string before we can pass it into the function.

* In particular, calling system without checking that the parameters have been sanitized can let malicious users
completely compromise your system. Take CS155 for more information on what sorts of attacks are possible.

- 108 - Chapter 5: STL Sequence Containers

The final quick function we'll write is DisplayResult, which is called after the game has ended to report
whether the computer won or lost. This function is shown here:

 void DisplayResult(gameT& game) {
 PrintWorld(game);
 if(game.numEaten == kMaxFood)
 cout << "The snake ate enough food and wins!" << endl;
 else
 cout << "Oh no! The snake crashed!" << endl;
 }

Now, on to the two tricky functions – PerformAI, which determines the snake's next move, and
MoveSnake, which moves the snake and processes collisions. We'll begin with PerformAI.

Designing an AI that plays Snake intelligently is far beyond the scope of this class. However, it is feasible to
build a rudimentary AI that plays reasonably well. Our particular AI works as follows: if the snake is about
to collide with an object, the AI will turn the snake out of danger. Otherwise, the snake will continue on its
current path, but has a percent chance to randomly change direction.

Let's begin by writing the code to check whether the snake will turn; that is, whether we're about to hit a
wall or if the snake randomly decides to veer in a direction. We'll write a skeletal implementation of this
code, then will implement the requisite functions. Our initial code is

 const double kTurnRate = 0.2; // 20% chance to turn each step.
 void PerformAI(gameT& game) {
 /* Figure out where we will be after we move this turn. */
 pointT nextHead = GetNextPosition(game);

 /* If that hits a wall or we randomly decide to, turn the snake. */
 if(Crashed(nextHead, game) || RandomChance(kTurnRate)) {
 /* ... */
 }
 }

Here we're calling three functions we haven't written yet – GetNextPosition, which computes the
position of the head on the next iteration; Crashed, which returns whether the snake would crash if its
head was in the given position; and RandomChance; which returns true with probability equal to the
parameter. Before implementing the rest of PerformAI, let's knock these functions out so we can focus on
the rest of the task at hand. We begin by implementing GetNextPosition. This function accepts as input
the game state and returns the point that we will occupy on the next frame if we continue moving in our
current direction. This function isn't particularly complex and is shown here:

 pointT GetNextPosition(gameT& game) {
 /* Get the head position. */
 pointT result = game.snake.front();

 /* Increment the head position by the current direction. */
 result.row += game.dy;
 result.col += game.dx;
 return result;
 }

The implementation of Crashed is similarly straightforward. The snake has crashed if it has gone out of
bounds or if its head is on top of a wall or another part of the snake:

Chapter 5: STL Sequence Containers - 109 -

 bool Crashed(pointT headPos, gameT& game) {
 return !InWorld(headPos, game) ||
 game.world[headPos.row][headPos.col] == kSnakeTile ||
 game.world[headPos.row][headPos.col] == kWallTile;
 }

Here, InWorld returns whether the point is in bounds and is defined as

 bool InWorld(pointT& pt, gameT& game) {
 return pt.col >= 0 &&
 pt.row >= 0 &&
 pt.col < game.numCols &&
 pt.row < game.numRows;
 }

Next, we need to implement RandomChance. In CS106B/X we provide you a header file, random.h, that
exports this function. However, random.h is not a standard C++ header file and thus we will not use it
here. Instead, we will use C++'s rand and srand functions, also exported by <cstdlib>, to implement
RandomChance. rand() returns a pseudorandom number in the range [0, RAND_MAX], where RAND_MAX is
usually 215 – 1. srand seeds the random number generator with a value that determines which values are
returned by rand. One common technique is to use the time function, which returns the current system
time, as the seed for srand since different runs of the program will yield different random seeds.
Traditionally, you will only call srand once per program, preferably during initialization. We'll thus
modify InitializeGame so that it calls srand in addition to its other functionality:

 void InitializeGame(gameT& game) {
 /* Seed the randomizer. The static_cast converts the result of time(NULL)
 * from time_t to the unsigned int required by srand. This line is
 * idiomatic C++.
 */
 srand(static_cast<unsigned int>(time(NULL)));

 ifstream input;
 OpenUserFile(input);
 LoadWorld(game, input);
 }

Now, let's implement RandomChance. To write this function, we'll call rand to obtain a value in the range
[0, RAND_MAX], then divide it by RAND_MAX + 1.0 to get a value in the range [0, 1). We can then return
whether this value is less than the input probability. This yields true with the specified probability; try
convincing yourself that this works if it doesn't immediately seem obvious. This is a common technique
and in fact is how the CS106B/X RandomChance function is implemented.

RandomChance is shown here:

 bool RandomChance(double probability) {
 return (rand() / (RAND_MAX + 1.0)) < probability;
 }

Notice that we added 1.0 to RAND_MAX. This both adds the +1 necessary from the above discussion and
implicitly converts the denominator into a double, which is necessary to avoid integer truncation.

Phew! Apologies for the lengthy detour – let's get back to writing the AI! Recall that we've written this
code so far:

- 110 - Chapter 5: STL Sequence Containers

 void PerformAI(gameT& game) {
 /* Figure out where we will be after we move this turn. */
 pointT nextHead = GetNextPosition(game);

 /* If that puts us into a wall or we randomly decide to, turn the snake. */
 if(Crashed(nextHead, game) || RandomChance(kTurnRate)) {
 /* ... */
 }
 }

We now need to implement the logic for turning the snake left or right. First, we'll figure out in what
positions the snake's head would be if we turned left or right. Then, based on which of these positions are
safe, we'll pick a direction to turn. To avoid code duplication, we'll modify our implementation of
GetNextPosition so that the caller can specify the direction of motion, rather than relying on the
gameT's stored direction. The modified version of GetNextPosition is shown here:

 pointT GetNextPosition(gameT& game, int dx, int dy) {
 /* Get the head position. */
 gameT result = game.snake.front();

 /* Increment the head position by the specified direction. */
 result.row += dy;
 result.col += dx;
 return result;
 }

We'll need to modify PerformAI to pass in the proper parameters to GetNextPosition, as shown here:

 void PerformAI(gameT& game) {
 /* Figure out where we will be after we move this turn. */
 pointT nextHead = GetNextPosition(game, game.dx, game.dy);

 /* If that puts us into a wall or we randomly decide to, turn the snake. */
 if(Crashed(nextHead, game) || RandomChance(kTurnRate)) {
 /* ... */
 }
 }

Now, let's write the rest of this code. Given that the snake's velocity is (game.dx, game.dy), what
velocities would we move at if we were heading ninety degrees to the left or right? Using some basic
linear algebra,* if our current heading is along dx and dy, then the headings after turning left and right
from our current heading are be given by

dxleft = -dy
dyleft = dx

dxright = dy
dyright = -dx

Using these equalities, we can write the following code, which determines what bearings are available and
whether it's safe to turn left or right:

* This is the result of multiplying the vector (dx, dy)T by a rotation matrix for either +π/2 or -π/2 radians.

Chapter 5: STL Sequence Containers - 111 -

 void PerformAI(gameT& game) {
 /* Figure out where we will be after we move this turn. */
 pointT nextHead = GetNextPosition(game, game.dx, game.dy);

 /* If that puts us into a wall or we randomly decide to, turn the snake. */
 if(Crashed(nextHead, game) || RandomChance(kTurnRate)) {
 int leftDx = -game.dy;
 int leftDy = game.dx;

 int rightDx = game.dy;
 int rightDy = -game.dx;

 /* Check if turning left or right will cause us to crash. */
 bool canLeft = !Crashed(GetNextPosition(game, leftDx, leftDy),
 game);
 bool canRight = !Crashed(GetNextPosition(game, rightDx, rightDy),
 game);

 /* ... */
 }
 }

Now, we'll decide which direction to turn. If we can only turn one direction, we will choose that direction.
If we can't turn at all, we will do nothing. Finally, if we can turn either direction, we'll pick a direction
randomly. We will store which direction to turn in a boolean variable called willTurnLeft which is true
if we will turn left and false if we will turn right. This is shown here:

 void PerformAI(gameT& game) {
 /* Figure out where we will be after we move this turn. */
 pointT nextHead = GetNextPosition(game, game.dx, game.dy);

 /* If that puts us into a wall or we randomly decide to, turn the snake. */
 if(Crashed(nextHead, game) || RandomChance(kTurnRate)) {
 int leftDx = -game.dy;
 int leftDy = game.dx;

 int rightDx = game.dy;
 int rightDy = -game.dx;

 /* Check if turning left or right will cause us to crash. */
 bool canLeft = !Crashed(GetNextPosition(game, leftDx, leftDy),
 game);
 bool canRight = !Crashed(GetNextPosition(game, rightDx, rightDy),
 game);

 bool willTurnLeft = false;
 if(!canLeft && !canRight)
 return; // If we can't turn, don't turn.
 else if(canLeft && !canRight)
 willTurnLeft = true; // If we must turn left, do so.
 else if(!canLeft && canRight)
 willTurnLeft = false; // If we must turn right, do so.
 else
 willTurnLeft = RandomChance(0.5); // Else pick randomly

 /* ... */
 }
 }

- 112 - Chapter 5: STL Sequence Containers

Finally, we'll update our direction vector based on our choice:

 void PerformAI(gameT& game) {
 /* Figure out where we will be after we move this turn. */
 pointT nextHead = GetNextPosition(game, game.dx, game.dy);

 /* If that puts us into a wall or we randomly decide to, turn the snake. */
 if(Crashed(nextHead, game) || RandomChance(kTurnRate)) {
 int leftDx = -game.dy;
 int leftDy = game.dx;

 int rightDx = game.dy;
 int rightDy = -game.dx;

 /* Check if turning left or right will cause us to crash. */
 bool canLeft = !Crashed(GetNextPosition(game, leftDx, leftDy),
 game);
 bool canRight = !Crashed(GetNextPosition(game, rightDx, rightDy),
 game);

 bool willTurnLeft = false;
 if(!canLeft && !canRight)
 return; // If we can't turn, don't turn.
 else if(canLeft && !canRight)
 willTurnLeft = true; // If we must turn left, do so.
 else if(!canLeft && canRight)
 willTurnLeft = false; // If we must turn right, do so.
 else
 willTurnLeft = RandomChance(0.5); // Else pick randomly

 game.dx = willTurnLeft? leftDx : rightDx;
 game.dy = willTurnLeft? leftDy : rightDy;
 }
 }

If you're not familiar with the ?: operator, the syntax is as follows:

 expression ? result-if-true : result-if-false

Here, this means that we'll set game.dx to leftDx if willTurnLeft is true and to rightDx otherwise.

We now have a working version of PerformAI. Our resulting implementation is not particularly dense,
and most of the work is factored out into the helper functions.

There is one task left – implementing MoveSnake. Recall that MoveSnake moves the snake one step
forward on its path. If the snake crashes, the function returns false to indicate that the game is over.
Otherwise, the function returns true.

The first thing to do in MoveSnake is to figure out where the snake's head will be after taking a step.
Thanks to GetNextPosition, this has already been taken care of for us:

 bool MoveSnake(gameT& game) {
 pointT nextHead = GetNextPosition(game, game.dx, game.dy);
 /* ... */
 }

Chapter 5: STL Sequence Containers - 113 -

Now, if we crashed into something (either by falling off the map or by hitting an object), we'll return false
so that the main loop can terminate:

 bool MoveSnake(gameT& game) {
 pointT nextHead = GetNextPosition(game, game.dx, game.dy);
 if(Crashed(nextHead, game))
 return false;

 /* ... */
 }

Next, we need to check to see if we ate some food. We'll store this in a bool variable for now, since the
logic for processing food will come a bit later:

 bool MoveSnake(gameT& game) {
 pointT nextHead = GetNextPosition(game, game.dx, game.dy);
 if(Crashed(nextHead, game))
 return false;

 bool isFood = (game.world[nextHead.row][nextHead.col] == kFoodTile);

 /* ... */
 }

Now, let's update the snake's head. We need to update the world vector so that the user can see that the
snake's head is in a new square, and also need to update the snake deque so that the snake's head is now
given by the new position. This is shown here:

 bool MoveSnake(gameT& game) {
 pointT nextHead = GetNextPosition(game, game.dx, game.dy);
 if(Crashed(nextHead, game))
 return false;

 bool isFood = (game.world[nextHead.row][nextHead.col] == kFoodTile);

 game.world[nextHead.row][nextHead.col] = kSnakeTile;
 game.snake.push_front(nextHead);

 /* ... */
 }

Finally, it's time to move the snake's tail forward one step. However, if we've eaten any food, we will leave
the tail as-is so that the snake grows by one tile. We'll also put food someplace else on the map so the
snake has a new objective. The code for this is shown here:

- 114 - Chapter 5: STL Sequence Containers

 bool MoveSnake(gameT& game) {
 pointT nextHead = GetNextPosition(game, game.dx, game.dy);
 if(Crashed(nextHead, game))
 return false;

 bool isFood = (game.world[nextHead.row][nextHead.col] == kFoodTile);

 game.world[nextHead.row][nextHead.col] = kSnakeTile;
 game.snake.push_front(nextHead);

 if(!isFood) {
 game.world[game.snake.back().row][game.snake.back().col] = kEmptyTile;
 game.snake.pop_back();
 } else {
 ++game.numEaten;
 PlaceFood(game);
 }
 return true;
 }

We're nearing the home stretch – all that's left to do is to implement PlaceFood and we're done! This
function is simple – we'll just sit in a loop picking random locations on the board until we find an empty
spot, then will put a piece of food there. To generate a random location on the board, we'll scale rand()
down to the proper range using the modulus (%) operator. For example, on a world with four rows and ten
columns, we'd pick as a row rand() % 4 and as a column col() % 10. The code for this function is
shown here:

 void PlaceFood(gameT& game) {
 while(true) {
 int row = rand() % game.numRows;
 int col = rand() % game.numCols;

 /* If the specified position is empty, place the food there. */
 if(game.world[row][col] == kEmptyTile) {
 game.world[row][col] = kFoodTile;
 return;
 }
 }
 }

Chapter 5: STL Sequence Containers - 115 -

More To Explore

There's so much to explore with the STL that we could easily fill the rest of the course reader with STL
content. If you're interested in some more advanced topics relating to this material and the STL in general,
consider reading on these topics:

1. stack and queue: The vector and deque pack a lot of firepower and can solve a wide array of
problems. However, in some cases, you may want to use a container with a more restricted set of
operations. For these purposes, the STL exports two container adapters, containers that export
functionality similar to a vector or deque but with a slight reduction in power. The first of these
is the stack, which only lets you view the final element of a sequence; the second is the queue,
which is similar to line at a ticket counter. If you plan on pursuing C++ more seriously, you should
take the time to look over what these container adapters have to offer.

2. valarray: The valarray class is similar to a vector in that it's a managed array that can hold
elements of any type. However, unlike vector, valarray is designed for numerical computations.
valarrays are fixed-size and have intrinsic support for mathematical operators. For example, you
can use the syntax myValArray *= 2 to multiply all of the entries in a valarray by two. If you're
interested in numeric or computational programming, consider looking into the valarray.

3. There's an excellent article online comparing the performances of the vector and deque
containers. If you're interested, you can see it at
http://www.codeproject.com/vcpp/stl/vector_vs_deque.asp.

Practice Problems

1. List two differences between the vector's push_back and resize member functions.

2. What header files do you need to #include to use vector? deque?

3. How do you tell how many elements are in a vector? In a deque?

4. How do you remove the first element from a vector? From a deque?

5. Write a function called LinesFromFile which takes in a string containing a filename and returns a
vector<string> containing all of the lines of text in the file in the order in which they appear. If
the file does not exist, you can return an empty vector. (Hint: look at the code for reading the
world file in the Snake example and see if you can modify it appropriately)

6. Update the code for the sorting program so that it sorts elements in descending order instead of
ascending order.

7. One use for the deque container is to create a ring buffer. Unlike the linear vector and deque
containers you saw in this chapter, a ring buffer is circular. Here's an illustration of a ring buffer:

http://www.codeproject.com/vcpp/stl/vector_vs_deque.asp

- 116 - Chapter 5: STL Sequence Containers

0
1

2

3

4

567

8

0

9

10

11

Cursor

A ring buffer consists of a circular ring of elements with a cursor which selects some particular
element out of the buffer. The four main operations on a ring buffer are as follows:

◦ Rotate the ring clockwise
◦ Rotate the ring counterclockwise
◦ Read the value at the cursor.
◦ Write the value at the cursor.

For example, given the above ring buffer, the result of rotating the ring clockwise would be

0
1

2

3

456

7

11

8

9

10

Cursor

 If we then wrote the value 5 to the location specified by the cursor, the buffer would look like this:

0
1

5

3

456

7

11

8

9

10

Cursor

Chapter 5: STL Sequence Containers - 117 -

There is a particularly elegant construction which enables us to build a ring buffer out of a deque.
The basic idea is to “unroll” the ring buffer into a linear sequence, then use a combination of
push_front, pop_front, push_back, and pop_back to simulate moving the cursor to the left or
to the right. This technique of simulating one data structure using another is ubiquitous in
computer science, and many important results in computability theory use constructions of this
form.

To see exactly how the construction works, suppose that we have the following ring buffer:

0
1

2

3

4

567

8

0

9

10

11

Cursor

 We can then represent this using a deque as follows:

0
1

2

3

4

567

8

0

9

10

11

Cursor

3 4 5 6 7 8 9 10 11 0 1 2

That is, the first element of the deque is the element under the cursor, and the rest of the elements
in the deque are the elements in the ring buffer formed by walking clockwise around the ring
buffer. Given this construction, we can simulate rotating the ring one position clockwise by moving
the last element of the deque onto the front, as shown here:

- 118 - Chapter 5: STL Sequence Containers

0
1

2

3

456

7

11

8

9

10

Cursor

3 4 5 6 7 8 9 10 11 0 12

Similarly, to move the cursor one step counterclockwise, we move the element at the end of the
deque onto the front, as shown here:

0
1

2

3

4

567

8

0

9

10

11

Cursor

3 4 5 6 7 8 9 10 11 0 1 2

Write a pair of functions CursorClockwise and CursorCounterClockwise which take in a
deque representing a ring buffer and update the deque by simulating a cursor move in either
direction. Then write functions CursorRead and CursorWrite which read and write the element
stored at the cursor. You've just shown how to represent one data structure using another!

Chapter 5: STL Sequence Containers - 119 -

8. As mentioned earlier, the deque outperforms the vector when inserting and removing elements at
the end of the container. However, the vector has a useful member function called reserve that
can be used to increase its performance against the deque in certain circumstances. The reserve
function accepts an integer as a parameter and acts as a sort of “size hint” to the vector. Behind
the scenes, reserve works by allocating additional storage space for the vector elements,
reducing the number of times that the vector has to ask for more storage space. Once you have
called reserve, as long as the size of the vector is less than the number of elements you have
reserved, calls to push_back and insert on the vector will execute more quickly than normal.
Once the vector hits the size you reserved, these operations revert to their original speed.*

Write a program that uses push_back to insert a large number of strings into two different
vectors – one which has had reserve called on it and one which hasn't – as well as a deque. The
exact number and content of strings is up to you, but large numbers of long strings will give the
most impressive results. Use the clock() function exported by <ctime> to compute how long it
takes to finish inserting the strings. Now repeat this trial, but insert the elements at the
beginning of the container rather than the end. Did calling reserve help to make the vector
more competitive against the deque?

9. In this next problem we'll explore a simple encryption algorithm called the Vigenère cipher and
how to implement it using the STL containers.

One of the oldest known ciphers is the Caesar cipher, named for Julius Caesar, who allegedly
employed it. The idea is simple. We pick a secret number between 1 and 26, inclusive, then
encrypt the input string by replacing each letter with the letter that comes that many spaces after
it. If this pushes us off the end of the alphabet, we wrap around to the start of the alphabet. For
example, if we were given the string “The cookies are in the fridge” and picked the number 1, we
would end up with the resulting string “Uif dppljft bsf jo uif gsjehf.” To decrypt the string, we
simply need to push each letter backwards by one spot.

The Caesar cipher is an extremely weak form of encryption; it was broken in the ninth century by
the Arab polymath al-Kindi. The problem is that the cipher preserves the relative frequencies of
each of the letters in the source text. Not all letters appear in English with equal frequency – e and
t are far more common than q or w, for example – and by looking at the relative letter frequencies
in the encrypted text it is possible to determine which letter in the encrypted text corresponds to a
letter in the source text and to recover the key.

The problem with the Caesar cipher is that it preserves letter frequencies because each letter is
transformed using the same key. But what if we were to use multiple keys while encrypting the
message? That is, we might encrypt the first letter with one key, the second with another, the third
with yet another, etc. One way of doing this is to pick a sequence of numbers, then cycle through
them while encrypting the text. For example, let's suppose that we want to encrypt the above
message using the key string 1, 3, 7. Then we would do the following:

T H E C O O K I E S A R E I N T H E F R I D G E

1 3 7 1 3 7 1 3 7 1 3 7 1 3 7 1 3 7 1 3 7 1 3 7

U K L D R V L L L T D Y F L U U K L G U P E J L

Notice that the letters KIE from COOKIES are all mapped to the letter L, making cryptanalysis much
more difficult. This particular encryption system is the Vigenère cipher.

* Calling push_back n times always takes O(n) time, whether or not you call reserve. However, calling reserve
reduces the constant term in the big-O to a smaller value, meaning that the overall execution time is lower.

- 120 - Chapter 5: STL Sequence Containers

Now, let's consider what would happen if we wanted to implement this algorithm in C++ to work
on arbitrary strings. Strings in C++ are composed of individual chars, which can take on (typically)
one of 256 different values. If we had a list of integer keys, we could encrypt a string using the
Vigenère cipher by simply cycling through those keys and incrementing the appropriate letters of
the string. In fact, the algorithm is quite simple. We iterate over the characters of the string, at
each point incrementing the character by the current key and then rotating the keys one cycle.

a. Suppose that we want to represent a list of integer keys that can easily be cycled; that is, we
want to efficiently support moving the first element of the list to the back. Of the containers
covered in this chapter (vector and deque), which have the best support for this operation? ♦

b. Based on your decision, implement a function VigenereEncrypt that accepts a string and a
list of int keys stored in the container of your choice, then encrypts the string using the
Vigenère cipher. ♦

Chapter 6: STL Associative Containers and Iterators

In the previous chapter, we explored two of the STL's sequence containers, the vector and deque. These
containers are ideally suited for situations where we need to keep track of an ordered list of elements,
such as an itinerary, shopping list, or mathematical vector. However, representing data in ordered lists is
not optimal in many applications. For example, when keeping track of what merchandise is sold in a
particular store, it does not make sense to think of the products as an ordered list. Storing merchandise in
a list would imply that the merchandise could be ordered as “this is the first item being sold, this is the
second item being sold, etc.” Instead, it makes more sense to treat the collection of merchandise as an
unordered collection, where membership rather than ordering is the defining characteristic. That is, we are
more interested in answers to the question “is item X being sold here?” than answers to the question
“where in the sequence is the element X?” Another scenario in which ordered lists are suboptimal arises
when trying to represent relationships between sets of data. For example, we may want to encode a
mapping from street addresses to buildings, or from email addresses to names. In this setup, the main
question we are interested in answering is “what value is associated with X?,” not “where in the sequence
is element X?”

In this chapter, we will explore four new STL container classes – map, set, multimap, and multiset – that
provide new abstractions for storing data. These containers will represent allow us to ask different
questions of our data sets and will make it possible to write programs to solve increasingly complex
problems. As we explore those containers, we will introduce STL iterators, tools that will pave the way for
more advanced STL techniques.

Storing Unordered Collections with set

To motivate the STL set container, let's consider a simple probability question. Recall from last chapter's
Snake example that the C++ rand() function can be used to generate a pseudorandom integer in the range
[0, RAND_MAX]. (Recall that the notation [a, b] represents all real numbers between a and b, inclusive).
Commonly, we are interested not in values from zero to RAND_MAX, but instead values from 0 to some set
upper bound k. To get values in this range, we can use the value of

 rand() % (k + 1)

This computes the remainder when dividing rand() by k + 1, which must be in the range [0, k].*

Now, consider the following question. Suppose that we have a six-sided die. We roll the die, then record
what number we rolled. We then keep rolling the die and record what number came up, and keep
repeating this process. The question is as follows: how many times, on average, will we roll the die before
the same number comes up twice? This is actually a special case of a more general problem: if we
continuously generate random integers in the range [0, k], how many numbers should we expect to
generate before we generate some number twice? With some fairly advanced probability theory, this
value can be calculated exactly. However, this is a textbook on C++ programming, not probability theory,
and so we'll write a short program that will simulate this process and report the average number of die
rolls.

* This process will not always yield uniformly-distributed values, because RAND_MAX will not always be a multiple
of k. For a fun math exercise, think about why this is.

- 122 - Chapter 6: STL Associative Containers and Iterators

There are many ways that we can write this program. In the interest of simplicity, we'll break the program
into two separate tasks. First, we'll write a function that rolls the die over and over again, then reports
how many die rolls occurred before some number came up twice. Second, we'll write our main function to
call this function multiple times to get a good sample, then will have it print out the average.

Let's think about how we can write a function that rolls a die until the same number comes up twice. At a
high level, this function needs to generate a random number from 1 to 6, then check if it has been
generated before. If so, it should stop and report the number of dice rolled. Otherwise, it should
remember that this number has been rolled, then generate a new number. A key step of this process is
remembering what numbers have come up before, and using the techniques we've covered so far we could
do this using either a vector or a deque. For simplicity, we'll use a vector. One implementation of this
function looks like this:

 /* Rolls a six-sided die and returns the number that came up. */
 int DieRoll() {
 /* rand() % 6 gives back a value between 0 and 5, inclusive. Adding one to
 * this gives us a valid number for a die roll.
 */
 return (rand() % 6) + 1;
 }

 /* Rolls the dice until a number appears twice, then reports the number of die
 * rolls.
 */
 size_t RunProcess() {
 vector<int> generated;

 while (true) {
 /* Roll the die. */
 int nextValue = DieRoll();

 /* See if this value has come up before. If so, return the number of
 * rolls required. This is equal to the number of dice that have been
 * rolled up to this point, plus one for this new roll.
 */
 for (size_t k = 0; k < generated.size(); ++k)
 if (generated[k] == nextValue)
 return generated.size() + 1;

 /* Otherwise, remember this die roll. */
 generated.push_back(nextValue);
 }
 }

Now that we have the RunProcess function written, we can run through one simulation of this process.
However, it would be silly to give an estimate based on just one iteration. To get a good estimate, we'll
need to run this process multiple times to control for randomness. Consequently, we can write the
following main function, which runs the process multiple times and reports the average value:

Chapter 6: STL Associative Containers and Iterators - 123 -

 const size_t kNumIterations = 10000; // Number of iterations to run

 int main() {
 /* Seed the randomizer. See the last chapter for more information on this
 * line.
 */
 srand(static_cast<unsigned>(time(NULL)));

 size_t total = 0; // Total number of dice rolled

 /* Run the process kNumIterations times, accumulating the result into
 * total.
 */
 for (size_t k = 0; k < kNumIterations; ++k)
 total += RunProcess();

 /* Finally, report the result. */
 cout << "Average number of steps: "
 << double(total) / kNumIterations << endl;
 }

If you compile and run this program, you'll see output that looks something like this:

 Average number of steps: 3.7873

You might see a different number displayed on your system, since the program involves a fundamentally
random process.

Now, let's make a small tweak to this program. Suppose that instead of rolling a six-sided die, we roll a
twenty-sided die.* How many steps should we expect this to take now? If we change our implementation
of DieRoll to the following:

 int DieRoll() {
 return (rand() % 20) + 1;
 }

Then running the program will produce output along the following lines:

 Average number of steps: 6.2806

This is interesting – we more than tripled the number of sides on the die (from six to twenty), but the total
number of expected rolls increased by less than a factor of two! Is this a coincidence, or is there some
fundamental law of probability at work here? To find out, let's assume that we're now rolling a die with
365 sides (i.e. one side for every day of the year). This means our new implementation of DieRoll is

 int DieRoll() {
 return (rand() % 365) + 1;
 }

Running this program produces output that looks like this:

 Average number of steps: 24.6795

* If you haven't seen a twenty-sided die (or D20 in gamer-speak), you're really missing out. They're very fun to play
with.

- 124 - Chapter 6: STL Associative Containers and Iterators

Now that's weird! In increasing the number of sides on the die from 20 to 365, we increased the number
of sides on the die by a factor of (roughly) eighteen. However, the number of expected rolls went up only
by a factor of four! But more importantly, think about what this result means. If you have a roomful of
people with twenty-five people, then you should expect at least two people in that room to have the same
birthday! This is sometimes called the birthday paradox, since it seems counterintuitive that such a small
sample of people would cause this to occur. The more general result, for those of you who are interested,
is that you will need to roll an n sided die roughly n times before the same number will come up twice.

This has been a fun diversion into the realm of probability theory, but what does it have to do with C++
programming? The answer lies in the implementation of the RunProcess function. The heart of this
function is a for loop that checks whether a particular value is contained inside of a vector. This loop is
reprinted here for simplicity:

 for (size_t k = 0; k < generated.size(); ++k)
 if (generated[k] == nextValue)
 return generated.size() + 1;

Notice that there is a disparity between the high-level operation being modeled here (“check if the number
has already been generated”) and the actual implementation (“loop over the vector, checking, for each
element, whether that element is equal to the most-recently generated number”). There is a tension here
between what the code accomplishes and the way in which it accomplishes it. The reason for this is that
we're using the wrong abstraction. Intuitively, a vector maintains an ordered sequence of elements. The
main operations on a vector maintain that sequence by adding and removing elements from that
sequence, looking up elements at particular positions in that sequence, etc. For this application, we want
to store a collection of numbers that is unordered. We don't care when the elements were added to the
vector or what position they occupy. Instead, we are interested what elements are in the vector, and in
particular whether a given element is in the vector at all.

For situations like these, where the contents of a collection of elements are more important than the actual
sequence those elements are in, the STL provides a special container called the set. The set container
represents an arbitrary, unordered collection of elements and has good support for the following
operations:

• Adding elements to the collection.
• Removing elements from the collection.
• Determining whether a particular element is in the collection.

To see the set in action, let's consider a modified version of the RunProcess function which uses a set
instead of a vector to store its elements. This code is shown here (though you'll need to #include
<set> for it to compile):

 size_t RunProcess() {
 set<int> generated;

 while (true) {
 int nextValue = DieRoll();

 /* Check if this value has been rolled before. */
 if (generated.count(nextValue)) return generated.size() + 1;

 /* Otherwise, add this value to the set. */
 generated.insert(nextValue);
 }
 }

Chapter 6: STL Associative Containers and Iterators - 125 -

Take a look at the changes we made to this code. To determine whether the most-recently-generated
number has already been produced, we can use the simple syntax generated.count(nextValue) rather
than the clunkier for loop from before. Also notice that to insert the new element into the set, we used
the insert function rather than push_back.

The names of the functions on the set are indicative of the differences between the set and the vector
and deque. When inserting an element into a vector or deque, we needed to specify where to put that
element: at the end using push_back, at the beginning with push_front, or at some arbitrary position
using insert. The set has only one function for adding elements – insert – which does not require us to
specify where in the set the element should go. This makes sense, since the set is an inherently
unordered collection of elements. Additionally, the set has no way to query elements at specific positions,
since the elements of a set don't have positions. However, we can check whether an element exists in a
set very simply using the count function, which returns true if the element exists and false otherwise.*

If you rerun this program using the updated code, you'll find that the program produces almost identical
output (the randomness will mean that you're unlikely to get the same output twice). The only difference
between the old code and the new code is the internal structure. Using the set, the code is easier to read
and understand. In the next section, we'll probe the set in more detail and explore some of its other uses.

A Primer on set

The STL set container represents an unordered collection of elements that does not permit duplicates.
Logically, a set is a collection of unique values that efficiently supports inserting and removing elements,
as well as checking whether a particular element is contained in the set. Like the vector and deque, the
set is a parameterized class. Thus we can speak of a set<int>, a set<double>, set<string>, etc. As
with vector and deque, sets can only hold one type of element, so you cannot have a set that mixes and
matches between ints and strings, for example. However, unlike the vector or deque, set can only
store objects that can be compared using the < operator. This means that you can store all primitive types
in a set, along with strings and other STL containers. However, you cannot store custom structs inside
of an STL set. For example, the following is illegal:

 struct Point {
 double x, y;
 };

 set<Point> mySet; // Illegal, Point cannot be compared with <

This may seem like a somewhat arbitrary restriction. Logically, we could be able to gather up anything
into an unordered collection. Why does it matter that those elements be comparable using <? The answer
has to do with how the set is implemented behind the scenes. Internally, the set is layered on top of a
balanced binary tree, a special data structure that naturally supports the set's main operations. However,
balanced binary trees can only be constructed on data sets where elements can be compared to one
another, hence the restriction. Later in this text we'll see how to use a technique called operator
overloading to make it possible to store objects of any type in an STL set, but for now you will need to
confine yourself to primitives and other STL containers.

As we saw in the previous example, one of the most basic set operations is insertion using the insert
function. Unlike the deque and vector insert functions, you do not need to specify a location for the
new element. After all, a set represents an unordered collection, and specifying where an element should
go in a set does not make any sense. Here is some sample code using insert:

* Technically speaking, count returns 1 if the element exists and 0 otherwise. For most purposes, though, it's safe
to treat the function as though it returns a boolean true or false.

- 126 - Chapter 6: STL Associative Containers and Iterators

 set<int> mySet;
 mySet.insert(137); // Now contains: 137
 mySet.insert(42); // Now contains: 42 137
 mySet.insert(137); // Now contains: 42 137

Notice in this last line that inserting a second copy of 137 into the set did not change the contents of the
set. sets do not allow for duplicate elements.

To check whether a particular element is contained in an STL set, you can also use the count function,
which returns 1 if the element is contained in the set and 0 otherwise. Using C++'s automatic conversion
of nonzero values into true and zero values to false, you usually do not need to explicitly check whether
count yields a one or zero and can rely on implicit conversions instead. For example:

 if(mySet.count(137))
 cout << "137 is in the set." << endl; // Printed
 if(!mySet.count(500))
 cout << "500 is not in the set." << endl; // Printed

To remove an element from a set, you use the erase function. erase is a mirror to insert, and the two
have very similar syntax. For example:

mySet.erase(137); // Removes 137, if it exists.

The STL set also supports several operations common to all STL containers. You can remove all elements
from a set using clear, check how many elements are present using size, etc. A full table of all set
operations is presented later in this chapter.

Traversing Containers with Iterators

One of the most common operations we've seen in the course of working with the STL containers is
iteration, traversing the contents of a container and performing some task on every element. For example,
the following loop iterates over the contents of a vector, printing each element:

 for (size_t h = 0; h < myVector.size(); ++h)
 cout << myVector[h] << endl;

We can similarly iterate over a deque as follows:

 for (size_t h = 0; h < myDeque.size(); ++h)
 cout << myDeque[h] << endl;

The reason that we can use this convenient syntax to traverse the contents of the vector and deque is
because the vector and deque represent linear sequences, and so it is possible to enumerate all possible
indices in the container using the standard for loop. That is, we can iterate so easily over a vector or
deque because we can look up the zeroth element, then the first element, then the second, etc.
Unfortunately, this logic does not work on the STL set. Because the set does not have an ordering on its
elements, it does not make sense to speak of the “zeroth element of a set,” nor the “first element of a set,”
etc. To traverse the elements of a set, we will need to use a new concept, the iterator.

Every STL container presents a different means of storing data. vector and deque store data in an
ordered list. set stores its data as an unordered collection. As you'll soon see, map encodes data as a
collection of key/value pairs. But while each container stores its data in a different format, fundamentally,
each container still stores data. Iterators provide a clean, consistent mechanism for accessing data stored
in containers, irrespective of how that data may be stored. That is, the syntax for looking at vector data

Chapter 6: STL Associative Containers and Iterators - 127 -

with iterators is almost identical to the syntax for examining set and deque data with iterators. This fact
is extremely important. For starters, it implies that once you've learned how to use iterators to traverse
any container, you can use them to traverse all containers. Also, as you'll see, because iterators can
traverse data stored in any container, they can be used to specify a collection of values in a way that masks
how those values are stored behind-the-scenes.

So what exactly is an iterator? At a high level, an iterator is like a cursor in a text editor. Like a cursor, an
iterator has a well-defined position inside a container, and can move from one character to the next. Also
like a cursor, an iterator can be used to read or write a range of data one element at a time.

It's difficult to get a good feel for how iterators work without having a sense of how all the pieces fit
together. Therefore, we'll get our first taste of iterators by jumping head-first into the idiomatic “loop over
the elements of a container” for loop, then will clarify all of the pieces individually. Here is a sample piece
of code that will traverse the elements of a vector<int>, printing each element out on its own line:

 vector<int> myVector = /* ... some initialization ... */
 for (vector<int>::iterator itr = myVector.begin();
 itr != myVector.end(); ++itr)
 cout << *itr << endl;

This code is perhaps the densest C++ we've encountered yet, so let's take a few minutes to dissect exactly
what's going on here. The first part of the for loop is the statement

 vector<int>::iterator itr = myVector.begin();

This line of code creates an object of type vector<int>::iterator, an iterator variable named itr that
can traverse a vector<int>. Note that a vector<int>::iterator can only iterate over a vector<int>.
If we wanted to iterate over a vector<string>, we would need to use a vector<string>::iterator,
and if we wanted to traverse a set<int> we would have to use a set<int>::iterator. We then
initialize the iterator to myVector.begin(). Every STL container class exports a member function
begin() which yields an iterator pointing to the first element of that container. By initializing the iterator
to myVector.begin(), we indicate to the C++ compiler that the itr iterator will be traversing elements
of the container myVector.

Inside the body of the for loop, we have the line

 cout << *itr << endl;

The strange-looking entity *itr is known as an iterator dereference and means “the element being
iterated over by itr.” As itr traverses the elements of the vector, it will proceed from one element to
the next in sequence until all of the elements of the vector have been visited. At each step, the element
being iterated over can be yielded by prepending a star to the name of the iterator. In the above context,
we dereference the iterator to yield the current element of myVector being traversed, then print it out.
We will discuss the nuances of iterator dereferences in more detail shortly.

Returning up to the for loop itself, notice that after each iteration we execute

 ++itr;

When applied to ints, the ++ operator is the increment operator; writing ++myInt means “increment the
value of the myInt variable.” When applied to iterators, the ++ operator means “advance the iterator one
step forward.” Because the step condition of the for loop is ++itr, this means that each iteration of the
for loop will advance the iterator to the next element in the container, and eventually all elements will be

- 128 - Chapter 6: STL Associative Containers and Iterators

visited. Of course, at some point, we will have visited all of the elements in the vector and will need to
stop iterating. To detect when an iterator has visited all of the elements, we loop on the condition that

 itr != myVector.end();

Each STL container exports a special function called end() that returns an iterator to the element one past
the end of the container. For example, consider the following vector:

137 42 2718 3141 6266 6023

In this case, the iterators returned by that vector's begin() and end() functions would point to the
following locations:

begin() end()

↓ ↓

137 42 2718 3141 6266 6023

Notice that the begin() iterator points to the first element of the vector, while the end() iterator points
to the slot one position past the end of the vector. This may seem strange at first, but is actually an
excellent design decision. Recall the for loop from above, which iterates over the elements of a vector.
This is reprinted below:

 for (vector<int>::iterator itr = myVector.begin();
 itr != myVector.end(); ++itr)
 cout << *itr << endl;

Compare this to the more traditional loop you're used to, which also iterates over a vector:

 for (size_t h = 0; h < myVector.size(); ++h)
 cout << myVector[h] << endl;

Because the vector is zero-indexed, if you were to look up the element in the vector at position
myVector.size(), you would be reading a value not actually contained in the vector. For example, in a
vector of five elements, the elements are stored at positions 0, 1, 2, 3, and 4. There is no element at
position five, and trying to read an element there will result in undefined behavior. However, in the for
loop to iterate over the contents of the vector, we still use the value of myVector.size() as the upper
bound for the iteration, since the loop will cut off as soon as the iteration index reaches the value
myVector.size(). This is identical to the behavior of the end() iterator in the iterator-based for loop.
myVector.end() is never a valid iterator, but we use it as the loop upper bound because as soon as the
itr iterator reaches myVector.end() the loop will terminate.

Part of the beauty of iterators is that the above for loop for iterating over the contents of a vector can
trivially be adapted to iterate over just about any STL container class. For instance, if we want to iterate
over the contents of a deque<int>, we could do so as follows:

 deque<int> myDeque = /* ... some initialization ... */
 for (deque<int>::iterator itr = myDeque.begin(); itr != myDeque.end(); ++itr)
 cout << *itr << endl;

Chapter 6: STL Associative Containers and Iterators - 129 -

This is exactly the same loop structure, though some of the types have changed (i.e. we've replaced
vector<int>::iterator with deque<int>::iterator). However, the behavior is identical. This loop
will traverse the contents of the deque in sequence, printing each element out as it goes.

Of course, at this point iterators may seem like a mere curiosity. Sure, we can use them to iterate over a
vector or deque, but we already could do that using a more standard for loop. The beauty of iterators is
that they work on any STL container, including the set. If we have a set of elements we wish to traverse,
we can do so using the following syntax:

 set<int> mySet = /* ... some initialization ... */
 for (set<int>::iterator itr = mySet.begin(); itr != mySet.end(); ++itr)
 cout << *itr << endl;

Again, notice that the structure of the loop is the same as before. Only the types have changed.

One crucial detail we've ignored up to this point is in what order the elements of a set will be traversed.
When using the vector or deque there is a natural iteration order (from the start of the sequence to the
end), but when using the STL set the idea of ordering is a bit more vague. However, iteration order over a
set is well-specified. When traversing set elements via an iterator, the elements will be visited in sorted
order, starting with the smallest element and ending with the largest. This is in part why the STL set can
only store elements comparable using the less-than operator: there is no well-defined “smallest” or
“biggest” element of a set if the elements cannot be compared. To see this in action, consider the
following code snippet:

 /* Generate ten random numbers */
 set<int> randomNumbers;
 for (size_t k = 0; k < 10; ++k)
 randomNumbers.insert(rand());

 /* Print them in sorted order. */
 for (set<int>::iterator itr = randomNumbers.begin();
 itr != randomNumbers.end(); ++itr)
 cout << *itr << endl;

This will print different outputs on each run, since the program generates and stores random numbers.
However, the values will always be in sorted order. For example:

 137 2718 3141 4103 5422 6321 8938 10299 12003 16554

Spotlight on Iterators

As you just saw, there are three major operations on iterators:

• Dereferencing the iterator to read a value.
• Advancing the iterator from one position to the next.
• Comparing two iterators for equality.

Iterator dereferencing is a particularly important operation, and so before moving on we'll take a few
minutes to explore this in more detail.

As you've seen so far, iterators can be used to read the values of a container indirectly. However, iterators
can also be used to write the values of a container indirectly as well. For example, here is a simple for
loop to set all of the elements of a vector<int> to 137:

- 130 - Chapter 6: STL Associative Containers and Iterators

 for (vector<int>::iterator itr = myVector.begin();
 itr != myVector.end(); ++itr)
 *itr = 137;

This is your first glimpse of the true power of iterators. Because iterators give a means for reading and
writing container elements indirectly, it is possible to write functions that operate on data from any
container class by manipulating iterators from that container class. These functions are called STL
algorithms and will be discussed in more detail next chapter.

Up to this point, when working with iterators, we have restricted ourselves to STL containers that hold
primitive types. That is, we've talked about vector<int> and set<int>, but not, say, vector<string>.
All of the syntax that we have seen so far for containers holding primitive types are applicable to
containers holding objects. For example, this loop will correctly print out all of the strings in a
set<string>:

 for (set<string>::iterator itr = mySet.begin(); itr != mySet.end(); ++itr)
 cout << *itr << endl;

However, let's suppose that we want to iterate over a set<string> printing out the lengths of the
strings in that set. Unfortunately, the following syntax will not work:

 for (set<string>::iterator itr = mySet.begin(); itr != mySet.end(); ++itr)
 cout << *itr.length() << endl; // Error: Incorrect syntax!

The problem with this code is that the C++ compiler interprets it as

 *(itr.length())

Instead of

 (*itr).length()

That is, the compiler tries to call the nonexistent length() function on the iterator and to dereference
that, rather than dereferencing the iterator and then invoking the length() function on the resulting
value. This is a subtle yet important difference, so make sure that you take some time to think it through
before moving on.

To fix this problem, all STL iterators support and operator called the arrow operator that allows you to
invoke member functions on the element currently being iterated over. For example, to print out the
lengths of all of the strings in a set<string>, the proper syntax is

 for (set<string>::iterator itr = mySet.begin(); itr != mySet.end(); ++itr)
 cout << itr->length() << endl;

We will certainly encounter the arrow operator more as we continue our treatment of the material, so
make sure that you understand its usage before moving on.

Defining Ranges with Iterators

Recall for a moment the standard “loop over a container” for loop:

 set<int> mySet = /* ... some initialization ... */
 for (set<int>::iterator itr = mySet.begin(); itr != mySet.end(); ++itr)
 cout << *itr << endl;

Chapter 6: STL Associative Containers and Iterators - 131 -

If you'll notice, this loop is bounded by two iterators – mySet.begin(), which specifies the first element
to iterate over, and mySet.end(), which defines the element one past the end of the iteration range. This
raises an interesting point about the duality of iterators. A single iterator points to a single position in a
container class and represents a way to read or write that value indirectly. A pair of iterators defines two
positions and consequently defines a range of elements. In particular, given two iterators start and stop,
these iterators define the range of elements beginning with start and ending one position before stop.
Using mathematical notation, the range of elements defined by start and stop spans [start, stop).

So far, the only ranges we've considered have been those of the form [begin(), end()) consisting of all of
the elements of a container. However, as we begin moving on to progressively more complicated
programs, we will frequently work on ranges that do not span all of a container. For example, we might be
interested in iterating over only the first half of a container, or perhaps just a slice of elements in a
container meeting some property.

If you'll recall, the STL set stores its elements in sorted order, a property that guarantees efficient lookup
and insertion. Serendipitously, this allows us to efficiently iterate over a slice out of a set whose values
are bounded between some known limits. The set exports two functions, lower_bound and
upper_bound, that can be used to iterate over the elements in a set that are within a certain range.
lower_bound accepts a value, then returns an iterator to the first element in the set greater than or equal
to that value. upper_bound similarly accepts a value and returns an iterator to the first element in the
set that is strictly greater than the specified element. Given a closed range [lower, upper], we can iterate
over that range by using lower_bound to get an iterator to the first element no less than lower and
iterating until we reach the value returned by upper_bound, the first element strictly greater than upper.
For example, the following loop iterates over all elements in the set in the range [10, 100]:

 set<int>::iterator stop = mySet.upper_bound(100);
 for(set<int>::iterator itr = mySet.lower_bound(10); itr != stop; ++itr)
 /* ... perform tasks... */

Part of the beauty of upper_bound and lower_bound is that it doesn't matter whether the elements
specified as arguments to the functions actually exist in the set. For example, suppose that we run the
above for loop on a set containing all the odd numbers between 3 and 137. In this case, neither 10 nor
100 are contained in the set. However, the code will still work correctly. The lower_bound function
returns an iterator to the first element at least as large as its argument, and in the set of odd numbers
would return an iterator to the element 11. Similarly, upper_bound returns an iterator to the first
element strictly greater than its argument, and so would return an iterator to the element 101.

Summary of set

The following table lists some of the most important set functions. Again, we haven't covered const yet,
so for now it's safe to ignore it. We also haven't covered const_iterators, but for now you can just treat
them as iterators that can't write any values.

Constructor: set<T>() set<int> mySet;

Constructs an empty set.

Constructor: set<T>(const set<T>& other) set<int> myOtherSet = mySet;

Constructs a set that's a copy of another set.

- 132 - Chapter 6: STL Associative Containers and Iterators

Constructor: set<T>(InputIterator start,
 InputIterator stop)

set<int> mySet(myVec.begin(), myVec.end());

Constructs a set containing copies of the elements in the range
[start, stop). Any duplicates are discarded, and the elements
are sorted. Note that this function accepts iterators from any
source.

size_type size() const int numEntries = mySet.size();

Returns the number of elements contained in the set.

bool empty() const if(mySet.empty()) { ... }

Returns whether the set is empty.

void clear() mySet.clear();

Removes all elements from the set.

iterator begin()
const_iterator begin() const

set<int>::iterator itr = mySet.begin();

Returns an iterator to the start of the set. Be careful when
modifying elements in-place.

iterator end()
const_iterator end()

while(itr != mySet.end()) { ... }

Returns an iterator to the element one past the end of the final
element of the set.

pair<iterator, bool>
 insert(const T& value)
void insert(InputIterator begin,
 InputIterator end)

mySet.insert(4);
mySet.insert(myVec.begin(), myVec.end());

The first version inserts the specified value into the set. The
return type is a pair containing an iterator to the element and a
bool indicating whether the element was inserted successfully
(true) or if it already existed (false). The second version
inserts the specified range of elements into the set, ignoring
duplicates.

iterator find(const T& element)
const_iterator
 find(const T& element) const

if(mySet.find(0) != mySet.end()) { ... }

Returns an iterator to the specified element if it exists, and end
otherwise.

size_type count(const T& item) const if(mySet.count(0)) { ... }

Returns 1 if the specified element is contained in the set, and 0
otherwise.

size_type erase(const T& element)
void erase(iterator itr);
void erase(iterator start,
 iterator stop);

if(mySet.erase(0)) {...} // 0 was erased
mySet.erase(mySet.begin());
mySet.erase(mySet.begin(), mySet.end());

Removes an element from the set. In the first version, the
specified element is removed if found, and the function returns 1
if the element was removed and 0 if it wasn't in the set. The
second version removes the element pointed to by itr. The final
version erases elements in the range [start, stop).

Chapter 6: STL Associative Containers and Iterators - 133 -

iterator lower_bound(const T& value) itr = mySet.lower_bound(5);

Returns an iterator to the first element that is greater than or
equal to the specified value. This function is useful for obtaining
iterators to a range of elements, especially in conjunction with
upper_bound.

iterator upper_bound(const T& value) itr = mySet.upper_bound(100);

Returns an iterator to the first element that is greater than the
specified value. Because this element must be strictly greater
than the specified value, you can iterate over a range until the
iterator is equal to upper_bound to obtain all elements less than
or equal to the parameter.

A Useful Helper: pair

We have just finished our treatment of the set and are about to move on to one of the STL's most useful
containers, the map. However, before we can cover the map in any detail, we must first make a quick
diversion to a useful helper class, the pair.

pair is a parameterized class that simply holds two values of arbitrary type. pair, defined in <utility>,
accepts two template arguments and is declared as

 pair<TypeOne, TypeTwo>

pair has two fields, named first and second, which store the values of the two elements of the pair;
first is a variable of type TypeOne, second of type TypeTwo. For example, to make a pair that can hold
an int and a string, we could write

 pair<int, string> myPair;

We could then access the pair's contents as follows

 pair<int, string> myPair;
 myPair.first = 137;
 myPair.second = "C++ is awesome!";

In some instances, you will need to create a pair on-the-fly to pass as a parameter (especially to the map's
insert). You can therefore use the make_pair function as follows:

 pair<int, string> myPair = make_pair(137, "string!");

Interestingly, even though we didn't specify what type of pair to create, the make_pair function was able
to deduce the type of the pair from the types of the elements. This has to do with how C++ handles
function templates and we'll explore this in more detail later.

Representing Relationships with map

One of the most important data structures in modern computer programming is the map, a way of tagging
information with some other piece of data. The inherent idea of a mapping should not come as a surprise
to you. Almost any entity in the real world has extra information associated with it. For example, days of
the year have associated events, items in your refrigerator have associated expiration dates, and people
you know have associated titles and nicknames. The map STL container manages a relationship between a

- 134 - Chapter 6: STL Associative Containers and Iterators

set of keys and a set of values. For example, the keys in the map might be email addresses, and the values
the names of the people who own those email addresses. Alternatively, the keys might be
longitude/latitude pairs, and the values the name of the city that resides at those coordinates.

Data in a map is stored in key/value pairs. Like the set, these elements are unordered. Also like the set, it
is possible to query the map for whether a particular key exists in the map (note that the check is “does key
X exist?” rather than “does key/value pair X exist?”). Unlike the set, however, the map also allows clients to
ask “what is the value associated with key X?” For example, in a map from longitude/latitude pairs to city
names, it is possible to give a properly-constructed pair of coordinates to the map, then get back which
city is at the indicated location (if such a city exists).

The map is unusual as an STL container because unlike the vector, deque, and set, the map is
parameterized over two types, the type of the key and the type of the value. For example, to create a map
from strings to ints, you would use the syntax

 map<string, int> myMap;

Like the STL set, behind the scenes the map is implemented using a balanced binary tree. This means that
the keys in the map must be comparable using the less-than operator. Consequently, you won't be able to
use your own custom structs as keys in an STL map. However, the values in the map needn't be
comparable, so it's perfectly fine to map from strings to custom struct types. Again, when we cover
operator overloading later in this text, you will see how to store arbitrary types as keys in an STL map.

The map supports many different operations, of which four are key:

• Inserting a new key/value pair.
• Checking whether a particular key exists.
• Querying which value is associated with a given key.
• Removing an existing key/value pair.

We will address each of these in turn.

In order for a map to be useful, we will need to populate it with a collection of key/value pairs. There are
two ways to insert key/value pairs into the map. The simplest way to insert key/value pairs into a map is
to user the element selection operator (square brackets) to implicitly add the pair, as shown here:

 map<string, int> numberMap;
 numberMap["zero"] = 0;
 numberMap["one"] = 1;
 numberMap["two"] = 2;
 /* ... etc. ... */

This code creates a new map from strings to ints. It then inserts the key "zero" which maps to the
number zero, the key "one" which maps to the number one, etc. Notice that this is a major way in which
the map differs from the vector. Indexing into a vector into a nonexistent position will cause undefined
behavior, likely a full program crash. Indexing into a map into a nonexistent key implicitly creates a
key/value pair.

The square brackets can be used both to insert new elements into the map and to query the map for the
values associated with a particular key. For example, assuming that numberMap has been populated as
above, consider the following code snippet:

Chapter 6: STL Associative Containers and Iterators - 135 -

 cout << numberMap["zero"] << endl;
 cout << numberMap["two"] * numberMap["two"] << endl;

The output of this program is

 0
 4

On the first line, we query the numberMap map for the value associated with the key "zero", which is the
number zero. The second line looks up the value associated with the key "two" and multiplies it with
itself. Since "two" maps to the number two, the output is four.

Because the square brackets both query and create key/value pairs, you should use care when looking
values up with square brackets. For example, given the above number map, consider this code:

 cout << numberMap["xyzzy"] << endl;

Because "xyzzy" is not a key in the map, this implicitly creates a key/value pair with "xyzzy" as the key
and zero as the value. (Like the vector and deque, the map will zero-initialize any primitive types used as
values). Consequently, this code will output

 0

and will change the numberMap map so that it now has "xyzzy" as a key. If you want to look up a
key/value pair without accidentally adding a new key/value pair to the map, you can use the map's find
member function. find takes in a key, then returns an iterator that points to the key/value pair that has
the specified key. If the key does not exist, find returns the map's end() iterator as a sentinel. For
example:

 map<string, int>::iterator itr = numberMap.find("xyzzy");
 if (itr == numberMap.end())
 cout << "Key does not exist." << endl;
 else
 /* ... */

When working with an STL vector, deque, or set, iterators simply iterated over the contents of the
container. That is, a vector<int>::iterator can be dereferenced to yield an int, while a
set<string>::iterator dereferences to a string. map iterators are slightly more complicated because
they dereference to a key/value pair. In particular, if you have a map<KeyType, ValueType>, then the
iterator will dereference to a value of type

 pair<const KeyType, ValueType>

This is a pair of an immutable key and a mutable value. We have not talked about the const keyword yet,
but it means that keys in a map cannot be changed after they are set (though they can be removed). The
values associated with a key, on the other hand, can be modified.

Because map iterators dereference to a pair, you can access the keys and values from an iterator as
follows:

- 136 - Chapter 6: STL Associative Containers and Iterators

 map<string, int>::iterator itr = numberMap.find("xyzzy");
 if (itr == numberMap.end())
 cout << "Key does not exist." << endl;
 else
 cout << "Key " << itr->first << " has value " << itr->second << endl;

That is, to access the key from a map iterator, you use the arrow operator to select the first field of the
pair. The value is stored in the second field. This naturally segues into the stereotypical “iterate over the
elements of a map loop,” which looks like this:

 for (map<string, int>::iterator itr = myMap.begin(); itr != myMap.end(); ++itr)
 cout << itr->first << ": " << itr->second << endl;

When iterating over a map, the key/value pairs will be produced sorted by key from lowest to highest. This
means that if we were to iterate over the numberMap map from above printing out key/value pairs, the
output would be

 one: 1
 two: 2
 zero: 0

Since the keys are strings which are sorted in alphabetical order.

You've now seen how to insert, query, and iterate over key/value pairs. Removing key/value pairs from a
map is also fairly straightforward. To do so, you use the erase function as follows:

 myMap.erase("key");

That is, the erase function accepts a key, then removes the key/value pair from the map that has that key (if
it exists).

As with all STL containers, you can remove all key/value pairs from a map using the clear function,
determine the number of key/value pairs using the size function, etc. There are a few additional
operations on a map beyond these basic operations, some of which are covered in the next section.

insert and How to Avoid It

As seen above, you can use the square brackets operator to insert and update key/value pairs in the map.
However, there is another mechanism for inserting key/value pairs: insert. Like the set's insert
function, you need only specify what to insert, since the map, like the set, does not store values in a
particular order. However, because the map stores elements as key/value pairs, the parameter to the
insert function should be a pair object containing the key and the value. For example, the following
code is an alternative means of populating the numberMap map:

 map<string, int> numberMap;
 numberMap.insert(make_pair("zero", 0));
 numberMap.insert(make_pair("one", 1));
 numberMap.insert(make_pair("two", 2));
 /* ... */

There is one key difference between the insert function and the square brackets. Consider the following
two code snippets:

Chapter 6: STL Associative Containers and Iterators - 137 -

 /* Populate a map using [] */
 map<string, string> one;
 one["C++"] = "sad";
 one["C++"] = "happy";

 /* Populate a map using insert */
 map<string, string> two;
 two.insert(make_pair("C++", "sad"));
 two.insert(make_pair("C++", "happy"));

In the first code snippet, we create a map from strings to strings called one. We first create a key/value
pair mapping "C++" to "sad", and then overwrite the value associated with "C++" to "happy". After this
code executes, the map will map the key "C++" to the value "happy", since in the second line the value was
overwritten. In the second code snippet, we call insert twice, once inserting the key "C++" with the
value "sad" and once inserting the key "C++" with the value "happy". When this code executes, the map
will end up holding one key/value pair: "C++" mapping to "sad". Why is this the case?

Like the STL set, the map stores a unique set of keys. While multiple keys may map to the same value,
there can only be one key/value pair for any given key. When inserting and updating keys with the square
brackets, any updates made to the map are persistent; writing code to the effect of myMap[key] = value
ensures that the map contains the key key mapping to value value. However, the insert function is not
as forgiving. If you try to insert a key/value pair into a map using the insert function and the key already
exists, the map will not insert the key/value pair, nor will it update the value associated with the existing
key. To mitigate this, the map's insert function returns a value of type pair<iterator, bool>. The
bool value in the pair indicates whether the insert operation succeeded; a result of true means that
the key/value pair was added, while a result of false means that the key already existed. The iterator
returned by the insert function points to the key/value pair in the map. If the key/value pair was newly-
added, this iterator points to the newly-inserted value, and if a key/value pair already exists the iterator
points to the existing key/value pair that prevented the operation from succeeding. If you want to use
insert to insert key/value pairs, you can write code to the following effect:

 /* Try to insert normally. */
 pair<map<string, int>::iterator, bool> result =
 myMap.insert(make_pair("STL", 137));

 /* If insertion failed, manually set the value. */
 if(!result.second)
 result.first->second = 137;

In the last line, the expression result.first->second is the value of the existing entry, since
result.first yields an iterator pointing to the entry, so result.first->second is the value field of the
iterator to the entry. As you can see, the pair can make for tricky, unintuitive code.

If insert is so inconvenient, why even bother with it? Usually, you won't, and will use the square brackets
operator instead. However, when working on an existing codebase, you are extremely likely to run into the
insert function, and being aware of its somewhat counterintuitive semantics will save you many hours of
frustrating debugging.

- 138 - Chapter 6: STL Associative Containers and Iterators

map Summary

The following table summarizes the most important functions on the STL map container. Feel free to
ignore const and const_iterators; we haven't covered them yet.

Constructor: map<K, V>() map<int, string> myMap;

Constructs an empty map.

Constructor: map<K, V>(const map<K, V>& other) map<int, string> myOtherMap = myMap;

Constructs a map that's a copy of another map.

Constructor: map<K, V>(InputIterator start,
 InputIterator stop)

map<string, int> myMap(myVec.begin(),
 myVec.end());

Constructs a map containing copies of the elements in the
range [start, stop). Any duplicates are discarded, and
the elements are sorted. Note that this function accepts
iterators from any source, but they must be iterators over
pairs of keys and values.

size_type size() const int numEntries = myMap.size();

Returns the number of elements contained in the map.

bool empty() const if(myMap.empty()) { ... }

Returns whether the map is empty.

void clear() myMap.clear();

Removes all elements from the map.

iterator begin()
const_iterator begin() const

map<int>::iterator itr = myMap.begin();

Returns an iterator to the start of the map. Remember that
iterators iterate over pairs of keys and values.

iterator end()
const_iterator end()

while(itr != myMap.end()) { ... }

Returns an iterator to the element one past the end of the
final element of the map.

pair<iterator, bool>
 insert(const pair<const K, V>& value)
void insert(InputIterator begin,
 InputIterator end)

myMap.insert(make_pair("STL", 137));
myMap.insert(myVec.begin(), myVec.end());

The first version inserts the specified key/value pair into
the map. The return type is a pair containing an iterator
to the element and a bool indicating whether the element
was inserted successfully (true) or if it already existed
(false). The second version inserts the specified range of
elements into the map, ignoring duplicates.

V& operator[] (const K& key) myMap["STL"] = "is awesome";

Returns the value associated with the specified key, if it exists.
If not, a new key/value pair will be created and the value
initialized to zero (if it is a primitive type) or the default value
(for non-primitive types).

Chapter 6: STL Associative Containers and Iterators - 139 -

 iterator find(const K& element)
const_iterator find(const K& element) const

if(myMap.find(0) != myMap.end()) { ... }

Returns an iterator to the key/value pair having the
specified key if it exists, and end otherwise.

size_type count(const K& item) const if(myMap.count(0)) { ... }

Returns 1 if some key/value pair in the map has specified
key and 0 otherwise.

size_type erase(const K& element)
void erase(iterator itr);
void erase(iterator start,
 iterator stop);

if(myMap .erase(0)) {...}
myMap.erase(myMap.begin());
myMap.erase(myMap.begin(), myMap.end());

Removes a key/value pair from the map. In the first
version, the key/value pair having the specified key is
removed if found, and the function returns 1 if a pair was
removed and 0 otherwise. The second version removes
the element pointed to by itr. The final version erases
elements in the range [start, stop).

iterator lower_bound(const K& value) itr = myMap.lower_bound(5);

Returns an iterator to the first key/value pair whose key is
greater than or equal to the specified value. This function
is useful for obtaining iterators to a range of elements,
especially in conjunction with upper_bound.

iterator upper_bound(const K& value) itr = myMap.upper_bound(100);

Returns an iterator to the first key/value pair whose key is
greater than the specified value. Because this element
must be strictly greater than the specified value, you can
iterate over a range until the iterator is equal to
upper_bound to obtain all elements less than or equal to
the parameter.

Extended Example: Keyword Counter

To give you a better sense for how map and set can be used in practice, let's build a simple application that
brings them together: a keyword counter. C++, like most programming languages, has a set of reserved
words, keywords that have a specific meaning to the compiler. For example, the keywords for the primitive
types int and double are reserved words, as are the switch, for, while, do, and if keywords used for
control flow. For your edification, here's a complete list of the reserved words in C++:

and
and_eq
asm
auto
bitand
bitor
bool
break
case
catch
char
class
compl
const

const_cast

continue
default
delete

do
double

dynamic_cast
else
enum

explicit
export
extern
false
float
for

friend

goto
if

inline
int
long

mutable
namespace

new
not

not_eq
operator

or
or_eq

private
protected

public
register

reinterpret_cast
return
short
signed
sizeof
static

static_cast
struct
switch
template

this
throw
true

try
typedef
typeid

typename
union

unsigned
using

virtual
void

volatile
wchar_t
while
xor

xor_eq

- 140 - Chapter 6: STL Associative Containers and Iterators

We are interested in answering the following question: given a C++ source file, how many times does each
reserved word come up? This by itself might not be particularly enlightening, but in some cases it's
interesting to see how often (or infrequently) the keywords come up in production code.

We will suppose that we are given a file called keywords.txt containing all of C++'s reserved words. This
file is structured such that every line of the file contains one of C++'s reserved words. Here's the first few
lines:

File: keywords.txt
and
and_eq
asm
auto
bitand
bitor
bool
break
...

Given this file, let's write a program that prompts the user for a filename, loads the file, then reports the
frequency of each keyword in that file. For readability, we'll only print out a report on the keywords that
actually occurred in the file. To avoid a major parsing headache, we'll count keywords wherever they
appear, even if they're in comments or contained inside of a string.

Let's begin writing this program. We'll use a top-down approach, breaking the task up into smaller
subtasks which we will implement later on. Here is one possible implementation of the main function:

 #include <iostream>
 #include <string>
 #include <fstream>
 #include <map>
 using namespace std;

 /* Function: OpenUserFile(ifstream& fileStream);
 * Usage: OpenUserFile(myStream);
 * ---
 * Prompts the user for a filename until a valid filename
 * is entered, then sets fileStream to read from that file.
 */
 void OpenUserFile(ifstream& fileStream);

 /* Function: GetFileContents(ifstream& file);
 * Usage: string contents = GetFileContents(ifstream& file);
 * ---
 * Returns a string containing the contents of the file passed
 * in as a parameter.
 */
 string GetFileContents(ifstream& file);

 /* Function: GenerateKeywordReport(string text);
 * Usage: map<string, size_t> keywords = GenerateKeywordReport(contents);
 * ---
 * Returns a map from keywords to the frequency at which those keywords
 * appear in the input text string. Keywords not contained in the text will
 * not appear in the map.
 */
 map<string, size_t> GenerateKeywordReport(string contents);

Chapter 6: STL Associative Containers and Iterators - 141 -

 int main() {
 /* Prompt the user for a valid file and open it as a stream. */
 ifstream input;
 OpenUserFile(input);

 /* Generate the report based on the contents of the file. */
 map<string, size_t> report = GenerateKeywordReport(GetFileContents(input));

 /* Print a summary. */
 for (map<string, size_t>::iterator itr = report.begin();
 itr != report.end(); ++itr)
 cout << "Keyword " << itr->first << " occurred "
 << itr->second << " times." << endl;
}

The breakdown of this program is as follows. First, we prompt the user for a file using the OpenUserFile
function. We then obtain the file contents as a string and pass it into GenerateKeywordReport, which
builds us a map from strings of the keywords to size_ts representing the frequencies. Finally, we print
out the contents of the map in a human-readable format. Of course, we haven't implemented any of the
major functions that this program will use, so this program won't link, but at least it gives a sense of where
the program is going.

Let's begin implementing this code by writing the OpenUserFile function. Fortunately, we've already
written this function last chapter in the Snake example. The code for this function is reprinted below:

 void OpenUserFile(ifstream& input) {
 while(true) {
 cout << "Enter filename: ";
 string filename = GetLine();

 input.open(filename.c_str()); // See Chapter 3 for .c_str().
 if(input.is_open()) return;

 cout << "Sorry, I can't find the file " << filename << endl;
 input.clear();
 }
 }

Here, the GetLine() function is from the chapter on streams, and is implemented as

 string GetLine() {
 string line;
 getline(input, line);
 return line;
 }

Let's move on to the next task, reading the file contents into a string. This can be done in a few lines of
code using the streams library. The idea is simple: we'll maintain a string containing all of the file
contents encountered so far, and continuously concatenate on the next line of the file (which we'll read
with the streams library's handy getline function). This is shown here:

- 142 - Chapter 6: STL Associative Containers and Iterators

 string GetFileContents(ifstream& input) {
 /* String which will hold the file contents. */
 string result;

 /* Keep reading a line of the file until no data remains. *
 string line;
 while (getline(input, line))
 result += line + "\n"; // Add the newline character; getline removes it

 return result;
 }

All that remains at this point is the GenerateKeywordReport function, which ends up being most of the
work. The basic idea behind this function is as follows:

• Load in the list of keywords.
• For each word in the file:

◦ If it's a keyword, increment the keyword count appropriately.
◦ Otherwise, ignore it.

We'll take this one step at a time. First, let's load in the list of keywords. But how should we store those
keywords? We'll be iterating over words from the user's file, checking at each step whether the given
word is a keyword. This means that we will want to store the keywords in a way where we can easily
query whether a string is or is not contained in the list of keywords. This is an ideal spot for a set, which
is optimized for these operations. We can therefore write a function that looks like this to read the
reserved words list into a set:

 set<string> LoadKeywords() {
 ifstream input("keywords.txt"); // No error checking for brevity's sake
 set<string> result;

 /* Keep reading strings out of the file until we cannot read any more.
 * After reading each string, store it in the result set. We can either
 * use getline or the stream extraction operator here, but the stream
 * extraction operator is a bit more general.
 */
 string keyword;
 while (input >> keyword)
 result.insert(keyword);

 return result;
 }

We now have a way to read in the set of keywords, and can move on to our next task: reading all of the
words out of the file and checking whether any of them are reserved words. This is surprisingly tricky. We
are given a string, a continuous sequence of characters, and from this string want to identify where each
“word” is. How are we to do this? There are many options at our disposal (we'll see a heavy-duty way to
do this at the end of the chapter), but one particularly elegant method is to harness a stringstream. If
you'll recall, the stringstream class is a stream object that can build and parse strings using standard
stream operations. Further recall that when reading string data out of a stream using the stream
extraction operator, the read operation will proceed up until it encounters whitespace or the end of the
stream. That is, if we had a stream containing the text

This, dear reader, is a string.

Chapter 6: STL Associative Containers and Iterators - 143 -

If we were to read data from the stream one string at a time, we would get back the strings

 This,
 dear
 reader,
 is
 a
 string.

In that order. As you can see, the input is broken apart at whitespace boundaries, rather than word
boundaries. However, whenever we encounter a word that does not have punctuation immediately on
either side, the string is parsed correctly. This suggests a particularly clever trick. We will modify the full
text of the file by replacing all punctuation characters with whitespace characters. Having performed this
manipulation, if we parse the file contents using a stringstream, each string handed back to us will be a
complete word.

Let's write a function, PreprocessString, which accepts as input a string by reference, then replaces
all punctuation characters in that string with the space character. To help us out, we have the <cctype>
header, which exports the ispunct function. ispunct takes in a single character, then returns whether or
not it is a punctuation character. Unfortunately, ispunct treats underscores as punctuation, which will
cause problems for some reserved words (for example, static_cast), and so we'll need to special-case it.
The PreprocessString function is as follows:

 void PreprocessString(string& text) {
 for (size_t k = 0; k < text.size(); ++k)
 if (ispunct(text[k]) && text[k] != '_') // If we need to change it...
 text[k] = ' '; // ... replace it with a space.
 }

Combining this function with LoadKeywords gives us this partial implementation of
GenerateKeywordReport:

 map<string, size_t> GenerateKeywordReport(string fileContents) {
 /* Load the set of keywords from disk. */
 set<string> keywords = LoadKeywords();

 /* Preprocess the string to allow for easier parsing. */
 PreprocessString(fileContents);

 /* ... need to fill this in ... */
 }

All that's left to do now is tokenize the string into individual words, then build up a frequency map of each
keyword. To do this, we'll funnel the preprocessed file contents into a stringstream and use the
prototypical stream reading loop to break it apart into individual words. This can be done as follows:

- 144 - Chapter 6: STL Associative Containers and Iterators

 map<string, size_t> GenerateKeywordReport(string fileContents) {
 /* Load the set of keywords from disk. */
 set<string> keywords = LoadKeywords();

 /* Preprocess the string to allow for easier parsing. */
 PreprocessString(fileContents);

 /* Populate a stringstream with the file contents. */
 stringstream tokenizer;
 tokenizer << fileContents;

 /* Loop over the words in the file, building up the report. */
 map<string, size_t> result;

 string word;
 while (tokenizer >> word)
 /* ... process word here ... */
 }

Now that we have a loop for extracting single words from the input, we simply need to check whether each
word is a reserved word and, if so, to make a note of it. This is done here:

 map<string, size_t> GenerateKeywordReport(string fileContents) {
 /* Load the set of keywords from disk. */
 set<string> keywords = LoadKeywords();

 /* Preprocess the string to allow for easier parsing. */
 PreprocessString(fileContents);

 /* Populate a stringstream with the file contents. */
 stringstream tokenizer;
 tokenizer << fileContents;

 /* Loop over the words in the file, building up the report. */
 map<string, size_t> result;

 string word;
 while (tokenizer >> word)
 if (keywords.count(word))
 ++ result[word];

 return result;
 }

Let's take a closer look at what this code is doing. First, we check whether the current word is a keyword
by using the set's count function. If so, we increment the count of that keyword in the file by writing
++result[word]. This is a surprisingly compact line of code. If the keyword has not been counted
before, then ++result[word] will implicitly create a new key/value pair using that keyword as the key
and initializing the associated value to zero. The ++ operator then kicks in, incrementing the value by one.
Otherwise, if the key already existed in the map, the line of code will retrieve the value, then increment it
by one. Either way, the count is updated appropriately, and the map will be populated correctly.

We now have a working implementation of the GenerateKeywordReport function, and, combined with
the rest of the code we've written, we now have a working implementation of the keyword counting
program. As an amusing test, the result of running this program on itself is as follows:

Chapter 6: STL Associative Containers and Iterators - 145 -

 Keyword for occurred 3 times.
 Keyword if occurred 3 times.
 Keyword int occurred 1 times.
 Keyword namespace occurred 1 times.
 Keyword return occurred 6 times.
 Keyword true occurred 1 times.
 Keyword using occurred 1 times.
 Keyword void occurred 2 times.
 Keyword while occurred 4 times.

How does this compare to production code? For reference, here is the output of the program when run on
the monster source file nsCSSFrameConstructor.cpp, an 11,000+ line file from the Mozilla Firefox
source code:*

 Keyword and occurred 268 times.
 Keyword auto occurred 2 times.
 Keyword break occurred 58 times.
 Keyword case occurred 66 times.
 Keyword catch occurred 2 times.
 Keyword char occurred 4 times.
 Keyword class occurred 10 times.
 Keyword const occurred 149 times.
 Keyword continue occurred 11 times.
 Keyword default occurred 8 times.
 Keyword delete occurred 6 times.
 Keyword do occurred 99 times.
 Keyword else occurred 135 times.
 Keyword enum occurred 1 times.
 Keyword explicit occurred 4 times.
 Keyword extern occurred 4 times.
 Keyword false occurred 12 times.
 Keyword float occurred 15 times.
 Keyword for occurred 292 times.
 Keyword friend occurred 3 times.
 Keyword if occurred 983 times.
 Keyword inline occurred 86 times.
 Keyword long occurred 5 times.
 Keyword namespace occurred 5 times.
 Keyword new occurred 59 times.
 Keyword not occurred 145 times.
 Keyword operator occurred 1 times.
 Keyword or occurred 108 times.
 Keyword private occurred 2 times.
 Keyword protected occurred 1 times.
 Keyword public occurred 5 times.
 Keyword return occurred 452 times.
 Keyword sizeof occurred 3 times.
 Keyword static occurred 118 times.
 Keyword static_cast occurred 20 times.
 Keyword struct occurred 8 times.
 Keyword switch occurred 4 times.
 Keyword this occurred 205 times.
 Keyword true occurred 14 times.
 Keyword try occurred 10 times.
 Keyword using occurred 6 times.
 Keyword virtual occurred 1 times.
 Keyword void occurred 82 times.
 Keyword while occurred 53 times.

As you can see, we have quite a lot of C++ ground to cover – just look at all those keywords we haven't
covered yet!

* As of April 12, 2010

- 146 - Chapter 6: STL Associative Containers and Iterators

Multicontainers

The STL provides two special “multicontainer” classes, multimap and multiset, that act as maps and
sets except that the values and keys they store are not necessarily unique. That is, a multiset could
contain several copies of the same value, while a multimap might have duplicate keys associated with
different values.

multimap and multiset (declared in <map> and <set>, respectively) have identical syntax to map and
set, except that some of the functions work slightly differently. For example, the count function will
return the number of copies of an element an a multicontainer, not just a binary zero or one. Also, while
find will still return an iterator to an element if it exists, the element it points to is not guaranteed to be
the only copy of that element in the multicontainer. Finally, the erase function will erase all copies of the
specified key or element, not just the first it encounters.

One important distinction between the multimap and regular map is the lack of square brackets. On a
standard STL map, you can use the syntax myMap[key] = value to add or update a key/value pair.
However, this operation only makes sense because keys in a map are unique. When writing myMap[key],
there is only one possible key/value pair that could be meant. However, in a multimap this is not the case,
because there may be multiple key/value pairs with the same key. Consequently, to insert key/value pairs
into a multimap, you will need to use the insert function. Fortunately, the semantics of the multimap
insert function are much simpler than the map's insert function, since insertions never fail in a
multimap. If you try to insert a key/value pair into a multimap for which the key already exists in the
multimap, the new key/value pair will be inserted without any fuss. After all, multimap exists to allow
single keys to map to multiple values!

One function that's quite useful for the multicontainers is equal_range. equal_range returns a
pair<iterator, iterator> that represents the span of entries equal to the specified value. For
example, given a multimap<string, int>, you could use the following code to iterate over all entries
with key “STL”:

 /* Store the result of the equal_range */
 pair<multimap<string, int>::iterator, multimap<string, int>::iterator>
 myPair = myMultiMap.equal_range("STL");

 /* Iterate over it! */
 for(multimap<string, int>::iterator itr = myPair.first;
 itr != myPair.second; ++itr)
 cout << itr->first << ": " << itr->second << endl;

The multicontainers are fairly uncommon in practice partially because they can easily be emulated using
the regular map or set. For example, a multimap<string, int> behaves similarly to a map<string,
vector<int> > since both act as a map from strings to some number of ints. However, in many cases
the multicontainers are exactly the tool for the job; we'll see them used later in this chapter.

Extended Example: Finite Automata

Computer science is often equated with programming and software engineering. Many a computer
science student has to deal with the occasional “Oh, you're a computer science major! Can you make me a
website?” or “Computer science, eh? Why isn't my Internet working?” This is hardly the case and
computer science is a much broader discipline that encompasses many fields, such as artificial
intelligence, graphics, and biocomputation.

Chapter 6: STL Associative Containers and Iterators - 147 -

One particular subdiscipline of computer science is computability theory. Since computer science involves
so much programming, a good question is exactly what we can command a computer to do. What sorts of
problems can we solve? How efficiently? What problems can't we solve and why not? Many of the most
important results in computer science, such as the undecidability of the halting problem, arise from
computability theory.

But how exactly can we determine what can be computed with a computer? Modern computers are
phenomenally complex machines. For example, here is a high-level model of the chipset for a mobile Intel
processor: [Intel]

Modeling each of these components is exceptionally tricky, and trying to devise any sort of proof about the
capabilities of such a machine would be all but impossible. Instead, one approach is to work with
automata, abstract mathematical models of computing machines (the singular of automata is the plural of
automaton). Some types of automata are realizable in the physical world (for example, deterministic and
nondeterministic finite automata, as you'll see below), while others are not. For example, the Turing
machine, which computer scientists use as an overapproximation of modern computers, requires infinite
storage space, as does the weaker pushdown automaton.

Although much of automata theory is purely theoretical, many automata have direct applications to
software engineering. For example, most production compilers simulate two particular types of automata
(called pushdown automata and nondeterministic finite automata) to analyze and convert source code into
a form readable by the compiler's semantic analyzer and code generator. Regular expression matchers,
which search through text strings in search of patterned input, are also frequently implemented using an
automaton called a deterministic finite automaton.

In this extended example, we will introduce two types of automata, deterministic finite automata and
nondeterministic finite automata, then explore how to represent them in C++. We'll also explore how these
automata can be used to simplify difficult string-matching problems.

- 148 - Chapter 6: STL Associative Containers and Iterators

Deterministic Finite Automata

Perhaps the simplest form of an automaton is a deterministic finite automaton, or DFA. At a high-level, a
DFA is similar to a flowchart – it has a collection of states joined by various transitions that represent how
the DFA should react to a given input. For example, consider the following DFA:

This DFA has four states, labeled q0, q1, q2, and q3, and a set of labeled transitions between those states. For
example, the state q0 has a transition labeled 0 to q1 and a transition labeled 1 to q2. Some states have
transitions to themselves; for example, q2 transitions to itself on a 1, while q3 transitions to itself on either
a 0 or 1. Note that as shorthand, the transition labeled 0, 1 indicates two different transitions, one labeled
with a 0 and one labeled with a 1. The DFA has a designated state state, in this case q0, which is indicated
by the arrow labeled start.

Notice that the state q3 has two rings around it. This indicates that q3 is an accepting state, which will have
significance in a moment when we discuss how the DFA processes input.

Since all of the transitions in this DFA are labeled either 0 or 1, this DFA is said to have an alphabet of {0,
1}. A DFA can use any nonempty set of symbols as an alphabet; for example, the Latin or Greek alphabets
are perfectly acceptable for use as alphabets in a DFA, as is the set of integers between 42 and 137. By
definition, every state in a DFA is required to have a transition for each symbol in its alphabet. For
example, in the above DFA, each state has exactly two transitions, one labeled with a 0 and the other with a
1. Notice that state q3 has only one transition explicitly drawn, but because the transition is labeled with
two symbols we treat it as two different transitions.

The DFA is a simple computing machine that accepts as input a string of characters formed from its
alphabet, processes the string, and then halts by either accepting the string or rejecting it. In essence, the
DFA is a device for discriminating between two types of input – input for which some criterion is true and
input for which it is false. The DFA starts in its designated start state, then processes its input character-
by-character by transitioning from its current state to the state indicated by the transition. Once the DFA
has finished consuming its input, it accepts the string if it ends in an accepting state; otherwise it rejects
the input.

To see exactly how a DFA processes input, let us consider the above DFA simulated on the input 0011.
Initially, we begin in the start state, as shown here:

q1q0

q3q2

q0
0

1 1

0

1

 0

 0, 1

start

Since the first character of our string is a 0, we follow the transition to state q1, as shown here:

Chapter 6: STL Associative Containers and Iterators - 149 -

q1q0

q3q2

q0
0

1 1

0

1

 0

 0, 1

start

The second character of input is also a 0, so we follow the transition labeled with a 0 and end up back in
state q1, leaving us in this state:

q
1

q
0

q
3

q
2

q
0

0

1 1

0

1

 0

 0, 1

start

Next, we consume the next input character, a 1, which causes us to follow the transition labeled 1 to state
q3:

The final character of input is also a 1, so we follow the transition labeled 1 and end back up in q3:

q1q0

q3q2

q0
0

1 1

0

1

 0

 0, 1

start

We are now done with our input, and since we have ended in an accepting state, the DFA accepts this
input.

We can similarly consider the action of this DFA on the string 111. Initially the machine will start in state
q0, then transition to state q2 on the first input. The next two inputs each cause the DFA to transition back
to state q2, so once the input is exhausted the DFA ends in state q2, so the DFA rejects the input. We will
not prove it here, but this DFA accepts all strings that have at least one 0 and at least one 1.

Two important details regarding DFAs deserve some mention. First, it is possible for a DFA to have
multiple accepting states, as is the case in this DFA:

As with the previous DFA, this DFA has four states, but notice that three of them are marked as accepting.
This leads into the second important detail regarding DFAs – the DFA only accepts its input if the DFA ends
in an accepting state when it runs out of input. Simply transitioning into an accepting state does not cause
the DFA to accept. For example, consider the effect of running this DFA on the input 0101. We begin in the
start state, as shown here:

- 150 - Chapter 6: STL Associative Containers and Iterators

We first consume a 0, sending us to state q1:

q
0

q
0

0

1 1

0q
2

q
1

q
1

q
3

0

1

start

 1

0

Next, we read a 1, sending us to state q3:

q
0

q
0

0

1 1

0q
2

q
1

q
1

q
3

0

1

start

 1

0

The next input is a 0, sending us to q2:

Finally, we read in a 1, sending us back to q0:

q
0

q
0

0

1 1

0q
2

q
1

q
1

q
3

0

1

start

 1

0

Since we are out of input and are not in an accepting state, this DFA rejects its input, even though we
transitioned through every single accepting state. If you want a fun challenge, convince yourself that this
DFA accepts all strings that contain an odd number of 0s or an odd number of 1s (inclusive OR).

Representing a DFA

Chapter 6: STL Associative Containers and Iterators - 151 -

A DFA is a simple model of computation that can easily be implemented in software or hardware. For any
DFA, we need to store five pieces of information:*

1. The set of states used by the DFA.
2. The DFA's alphabet.
3. The start state.
4. The state transitions.
5. The set of accepting states.

Of these five, the one that deserves the most attention is the fourth, the set of state transitions. Visually,
we have displayed these transitions as arrows between circles in the graph. However, another way to treat
state transitions is as a table with states along one axis and symbols of the alphabet along the other. For
example, here is a transition table for the DFA described above:

State 0 1

q0 q1 q2

q1 q0 q3

q2 q3 q0

q3 q2 q1

To determine the state to transition to given a current state and an input symbol, we look up the row for
the current state, then look at the state specified in the column for the current input.

If we want to implement a program that simulates a DFA, we can represent almost all of the necessary
information simply by storing the transition table. The two axes encode all of the states and alphabet
symbols, and the entries of the table represent the transitions. The information not stored in this table is
the set of accepting states and the designated start state, so provided that we bundle this information with
the table we have a full description of a DFA.

To concretely model a DFA using the STL, we must think of an optimal way to model the transition table.
Since transitions are associated with pairs of states and symbols, one option would be to model the table
as an STL map mapping a state-symbol pair to a new state. If we represent each symbol as a char and each
state as an int (i.e. q0 is 0, q1 is 1, etc.), this leads to a state transition table stored as a map<pair<int,
char>, int>. If we also track the set of accepting states as a set<int>, we can encode a DFA as follows:

 struct DFA {
 map<pair<int, char>, int> transitions;
 set<int> acceptingStates;
 int startState;
 };

For the purposes of this example, assume that we have a function which fills this DFA struct will relevant
data. Now, let's think about how we might go about simulating the DFA. To do this, we'll write a function
SimulateDFA which accepts as input a DFA struct and a string representing the input, simulates the DFA
when run on the given input, and then returns whether the input was accepted. We'll begin with the
following:

 bool SimulateDFA(DFA& d, string input) {

* In formal literature, a DFA is often characterized as a quintuple (Q, Σ, q0, δ, F) of the states, alphabet, start state,
transition table, and set of accepting states, respectively. Take CS154 if you're interested in learning more about
these wonderful automata, or CS143 if you're interested in their applications.

- 152 - Chapter 6: STL Associative Containers and Iterators

 /* ... */
 }

We need to maintain the state we're currently in, which we can do by storing it in an int. We'll initialize
the current state to the starting state, as shown here:

 bool SimulateDFA(DFA& d, string input) {
 int currState = d.startState;
 /* ... */
 }

Now, we need to iterate over the string, following transitions from state to state. Since the transition table
is represented as a map from pair<int, char>s, we can look up the next state by using make_pair to
construct a pair of the current state and the next input, then looking up its corresponding value in the map.
As a simplifying assumption, we'll assume that the input string is composed only of characters from the
DFA's alphabet.

This leads to the following code:

 bool SimulateDFA(DFA& d, string input) {
 int currState = d.startState;
 for(string::iterator itr = input.begin(); itr != input.end(); ++itr)
 currState = d.transitions[make_pair(currState, *itr)];
 /* ... */
 }

You may be wondering how we're iterating over the contents of a string using iterators. Surprisingly, the
string is specially designed like the STL container classes, and so it's possible to use all of the iterator
tricks you've learned on the STL containers directly on the string.

Once we've consumed all the input, we need to check whether we ended in an accepting state. We can do
this by looking up whether the currState variable is contained in the acceptingStates set in the DFA
struct, as shown here:

Chapter 6: STL Associative Containers and Iterators - 153 -

 bool SimulateDFA(DFA& d, string input) {
 int currState = d.startState;
 for(string::iterator itr = input.begin(); itr != input.end(); ++itr)
 currState = d.transitions[make_pair(currState, *itr)];
 return d.acceptingStates.find(currState) != d.acceptingStates.end();
 }

This function is remarkably simple but correctly simulates the DFA run on some input. As you'll see in the
next section on applications of DFAs, the simplicity of this implementation lets us harness DFAs to solve a
suite of problems surprisingly efficiently.

Applications of DFAs

The C++ string class exports a handful of searching functions (find, find_first_of,
find_last_not_of, etc.) that are useful for locating specific strings or characters. However, it's
surprisingly tricky to search strings for specific patterns of characters. The canonical example is searching
for email addresses in a string of text. All email addresses have the same structure – a name field followed
by an at sign (@) and a domain name. For example, htiek@cs.stanford.edu and
this.is.not.my.real.address@example.com are valid email addresses. In general, we can specify the
formatting of an email address as follows:*

• The name field, which consists of nonempty alphanumeric strings separated by periods. Periods
can only occur between alphanumeric strings, never before or after. Thus
hello.world@example.com and cpp.is.really.cool@example.com are legal but .oops@example.com,
oops.@example.com, and oops..oops@example.com are not.

• The host field, which is structured similarly to the above except that there must be at least two
sequences separated by a dot.

Now, suppose that we want to determine whether a string is a valid email address. Using the searching
functions exported by the string class this would be difficult, but the problem is easily solved using a
DFA. In particular, we can design a DFA over a suitable alphabet that accepts a string if and only if the
string has the above formatting.

The first question to consider is what alphabet this DFA should be over. While we could potentially have
the DFA operate over the entire ASCII alphabet, it's easier if we instead group together related characters
and use a simplified alphabet. For example, since email addresses don't distinguish between letters and
numbers, we can have a single symbol in our alphabet that encodes any alphanumeric character. We
would need to maintain the period and at-sign in the alphabet since they have semantic significance. Thus
our alphabet will be {a, ., @}, where a represents alphanumeric characters, . is the period character, and @
is an at-sign.

Given this alphabet, we can represent all email addresses using the following DFA:

* This is a simplified version of the formatting of email addresses. For a full specification, refer to RFCs 5321 and
5322.

- 154 - Chapter 6: STL Associative Containers and Iterators

q
1

q
2

q
3

q
4

q
5

q
6

q
7

. a

a
@

 ., @

., @

a

 a

.

 @ .

@ a

 a

., @

a, ., @

q
0

a

 ., @

start

This DFA is considerably trickier than the ones we've encountered previously, so let's take some time to go
over what's happening here. The machine starts in state q0, which represents the beginning of input.
Since all email addresses have to have a nonempty name field, this state represents the beginning of the
first string in the name. The first character of an email address must be an alphanumeric character, which
if read in state q0 cause us to transition to state q1. States q1 and q2 check that the start of the input is
something appropriately formed from alphanumeric characters separated by periods. Reading an
alphanumeric character while in state q1 keeps the machine there (this represents a continuation of the
current word), and reading a dot transitions the machine to q2. In q2, reading anything other than an
alphanumeric character puts the machine into the “trap state,” state q7, which represents that the input is
invalid. Note that once the machine reaches state q7 no input can get the machine out of that state and that
q7 isn't accepting. Thus any input that gets the machine into state q7 will be rejected.

State q3 represents the state of having read the at-sign in the email address. Here reading anything other
than an alphanumeric character causes the machine to enter the trap state.

States q4 and q5 are designed to help catch the name of the destination server. Like q1, q4 represents a state
where we're reading a “word” of alphanumeric characters and q5 is the state transitioned to on a dot.
Finally, state q6 represents the state where we've read at least one word followed by a dot, which is the
accepting state. As an exercise, trace the action of this machine on the inputs valid.address@email.com
and invalid@not.com@ouch.

Now, how can we use this DFA in code? Suppose that we have some way to populate a DFA struct with the
information for this DFA. Then we could check if a string contains an email address by converting each
character in the string into its appropriate character in the DFA alphabet, then simulating the DFA on the
input. If the DFA rejects the input or the string contains an invalid character, we can signal that the string
is invalid, but otherwise the string is a valid email address.

This can be implemented as follows:

Chapter 6: STL Associative Containers and Iterators - 155 -

 bool IsEmailAddress(string input) {
 DFA emailChecker = LoadEmailDFA(); // Implemented elsewhere

 /* Transform the string one character at a time. */
 for(string::iterator itr = input.begin(); itr != input.end(); ++itr) {
 /* isalnum is exported by <cctype> and checks if the input is an
 * alphanumeric character.
 */
 if(isalnum(*itr))
 *itr = 'a';
 /* If we don't have alphanumeric data, we have to be a dot or at-sign
 * or the input is invalid.
 */
 else if(*itr != '.' && *itr != '@')
 return false;
 }
 return SimulateDFA(emailChecker, input);
 }

This code is remarkably concise, and provided that we have an implementation of LoadEmailDFA the
function will work correctly. I've left out the implementation of LoadEmailDFA since it's somewhat
tedious, but if you're determined to see that this actually works feel free to try your hand at implementing
it.

Nondeterministic Finite Automata

A generalization of the DFA is the nondeterministic finite automaton, or NFA. At a high level, DFAs and
NFAs are quite similar – they both consist of a set of states connected by labeled transitions, of which some
states are designated as accepting and others as rejecting. However, NFAs differ from DFAs in that a state
in an NFA can have any number of transitions on a given input, including zero. For example, consider the
following NFA:

Here, the start state is q0 and accepting states are q2 and q4. Notice that the start state q0 has two
transitions on 0 – one to q1 and one to itself – and two transitions on 1. Also, note that q3 has no defined
transitions on 0, and states q2 and q4 have no transitions at all.

There are several ways to interpret a state having multiple transitions. The first is to view the automaton
as choosing one of the paths nondeterministically (hence the name), then accepting the input if some set of
choices results in the automaton ending in an accepting state. Another, more intuitive way for modeling
multiple transitions is to view the NFA as being in several different states simultaneously, at each step
following every transition with the appropriate label in each of its current states. To see this, let's consider
what happens when we run the above NFA on the input 0011. As with a DFA, we begin in the start state,
as shown here:

q
0

q
1

q
3

q
1

q
2

q
1

q
4

start 0

1

0

1
0, 1

We now process the first character of input (0) and find that there are two transitions to follow – the first
to q0 and the second to q1. The NFA thus ends up in both of these states simultaneously, as shown here:

- 156 - Chapter 6: STL Associative Containers and Iterators

q
0

q
1

q
3

q
1

q
2

q
1

q
4

start 0

1

0

1
0, 1

Next, we process the second character (0). From state q0, we transition into q0 and q1, and from state q1 we
transition into q2. We thus end up in states q0, q1, and q2, as shown here:

q
0

q
1

q
3

q
1

q
2

q
1

q
4

start 0

1

0

1
0, 1

We now process the third character of input, which is a 1. From state q0 we transition to states q0 and q3.
We are also currently in states q1 and q2, but neither of these states has a transition on a 1. When this
happens, we simply drop the states from the set of current states. Consequently, we end up in states q0

and q3, leaving us in the following configuration:

q
0

q
1

q
3

q
1

q
2

q
1

q
4

start 0

1

0

1
0, 1

Finally, we process the last character, a 1. State q0 transitions to q0 and q1, and state q1 transitions to state
q4. We thus end up in this final configuration:

q
0

q
1

q
3

q
1

q
2

q
1

q
4

start 0

1

0

1
0, 1

Since the NFA ends in a configuration where at least one of the active states is an accepting state (q 4), the
NFA accepts this input. Again as an exercise, you might want to convince yourself that this NFA accepts all
and only the strings that end in either 00 or 11.

Implementing an NFA

Recall from above the definition of the DFA struct:

 struct DFA {
 map<pair<int, char>, int> transitions;
 set<int> acceptingStates;
 int startState;
 };

Chapter 6: STL Associative Containers and Iterators - 157 -

Here, the transition table was encoded as a map<pair<int, char>, int> since for every combination of
a state and an alphabet symbol there was exactly one transition. To generalize this to represent an NFA,
we need to be able to associate an arbitrary number of possible transitions. This is an ideal spot for an
STL multimap, which allows for duplicate key/value pairs. This leaves us with the following definition for
an NFA type:

 struct NFA {
 multimap<pair<int, char>, int> transitions;
 set<int> acceptingStates;
 int startState;
 };

How would we go about simulating this NFA? At any given time, we need to track the set of states that we
are currently in, and on each input need to transition from the current set of states to some other set of
states. A natural representation of the current set of states is (hopefully unsurprisingly) as a set<int>.
Initially, we start with this set of states just containing the start state. This is shown here:

 bool SimulateNFA(NFA& nfa, string input) {
 /* Track our set of states. We begin in the start state. */
 set<int> currStates;
 currStates.insert(nfa.startState);

 /* ... */
 }

Next, we need to iterate over the string we've received as input, following transitions where appropriate.
This at least requires a simple for loop, which we'll write here:

 bool SimulateNFA(NFA& nfa, string input) {
 /* Track our set of states. We begin in the start state. */
 set<int> currStates;
 currStates.insert(nfa.startState);

 for(string::iterator itr = input.begin(); itr != input.end(); ++itr) {
 /* ... */
 }

 /* ... */
 }

Now, for each character of input in the string, we need to compute the set of next states (if any) to which
we should transition. To simplify the implementation of this function, we'll create a second set<int>
corresponding to the next set of states the machine will be in. This eliminates problems caused by adding
elements to our set of states as we're iterating over the set and updating it. We thus have

 bool SimulateNFA(NFA& nfa, string input) {
 /* Track our set of states. We begin in the start state. */
 set<int> currStates;
 currStates.insert(nfa.startState);

 for(string::iterator itr = input.begin(); itr != input.end(); ++itr) {
 set<int> nextStates;
 /* ... */
 }

- 158 - Chapter 6: STL Associative Containers and Iterators

 /* ... */
 }

Now that we have space to put the next set of machine states, we need to figure out what states to
transition to. Since we may be in multiple different states, we need to iterate over the set of current states,
computing which states they transition into. This is shown here:

 bool SimulateNFA(NFA& nfa, string input) {
 /* Track our set of states. We begin in the start state. */
 set<int> currStates;
 currStates.insert(nfa.startState);

 for(string::iterator itr = input.begin(); itr != input.end(); ++itr) {
 set<int> nextStates;
 for(set<int>::iterator state = currStates.begin();
 state != currStates.end(); ++state) {
 /* ... */
 }
 }

 /* ... */
 }

Given the state being iterated over by state and the current input character, we now want to transition to
each state indicated by the multimap stored in the NFA struct. If you'll recall, the STL multimap exports a
function called equal_range which returns a pair of iterators into the multimap that delineate the range
of elements with the specified key. This function is exactly what we need to determine the set of new
states we'll be entering for each given state – we simply query the multimap for all elements whose key is
the pair of the specified state and the current input, then add all of the destination states to our next set of
states. This is shown here:

Chapter 6: STL Associative Containers and Iterators - 159 -

 bool SimulateNFA(NFA& nfa, string input) {
 /* Track our set of states. We begin in the start state. */
 set<int> currStates;
 currStates.insert(nfa.startState);

 for(string::iterator itr = input.begin(); itr != input.end(); ++itr) {
 set<int> nextStates;
 for(set<int>::iterator state = currStates.begin();
 state != currStates.end(); ++state) {
 /* Get all states that we transition to from this current state. */
 pair<multimap<pair<int, char>, int>::iterator,
 multimap<pair<int, char>, int>::iterator>
 transitions = nfa.transitions.equal_range(make_pair(*state, *itr));

 /* Add these new states to the nextStates set. */
 for(; transitions.first != transitions.second; ++transitions.first)
 /* transitions.first is the current iterator, and its second
 * field is the value (new state) in the STL multimap.
 */
 nextStates.insert(transitions.first->second);
 }
 }

 /* ... */
 }

Finally, once we've consumed all input, we need to check whether the set of states contains any states that
are also in the set of accepting states. We can do this by simply iterating over the set of current states, then
checking if any of them are in the accepting set. This is shown here and completes the implementation of
the function:

- 160 - Chapter 6: STL Associative Containers and Iterators

 bool SimulateNFA(NFA& nfa, string input) {
 /* Track our set of states. We begin in the start state. */
 set<int> currStates;
 currStates.insert(nfa.startState);

 for(string::iterator itr = input.begin(); itr != input.end(); ++itr) {
 set<int> nextStates;
 for(set<int>::iterator state = currStates.begin();
 state != currStates.end(); ++state) {
 /* Get all states that we transition to from this current state. */
 pair<multimap<pair<int, char>, int>::iterator,
 multimap<pair<int, char>, int>::iterator>
 transitions = nfa.transitions.equal_range(make_pair(*state, *itr));

 /* Add these new states to the nextStates set. */
 for(; transitions.first != transitions.second; ++transitions.first)
 /* transitions.first is the current iterator, and its second
 * field is the value (new state) in the STL multimap.
 */
 nextStates.insert(transitions.first->second);
 }
 }

 for(set<int>::iterator itr = currStates.begin();
 itr != currStates.end(); ++itr)
 if(nfa.acceptingStates.count(*itr)) return true;
 return false;
 }

Compare this function to the implementation of the DFA simulation. There is substantially more code
here, since we have to track multiple different states rather than just a single state. However, this extra
complexity is counterbalanced by the simplicity of designing NFAs compared to DFAs. Building a DFA to
match a given pattern can be much trickier than building an equivalent NFA because it's difficult to model
“guessing” behavior with a DFA. However, both functions are a useful addition to your programming
arsenal, so it's good to see how they're implemented.

More to Explore

In this chapter we covered map and set, which combined with vector and deque are the most commonly-
used STL containers. However, there are several others we didn't cover, a few of which might be worth
looking into. Here are some topics you might want to read up on:

1. list: vector and deque are sequential containers that mimic built-in arrays. The list container,
however, models a sequence of elements without indices. list supports several nifty operations,
such as merging, sorting, and splicing, and has quick insertions at almost any point. If you're
planning on using a linked list for an operation, the list container is perfect for you.

2. The Boost Containers: The Boost C++ Libraries are a collection of functions and classes
developed to augment C++'s native library support. Boost offers several new container classes
that might be worth looking into. For example, multi_array is a container class that acts as a
Grid in any number of dimensions. Also, the unordered_set and unordered_map act as
replacements to the set and map that use hashing instead of tree structures to store their data. If
you're interested in exploring these containers, head on over to www.boost.org.

http://www.boost.org/

Chapter 6: STL Associative Containers and Iterators - 161 -

Practice Problems

1. How do you check whether an element is contained in an STL set?

2. What is the restriction on what types can be stored in an STL set? Do the vector or deque have
this restriction?

3. How do you insert an element into a set? How do you remove an element from a set?

4. How many copies of a single element can exist in a set? How about a multiset?

5. How do you iterate over the contents of a set?

6. How do you check whether a key is contained in an STL map?

7. List two ways that you can insert key/value pairs into an STL map.

8. What happens if you look up the value associated with a nonexistent key in an STL map using
square brackets? What if you use the find function?

9. Recall that when iterating over the contents of an STL multiset, the elements will be visited in
sorted order. Using this property, rewrite the program from last chapter that reads a list of
numbers from the user, then prints them in sorted order. Why is it necessary to use a multiset
instead of a regular set?

10. The union of two sets is the collection of elements contained in at least one of the sets. For
example, the union of {1, 2, 3, 5, 8} and {2, 3, 5, 7, 11} is {1, 2, 3, 5, 7, 8, 11}. Write a function Union
which takes in two set<int>s and returns their union.

11. The intersection of two sets is the collection of elements contained in both of the sets. For
example, the intersection of {1, 2, 3, 5, 8} and {2, 3, 5, 7, 11} is {2, 3, 5}. Write a function
Intersection that takes in two set<int>s and returns their intersection.

12. Earlier in this chapter, we wrote a program that rolled dice until the same number was rolled
twice, then printed out the number of rolls made. Rewrite this program so that the same number
must be rolled three times before the process terminates. How many times do you expect this
process to take when rolling twenty-sided dice? (Hint: you will probably want to switch from using
a set to using a multiset. Also, remember the difference between the set's count function and the
multiset's count function).

13. As mentioned in this chapter, you can use a combination of lower_bound and upper_bound to
iterate over elements in the closed interval [min, max]. What combination of these two functions
could you use to iterate over the interval [min, max)? What about (min, max] and (min, max)?

14. Write a function NumberDuplicateEntries that accepts a map<string, string> and returns
the number of duplicate values in the map (that is, the number of key/value pairs in the map with
the same value).

- 162 - Chapter 6: STL Associative Containers and Iterators

15. Write a function InvertMap that accepts as input a map<string, string> and returns a
multimap<string, string> where each pair (key, value) in the source map is represented by
(value, key) in the generated multimap. Why is it necessary to use a multimap here? How could
you use the NumberDuplicateEntries function from the previous question to determine
whether it is possible to invert the map into another map?

16. Suppose that we have two map<string, string>s called one and two. We can define the
composition of one and two (denoted two ○ one) as follows: for any string r, if one[r] is s and
two[s] is t, then (two ○ one)[r] = t. That is, looking up an element x in the composition of
the maps is equivalent to looking up the value associated with x in one and then looking up its
associated value in two. If one does not contain r as a key or if one[r] is not a key in two, then
(two ○ one)[r] is undefined.

Write a function ComposeMaps that takes in two map<string, string>s and returns a
map<string, string> containing their composition.

17. (Challenge problem!) Write a function PrintMatchingPrefixes that accepts a set<string> and
a string containing a prefix and prints out all of the entries of the set that begin with that prefix.
Your function should only iterate over the entires it finally prints out. You can assume the prefix is
nonempty, consists only of alphanumeric characters, and should treat prefixes case-sensitively.
(Hint: In a set<string>, strings are sorted lexicographically, so all strings that start with “abc” will
come before all strings that start with “abd.”)

Chapter 7: STL Algorithms

Consider the following problem: suppose that we want to write a program that reads in a list of integers
from a file (perhaps representing grades on an assignment), then prints out the average of those values.
For simplicity, let's assume that this data is stored in a file called data.txt with one integer per line. For
example:

File: data.txt
100
95
92
98
87
88
100
...

Here is one simple program that reads in the contents of the file, stores them in an STL multiset,
computes the average, then prints it out:

 #include <iostream>
 #include <fstream>
 #include <set>
 using namespace std;

 int main() {
 ifstream input("data.txt");
 multiset<int> values;

 /* Read the data from the file. */
 int currValue;
 while (input >> currValue)
 values.insert(currValue);

 /* Compute the average. */
 double total = 0.0;
 for (multiset<int>::iterator itr = values.begin();
 itr != values.end(); ++itr)
 total += *itr;
 cout << "Average is: " << total / values.size() << endl;
 }

As written, this code is perfectly legal and will work as intended. However, there's something slightly odd
about it. If you were to describe what this program needs to do in plain English, it would probably be
something like this:

1. Read the contents of the file.
2. Add the values together.
3. Divide by the number of elements.

- 164 - Chapter 7: STL Algorithms

In some sense, the above code matches this template. The first loop of the program reads in the contents
of the file, the second loop sums together the values, and the last line divides by the number of elements.
However, the code we've written is somewhat unsatisfactory. Consider this first loop:

 int currValue;
 while (input >> currValue)
 values.insert(currValue);

Although the intuition behind this loop is “read the contents of the file into the multiset,” the way the
code is actually written is “create an integer, and then while it's possible to read another element out of the
file, do so and insert it into the multiset.” This is a very mechanical means for inserting the values into
the multiset. Our English description of this process is “read the file contents into the multiset,” but
the actual code is a step-by-step process for extracting data from the file one step at a time and inserting it
into the multiset.

Similarly, consider this second loop, which sums together the elements of the multiset:

 double total = 0.0;
 for (multiset<int>::iterator itr = values.begin(); itr != values.end(); ++itr)
 total += *itr;

Again, we find ourselves taking a very mechanical view of the operation. Our English description “sum the
elements together” is realized here as “initialize the total to zero, then iterate over the elements of the
multiset, increasing the total by the value of the current element at each step.”

The reason that we must issue commands to the computer in this mechanical fashion is precisely because
the computer is mechanical – it's a machine for efficiently computing functions. The challenge of
programming is finding a way to translate a high-level set of commands into a series of low-level
instructions that control the machine. This is often a chore, as the basic operations exported by the
computer are fairly limited. But programming doesn't have to be this difficult. As you've seen, we can
define new functions in terms of old ones, and can build complex programs out of these increasingly more
powerful subroutines. In theory, you could compile an enormous library containing solutions to all
nontrivial programming problems. With this library in tow, you could easily write programs by just
stitching together these prewritten components.

Unfortunately, there is no one library with the solutions to every programming problem. However, this
hasn't stopped the designers of the STL from trying their best to build one. These are the STL algorithms,
a library of incredibly powerful routines for processing data. The STL algorithms can't do everything, but
what they can do they do fantastically. In fact, using the STL algorithms, it will be possible to rewrite the
program that averages numbers in four lines of code. This chapter details many common STL algorithms,
along with applications. Once you've finished this chapter, you'll have one of the most powerful standard
libraries of any programming language at your disposal, and you'll be ready to take on increasingly bigger
and more impressive software projects.

Your First Algorithm: accumulate

Let's begin our tour of the STL algorithms by jumping in head-first. If you'll recall, the second loop from
the averaging program looks like this:

 double total = 0.0;
 for (multiset<int>::iterator itr = values.begin(); itr != values.end(); ++itr)
 total += *itr;
 cout << "Average is: " << total / values.size() << endl;

Chapter 7: STL Algorithms - 165 -

This code is entirely equivalent to the following:

 cout << accumulate(values.begin(), values.end(), 0.0) / values.size() << endl;

We've replaced the entire for loop with a single call to accumulate, eliminating about a third of the code
from our original program.

The accumulate function, defined in the <numeric> header, takes three parameters – two iterators that
define a range of elements, and an initial value to use in the summation. It then computes the sum of all of
the elements contained in the range of iterators, plus the base value.* What's beautiful about accumulate
(and the STL algorithms in general) is that accumulate can take in iterators of any type. That is, we can
sum up iterators from a multiset, a vector, or deque. This means that if you ever find yourself needing
to compute the sum of the elements contained in a container, you can pass the begin() and end()
iterators of that container into accumulate to get the sum. Moreover, accumulate can accept any valid
iterator range, not just an iterator range spanning an entire container. For example, if we want to compute
the sum of the elements of the multiset that are between 42 and 137, inclusive, we could write

 accumulate(values.lower_bound(42), values.upper_bound(137), 0);

Behind the scenes, accumulate is implemented as a template function that accepts two iterators and
simply uses a loop to sum together the values. Here's one possible implementation of accumulate:

 template <typename InputIterator, typename Type> inline
 Type accumulate(InputIterator start, InputIterator stop, Type initial) {
 while(start != stop) {
 initial += *start;
 ++start;
 }
 return initial;
 }

While some of the syntax specifics might be a bit confusing (notably the template header and the inline
keyword), you can still see that the heart of the code is just a standard iterator loop that continuously
advances the start iterator forward until it reaches the destination. There's nothing magic about
accumulate, and the fact that the function call is a single line of code doesn't change that it still uses a
loop to sum all the values together.

If STL algorithms are just functions that use loops behind the scenes, why even bother with them? There
are several reasons, the first of which is simplicity. With STL algorithms, you can leverage off of code that's
already been written for you rather than reinventing the code from scratch. This can be a great time-saver
and also leads into the second reason, correctness. If you had to rewrite all the algorithms from scratch
every time you needed to use them, odds are that at some point you'd slip up and make a mistake. You
might, for example, write a sorting routine that accidentally uses < when you meant > and consequently
does not work at all. Not so with the STL algorithms – they've been thoroughly tested and will work
correctly for any given input. The third reason to use algorithms is speed. In general, you can assume that
if there's an STL algorithm that performs a task, it's going to be faster than most code you could write by
hand. Through advanced techniques like template specialization and template metaprogramming, STL
algorithms are transparently optimized to work as fast as possible. Finally, STL algorithms offer clarity.
With algorithms, you can immediately tell that a call to accumulate adds up numbers in a range. With a
for loop that sums up values, you'd have to read each line in the loop before you understood what the code
did.

* There is also a version of accumulate that accepts four parameters, as you'll see in the chapter on functors.

- 166 - Chapter 7: STL Algorithms

Algorithm Naming Conventions

There are over fifty STL algorithms (defined either in <algorithm> or in <numeric>), and memorizing
them all would be a chore, to say the least. Fortunately, many of them have common naming conventions
so you can recognize algorithms even if you've never encountered them before.

The suffix _if on an algorithm (replace_if, count_if, etc.) means the algorithm will perform a task on
elements only if they meet a certain criterion. Functions ending in _if require you to pass in a predicate
function that accepts an element and returns a bool indicating whether the element matches the criterion.
For example consider the count algorithm and its counterpart count_if. count accepts a range of
iterators and a value, then returns the number of times that the value appears in that range. If we have a
vector<int> of several integer values, we could print out the number of copies of the number 137 in that
vector as follows:

 cout << count(myVec.begin(), myVec.end(), 137) << endl;

count_if, on the other hand, accepts a range of iterators and a predicate function, then returns the
number of times the predicate evaluates to true in that range. If we were interested in how number of
even numbers are contained in a vector<int>, we could could obtain the value as follows. First, we write
a predicate function that takes in an int and returns whether it's even, as shown here:

 bool IsEven(int value) {
 return value % 2 == 0;
 }

We could then use count_if as follows:

 cout << count_if(myVec.begin(), myVec.end(), IsEven) << endl;

Algorithms containing the word copy (remove_copy, partial_sort_copy, etc.) will perform some task
on a range of data and store the result in the location pointed at by an extra iterator parameter. With copy
functions, you'll specify all the normal data for the algorithm plus an extra iterator specifying a destination
for the result. We'll cover what this means from a practical standpoint later.

If an algorithm ends in _n (generate_n, search_n, etc), then it will perform a certain operation n times.
These functions are useful for cases where the number of times you perform an operation is meaningful,
rather than the range over which you perform it. To give you a better feel for what this means, consider
the fill and fill_n algorithms. Each of these algorithms sets a range of elements to some specified
value. For example, we could use fill as follows to set every element in a deque to have value 0:

 fill(myDeque.begin(), myDeque.end(), 0);

The fill_n algorithm is similar to fill, except that instead of accepting a range of iterators, it takes in a
start iterator and a number of elements to write. For instance, we could set the first ten elements of a
deque to be zero by calling

 fill_n(myDeque.begin(), 10, 0);

Iterator Categories

If you'll recall from the discussion of the vector and deque insert functions, to specify an iterator to the
nth element of a vector, we used the syntax myVector.begin() + n. Although this syntax is legal in
conjunction with vector and deque, it is illegal to use + operator with iterators for other container classes

Chapter 7: STL Algorithms - 167 -

like map and set. At first this may seem strange – after all, there's nothing intuitively wrong with moving a
set iterator forward multiple steps, but when you consider how the set is internally structured the
reasons become more obvious. Unlike vector and deque, the elements in a map or set are not stored
sequentially (usually they're kept in a balanced binary tree). Consequently, to advance an iterator n steps
forward, the map or set iterator must take n individual steps forward. Contrast this with a vector
iterator, where advancing forward n steps is a simple addition (since all of the vector's elements are
stored contiguously). Since the runtime complexity of advancing a map or set iterator forward n steps is
linear in the size of the jump, whereas advancing a vector iterator is a constant-time operation, the STL
disallows the + operator for map and set iterators to prevent subtle sources of inefficiency.

Because not all STL iterators can efficiently or legally perform all of the functions of every other iterator,
STL iterators are categorized based on their relative power. At the high end are random-access iterators
that can perform all of the possible iterator functions, and at the bottom are the input and output iterators
which guarantee only a minimum of functionality. There are five different types of iterators, each of which
is discussed in short detail below.

• Output Iterators. Output iterators are one of the two weakest types of iterators. With an output
iterator, you can write values using the syntax *myItr = value and can advance the iterator
forward one step using the ++ operator. However, you cannot read a value from an output iterator
using the syntax value = *myItr, nor can you use the += or – operators.

• Input Iterators. Input iterators are similar to output iterators except that they read values instead
of writing them. That is, you can write code along the lines of value = *myItr, but not
*myItr = value. Moreover, input iterators cannot iterate over the same range twice.

• Forward Iterators. Forward iterators combine the functionality of input and output iterators so
that most intuitive operations are well-defined. With a forward iterator, you can write both
*myItr = value and value = *myItr. Forward iterators, as their name suggests, can only
move forward. Thus ++myItr is legal, but --myItr is not.

• Bidirectional Iterators. Bidirectional iterators are the iterators exposed by map and set and
encompass all of the functionality of forward iterators. Additionally, they can move backwards
with the decrement operator. Thus it's possible to write --myItr to go back to the last element
you visited, or even to traverse a list in reverse order. However, bidirectional iterators cannot
respond to the + or += operators.

• Random-Access Iterators. Don't get tripped up by the name – random-access iterators don't
move around randomly. Random-access iterators get their name from their ability to move
forward and backward by arbitrary amounts at any point. These are the iterators employed by
vector and deque and represent the maximum possible functionality, including iterator-from-
iterator subtraction, bracket syntax, and incrementation with + and +=.

If you'll notice, each class of iterators is progressively more powerful than the previous one – that is, the
iterators form a functionality hierarchy. This means that when a library function requires a certain class of
iterator, you can provide it any iterator that's at least as powerful. For example, if a function requires a
forward iterator, you can provide either a forward, bidirectional, or random-access iterator. The iterator
hierarchy is illustrated below:

- 168 - Chapter 7: STL Algorithms

Random-Access Iterators

itr += distance; itr + distance;
itr1 < itr2; itr[myIndex];

Bidirectional Iterators

--itr;

Forward Iterators

Input Iterators

val = *itr;
++itr;

Output Iterators

*itr = val;
++itr;

Why categorize iterators this way? Why not make them all equally powerful? There are several reasons.
First, in some cases, certain iterator operations cannot be performed efficiently. For instance, the STL map
and set are layered on top of balanced binary trees, a structure in which it is simple to move from one
element to the next but significantly more complex to jump from one position to another arbitrarily. By
disallowing the + operator on map and set iterators, the STL designers prevent subtle sources of
inefficiency where simple code like itr + 5 is unreasonably inefficient. Second, iterator categorization
allows for better classification of the STL algorithms. For example, suppose that an algorithm takes as
input a pair of input iterators. From this, we can tell that the algorithm will not modify the elements being
iterated over, and so can feel free to pass in iterators to data that must not be modified under any
circumstance. Similarly, if an algorithm has a parameter that is labeled as an output iterator, it should be
clear from context that the iterator parameter defines where data generated by the algorithm should be
written.

Reordering Algorithms

There are a large assortment of STL algorithms at your disposal, so for this chapter it's useful to discuss
the different algorithms in terms of their basic functionality. The first major grouping of algorithms we'll
talk about are the reordering algorithms, algorithms that reorder but preserve the elements in a container.

Perhaps the most useful of the reordering algorithms is sort, which sorts elements in a range in
ascending order. For example, the following code will sort a vector<int> from lowest to highest:

 sort(myVector.begin(), myVector.end());

sort requires that the iterators you pass in be random-access iterators, so you cannot use sort to sort a
map or set. However, since map and set are always stored in sorted order, this shouldn't be a problem.

By default, sort uses the < operator for whatever element types it's sorting, but you can specify a different
comparison function if you wish. Whenever you write a comparison function for an STL algorithm, it
should accept two parameters representing the elements to compare and return a bool indicating
whether the first element is strictly less than the second element. In other words, your callback should
mimic the < operator. For example, suppose we had a vector<placeT>, where placeT was defined as

 struct placeT {
 int x;
 int y;
 };

Chapter 7: STL Algorithms - 169 -

Then we could sort the vector only if we wrote a comparison function for placeTs.* For example:

 bool ComparePlaces(placeT one, placeT two) {
 if(one.x != two.x)
 return one.x < two.x;
 return one.y < two.y;
 }

 sort(myPlaceVector.begin(), myPlaceVector.end(), ComparePlaces);

You can also use custom comparison functions even if a default already exists. For example, here is some
code that sorts a vector<string> by length, ignoring whether the strings are in alphabetical order:

 bool CompareStringLength(string one, string two) {
 return one.length() < two.length();
 }

 sort(myVector.begin(), myVector.end(), CompareStringLength);

One last note on comparison functions is that they should either accept the parameters by value or by
“reference to const.” Since we haven't covered const yet, for now your comparison functions should
accept their parameters by value. Otherwise you can get some pretty ferocious compiler errors.

Another useful reordering function is random_shuffle, which randomly scrambles the elements of a
container. Because the scrambling is random, there's no need to pass in a comparison function. Here's
some code that uses random_shuffle to scramble a vector's elements:

 random_shuffle(myVector.begin(), myVector.end());

As with sort, the iterators must be random-access iterators, so you can't scramble a set or map. Then
again, since they're sorted containers, you shouldn't want to do this in the first place.

Internally, random_shuffle uses the built-in rand() function to generate random numbers. Accordingly,
you should use the srand function to seed the randomizer before using random_shuffle.

The last major algorithm in this category is rotate, which cycles the elements in a container. For
example, given the input container (0, 1, 2, 3, 4, 5), rotating the container around position 3 would result
in the container (2, 3, 4, 5, 0, 1). The syntax for rotate is anomalous in that it accepts three iterators
delineating the range and the new front, but in the order begin, middle, end. For example, to rotate a
vector around its third position, we would write

 rotate(v.begin(), v.begin() + 2, v.end());

Searching Algorithms

Commonly you're interested in checking membership in a container. For example, given a vector, you
might want to know whether or not it contains a specific element. While the map and set naturally
support find, vectors and deques lack this functionality. Fortunately, you can use STL algorithms to
correct this problem.

* When we cover operator overloading in the second half of this text, you'll see how to create functions that sort
will use automatically.

- 170 - Chapter 7: STL Algorithms

To search for an element in a container, you can use the find function. find accepts two iterators
delineating a range and a value, then returns an iterator to the first element in the range with that value. If
nothing in the range matches, find returns the second iterator as a sentinel. For example:

 if(find(myVector.begin(), myVector.end(), 137) != myVector.end())
 /* ... vector contains 137 ... */

Although you can legally pass map and set iterators as parameters to find, you should avoid doing so. If a
container class has a member function with the same name as an STL algorithm, you should use the
member function instead of the algorithm because member functions can use information about the
container's internal data representation to work much more quickly. Algorithms, however, must work for
all iterators and thus can't make any optimizations. As an example, with a set containing one million
elements, the set's find member function can locate elements in around twenty steps using binary
search, while the STL find function could take up to one million steps to linearly iterate over the entire
container. That's a staggering difference and really should hit home how important it is to use member
functions over STL algorithms.

Just as a sorted map and set can use binary search to outperform the linear STL find algorithm, if you
have a sorted linear container (for example, a sorted vector), you can use the STL algorithm
binary_search to perform the search in a fraction of the time. For example:

 /* Assume myVector is sorted. */
 if (binary_search(myVector.begin(), myVector.end(), 137)) {
 /* ... Found 137 ... */
 }

Also, as with sort, if the container is sorted using a special comparison function, you can pass that
function in as a parameter to binary_search. However, make sure you're consistent about what
comparison function you use, because if you mix them up binary_search might not work correctly.

Note that binary_search doesn't return an iterator to the element – it simply checks to see if it's in the
container. If you want to do a binary search in order to get an iterator to an element, you can use the
lower_bound algorithm which, like the map and set lower_bound functions, returns an iterator to the
first element greater than or equal to the specified value. Note that lower_bound might hand back an
iterator to a different element than the one you searched for if the element isn't in the range, so be sure to
check the return value before using it. As with binary_search, the container must be in sorted order for
lower_bound algorithm to work correctly.

Iterator Adaptors

The algorithms that we've encountered so far do not produce any new data ranges. The sort algorithm
rearranges data without generating new values. binary_search and accumulate scan over data ranges,
but yield only a single value. However, there are a great many STL algorithms that take in ranges of data
and produce new data ranges at output. As a simple example, consider the copy algorithm. At a high
level, copy takes in a range of data, then duplicates the values in that range at another location.
Concretely, copy takes in three parameters – two input iterators defining a range of values to copy, and an
output iterator indicating where the data should be written. For example, given the following setup:

Chapter 7: STL Algorithms - 171 -

start stop

↓ ↓

0 1 2 3 4 5 6

result

↓

0 0 0 0 0 0 0

After calling copy(start, stop, result), the result is as follows:

start stop

↓ ↓

0 1 2 3 4 5 6

result

↓

0 1 2 3 4 5 6

When using algorithms like copy that generate a range of data, you must make sure that the destination
has enough space to hold the result. Algorithms that generate data ranges work by overwriting elements
in the range beginning with the specified iterator, and if your output iterator points to a range that doesn't
have enough space the algorithms will write off past the end of the range, resulting in undefined behavior.
But here we reach a wonderful paradox. When running an algorithm that generates a range of data, you
must make sure that sufficient space exists to hold the result. However, in some cases you can't tell how
much data is going to be generated until you actually run the algorithm. That is, the only way to determine
how much space you'll need is to run the algorithm, which might result in undefined behavior because you
didn't allocate enough space.

To break this cycle, we'll need a special set of tools called iterator adaptors. Iterator adaptors (defined in
the <iterator> header) are objects that act like iterators – they can be dereferenced with * and advanced
forward with ++ – but which don't actually point to elements of a container. To give a concrete example,
let's consider the ostream_iterator. ostream_iterators are objects that look like output iterators.
That is, you can dereference them using the * operator, advance them forward with the ++ operator, etc.
However, ostream_iterators don't actually point to elements in a container. Whenever you dereference
an ostream_iterator and assign a value to it, that value is printed to a specified output stream, such as
cout or an ofstream. Here's some code showing off an ostream_iterator; the paragraph after it
explores how it works in a bit more detail:

 /* Declare an ostream_iterator that writes ints to cout. */
 ostream_iterator<int> myItr(cout, " ");

 /* Write values to the iterator. These values will be printed to cout. */
 *myItr = 137; // Prints 137 to cout
 ++myItr;

 *myItr = 42; // Prints 42 to cout
 ++myItr

If you compile and run this code, you will notice that the numbers 137 and 42 get written to the console,
separated by spaces. Although it looks like you're manipulating the contents of a container, you're actually
writing characters to the cout stream.

- 172 - Chapter 7: STL Algorithms

Let's consider this code in a bit more detail. If you'll notice, we declared the ostream_iterator by
writing

 ostream_iterator<int> myItr(cout, " ");

There are three important pieces of data in this line of code. First, notice that ostream_iterator is a
parameterized type, much like the vector or set. In the case of ostream_iterator, the template
argument indicates what sorts of value will be written to this iterator. That is, an
ostream_iterator<int> writes ints into a stream, while an ostream_iterator<string> would write
strings. Second, notice that when we created the ostream_iterator, we passed it two pieces of
information. First, we gave the ostream_iterator a stream to write to, in this case cout. Second, we
gave it a separator string, in our case a string holding a single space. Whenever a value is written to an
ostream_iterator, that value is pushed into the specified stream, followed by the separator string.

At this point, iterator adaptors might seem like little more than a curiosity. Sure, we can use an
ostream_iterator to write values to cout, but we could already do that directly with cout. So what
makes the iterator adaptors so useful? The key point is that iterator adaptors are iterators, and so they can
be used in conjunction with the STL algorithms. Whenever an STL algorithm expects a regular iterator,
you can supply an iterator adaptor instead to “trick” the algorithm into performing some complex task
when it believes it's just writing values to a range. For example, let's revisit the copy algorithm now that
we have ostream_iterators. What happens if we use copy to copy values from a container to an
ostream_iterator? That is, what is the output of the following code:

 copy(myVector.begin(), myVector.end(), ostream_iterator<int>(cout, " "));

This code copies all of the elements from the myVector container to the range specified by the
ostream_iterator. Normally, copy would duplicate the values from myVector at another location, but
since we've written the values to an ostream_iterator, this code will instead print all of the values from
the vector to cout, separated by spaces. This means that this single line of code prints out myVector!

Of course, this is just one of many iterator adaptors. We initially discussed iterator adaptors as a way to
break the “vicious cycle” where algorithms need space to hold their results, but the amount of space
needed can only be calculated by running the algorithm. To resolve this issue, the standard library
provides a collection of special iterator adapters called insert iterators. These are output iterators that,
when written to, insert the value into a container using one of the insert, push_back, or push_front
functions. As a simple example, let's consider the back_insert_iterator. back_insert_iterator is
an iterator that, when written to, calls push_back on a specified STL sequence containers (i.e. vector or
deque) to store the value. For example, consider the following code snippet:

 vector<int> myVector; /* Initially empty */

 /* Create a back_insert_iterator that inserts values into myVector. */
 back_insert_iterator< vector<int> > itr(myVector);

 for (int i = 0; i < 10; ++i) {
 *itr = i; // "Write" to the back_insert_iterator, appending the value.
 ++itr;
 }

 /* Print the vector contents; this displays 0 1 2 3 4 5 6 7 8 9 */
 copy(myVector.begin(), myVector.end(), ostream_iterator<int>(cout, " "));

This code is fairly dense, so let's go over it in some more detail. The first line simply creates an empty
vector<int>. The next line is

Chapter 7: STL Algorithms - 173 -

 back_insert_iterator< vector<int> > itr(myVector);

This code creates a back_insert_iterator which inserts into a vector<int>. This syntax might be a
bit strange, since the iterator type is parameterized over the type of the container it inserts into, not the
type of the elements stored in that container. Moreover, notice that we indicated to the iterator that it
should insert into the myVector container by surrounding the container name in parentheses. From this
point, any values written to the back_insert_iterator will be stored inside of myVector by calling
push_back.

We then have the following loop, which indirectly adds elements to the vector:

 for (int i = 0; i < 10; ++i) {
 *itr = i; // "Write" to the back_insert_iterator, appending the value.
 ++itr;
 }

Here, the line *itr = i will implicitly call myVector.push_back(i), adding the value to the vector.
Thus, when we encounter the final line:

 copy(myVector.begin(), myVector.end(), ostream_iterator<int>(cout, " "));

the call to copy will print out the numbers 0 through 9, inclusive, since they've been stored in the vector.

In practice, it is rare to see back_insert_iterator used like this. This type of iterator is almost
exclusively used as a parameter to STL algorithms that need a place to store a result. For example,
consider the reverse_copy algorithm. Like copy, reverse_copy takes in three iterators, two delineating
an input range and one specifying a destination, then copies the elements from the input range to the
destination. However, unlike the regular copy algorithm, reverse_copy copies the elements in reverse
order. For example, using reverse_copy to copy the sequence 0, 1, 2, 3, 4 to a destination would cause
the destination range to hold the sequence 4, 3, 2, 1, 0. Suppose that we are interested in using the
reverse_copy algorithm to make a copy of a vector with the elements in reverse order as the original.
Then we could do so as follows:

 vector<int> original = /* ... */
 vector<int> destination;
 reverse_copy(original.begin(), original.end(),
 back_insert_iterator< vector<int> >(destination));

The syntax back_insert_iterator<vector<int> > is admittedly bit clunky, and fortunately there's a
shorthand. To create a back_insert_iterator that inserts elements into a particular container, you can
write

 back_inserter(container);

Thus the above code with reverse_copy could be rewritten as

 vector<int> original = /* ... */
 vector<int> destination;
 reverse_copy(original.begin(), original.end(), back_inserter(destination));

This is much cleaner than the original and is likely to be what you'll see in practice.

The back_inserter is a particularly useful container when you wish to store the result of an operation in
a vector or deque, but cannot be used in conjunction with map or set because those containers do not

- 174 - Chapter 7: STL Algorithms

support the push_back member function. For those containers, you can use the more general
insert_iterator, which insert elements into arbitrary positions in a container. A great example of
insert_iterator in action arises when computing the union, intersection, or difference of two sets.
Mathematically speaking, the union of two sets is the set of elements contained in either of the sets, the
intersection of two sets is the set of elements contained in both of the sets, and the difference of two sets is
the set of elements contained in the first set but not in the second. These operations are exported by the
STL algorithms as set_union, set_intersection, and set_difference. These algorithms take in five
parameters – two pairs of iterator ranges defining what ranges to use as the input sets, along with one
final iterator indicating where the result should be written. As with all STL algorithms, the set algorithms
assume that the destination range has enough space to store the result of the operation, and again we run
into a problem because we cannot tell how many elements will be produced by the algorithm. This is an
ideal spot for an insert_iterator. Given two sets one and two, we can compute the union of those two
sets as follows:

 set<int> result;
 set_union(setOne.begin(), setOne.end(), // All of the elements in setOne
 setTwo.begin(), setTwo.end(), // All of the elements in setTwo
 inserter(result, result.begin())); // Store in result.

Notice that the last parameter is inserter(result, result.begin()). This is an insert iterator that
inserts its elements into the result set. For somewhat technical reasons, when inserting elements into a
set, you must specify both the container and the container's begin iterator as parameters, though the
generated elements will be stored in sorted order.

All of the iterator adaptors we've encountered so far have been used to channel the output of an algorithm
to a location other than an existing range of elements. ostream_iterator writes values to streams,
back_insert_iterator invokes push_back to make space for its elements, etc. However, there is a
particularly useful iterator adapter, the istream_iterator, which is an input iterator. That is,
istream_iterators can be used to provide data as inputs to particular STL algorithms. As its name
suggests, istream_iterator can be used to read values from a stream as if it were a container of
elements. To illustrate istream_iterator, let's return to the example from the start of this chapter. If
you'll recall, we wrote a program that read in a list of numbers from a file, then computed their average. In
this program, we read in the list of numbers using the following while loop:

 int currValue;
 while (input >> currValue)
 values.insert(currValue);

Here, values is a multiset<int>. This code is equivalent to the following, which uses the STL copy
algorithm in conjunction with an inserter and two istream_iterators:

 copy(istream_iterator<int>(input), istream_iterator<int>(),
 inserter(values, values.begin());

This is perhaps the densest single line of code we've encountered yet, so let's dissect it to see how it works.
Recall that the copy algorithm copies the values from an iterator range and stores them in the range
specified by the destination iterator. Here, our destination is an inserter that adds elements into the
values multiset. Our input is the pair of iterators

 istream_iterator<int>(input), istream_iterator<int>()

What exactly does this mean? Whenever a value is read from an istream_iterator, the iterator uses the
stream extraction operator >> to read a value of the proper type from the input stream, then returns it.

Chapter 7: STL Algorithms - 175 -

Consequently, the iterator istream_iterator<int>(input) is an iterator that reads int values out of
the stream input. The second iterator, istream_iterator<int>(), is a bit stranger. This is a special
istream_iterator called the end-of-stream iterator. When defining ranges with STL iterators, it is
always necessary to specify two iterators, one for the beginning of the range and one that is one past the
end of it. When working with STL containers this is perfectly fine, since the size of the container is known.
However, when working with streams, it's unclear exactly how many elements that stream will contain. If
the stream is an ifstream, the number of elements that can be read depends on the contents of the file. If
the stream is cin, the number of elements that can be read depends on how many values the user decides
to enter. To get around this, the STL designers used a bit of a hack. When reading values from a stream
with an istream_iterator, whenever no more data is available in the stream (either because the stream
entered a fail state, or because the end of the file was reached), the istream_iterator takes on a special
value which indicates “there is no more data in the stream.” This value can be formed by constructing an
istream_iterator without specifying what stream to read from. Thus in the code

 copy(istream_iterator<int>(input), istream_iterator<int>(),
 inserter(values, values.begin());

the two istream_iterators define the range from the beginning of the input stream up until no more
values can be read from the stream.

The following table lists some of the more common iterator adapters and provides some useful context.
You'll likely refer to this table most when writing code that uses algorithms.

back_insert_iterator<Container> back_insert_iterator<vector<int> >
 itr(myVector);
back_insert_iterator<deque<char> > itr =
 back_inserter(myDeque);

An output iterator that stores elements by calling push_back on the
specified container. You can declare back_insert_iterators explicitly,
or can create them with the function back_inserter.

front_insert_iterator<Container> front_insert_iterator<deque<int> >
 itr(myIntDeque);
front_insert_iterator<deque<char> > itr =
 front_inserter(myDeque);

An output iterator that stores elements by calling push_front on the
specified container. Since the container must have a push_front
member function, you cannot use a front_insert_iterator with a
vector. As with back_insert_iterator, you can create
front_insert_iterators with the the front_inserter function.

insert_iterator<Container> insert_iterator<set<int> >
 itr(mySet, mySet.begin());
insert_iterator<set<int> > itr =
 inserter(mySet, mySet.begin());

An output iterator that stores its elements by calling insert on the
specified container to insert elements at the indicated position. You can
use this iterator type to insert into any container, especially set. The
special function inserter generates insert_iterators for you.

- 176 - Chapter 7: STL Algorithms

ostream_iterator<Type> ostream_iterator<int> itr(cout, " ");
ostream_iterator<char> itr(cout);
ostream_iterator<double> itr(myStream, "\n");

An output iterator that writes elements into an output stream. In the
constructor, you must initialize the ostream_iterator to point to an
ostream, and can optionally provide a separator string written after
every element.

istream_iterator<Type> istream_iterator<int> itr(cin); // Reads from cin
istream_iterator<int> endItr; // Special end value

An input iterator that reads values from the specified istream when
dereferenced. When istream_iterators reach the end of their streams
(for example, when reading from a file), they take on a special “end”
value that you can get by creating an istream_iterator with no
parameters. istream_iterators are susceptible to stream failures and
should be used with care.

ostreambuf_iterator<char> ostreambuf_iterator<char> itr(cout); // Write to cout

An output iterator that writes raw character data to an output stream. Unlike
ostream_iterator, which can print values of any type,
ostreambuf_iterator can only write individual characters.
ostreambuf_iterator is usually used in conjunction with
istreambuf_iterator.

istreambuf_iterator<char> istreambuf_iterator<char> itr(cin); // Read data from cin
istreambuf_iterator<char> endItr; // Special end value

An input iterator that reads unformatted data from an input stream.
istreambuf_iterator always reads in character data and will not skip
over whitespace. Like istream_iterator, istreambuf_iterators
have a special iterator constructed with no parameters which indicates “end
of stream.” istreambuf_iterator is used primarily to read raw data from
a file for processing with the STL algorithms.

Removal Algorithms

The STL provides several algorithms for removing elements from containers. However, removal
algorithms have some idiosyncrasies that can take some time to adjust to.

Despite their name, removal algorithms do not actually remove elements from containers. This is
somewhat counterintuitive but makes sense when you think about how algorithms work. Algorithms
accept iterators, not containers, and thus do not know how to erase elements from containers. Removal
functions work by shuffling down the contents of the container to overwrite all elements that need to be
erased. Once finished, they return iterators to the first element not in the modified range. So for example,
if you have a vector initialized to 0, 1, 2, 3, 3, 3, 4 and then remove all instances of the number 3, the
resulting vector will contain 0, 1, 2, 4, 3, 3, 4 and the function will return an iterator to one spot past the
first 4. If you'll notice, the elements in the iterator range starting at begin and ending with the element
one past the four are the sequence 0, 1, 2, 4 – exactly the range we wanted.

To truly remove elements from a container with the removal algorithms, you can use the container class
member function erase to erase the range of values that aren't in the result. For example, here's a code
snippet that removes all copies of the number 137 from a vector:

 myVector.erase(remove(myVector.begin(), myVector.end(), 137), myVector.end());

Chapter 7: STL Algorithms - 177 -

Note that we're erasing elements in the range [*, end), where * is the value returned by the remove
algorithm.

There is another useful removal function, remove_if, that removes all elements from a container that
satisfy a condition specified as the final parameter. For example, using the ispunct function from the
header file <cctype>, we can write a StripPunctuation function that returns a copy of a string with all
the punctuation removed:*

 string StripPunctuation(string input) {
 input.erase(remove_if(input.begin(), input.end(), ispunct), input.end());
 return input;
 }

(Isn't it amazing how much you can do with a single line of code? That's the real beauty of STL
algorithms.)

If you're shaky about how to actually remove elements in a container using remove, you might want to
consider the remove_copy and remove_copy_if algorithms. These algorithms act just like remove and
remove_if, except that instead of modifying the original range of elements, they copy the elements that
aren't removed into another container. While this can be a bit less memory efficient, in some cases it's
exactly what you're looking for.

Other Noteworthy Algorithms

The past few sections have focused on common genera of algorithms, picking out representatives that
illustrate the behavior of particular algorithm classes. However, there are many noteworthy algorithms
that we have not discussed yet. This section covers several of these algorithms, including useful examples.

A surprisingly useful algorithm is transform, which applies a function to a range of elements and stores
the result in the specified destination. transform accepts four parameters – two iterators delineating an
input range, an output iterator specifying a destination, and a callback function, then stores in the output
destination the result of applying the function to each element in the input range. As with other
algorithms, transform assumes that there is sufficient storage space in the range pointed at by the
destination iterator, so make sure that you have sufficient space before transforming a range.

transform is particularly elegant when combined with functors, but even without them is useful for a
whole range of tasks. For example, consider the tolower function, a C library function declared in the
header <cctype> that accepts a char and returns the lowercase representation of that character.
Combined with transform, this lets us write ConvertToLowerCase from strutils.h in two lines of
code, one of which is a return statement:

 string ConvertToLowerCase(string text) {
 transform(text.begin(), text.end(), text.begin(), tolower);
 return text;
 }

Note that after specifying the range text.begin(), text.end() we have another call to text.begin().
This is because we need to provide an iterator that tells transform where to put its output. Since we
want to overwrite the old contents of our container with the new values, we specify text.begin()
another time to indicate that transform should start writing elements to the beginning of the string as it
generates them.

* On some compilers, this code will not compile as written. See the later section on compatibility issues for more
information.

- 178 - Chapter 7: STL Algorithms

There is no requirement that the function you pass to transform return elements of the same type as
those stored in the container. It's legal to transform a set of strings into a set of doubles, for example.

Most of the algorithms we've seen so far operate on entire ranges of data, but not all algorithms have this
property. One of the most useful (and innocuous-seeming) algorithms is swap, which exchanges the
values of two variables. We first encountered swap two chapters ago when discussing sorting algorithms,
but it's worth repeating. Several advanced C++ techniques hinge on swap's existence, and you will almost
certainly encounter it in your day-to-day programming even if you eschew the rest of the STL.

Two last algorithms worthy of mention are the min_element and max_element algorithms. These
algorithms accept as input a range of iterators and return an iterator to the largest element in the range.
As with other algorithms, by default the elements are compared by <, but you can provide a binary
comparison function to the algorithms as a final parameter to change the default comparison order.

The following table lists some of the more common STL algorithms. It's by no means an exhaustive list,
and you should consult a reference to get a complete list of all the algorithms available to you.

Type accumulate(InputItr start,
 InputItr stop,
 Type value)

Returns the sum of the elements in the range [start, stop) plus
the value of value.

bool binary_search(RandomItr start,
 RandomItr stop,
 const Type& value)

Performs binary search on the sorted range specified by
[start, stop) and returns whether it finds the element value. If
the elements are sorted using a special comparison function, you
must specify the function as the final parameter.

OutItr copy(InputItr start,
 InputItr stop,
 OutItr outputStart)

Copies the elements in the range [start, stop) into the output
range starting at outputStart. copy returns an iterator to one
past the end of the range written to.

size_t count(InputItr start,
 InputItr end,
 const Type& value)

Returns the number of elements in the range [start, stop) equal
to value.

size_t count_if(InputItr start,
 InputItr end,
 PredicateFunction fn)

Returns the number of elements in the range [start, stop) for
which fn returns true. Useful for determining how many elements
have a certain property.

bool equal(InputItr start1,
 InputItr stop1,
 InputItr start2)

Returns whether elements contained in the range defined by
[start1, stop1) and the range beginning with start2 are equal. If
you have a special comparison function to compare two elements,
you can specify it as the final parameter.

pair<RandomItr, RandomItr>
 equal_range(RandomItr start,
 RandomItr stop,
 const Type& value)

Returns two iterators as a pair that defines the sub-range of
elements in the sorted range [start, stop) that are equal to
value. In other words, every element in the range defined by the
returned iterators is equal to value. You can specify a special
comparison function as a final parameter.

void fill(ForwardItr start,
 ForwardItr stop,
 const Type& value)

Sets every element in the range [start, stop) to value.

void fill_n(ForwardItr start,
 size_t num,
 const Type& value)

Sets the first num elements, starting at start, to value.

InputItr find(InputItr start,
 InputItr stop,
 const Type& value)

Returns an iterator to the first element in [start, stop) that is
equal to value, or stop if the value isn't found. The range doesn't
need to be sorted.

Chapter 7: STL Algorithms - 179 -

InputItr find_if(InputItr start,
 InputItr stop,
 PredicateFunc fn)

Returns an iterator to the first element in [start, stop) for which
fn is true, or stop otherwise.

Function for_each(InputItr start,
 InputItr stop,
 Function fn)

Calls the function fn on each element in the range [start, stop).

void generate(ForwardItr start,
 ForwardItr stop,
 Generator fn);

Calls the zero-parameter function fn once for each element in the
range [start, stop), storing the return values in the range.

void generate_n(OutputItr start,
 size_t n,
 Generator fn);

Calls the zero-parameter function fn n times, storing the results in
the range beginning with start.

bool includes(InputItr start1,
 InputItr stop1,
 InputItr start2,
 InputItr stop2)

Returns whether every element in the sorted range
[start2, stop2) is also in [start1, stop1). If you need to use a
special comparison function, you can specify it as the final
parameter.

Type inner_product(InputItr start1,
 InputItr stop1,
 InputItr start2,
 Type initialValue)

Computes the inner product of the values in the range [start1,
stop1) and [start2, start2 + (stop1 – start1)). The inner product is

the value ∑
i=1

n

ai biinitialValue , where ai and bi denote the ith

elements of the first and second range.

bool
lexicographical_compare(InputItr s1,
 InputItr s2,
 InputItr t1,
 InputItr t2)

Returns whether the range of elements defined by [s1, s2) is
lexicographically less than [t1, t2); that is, if the first range
precedes the second in a “dictionary ordering.”

InputItr
lower_bound(InputItr start,
 InputItr stop,
 const Type& elem)

Returns an iterator to the first element greater than or equal to the
element elem in the sorted range [start, stop). If you need to use
a special comparison function, you can specify it as the final
parameter.

InputItr max_element(InputItr start,
 InputItr stop)

Returns an iterator to the largest value in the range [start, stop).
If you need to use a special comparison function, you can specify it
as the final parameter.

InputItr min_element(InputItr start,
 InputItr stop)

Returns an iterator to the smallest value in the range
[start, stop). If you need to use a special comparison function,
you can specify it as the final parameter.

bool next_permutation(BidirItr start,
 BidirItr stop)

Given a range of elements [start, stop), modifies the range to
contain the next lexicographically higher permutation of those
elements. The function then returns whether such a permutation
could be found. It is common to use this algorithm in a do ...
while loop to iterate over all permutations of a range of data, as
shown here:

sort(range.begin(), range.end());
do {
 /* ... process ... */
}while(next_permutation(range.begin(), range.end()));

bool prev_permutation(BidirItr start,
 BidirItr stop)

Given a range of elements [start, stop), modifies the range to
contain the next lexicographically lower permutation of those
elements. The function then returns whether such a permutation
could be found.

void random_shuffle(RandomItr start,
 RandomItr stop)

Randomly reorders the elements in the range [start, stop).

- 180 - Chapter 7: STL Algorithms

ForwardItr remove(ForwardItr start,
 ForwardItr stop,
 const Type& value)

Removes all elements in the range [start, stop) that are equal to
value. This function will not remove elements from a container.
To shrink the container, use the container's erase function to erase
all values in the range [retValue, end()), where retValue is the
return value of remove.

ForwardItr
remove_if(ForwardItr start,
 ForwardItr stop,
 PredicateFunc fn)

Removes all elements in the range [start, stop) for which fn
returns true. See remove for information about how to actually
remove elements from the container.

void replace(ForwardItr start,
 ForwardItr stop,
 const Type& toReplace,
 const Type& replaceWith)

Replaces all values in the range [start, stop) that are equal to
toReplace with replaceWith.

void replace_if(ForwardItr start,
 ForwardItr stop,
 PredicateFunction fn,
 const Type& with)

Replaces all elements in the range [start, stop) for which fn
returns true with the value with.

ForwardItr rotate(ForwardItr start,
 ForwardItr middle,
 ForwardItr stop)

Rotates the elements of the container such that the sequence
[middle, stop) is at the front and the range [start, middle) goes
from the new middle to the end. rotate returns an iterator to the
new position of start.

ForwardItr search(ForwardItr start1,
 ForwardItr stop1,
 ForwardItr start2,
 ForwardItr stop2)

Returns whether the sequence [start2, stop2) is a subsequence
of the range [start1, stop1). To compare elements by a special
comparison function, specify it as a final parameter.

InputItr set_difference(
 InputItr start1,
 InputItr stop1,
 InputItr start2,
 InputItr stop2,
 OutItr dest)

Stores all elements that are in the sorted range [start1, stop1)
but not in the sorted range [start2, stop2) in the destination
pointed to by dest. If the elements are sorted according to a
special comparison function, you can specify the function as the
final parameter.

InputItr set_intersection(
 InputItr start1,
 InputItr stop1,
 InputItr start2,
 InputItr stop2,
 OutItr dest)

Stores all elements that are in both the sorted range
[start1, stop1) and the sorted range [start2, stop2) in the
destination pointed to by dest. If the elements are sorted
according to a special comparison function, you can specify the
function as the final parameter.

InputItr set_union(
 InputItr start1,
 InputItr stop1,
 InputItr start2,
 InputItr stop2,
 OutItr dest)

Stores all elements that are in either the sorted range
[start1, stop1) or in the sorted range [start2, stop2) in the
destination pointed to by dest. If the elements are sorted
according to a special comparison function, you can specify the
function as the final parameter.

InputItr set_symmetric_difference(
 InputItr start1,
 InputItr stop1,
 InputItr start2,
 InputItr stop2,
 OutItr dest)

Stores all elements that are in the sorted range [start1, stop1) or
in the sorted range [start2, stop2), but not both, in the
destination pointed to by dest. If the elements are sorted
according to a special comparison function, you can specify the
function as the final parameter.

void swap(Value& one, Value& two) Swaps the values of one and two.

ForwardItr
swap_ranges(ForwardItr start1,
 ForwardItr stop1,
 ForwardItr start2)

Swaps each element in the range [start1, stop1) with the
correspond elements in the range starting with start2.

Chapter 7: STL Algorithms - 181 -

OutputItr transform(InputItr start,
 InputItr stop,
 OutputItr dest,
 Function fn)

Applies the function fn to all of the elements in the range
[start, stop) and stores the result in the range beginning with
dest. The return value is an iterator one past the end of the last
value written.

RandomItr
 upper_bound(RandomItr start,
 RandomItr stop,
 const Type& val)

Returns an iterator to the first element in the sorted range
[start, stop) that is strictly greater than the value val. If you
need to specify a special comparison function, you can do so as the
final parameter.

A Word on Compatibility

The STL is ISO-standardized along with the rest of C++. Ideally, this would mean that all STL
implementations are uniform and that C++ code that works on one compiler should work on any other
compiler. Unfortunately, this is not the case. No compilers on the market fully adhere to the standard, and
almost universally compiler writers will make minor changes to the standard that decrease portability.

Consider, for example, the ConvertToLowerCase function from earlier in the section:

 string ConvertToLowerCase(string text) {
 transform(text.begin(), text.end(), text.begin(), tolower);
 return text;
 }

This code will compile in Microsoft Visual Studio, but not in Xcode or the popular Linux compiler g++. The
reason is that there are two tolower functions – the original C tolower function exported by <cctype>
and a more modern tolower function exported by the <locale> header. Unfortunately, Xcode and g++
cannot differentiate between the two functions, so the call to transform will result in a compiler error. To
fix the problem, you must explicitly tell C++ which version of tolower you want to call as follows:

 string ConvertToLowerCase(string text) {
 transform(text.begin(), text.end(), text.begin(), ::tolower);
 return text;
 }

Here, the strange-looking :: syntax is the scope-resolution operator and tells C++ that the tolower
function is the original C function rather than the one exported by the <locale> header. Thus, if you're
using Xcode or g++ and want to use the functions from <cctype>, you'll need to add the ::.

Another spot where compatibility issues can lead to trouble arises when using STL algorithms with the
STL set. Consider the following code snippet, which uses fill to overwrite all of the elements in an STL
set with the value 137:

 fill(mySet.begin(), mySet.end(), 137);

This code will compile in Visual Studio, but will not under g++. Recall from the second chapter on STL
containers that manipulating the contents of an STL set in-place can destroy the set's internal ordering.
Visual Studio's implementation of set will nonetheless let you modify set contents, even in situations like
the above where doing so is unsafe. g++, however, uses an STL implementation that treats all set iterators
as read-only. Consequently, this code won't compile, and in fact will cause some particularly nasty
compiler errors.

When porting C++ code from one compiler to another, you might end up with inexplicable compiler errors.
If you find some interesting C++ code online that doesn't work on your compiler, it doesn't necessarily

- 182 - Chapter 7: STL Algorithms

mean that the code is invalid; rather, you might have an overly strict compiler or the online code might use
an overly lenient one.

Extended Example: Palindromes

A man, a plan, a caret, a ban, a myriad, a sum, a lac, a liar, a hoop, a pint, a catalpa, a gas, an oil, a
bird, a yell, a vat, a caw, a pax, a wag, a tax, a nay, a ram, a cap, a yam, a gay, a tsar, a wall, a car,
a luger, a ward, a bin, a woman, a vassal, a wolf, a tuna, a nit, a pall, a fret, a watt, a bay, a daub, a
tan, a cab, a datum, a gall, a hat, a tag, a zap, a say, a jaw, a lay, a wet, a gallop, a tug, a trot, a
trap, a tram, a torr, a caper, a top, a tonk, a toll, a ball, a fair, a sax, a minim, a tenor, a bass, a
passer, a capital, a rut, an amen, a ted, a cabal, a tang, a sun, an ass, a maw, a sag, a jam, a dam, a
sub, a salt, an axon, a sail, an ad, a wadi, a radian, a room, a rood, a rip, a tad, a pariah, a revel, a
reel, a reed, a pool, a plug, a pin, a peek, a parabola, a dog, a pat, a cud, a nu, a fan, a pal, a rum, a
nod, an eta, a lag, an eel, a batik, a mug, a mot, a nap, a maxim, a mood, a leek, a grub, a gob, a
gel, a drab, a citadel, a total, a cedar, a tap, a gag, a rat, a manor, a bar, a gal, a cola, a pap, a yaw,
a tab, a raj, a gab, a nag, a pagan, a bag, a jar, a bat, a way, a papa, a local, a gar, a baron, a mat,
a rag, a gap, a tar, a decal, a tot, a led, a tic, a bard, a leg, a bog, a burg, a keel, a doom, a mix, a
map, an atom, a gum, a kit, a baleen, a gala, a ten, a don, a mural, a pan, a faun, a ducat, a
pagoda, a lob, a rap, a keep, a nip, a gulp, a loop, a deer, a leer, a lever, a hair, a pad, a tapir, a
door, a moor, an aid, a raid, a wad, an alias, an ox, an atlas, a bus, a madam, a jag, a saw, a mass,
an anus, a gnat, a lab, a cadet, an em, a natural, a tip, a caress, a pass, a baronet, a minimax, a
sari, a fall, a ballot, a knot, a pot, a rep, a carrot, a mart, a part, a tort, a gut, a poll, a gateway, a
law, a jay, a sap, a zag, a tat, a hall, a gamut, a dab, a can, a tabu, a day, a batt, a waterfall, a
patina, a nut, a flow, a lass, a van, a mow, a nib, a draw, a regular, a call, a war, a stay, a gam, a
yap, a cam, a ray, an ax, a tag, a wax, a paw, a cat, a valley, a drib, a lion, a saga, a plat, a catnip, a
pooh, a rail, a calamus, a dairyman, a bater, a canal – Panama!

 – Dan Hoey [Pic96]

It is fitting to conclude our whirlwind tour of the STL with an example showcasing exactly how concise and
powerful well-written STL code can be. This example is shorter than the others in this book, but should
nonetheless illustrate how the different library pieces all fit together. Once you've finished reading this
chapter, you should have a solid understanding of how the STL and streams libraries can come together
beautifully to elegantly solve a problem.

Palindromes

A palindrome is a word or phrase that is the same when read forwards or backwards, such as “racecar ” or
“Malayalam.” It is customary to ignore spaces, punctuation, and capitalization when reading palindromes,
so the phrase “Mr. Owl ate my metal worm” would count as a palindrome, as would “Go hang a salami! I'm
a lasagna hog.”

Suppose that we want to write a function IsPalindrome that accepts a string and returns whether or
not the string is a palindrome. Initially, we'll assume that spaces, punctuation, and capitalization are all
significant in the string, so “Party trap” would not be considered a palindrome, though “Part y traP” would.
Don't worry – we'll loosen this restriction in a bit. Now, we want to verify that the string is the same when
read forwards and backwards. There are many possible ways to do this. Prior to learning the STL, we
might have written this function as follows:

Chapter 7: STL Algorithms - 183 -

 bool IsPalindrome(string input) {
 for(int k = 0; k < input.size() / 2; ++k)
 if(input[k] != input[input.length() - 1 – k])
 return false;
 return true;
 }

That is, we simply iterate over the first half of the string checking to see if each character is equal to its
respective character on the other half of the string. There's nothing wrong with the approach, but it feels
too mechanical. The high-level operation we're modeling asks whether the first half of the string is the
same forwards as the second half is backwards. The code we've written accomplishes this task, but has to
explicitly walk over the characters from start to finish, manually checking each pair. Using the STL, we can
accomplish the same result as above without explicitly spelling out the details of how to check each
character.

There are several ways we can harness the STL to solve this problem. For example, we could use the STL
reverse algorithm to create a copy of the string in reverse order, then check if the string is equal to its
reverse. This is shown here:

 bool IsPalindrome(string input) {
 string reversed = input;
 reverse(input.begin(), input.end());
 return reversed == input;
 }

This approach works, but requires us to create a copy of the string and is therefore less efficient than our
original implementation. Can we somehow emulate the functionality of the initial for loop using
iterators? The answer is yes, thanks to reverse_iterators. Every STL container class exports a type
reverse_iterator which is similar to an iterator except that it traverses the container backwards. Just
as the begin and end functions define an iterator range over a container, the rbegin and rend functions
define a reverse_iterator range spanning a container.

Let's also consider the the STL equal algorithm. equal accepts three inputs – two iterators delineating a
range and a third iterator indicating the start of a second range – then returns whether the two ranges are
equal. Combined with reverse_iterators, this yields the following one-line implementation of
IsPalindrome:

 bool IsPalindrome(string input) {
 return equal(input.begin(), input.begin() + input.size() / 2,
 input.rbegin());
 }

This is a remarkably simple approach that is identical to what we've written earlier but much less verbose.
Of course, it doesn't correctly handle capitalization, spaces, or punctuation, but we can take care of that
with only a few more lines of code. Let's begin by stripping out everything from the string except for
alphabetic characters. For this task, we can use the STL remove_if algorithm, which accepts as input a
range of iterators and a predicate, then modifies the range by removing all elements for which the
predicate returns true. Like its partner algorithm remove, remove_if doesn't actually remove the
elements from the sequence (see the last chapter for more details), so we'll need to erase the remaining
elements afterwards.

Because we want to eliminate all characters from the string that are not alphabetic, we need to create a
predicate function that accepts a character and returns whether it is not a letter. The header file

- 184 - Chapter 7: STL Algorithms

<cctype> exports a helpful function called isalpha that returns whether a character is a letter. This is
the opposite what we want, so we'll create our own function which returns the negation of isalpha:*

 bool IsNotAlpha(char ch) {
 return !isalpha(ch);
 }

We can now strip out nonalphabetic characters from our input string as follows:

 bool IsPalindrome(string input) {
 input.erase(remove_if(input.begin(), input.end(), IsNotAlpha),
 input.end());
 return equal(input.begin(), input.begin() + input.size() / 2,
 input.rbegin());
 }

Finally, we need to make sure that the string is treated case-insensitively, so inputs like “RACEcar” are
accepted as palindromes. Using the code developed in the chapter on algorithms, we can convert the
string to uppercase after stripping out everything except characters, yielding this final version of
IsPalindrome:

 bool IsPalindrome(string input) {
 input.erase(remove_if(input.begin(), input.end(), IsNotAlpha),
 input.end());
 transform(input.begin(), input.end(), input.begin(), ::toupper);
 return equal(input.begin(), input.begin() + input.size() / 2,
 input.rbegin());
 }

This function is remarkable in its elegance and terseness. In three lines of code we've stripped out all of the
characters in a string that aren't letters, converted what's left to upper case, and returned whether the
string is the same forwards and backwards. This is the STL in action, and I hope that you're beginning to
appreciate the power of the techniques you've learned over the past few chapters.

Before concluding this example, let's consider a variant on a palindrome where we check whether the
words in a phrase are the same forwards and backwards. For example, “Did mom pop? Mom did!” is a
palindrome both with respect to its letters and its words, while “This is this” is a phrase that is not a
palindrome but is a word-palindrome. As with regular palindromes, we'll ignore spaces and punctuation,
so “It's an its” counts as a word-palindrome even though it uses two different forms of the word its/it's.
The machinery we've developed above works well for entire strings; can we modify it to work on a word-
by-word basis?

In some aspects this new problem is similar to the original. We still to ignore spaces, punctuation, and
capitalization, but now need to treat words rather than letters as meaningful units. There are many
possible algorithms for checking this property, but one solution stands out as particularly good. The idea
is as follows:

1. Clean up the input: strip out everything except letters and spaces, then convert the result to upper
case.

2. Break up the input into a list of words.
3. Return whether the list is the same forwards and backwards.

* When we cover the <functional> library in the second half of this book, you'll see a simpler way to do this.

Chapter 7: STL Algorithms - 185 -

In the first step, it's important that we preserve the spaces in the original input so that we don't lose track
of word boundaries. For example, we would convert the string “Hello? Hello!? HELLO?” into “HELLO
HELLO HELLO” instead of “HELLOHELLOHELLO” so that we can recover the individual words in the
second step. Using a combination of the isalpha and isspace functions from <cctype> and the convert-
to-upper-case code used above, we can preprocess the input as shown here:

 bool IsNotAlphaOrSpace(char ch) {
 return !isalpha(ch) && !isspace(ch);
 }

 bool IsWordPalindrome(string input) {
 input.erase(remove_if(input.begin(), input.end(), IsNotAlphaOrSpace),
 input.end());
 transform(input.begin(), input.end(), input.begin(), ::toupper);
 /* ... */
 }

At this point the string input consists of whitespace-delimited strings of uniform capitalization. We now
need to tokenize the input into individual words. This would be tricky were it not for stringstream.
Recall that when reading a string out of a stream using the stream extraction operator (>>), the stream
treats whitespace as a delimiter. Thus if we funnel our string into a stringstream and then read back
individual strings, we'll end up with a tokenized version of the input. Since we'll be dealing with an
arbitrarily-long list of strings, we'll store the resulting list in a vector<string>, as shown here:

 bool IsWordPalindrome(string input) {
 input.erase(remove_if(input.begin(), input.end(), IsNotAlphaOrSpace),
 input.end());
 transform(input.begin(), input.end(), input.begin(), ::toupper);

 stringstream tokenizer(input);
 vector<string> tokens;

 /* ... */
 }

Now, what is the easiest way to read strings out of the stream until no strings remain? We could do this
manually, as shown here:

 bool IsWordPalindrome(string input) {
 input.erase(remove_if(input.begin(), input.end(), IsNotAlphaOrSpace),
 input.end());
 transform(input.begin(), input.end(), input.begin(), ::toupper);

 stringstream tokenizer(input);
 vector<string> tokens;

 string token;
 while(tokenizer >> token)
 tokens.push_back(token);
 }

This code is correct, but it's bulky and unsightly. The problem is that it's just too mechanical. We want to
insert all of the tokens from the stringstream into the vector, but as written it's not clear that this is
what's happening. Fortunately, there is a much, much easier way to solve this problem thanks to
istream_iterator. Recall that istream_iterator is an iterator adapter that lets you iterate over an
input stream as if it were a range of data. Using istream_iterator to wrap the stream operations and

- 186 - Chapter 7: STL Algorithms

the vector's insert function to insert a range of data, we can rewrite this entire loop in one line as
follows:

 bool IsWordPalindrome(string input) {
 input.erase(remove_if(input.begin(), input.end(), IsNotAlphaOrSpace),
 input.end());
 transform(input.begin(), input.end(), input.begin(), ::toupper);

 stringstream tokenizer(input);
 vector<string> tokens;

 tokens.insert(tokens.begin(),
 istream_iterator<string>(tokenizer),
 istream_iterator<string>());
 }

Recall that two istream_iterators are necessary to define a range, and that an istream_iterator
constructed with no arguments is a special “end of stream” iterator. This one line of code replaces the
entire loop from the previous implementation, and provided that you have some familiarity with the STL
this second version is also easier to read.

The last step in this process is to check if the sequence of strings is the same forwards and backwards. But
we already know how to do this – we just use equal and a reverse_iterator. Even though the original
implementation applied this technique to a string, we can use the same pattern here on a
vector<string> because all the container classes are designed with a similar interface. Remarkable,
isn't it?

The final version of IsWordPalindrome is shown here:

 bool IsWordPalindrome(string input) {
 input.erase(remove_if(input.begin(), input.end(), IsNotAlphaOrSpace),
 input.end());
 transform(input.begin(), input.end(), input.begin(), ::toupper);

 stringstream tokenizer(input);
 vector<string> tokens;

 tokens.insert(tokens.begin(),
 istream_iterator<string>(tokenizer),
 istream_iterator<string>());
 return equal(tokens.begin(), tokens.begin() + tokens.size() / 2,
 tokens.rbegin());
 }

More to Explore

While this chapter lists some of the more common algorithms, there are many others that are useful in a
variety of contexts. Additionally, there are some useful C/C++ library functions that work well with
algorithms. If you're interested in maximizing your algorithmic firepower, consider looking into some of
these topics:

1. <cctype>: This chapter briefly mentioned the <cctype> header, the C runtime library's character
type library. <cctype> include support for categorizing characters (for example, isalpha to
return if a character is a letter and isxdigit to return if a character is a valid hexadecimal digit)
and formatting conversions (toupper and tolower).

Chapter 7: STL Algorithms - 187 -

2. <cmath>: The C mathematics library has all sorts of nifty functions that perform arithmetic
operations like sin, sqrt, and exp. Consider looking into these functions if you want to use
transform on your containers.

3. Boost Algorithms: As with most of the C++ Standard Library, the Boost C++ Libraries have a
whole host of useful STL algorithms ready for you to use. One of the more useful Boost algorithm
sets is the string algorithms, which extend the functionality of the find and replace algorithms
on strings from dealing with single characters to dealing with entire strings.

Practice Problems

Algorithms are ideally suited for solving a wide variety of problems in a small space. Most of the following
programming problems have short solutions – see if you can whittle down the space and let the algorithms
do the work for you!

1. Give three reasons why STL algorithms are preferable over hand-written loops.

2. What does the _if suffix on an STL algorithm indicate? What about _n?

3. What are the five iterator categories?

4. Can an input iterator be used wherever a forward iterator is expected? That is, if an algorithm
requires a forward iterator, is it legal to provide it an input iterator instead? What about the other
way around?

5. Why do we need back_insert_iterator and the like? That is, what would happen with the STL
algorithms if these iterator adaptors didn't exist?

6. The distance function, defined in the <iterator> header, takes in two iterators and returns the
number of elements spanned by that iterator range. For example, given a vector<int>, calling

 distance(v.begin(), v.end());

returns the number of elements in the container.

Modify the code from this chapter that prints the average of the values in a file so that it instead
prints the average of the values in the file between 25 and 75. If no elements are in this range, you
should print a message to this effect. You will need to use a combination of accumulate and
distance.

7. Using remove_if and a custom callback function, write a function RemoveShortWords that
accepts a vector<string> and removes all strings of length 3 or less from it. This function can be
written in two lines of code if you harness the algorithms correctly.

8. In n-dimensional space, the distance from a point (x1, x2, x3, ..., xn) to the origin is

 x1
2
 x2

2
x3

2
...xn

2 . Write a function DistanceToOrigin that accepts a vector<double>
representing a point in space and returns the distance from that point to the origin. Do not use any
loops – let the algorithms do the heavy lifting for you. (Hint: Use the inner_product algorithm to
compute the expression under the square root.)

- 188 - Chapter 7: STL Algorithms

9. Write a function BiasedSort that accepts a vector<string> by reference and sorts the vector
lexicographically, except that if the vector contains the string “Me First,” that string is always at
the front of the sorted list. This may seem like a silly problem, but can come up in some
circumstances. For example, if you have a list of songs in a music library, you might want songs
with the title “Untitled” to always appear at the top.

10. Write a function CriticsPick that accepts a map<string, double> of movies and their ratings
(between 0.0 and 10.0) and returns a set<string> of the names of the top ten movies in the map.
If there are fewer than ten elements in the map, then the resulting set should contain every string
in the map. (Hint: Remember that all elements in a map<string, double> are stored internally as
pair<string, double>)

11. Implement the count algorithm for vector<int>s. Your function should have the prototype
int count(vector<int>::iterator start, vector<int>::iterator stop, int
element) and should return the number of elements in the range [start, stop) that are equal to
element.

12. Using the generate_n algorithm, the rand function, and a back_insert_iterator, show how to
populate a vector with a specified number of random values. Then use accumulate to compute
the average of the range.

13. The median of a range of data is the value that is bigger than half the elements in the range and
smaller than half the elements in a range. For data sets with odd numbers of elements, this is the
middle element when the elements are sorted, and for data sets with an even number of elements
it is the average of the two middle elements. Using the nth_element algorithm, write a function
that computes the median of a set of data.

14. Show how to use a combination of copy, istreambuf_iterator, and ostreambuf_iterator to
open a file and print its contents to cout.

15. Show how to use a combination of copy and iterator adapters to write the contents of an STL
container to a file, where each element is stored on its own line.

16. Suppose that you are given two vector<int>s with their elements stored in sorted order. Show
how to print out the elements those vectors have in common in one line of code using the
set_intersection algorithm and an appropriate iterator adaptor.

17. A monoalphabetic substitution cipher is a simple form of encryption. We begin with the letters of
the alphabet, as shown here:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

We then scramble these letters randomly, yielding a new ordering of the alphabet. One possibility
is as follows:

K V D Q J W A Y N E F C L R H U X I O G T Z P M S B

This new ordering thus defines a mapping from each letter in the alphabet to some other letter in
the alphabet, as shown here:

Chapter 7: STL Algorithms - 189 -

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

K V D Q J W A Y N E F C L R H U X I O G T Z P M S B

To encrypt a source string, we simply replace each character in the string with its corresponding
encrypted character. For example, the string “The cookies are in the fridge” would be encoded as
follows:

T H E C O O K I E S A R E I N T H E F R I D G E

G Y J D H H F N J O K I J N R G Y J W I N Q A J

Monoalphabetic substitution ciphers are surprisingly easy to break – in fact, most daily
newspapers include a daily puzzle that involves deciphering a monoalphabetic substitution cipher
– but they are still useful for low-level encryption tasks such as posting spoilers to websites
(where viewing the spoiler explicitly requires the reader to decrypt the text).

Using the random_shuffle algorithm, implement a function
MonoalphabeticSubstitutionEncrypt that accepts a source string and encrypts it with a
random monoalphabetic substitution cipher.

Part Two
Data Abstraction

It's all just bits and bytes.

Everything on your machine, whether it's your tax return, a picture from a trip, a web page, or a web
browser, is stored in memory as a series of ones and zeros encoded as magnetic, optical, or electrical
signals. How, then, can a computer do word processing? Or view images? Or check your email? All of this
data has structure – text documents store words and fonts, images vivid color pictures, and email a
mixture of text, headers, and contacts.

Chapter 8: Abstraction and Classes

Software keeps getting bigger. Society keeps digitizing and automating more and more aspects of life, and
the scope and complexity of software systems are ever increasing. For computer scientists, this is a
thrilling prospect: even after decades of booming growth, the field is still expanding and applications
abound. But for software engineers - the brave souls who actually write the code – this can be daunting.

In the early days of programming, software was considerably less complicated because the tasks we used
to ask of computers are nowhere near as complex as those we ask today. Operating systems worked on
less powerful hardware and with considerably fewer peripherals. The earliest web browsers didn't need
to support a wide array of HTML, CSS, JavaScript, XML, SVG, and RSS formats. Video games didn't need to
take advantage of the latest-and-greatest 3D hardware and weren't criticized for not having the most up-
to-date shading engine. But nowadays, the expectations are higher, and software is growing more
complicated.

Unfortunately, increasing the size of a software system greatly increases the system's complexity and
opens all sorts of avenues for failure. Combating software complexity is therefore extraordinarily
important as it allows software systems to grow robustly. This section of this book is dedicated entirely to
techniques for combating complexity through a particular technique called abstraction. Abstraction is a
subtle but important aspect of software design, and in many ways the difference between good
programmers and excellent programmers is the ability to design robust and intuitive abstractions in
software.

Many textbooks jump directly into a discussion of what abstraction is all about and how to represent it in
software, but I feel that doing so obscures the fundamental reasons underlying abstraction. This chapter
discusses how software engineering is different from other engineering disciplines, why software
complexity is particularly dangerous, and how abstraction can dramatically reduce the complexity of a
software system. It then introduces the class keyword and how to represent abstraction directly in
source code.

The Complexity of Software

What exactly does it mean to talk about the complexity of a software system? One of the first metrics that
may come to mind is the number of lines of code in the program. This is akin to measuring the complexity
of a chip by the number of transistors on it or a bridge by the number of welds required: while in general
system complexity rises with lines of code, a program with ten thousand lines of code is not necessarily
ten times more complicated than a system with one thousand lines of code. However, number of lines of
code is still a reasonable metric of software complexity. To give you a sense for how massive some
projects can be, here is a list of various software projects and the number of lines of code they contain:

- 194 - Chapter 8: Abstraction and Classes

1 – 10 Hello, World!

10 – 100 Most implementation of the STL stack or queue.

100 – 1,000 Most of the worked examples in this book.

1,000 – 10,000 Intensive team project in a typical computer science curriculum.

10,000 – 100,000 Most Linux command-line utilities.

100,000 – 1,000,000 Linux g++ Compiler

1,000,000 – 10,000,000 Mozilla Firefox

10,000,000 – 100,000,000 Microsoft Windows 2000 Kernel

100,000,000 - 1,000,000,000 Debian Linux Operating System

The number of lines of code in each of these entries is ten times more than in the previous example. This
means that there are ten times as many lines of code in Firefox than in g++, for example. And yes, you did
read this correctly – there are many, many projects that clock in at over a million lines of code. The Debian
Linux kernel is roughly 230 million lines of code as of this writing. It's generally accepted that no single
programmer can truly understand more than fifty thousand lines of code, which means that in all but the
simplest of programs, no one programmer understands how the entire system works.

So software is complex – so what? That is, why does it matter that modern software systems are getting
bigger and more complicated? There are many reasons, of which two specifically stand out.

Every Bit Counts

In a software system, a single incorrect bit can spell disaster for the entire program. For example, suppose
you are designing a system that controls a nuclear reactor core. At some point in your program, you have
the following control logic:

 if (MeltdownInProgress()) {
 SetReactorPower(0);
 EmergencyShutoff();
 }

Let's suppose that MeltdownInProgress returns a bool that signals whether the reactor is melting
down. On most systems, bools are represented as a sequence of ones and zeros called bits. The value
false is represented by those bits all being zero, and true represented by any of the bits being nonzero.
For example, the value 00010000 would be interpreted as true, while 00000000 would be false. This
means that the difference between true and false is a single bit. In the above example, this means that
the difference between shutting down the reactor in an emergency and continuing normal operation is a
single bit in memory.

In the above example, our “single incorrect bit” was the difference between the boolean values true and
false, but in most systems the “single incorrect bit” will be something else. It might, for example, be an
negative integer where a positive integer was expected, an iterator that is past the end of a container, or an
unsorted vector when the data was expected to be sorted. In each of these cases, the erroneous data is
likely to be only a handful of bits off from a meaningful piece of data, but the result will be the same – the
program won't work as expected.

Chapter 8: Abstraction and Classes - 195 -

Interactions Grow Exponentially

Suppose you have a program with n lines of code. Let's consider an “interaction” to be where data is
manipulated by two different lines of code. For example, one interaction might be creating an int in one
line and then printing it to the console in the next, or a function passing one of its parameters into another
function. Since every line of code might potentially manipulate data created by any of the other n lines of
code, if you sum up this count for all n lines of code there are roughly n2 pairs of interacting lines. This
which means that the number of possible interactions in a software project increases, in the worst case, as
the square of the number of lines of code.

Let's consider a slightly different take on this. Suppose you are working on a software project with n lines
of code and you're interested in adding a new feature. As mentioned above, any changes you make might
interact with any of the existing n lines of code, and those n lines of code might interact with all of your
new lines of code. If the changes you make somehow violate an assumption that exists in some other
module, then changes in your relatively isolated region of the code base might cause catastrophic failures
in entirely different parts of the code base.

However, the situation is far worse than this. In this example we considered an interaction to be an
interaction between two lines of code. A more realistic model of interactions would consider interactions
between arbitrarily many lines of code, since changes made in several different points might converge
together in a point to form a result not possible if a single one of the changes didn't occur. In this case, if
the code base has n lines of code, the maximum number of interactions (sets of two or more lines of code)
is roughly 2n. That's a staggeringly huge number. In fact, if we make the liberal assumption that there are
10100 atoms in the universe (most estimates put the figure at much less than this), then even a comparably
small software system (say, three thousand lines of code) has more possible interactions than there are
atoms in the universe.

In short, the larger a software system gets, the greater the likelihood than an error occurs and,
consequently, the more difficult it is to make changes. In short, software is chaotic, and even minuscule
changes to a code base can completely cripple the system.

Abstraction

One of the most powerful techniques available to combat complexity is abstraction, a means of simplifying
a complex program to a manageable level. Rather than jumping headfirst into a full-on definition of
abstraction with examples, let's look at abstraction by means of an example. Consider a standard, run-of-
the-mill stapler. Certainly you understand how to use a stapler: you place the papers to staple under the
arm of the stapler, then depress the handle to staple the pages together. You've undoubtedly encountered
more than one stapler in your life, yet (barring unfortunate circumstances) you've probably figured out
how to work all of them without much trouble. Staplers come in all shapes and sizes, and consequently
have many different internal mechanisms, yet switching from one type of stapler to another poses little to
no problem to you. In fact, you probably don't think much about staplers, even when you're using them.

Now consider the companies that make staplers – Swingline or McGill, for example. These companies
expend millions of dollars designing progressively better staplers. They consider all sorts of tradeoffs
between different types of springs and different construction materials. In fact, they probably expend
more effort in a single day designing staplers than you will ever spend thinking about staplers in your
entire life. But nonetheless, at the end of the day, staplers are simple and easy to use and bear no
markings to indicate the painstaking labor that has gone into perfecting them. This setup, where a
dedicated manufacturer designs a complex but easy-to-use product, is the heart of abstraction.

- 196 - Chapter 8: Abstraction and Classes

Formally speaking, an abstraction is a description of an object that omits all but a few salient details. For
example, suppose we want to describe a particular coffee mug. Here are several different descriptions of
the coffee mug, each at different levels of abstraction:

• Matter.
• An object.
• A beverage container.
• A coffee mug.
• A white coffee mug.
• A white ceramic coffee mug.
• A white ceramic coffee mug with a small crack in the handle.
• A white ceramic coffee mug with a small crack in the handle whose manufacturer's logo is

emblazoned on the bottom.

Notice how these descriptions move from least specific (matter) to most specific (A white ceramic coffee
mug with a small crack in the handle whose manufacturer's logo is emblazoned on the bottom). Each of
the descriptions describe the same coffee mug, but each does so at a different level of detail. Depending on
the circumstance, different levels of detail might be appropriate. For example, if you were a physicist
interested in modeling universal gravitation, the fact that the coffee mug is made of matter might be
sufficient for your purposes. However, if you wanted to paint a picture of the mug, you would probably
want to pick the last description, since it offers the most detail. If you'll notice, as the descriptions become
more and more detailed, more and more information is revealed about the object. Starting from the first
of these descriptions and moving downward, the picture of the coffee mug becomes more clear.
Describing the coffee mug as “matter” hardly helps you picture the mug, but as you go down the list you
begin to notice that the mug is white, has a small crack, and has a logo printed on the bottom.

What does this have to do with our previous discussion on staplers? The answer is simple: the reason that
staplers are so easy to use despite the complex mechanisms that make them work is because the very
notion of a stapler is an abstraction. There are many ways to build a stapler, some of which have handles
to staple documents, and others which use proximity sensors to detect paper and insert the staples
automatically. Although these devices have little mechanism or structure in common, we would consider
both of them staplers because they staple paper. In other words, what is important to us as stapler users
is the fact that staplers fasten paper together, not their inner workings. This may seem like a strange line
of reasoning, but it's one of the single most important concepts to grasp as a computer scientist. The rest
of this chapter is dedicated to exploring what abstraction means from a programming perspective and
how abstraction can combat complexity. But first, let's discuss some of the major concepts and terms
pertaining to abstraction at a high level.

The Wall of Abstraction

In our previous example with staplers, there was a clear separation of complexity between the stapler
manufacturer and the end user. The manufacturer took painstaking care to ensure that the stapler works
correctly, and end users just press a handle or feed paper near a sensor. This separation is fundamental to
combating complexity, and is given an appropriately impressive name: the wall of abstraction.

The wall of abstraction is the information barrier between a device and how it works. On one side of the
wall is the manufacturer, whose task is to provide a device capable of meeting certain requirements. To
the manufacturer, the single most important task is producing a device that works correctly and reliably.
On the other side of the wall of abstraction is the end user, who is interested in using the device but who,
unless curious, does not particularly care how the device works. In computer science, we refer to these
two roles as the client, who uses the device, and the implementer, who is tasked with making it work
correctly.

Chapter 8: Abstraction and Classes - 197 -

When using a stapler, you don't care how the stapler works because it's an unnecessary mental burden.
You shouldn't need to know what type of metal the casing is made from, nor should you have to worry
about what type of spring pushes the staples up to the front of the stapler. The same is true of almost
every device and appliance in use today. Do you know exactly how a microwave works? How about an
internal combustion engine? What about an iPhone? Each of these devices is extraordinarily complicated
and works on nuanced principles of physics, materials science, chemical engineering, and in some cases
electrical and software engineering. The magic of all of these devices is that we don't need to know how
they work. We can trust that a team of dedicated engineers understand their inner workings, and can
focus instead on using them.

The fact that the wall of abstraction separates the implementer in the client necessarily means that an
abstraction shields clients from unnecessary implementation details. In that sense, the wall of abstraction
is a barrier that prevents information about the device's internals from leaking outside. That the wall of
abstraction is an information barrier has profound consequences for software design. Before we discuss
how abstraction can reduce system complexity, let us focus on this aspect in more detail.

Abstractions are Imprecise

Earlier in this chapter we discussed abstraction in the context of a coffee mug by exploring descriptions of
a cof fee mug at various levels of abstraction. Suppose that we have an actual coffee mug we are interested
in designing an abstraction for; for example, this mug here:

The highest-level description of a coffee mug in the original list was the extraordinarily vague “matter.”
That is, all of the properties of the coffee mug are ignored except for the fact that it is matter. This means
the implementer (us) holds a coffee mug, but the client (the person reading the description “matter”)
knows only that our object is composed of matter. Because the wall of abstraction prevents information
from leaking to the client, that our object is made of matter is the only information the client has about the
coffee mug. This means that the client can't tell if our object is a coffee mug, Jupiter's moon Ganymede, or
a fried egg. In other words, our description was so vague that the client knows nothing about what object
we have.

Let's now move to a lower level of abstraction, the description that the mug is “a beverage container.” The
client can now tell that our mug is not Ganymede, nor is it a fried egg, but we haven't yet excluded other
possibilities. Many things are beverage containers – punch bowls, wine glasses, thermoses, etc. – and the
client cannot figure out from our limited description that the object is a coffee mug. However, without
knowing that the object is a coffee mug, at this level of abstraction the client could safely assume that our
object could store water.

- 198 - Chapter 8: Abstraction and Classes

Now let's consider an even more precise description: we describe the coffee mug as “a coffee mug.” Now
what can the client infer about our mug? Because we have said that the object is a mug, they know that it's
a coffee mug, true, but there are many properties of the object that they don't know. For example, how big
is the mug? What color is it? What design, if any, adorns the mug? A client on the other side of the wall of
abstraction still can't paint a particularly vivid picture of the mug we're describing, but they now know a
good deal more about the mug than they did with either of the two previous descriptions.

This above discussion hits on a major point: abstractions are imprecise. When describing the coffee mug
at various levels of detail, we always truthfully represented our coffee mug, but our descriptions never
were sufficient to unambiguously convince the client of what object we were describing. In fact, if we had
instead been describing a different coffee mug, like this one here:

then all of our descriptions would still have been perfectly honest.

Abstractions, by their very nature, make it impossible for the client to know exactly what object is being
described. This is an incredible blessing. Suppose, for example, that you bring your car in for routine
maintenance. The mechanic informs you that your radiator is nearing the end of its lifespan, so you pay
for a replacement. Once the mechanic replaces the radiator and you drive off into the sunset, the car that
you are driving is not the same car that you drove in with. One of its fundamental components has been
replaced, and so an integral part of the car's system is not the same as it used to be. However, you feel like
you are driving the same car when you leave because from your perspective, nothing has changed. The
accelerator and brakes still work as they used to, the car handles like it used to, and in fact almost every
maneuver you perform with the car will execute exactly the same way that the car used to. Viewing this
idea through the lens of abstraction, the reason for this is that your conception of the car has to do with its
observable behavior. The car you are now driving has a different “implementation” than the original car,
but it adheres to the same abstraction as the old car and is consequently indistinguishable from the
original car. Without looking under the hood (breaking the wall of abstraction), you wouldn't be able to
notice the difference.

Interfaces

The wall of abstraction sits at the boundary between two worlds – the world of the implementer, where
the workings of the mechanism are of paramount importance, and the world of the client, where the
observable behavior is all that matters. As mentioned earlier, the wall of abstraction is an information
barrier that prevents implementation details and usage information from crossing between the client and
implementer. But if the client is unaware of the implementation of the particular device, how can she
possibly use it? That is, if there is a logical barrier between the two parties, how can the client actually use
the implementer's device?

Chapter 8: Abstraction and Classes - 199 -

One typical way to provide the client access to the implementation is via an interface. An interface is a set
of commands and queries that can be executed on the device, and is the way that the client interacts with
the object. For example, an interface might let the client learn some properties of the object in question, or
might allow the client to ask the device to perform some task. In software engineering, an interface
typically consists of a set of attributes (also called properties) that the object is required to have, along
with a set of actions that the object can perform. For example, here's one possible interface for a stapler:

• Attributes:
◦ Number of staples left.
◦ Size of staples being used.
◦ How many sheets of paper are in the stapler.
◦ The maximum number of sheets of paper that the stapler can staple.

• Actions:
◦ Add more staples.
◦ Put paper into the stapler.
◦ Staple the papers together.

Interfaces are fascinating because they provide a particularly elegant means for a implementer to expose
an object to a client. The implementer is free to build the device in question as she sees fit, provided that
all of the operations specified in the interface work correctly. That is, someone implementing a stapler
that adheres to the above interface can use whatever sort of mechanism they feel like to build the stapler,
so long as it is possible to look up how many staples are left, to add more staples to the stapler, etc.
Similarly, the client needs only learn the operations in the interface and should (theoretically) be able to
use any device that conforms to that interface. In software engineering terminology, we say that the
implementer implements the interface by providing a means of transforming any request given to the
interface to a request to the underlying device. For example, if the Swingline corporation decided to create
a new stapler, they might build a concrete stapler and then implement the interface for staplers as follows:

• Attributes:
◦ Number of staples left: Open the cover and count the number of staples.
◦ Size of staples being used: Open the cover and look at the size of the staples.
◦ How many sheets of paper are in the stapler: Count the sheets of paper on the base plate.
◦ The maximum number of sheets of paper that the stapler can staple: 25

• Actions:
◦ Add more staples: Open the cover and insert more staples.
◦ Put paper into the stapler: Place the paper over the base plate.
◦ Staple the papers together: Depress the handle until it clicks, then release the handle.

However, we could also implement the stapler inteface in a different way if we were using an electronic
stapler:

• Attributes:
◦ Number of staples left: Read the digital display.
◦ Size of staples being used: Read the digital display.
◦ How many sheets of paper are in the stapler: Read the digital display.
◦ The maximum number of sheets of paper that the stapler can staple: 75

• Actions:
◦ Add more staples: Open the cover and snap the new roll of staples in place.
◦ Put paper into the stapler: Place the paper into the loading assembly.
◦ Staple the papers together: Press the “staple” button.

- 200 - Chapter 8: Abstraction and Classes

Notice that these two staplers have the same interface but entirely different actions associated with each
item in the interface. This is a concrete example of abstraction in action - because the interface only
describes some specific attributes and actions associated with the stapler, anything that can make these
actions work correctly can be treated as a stapler. The actual means by which the interface is
implemented may be different, but the general principle is the same.

An extremely important point to note is the relation between interfaces and abstractions. Abstraction is a
general term that describes how to simplify systems by separating the role of the client and the
implementer. Interfaces are the means by which abstractions are actually modeled in software systems.
Whenever one speaks of abstraction in programming, it usually refers to designing an interface. In other
words, an object's interface is a concrete description of the abstraction provided for that object.

Encapsulation

When working with interfaces and abstractions, we build a wall of abstraction to prevent implementation
details about an object from leaking to the client. This means that the client does not necessarily need to
know how the particular object is implemented, and can just rely on the fact that some implementer has
implemented the interface correctly. But while an interface captures the idea that a client doesn't have to
know the particular implementation details, it does not express the idea that a client shouldn't know the
particular implementation details. To understand this, let's return to our discussion of staplers. If an
implementer provides a particular stapler that implements the stapler interface, then anyone using that
stapler can just use the interface to the stapler to get all of their required functionality. However, there's
nothing stopping them from disassembling the stapler, looking at its component parts, etc. In fact, given a
physical stapler, it's possible to do things with that stapler that weren't initially anticipated. You could, for
example, replace the stapler handle with a pneumatic compressor to build a stapler gun, which might
make the stapler more efficient in a particular application. However, you could also remove the spring
inside the stapler which forces the staples to the front of the staple tray, rendering the stapler useless.

In general, allowing clients to bypass interfaces and directly modify the object described by that interface
is dangerous. The entire purpose of an interface is to let implementers build arbitrarily complicated
systems that can be operated simply, and if a client bypasses the interface he'll be dealing with an object
whose workings could easily be far beyond his comprehension. In the case of a stapler, bypassing the
interface and looking at the stapler internals isn't likely to cause any problems, but you would certainly be
asking for trouble if you were to start poking around the internals of the Space Shuttle. This violation,
where a client bypasses an interface, is called breaking the wall of abstraction.

The above examples have hinted at why breaking the wall of abstraction is a bad idea, but we haven't
explicitly spelled out any reasons why in general it can be dangerous. Let us do this now. First, breaking
the wall of abstraction allows clients to severely hurt themselves by tweaking a complex system. In a
complex system like a car engine, certain assumptions have to hold about the relationship between the
parts of the car in order for the car to work correctly. That is, fuel shouldn't be injected into the engine
except in certain parts of the cycle, the transmission shouldn't try shifting gears until the clutch has been
released, etc. Consequently, most cars provide an interface into the engine that consists of a gas and brake
pedal, whose operation controls all of the relevant parts of the engine. If you were to ignore these controls
and instead try to drive the car by manually adjusting fuel intake and the brake pressure, barring special
training, you would almost certainly either cause an explosion or irreversibly destroy the engine.
Remember that abstraction protects both the client and the implementer – the client doesn't need to know
about the inner workings of the object, and the implementer doesn't need to worry that the client can
make arbitrary changes to the object; all operations on the object must come through the interface.
Breaking the wall of abstraction violates both these assumptions and can hurt both parties.

The second major reason against breaking the wall of abstraction is to ensure system flexibility. As
mentioned earlier, abstractions are by nature imprecise, and multiple different implementations might

Chapter 8: Abstraction and Classes - 201 -

satisfy a particular interface. If the client is allowed to break the wall of abstraction and look at a
particular part of the implementation, then that implementation is in essence “locked in place.” For
example, suppose that you provide a traditional stapler to a client. That client then decides to use the
stapler in a context where the exact position and orientation of the stapler hinge is important; perhaps the
client has trained a robot to use the stapler by learning to feed paper into the stapler whenever the hinge
is at a particular angle. Earlier in this chapter, we discussed how interfaces make it possible to change an
object's implementation without befuddling the user. That is, if the client only uses the operations listed in
an interface, then any object implementing that interface should be substitutable for any other. The
problem with breaking the wall of abstraction is that this is no longer possible. Consider, for example,
what happens if we try to replace the mechanical stapler from this setup with an electric stapler. Electric
staplers tend not to have hinges, and so if we swapped staplers the robot designed to feed paper into the
stapler would no longer be able to insert paper. In other words, because the robot assumed that some
property held true of the implementation that was documented nowhere in the interface, it became
impossible to ever change the implementation.

To summarize – peering behind an interface and looking at the underlying implementation is a bad idea. It
allows clients to poke systems in ways that were never intended, and it locks the particular
implementation in place.

If an abstraction does not allow clients to look at the implementation under any circumstance, that
abstraction is said to be encapsulated. In other words, it is as though the actual implementation is trapped
inside a giant capsule, and the only way to access the object is by issuing queries and commands specified
by the interface. Encapsulation is uncommon in the real world, but some analogies exist. For example, if
you visit a rare book collection, you cannot just go in and take any book off the shelf. Instead, you have to
talk to a librarian who will then get the book for you. You have no idea where the book comes from –
perhaps it's sitting on a shelf in the back, or perhaps the librarian has to get a courier to fetch it from some
special vault – but this doesn't concern you because at the end of the day you (hopefully) have the book
anyway.

Encapsulated interfaces are extraordinarily important in software because they represent a means for
entirely containing complexity. The immense amount of implementation detail that might be necessary to
implement an interface is abstracted away into a small set of commands that can be executed on that
interface, and encapsulation prevents other parts of the program from inadvertently (or deliberately)
modifying the implementation in unexpected ways. Later in this chapter, when we discuss classes, you
will see how C++ allows you to build encapsulated interfaces.

The Math: Why Abstraction Works

We've talked about abstraction and how it lets clients operate with complex objects without knowing their
full implementation. The implicit claim throughout this chapter has been that this greatly reduces the
complexity of software systems. Amazingly, given a suitable definition of system complexity, we can prove
that increasing the level of abstraction in a system reduces the maximum complexity possible in the
system.

In this discussion, we'll need to settle on a definition of a system's complexity. If a system consists of
different interfaces, we will define the maximum complexity of that system to be the maximum number of
interactions between these interfaces. For our purposes, we'll consider an interaction between interfaces
to be a set of two or more interfaces. It can be shown that there are 2 n – n – 1 possible interactions
between interfaces, which is an absolutely huge number. In fact, in a system with ten interfaces, there are
1,013 possible interactions between those interfaces. The reason for this is the first term in this quantity
(2n), which grows extremely fast. It grows so quickly that we can ignore the last two terms in the sum and
approximate the maximum complexity of a system as 2n.

- 202 - Chapter 8: Abstraction and Classes

Now, suppose that we introduce a new abstraction into a system that reduces the total number of
interfaces in the system by 10. This means that the new system has n - 10 interfaces, and consequently its
maximum complexity is 2n - 10. If we take the ratio of the maximum complexity of the new system to the
maximum complexity of the old system, we get 2 -10, which is just under one one-thousandth. That is, the
maximum complexity of the new system will be roughly one one-thousandth that of the original system.
This result has extremely important implications for software design. It is possible to build reasonably
simple software systems that are hundreds of millions of lines of code simply by minimizing the number of
interfaces present in the software system. This caps the maximum complexity of the system by limiting
the number of possible interactions.

But the above logic is terribly misleading. In practice, software systems rarely get even close to reaching
the maximum number of possible interactions. Maximum complexity only occurs if every combination of
objects has a well-defined interaction, and this is rarely the case. For example, in a simulation with a
stapler, pen, and pencil sharpener, you are unlikely to ever have the stapler and pencil sharpener interact,
and if you do it is extremely unlikely that you will have all three objects have some specific behavior when
interacting all at the same time. A more realistic measure of complexity is the number of ways in which
pairs of objects can interact. This is a desirable choice for several reasons. First, it corresponds to an
elegant graphical measure of complexity. If we list all of the components in a system and add lines
between pairs of objects that interact with each other, the complexity of that system is then the number of
lines in the picture. For example, here are two diagrams of ways that common office supplies might
interact with one another. The first system is clearly more complex than the second since there are more
interactions defined between the components.

Paper Stapler

SharpenerPencil

Paper Stapler

SharpenerPencil

Setup one: Everything interacts
with everything else.

Setup two: Only meaningful
interactions defined.

Second, in practice, interactions between two or more objects can usually be simplified down into multiple
instances of interactions between pairs of objects. For example, if three billiard balls all collide, we could
consider the interaction between the three balls as three separate interactions of the pairs of balls. Only in
unusual circumstances is such a decomposition not possible. Finally, considering interactions only of pairs
rather than of triples or quadruples tends to correspond more accurately to how systems are actually
built. It is conceptually simpler to think about how a single piece of a system interacts with each of its
neighbors in isolation than it is to think about how that pieces interacts with all of its neighbors
simultaneously.

Even with this more restrictive definition of complexity, reducing the number of interfaces in a system still
produces larger reductions in complexity. It can be shown that the number of possible pairs of interacting
objects is slightly less than n2. This means that if we make a linear reduction in the number of objects in
the system, we get a quadratic decrease in the maximum complexity in that system. That is, removing ten
interfaces isn't going to drop the maximum complexity by ten interactions – it will be a considerably
bigger number.

Chapter 8: Abstraction and Classes - 203 -

Classes

The single most important difference between C++ and its predecessor C is the notion of a class. Classes
are C++'s mechanism for encoding and representing abstraction, pairing interfaces with implementations,
and enforcing encapsulation. The entire remainder of this book will be dedicated to exploring how to
create, modify, maintain, use, and refine classes and class definitions.

In the previous discussion on abstraction, we discussed abstractly the notions of interfaces and
encapsulation. Before we discuss the class mechanism, let's consider an extended example that illustrates
exactly why abstraction and interfaces are so important. In particular, we will explore how one might
represent an FM radio tuner in C++ code. We won't actually create a working FM radio in software – that
would require specialized hardware – but the example should demonstrate many of the reasons why
classes are so important.

Designing an FM Radio

In our example, we will create a data structure that stores information about an FM radio. Since the
properties of an FM radio can't be represented with a single variable, we'll create a struct called FMRadio
which will hold all of our data. What should this struct contain? At a bare minimum, we will need to
know what frequency the radio is tuned in to. We also probably want to specify a volume control, so that
listeners can turn up high-energy music or turn down shouting news pundits. We can represent this
information as follows:

 struct FMRadio {
 double frequency;
 int volume;
 };

Here, the frequency field stores the frequency in MHz. For example, if you were listening to 88.5 KQED San
Francisco, this field would have the value 88.5. Similarly, listening to 107.9 The End Sacramento would
have the field hold 107.9. I've arbitrarily chosen to store the volume as an int that holds a value between 0
and 10, inclusive. Volume zero completely mutes the radio, while volume ten is as much power as the
speaker can deliver. This means that if I wanted to configure my radio to listen to “This American Life” at a
reasonably quiet level, I could write

 FMRadio myRadio;
 myRadio.frequency = 88.5; // 88.5 MHz (KQED)
 myRadio.volume = 3; // Reasonably quiet

Now, let's consider one more extension to the radio. Most radios these days let the user configure up to six
different “presets,” saved stations that listeners can adjust the radio to quickly. Most car radios have this
feature, although older FM radios do not. The presets are numbered one through six, and at any time a
particular preset might be empty (the listener hasn't programmed this preset yet) or set to a particular
frequency. As an example, I frequently commute between Palo Alto and Sacramento, and enjoy listening to
NPR on the drive. Both Sacramento and San Francisco have stations that broadcast NPR content, and
about halfway between Palo Alto and Sacramento one of the stations fades out dramatically while the
other one comes in much more strongly. To make it easier to switch between the stations, I programmed
my car radio's presets so that preset one is the San Francisco station (88.5) and preset two is the
Sacramento station (89.3).

We'd like to add this functionality to FMRadio, but what's the best way to do so? If we want to store a list
of six different settings, we could do so with a vector, but run into a problem because a vector always
enforces the restriction that there must be an element at every position. Because some of the presets

- 204 - Chapter 8: Abstraction and Classes

might not be configured, we might run into trouble if we stored the elements in a vector because it would
be difficult to determine whether a particular position in the vector was empty or filled with a valid
station. Instead, we'll implement the FMRadio using a map that maps from the preset number to the
station at the preset. If a particular value between 1 and 6 is not a key in the map, then the preset has not
been configured; if it is a key, then its value is the preset. This leads to the following version of FMRadio:

 struct FMRadio {
 double frequency;
 int volume;
 map<int, double> presets;
 };

If I then wanted to program my radio as described above, I would do so as follows:

 FMRadio myRadio;
 myRadio.presets[1] = 88.5;
 myRadio.presets[2] = 89.3;

Abusing the FM Radio

The definition of FMRadio from above seems reasonably straightforward. It has three fields that
correspond to some attribute of the radio. Unfortunately, however, using this FMRadio in any complex
software system can cause problems. The reason is that there are certain restrictions on what values the
fields of the FMRadio can and cannot be, but there is no means of enforcing those restrictions. For
example, in the United States, all FM radio frequencies are between 87.5 and 108.0 MHz. Consequently,
the frequency field should never be set to any value out of this range, since doing so would be
meaningless. Similarly, we've stated that we don't want the volume field to leave the range 0 to 10, but
nothing prevents clients of FMRadio from doing so. Finally, the presets field has to obey two restrictions:
that the keys are integers between 1 and 6, and that the values are doubles restricted to the range of valid
frequencies.

Now, suppose that someone who does not have this intimate knowledge of the FM radio class we've
designed comes along and writes the following code:

 FMRadio myRadio;
 myRadio.frequency = 110.0; // Problem: Invalid frequency
 myRadio.volume = 11; // Problem: Volume out of range
 myRadio.presets[0] = 85.0; // Problem: Bad preset index, invalid frequency

All of the above operations are illegal on FM radios, but this code compiles and runs just fine. Moreover,
there is no indication at runtime that this code isn't going to work correctly. Everything that the client has
done is perfectly legal C++, and the compiler has no idea that something bad might happen in the future.
To give a context of where things can go wrong, suppose that we have a function that adjusts the power
level to some system peripheral to tune in to the proper frequency. Because all legal frequencies are
between 87.5 and 108.0 MHz, the code adjusts the power level to a floating-point value such that the
power is 0.0 at the lowest possible frequency (87.5 MHz) and 1.0 at the highest frequency (108.0 MHz).
This code is shown below, assuming the existence of a SetDevicePower function that actually sets the
device power:

Chapter 8: Abstraction and Classes - 205 -

 void TuneReceiver(FMRadio radio) {
 /* Compute the fraction of the maximum power that this
 * frequency requires.
 */
 double powerLevel = (radio.frequency - 87.5) / (108.0 - 87.5);
 SetDevicePower(powerLevel);
 }

I'll leave double-checking that the above computation gives the fraction of the power to the transmitter as
an exercise to the reader. In the meantime, think about what will happen if we write the following code:

 FMRadio myRadio;
 myRadio.frequency = 110.0;
 myRadio.volume = 11;
 myRadio.presets[0] = 85.0;
 TuneReceiver(myRadio);

We now have a fairly serious problem on our hands. Because the radio frequency is 110.0 MHz, a value out
of the valid FM radio range, the code inside of TuneReceiver is going to set the power level to a
nonsensical value. In particular, since (110.0 – 87.5) / (108.0 – 87.5) ≈ 1.095, the code will turn the
receiver on at roughly 110% of the maximum power it's supposed to receive. If we're lucky, the code inside
TuneReceiver will have a check that this value is out of range, and the program will report an error. If
we're unlucky and the code actually drives too much power into the receiver, we might overload the device
and set it on fire. In other words, because the client of the FMRadio struct set a single field to a nonsensical
value, it's possible that our program will crash or cause a physical device malfunction. This is clearly
unacceptable, and we will need to do something about this.

Modifying the FM Radio

Of course, that's not all of the problems we might encounter when working with the FMRadio. Suppose, for
example, that we write the following function, which sets the radio's frequency to the preset at the given
position if possible, and does not change the frequency otherwise. The code is as follows:

 void LoadPreset(FMRadio& radio, int preset) {
 /* Check whether this preset exists. */
 map<int, double>::iterator itr = radio.presets.find(preset);

 /* If not, don't do anything. */
 if (itr == radio.presets.end())
 return;

 /* Otherwise, change the radio frequency. */
 radio.frequency = itr->second;
 }

Now, suppose that for some reason (efficiency, perhaps) that we decide to change the FMRadio struct so
that the presets are implemented as an array of doubles. We arbitrarily say that any preset that has not
been programmed will be represented by having the value 0 stored in a particular slot. That is, given my
NPR travel presets, the preset array would look like this:

Value 88.5 89.3 0 0 0 0

Index 0 1 2 3 4 5

- 206 - Chapter 8: Abstraction and Classes

This requires us to change the definition of the FMRadio interface to use a raw array instead of an STL map.
The updated definition is shown here:

 struct FMRadio {
 double frequency;
 int volume;
 double presets[6];
 };

We now have a serious problem. Almost of the code that we've written previously that uses the FMRadio's
preset field will fail to compile. For example, our earlier code for LoadPreset will call presets.find,
which does not exist in a raw array. This means that this single change might require us to rewrite huge
amounts of code. In a small project, this is a mere annoyance, but in a large system on the order of millions
of lines of code might be so time-consuming as to render the change impossible.

What Went Wrong?

The above discussion highlighted two problems with the FMRadio struct. First, FMRadio provides no
means for enforcing its invariants. Because the aspects of the FM radio were represented in FMRadio by
raw variables, any part of the program can modify those variables without the FMRadio getting a chance to
intervene. In other words, the FMRadio expects that certain relations hold between its fields, but has no
mechanism for enforcing those relations. Second, because the FMRadio is represented in software as a
particular implementation of an FM radio, code that uses the FM radio necessarily locks the FM radio into
that particular implementation. Using the terminology from the earlier in this chapter, this
implementation of the FM radio provides no abstraction and no encapsulation. The FMRadio interface is its
implementation – that is, the operations that clients can perform on the FMRadio are manipulations of the
fields that compose the FMRadio. Changing the implementation thus changes the interface, which is why
changing the fields breaks existing code. Similarly, because the interface of FMRadio is the set of all
possible manipulations of the data members, clients can tweak the FMRadio in any way they see fit, even if
such manipulations break internal invariants.

This is the reality of what C++ programming is like without classes. Code bases are more brittle, bugs are
more likely, and changes are more difficult. As we now change gears and see how to represent an FM radio
using classes, keep this starting point in mind. By the time you finish this chapter, the FM radio will be
significantly more robust than it is now.

Introduction to Classes

In C++, a class is an interface paired with an implementation. Like structs, classes define new types that
can be created and used elsewhere in the program.

Because classes pair an implementation and an interface, the structure of an individual class can be
partitioned into two halves – the public interface specifying how clients interact with the class, and the
private implementation, which specifies how functions in the public interface are implemented. Rather
than diving head-first into a full-blown class definition, we'll investigate each of these parts individually.
We will focus first on how to declare the class, and worry about the implementation later.

Defining a Public Interface

Let's return to the example of the FM radio. We are interested in designing an abstraction that represents
an FM radio, then expressing the radio in software. In particular, we want our radio to have three pieces of
data: the current frequency (in MHz), the volume (from 0 to 10), and the presets. As we saw in the failed
experiment with struct FMRadio, we cannot simply give clients direct access to the fields that ultimately

Chapter 8: Abstraction and Classes - 207 -

implement these properties. How, then, can we design an FM radio that contains some data but which
does not allow clients to directly modify the data? The answer is a subtle yet beautiful trick that is
ubiquitous in modern software. We will create a set of functions that set and query the value of these data
members. We then prevent the client from directly accessing the data members that these functions
manipulate. The major advantage of this approach is that every operation that could potentially read or
modify the data must go through this small set of functions. Consequently, the implementer retains full
control over what operations manipulate the class's implementation.

Now, let's see how one might express this in C++. We will rewrite our FMRadio struct from earlier to
convert it into a fully-fledged C++ class. To begin, we use the C++ class keyword to indicate that we're
defining a new class called FMRadio. This is shown here:

 class FMRadio {
 };

Currently, this class is empty and is useless. We'll thus start defining the public interface by which clients
of FMRadio will interact with the class. In C++, to define a class's public interface, we use the public
keyword to indicate the start of the interface, and then list the functions contained in that public interface.
This leads us to the following code:

 class FMRadio {
 public:

 };

That is, the public keyword, followed by a colon. Any definitions that follow the public keyword will be
included as part of the class's public interface. But what functions should we put in here? Let's begin by letting
the client query and set the radio's frequency. To do this, we'll define two member functions called
getFrequency and setFrequency. This is shown here:

 class FMRadio {
 public:
 double getFrequency();
 void setFrequency(double newFreq);
 };

These functions are called member functions of the FMRadio class. Although they look like regular
function prototypes, because these functions are defined inside of FMRadio, they are local to that class. In
fact, calling the function getFrequency by itself will result in a compile-time error because there is no
global function called getFrequency. Instead, we've defined a function that can be invoked on an object of
type FMRadio. To see how this works, let's create a new object of type FMRadio. This is syntactically
identical to the code for creating instances of a struct type – we put the name of the type, followed by the
variable name. This is shown here:

 FMRadio myRadio; // Declare a new variable of type FMRadio

Now that we have this myRadio object, we can ask it for its frequency by invoking the getFrequency
member function. This is shown here:

 FMRadio myRadio;
 double f = myRadio.getFrequency(); // Query the radio for its frequency

Note that this code will not run as written, because we have not yet implemented the getFrequency()
function; we'll see how to do that later in this chapter. However, this syntax should seem familiar, as it's

- 208 - Chapter 8: Abstraction and Classes

the same syntax we used to invoke functions on STL containers, stream objects, and strings. In fact, all of
those objects are instances of classes. You're on the road to learning how these complex objects are put
together!

Let's continue designing our interface. We also want a means for the client to set and read the radio
volume. Along the same lines as before, we can add a pair of member functions to FMRadio to grant access
to this data. This is shown here:

 class FMRadio {
 public:
 double getFrequency();
 void setFrequency(double newFreq);

 int getVolume();
 void setVolume(int newVolume);
 };

Clients can then read and write the volume by writing code like this:

 FMRadio myRadio;

 myRadio.setVolume(8);
 cout << myRadio.getVolume() << endl;

Again, this code will not run because we haven't implemented either of these functions. Don't worry, we're
almost at the point where we'll be able to do this.

Let us now consider the final piece of the FMRadio interface – the code for manipulating presets. With the
previous two properties (volume and frequency) we were working with a single entity, but we now must design
an interface to let clients read and write multiple different values. Moreover, some of these values might not
exist, since the presets might not yet be programmed in. To design a good interface, we should consider what
clients would like to do with presets. We should certainly allow clients to set each of the presets. Additionally,
clients should be able to check whether a certain preset has been programmed in. Finally, clients should be able
to read back the presets they've programmed in, assuming they exist. We can represent each of these operations
with a member function, leading to this interface for the FMRadio class:

 class FMRadio {
 public:
 double getFrequency();
 void setFrequency(double newFreq);

 int getVolume();
 void setVolume(int newVolume);

 double setPreset(int index, double freq);
 bool presetExists(int index);
 double getPreset(int index);
 };

We now have an interface for our FMRadio class. Now, let's see how we specify the implementation of this
interface.

Writing a Class Implementation

A C++ class represents an abstraction, which consists of an interface into some object. We've just seen
how to define the interface for the class, and now we must provide an implementation of that interface.

Chapter 8: Abstraction and Classes - 209 -

This implementation consists of two parts. First, we must define what variables we will use to implement
the class. This is akin to choosing the fields we put in a struct for the information to be useful. Second,
we must provide an implementation of each of the member functions we defined in the class's public
interface. We will do each of these in a separate step.

If you'll recall, one old version of FMRadio was a struct that looked like this:

 struct FMRadio {
 double frequency;
 int volume;
 map<int, double> presets;
 };

This is a perfectly fine implementation of an FMRadio since it allows us to store all of the information we
could possibly need. We'll therefore modify our implementation of the FMRadio class so that it is
implemented using these three fields. However, we want to do this in a way that prevents clients of
FMRadio from accessing the fields directly. For this purpose, C++ provides the private keyword, which
indicates that certain parts of a class are completely off-limits to clients. This is shown here:

 class FMRadio {
 public:
 double getFrequency();
 void setFrequency(double newFreq);

 int getVolume();
 void setVolume(int newVolume);

 double setPreset(int index, double freq);
 bool presetExists(int index);
 double getPreset(int index);

 private:
 double frequency;
 int volume;
 map<int, double> presets;
};

When referring to elements of a struct, one typically uses the term field. In the context of classes, these
variables are called data members. That is, frequency is a data member of FMRadio, and getVolume is a
member function.

Because we've marked these data members private, the C++ compiler will enforce that no client of the
FMRadio class can access them. For example, consider the following code:

 FMRadio myRadio;
 myRadio.frequency = 110.0; // Problem: Illegal; frequency is private

This code will cause a compile-time error because the frequency data member is private. To write code to
this effect, clients would have to use the public interface, in particular the setFrequency member
function, as shown here:

 FMRadio myRadio;
 myRadio.setFrequency(110.0); // Legal: setFrequency is public

- 210 - Chapter 8: Abstraction and Classes

All that's left to do now is implement the member functions on the FMRadio class. Implementing a
member function is syntactically similar to implementing a regular function, though there are a few
differences. One obvious syntactic difference is the means by which we specify the name of the function.
If we are interested in implementing the getFrequency function of FMRadio, for example, then we would
begin as follows:

 double FMRadio::getFrequency() {
 /* ... implementation goes here ... */
 }

Notice that the name of the function is FMRadio::getFrequency. The double-colon operator (::) is
called the scope resolution operator and tells C++ where to look for the function we want to implement.
You can think of the syntax X::Y as meaning “look inside X for Y.” When implementing member functions,
it is extremely important that you make sure to use the full name of the function you want to implement. If
instead we had written the following:

 double getFrequency() { // Problem: Legal but incorrect
 /* ... implementation goes here ... */
 }

Then C++ would think that we were implementing a regular function called getFrequency that has no
relationship whatsoever to the getFrequency function inside of FMRadio.

Now that we've seen how to tell C++ that we're implementing the function, what code should we write
inside of the function? We know that the function should return the FM radio's current frequency.
Moreover, the frequency is stored inside of a data member called frequency. Consequently, we can write
the following code for FMRadio::getFrequency:

 double FMRadio::getFrequency() {
 return frequency;
 }

This may look a bit confusing, so let's take a second to think about what's going on here. This function is a
single line, return frequency. If you'll notice, nowhere in the getFrequency() function did we define a
variable called frequency, but this function still compiles and runs correctly. The reason is as follows –
inside of a member function, all of the class's data members can be accessed by name. That is, when
implementing the getFrequency function, we can freely access and manipulate any or all of the class's
data members by referring to them by name. We don't need to indicate that frequency is a data member,
nor do we have to specify which FMRadio's frequency data member we're referring to. By default, C++
assumes that all data members are the data members of the receiver object, and so the line return
frequency means “return the value of the frequency data member of the object on which this function
was invoked.”

At this point, let us more formally define what the public and private access specifiers actually mean. If a
member of a class is marked public, then any part of the code can access and manipulate it. Thus if you
have a public member function in the class interface, all code can access it. If a class member is marked
private, then the only pieces of the code that can access that member are the member functions of the
class. That is, private data can only be read and written by the implementations of the class's member
functions. In this sense, the public and private keywords are C++'s mechanism for defining interfaces and
enforcing encapsulation. A class's interface is defined by all of its public members, and its implementation
by the implementations of those public member functions along with any private data members. The
compiler enforces encapsulation by disallowing class clients from directly accessing private data, and so

Chapter 8: Abstraction and Classes - 211 -

the implementation can assume that any access to the class's private data goes through the public
interface.

Let's conclude this section by implementing the remaining pieces of the FMRadio class. First, let's
implement the setFrequency function, which sets the radio's frequency to a particular value. If you'll
recall, all FM radio frequencies must be between 87.5 MHz and 108.0 MHz. Thus, we'll have this function
verify that the new frequency is in this range, and will then set the frequency to be in that range if so.
Here's one possible implementation:

 void FMRadio::setFrequency(double newFreq) {
 assert(newFreq >= 87.5 && newFreq <= 108.0);
 frequency = newFreq;
 }

Here, the assert function, defined in <cassert>, is a function that tests whether the particular condition
is true and aborts the program with a useful error message if it isn't. assert is useful in testing because it
allows you to verify that certain invariants hold in your programs in a means conducive to debugging.
Plus, most compilers completely remove assert statements from release builds, so there's no runtime
overhead when you decide to ship your software.

This is a remarkably simple two lines of code. We first assert that the frequency is in range, and then set
the frequency data member of the class to the new value. What's so fantastic about this code is that it
allows us to enforce the restriction that the frequency be constrained to the range spanned by 87.5 MHz to
108.0 MHz. Because the only way that clients can change the frequency data member is through the
setFrequency function, we can prevent the frequency from ever being set to a value out of range. We'll
discuss this in more detail when we talk about class invariants.

Using the implementation of the get/setFrequency functions as a basis, we can easily implement the
get/setVolume functions. This is shown here:

 int FMRadio::getVolume() {
 return volume;
 }

 void FMRadio::setVolume(int newVol) {
 assert(newVol >= 0 && newVol <= 10);
 volume = newVol;
 }

This pattern of pairing a get* function along with a set* function is extremely common, and you will
undoubtedly see it in any major C++ project you work on. We'll detail exactly why it is such a useful design
later in this chapter.

The final three functions we wish to implement are the setPreset, presetExists, and getPreset
functions. These functions are in some ways similar to the get/setVolume functions, but differ in that the
values they read and write might not exist. We'll begin with setPreset, which is shown here:

 void FMRadio::setPreset(int index, double freq) {
 assert(index >= 1 && index <= 6);
 assert(freq >= 87.5 && freq <= 108.0);
 presets[index] = freq;
 }

- 212 - Chapter 8: Abstraction and Classes

The presetExists function can be implemented quite simply by returning whether the map contains the
specified key. However, there's one detail we didn't consider – what happens if the index is out of bounds?
That is, what do we do if the client asks whether preset 0 exists, or whether preset 137 exists? We could
implement presetExists to so that it returns false in these cases (since there are no presets in those
slots), but it seems more reasonable to have the function assert that the value is in bounds first. The
reason is that if a client is querying whether a preset that is out of the desired range exists, it almost
certainly represents a logical error. Using assert to check that the value is in bounds will let us debug the
program more easily. This leads to the following implementation of presetExists:

 bool FMRadio::presetExists(int index) {
 assert(index >= 1 && index <= 6);
 return presets.find(index) != presets.end();
 }

Finally, we'll implement the getPreset function. Since there is no meaningful value to return if the preset
doesn't exist, we'll have this function verify that the preset is indeed valid before returning it. This is
shown here:

 double FMRadio::getPreset(int index) {
 assert(presetExists(index));
 return presets[index];
 }

Notice that in this function, we invoked the presetExists member function. As with private data
members, C++ lets you call member functions of the receiver object without having to explicitly specify
which object you are referring to. That is, the compiler is smart enough to tell that the call to
presetExists(index) should be interpreted as “call the presetExists function on the receiver object,
passing in the value index.” This also brings up another important point: it is perfectly legal to use a
class's public interface in its implementation. In fact, doing so is often a wise idea. If we had implemented
getPreset without calling presetExists, we would have to duplicate a reasonable amount of code,
which is in general a very bad idea.

Comparing classes and structs

Earlier in this chapter, we saw how representing the FMRadio as a struct led to all sorts of problems.
The struct had no means of enforcing invariants, and any change to the struct's fields could break a
potentially unbounded amount of code. We discussed earlier at a high level how abstraction and
encapsulation can prevent these problems from occurring. Does the class mechanism, which is designed
to represent these ideas in software, prevent the aforementioned problems from happening? Let's take a
few minutes to see whether this is the case.

Classes Enforce Invariants

An invariant is a property of a set of data that always holds true for that data. For example, one possible
invariant might be that a certain value always be even, while another could be that the difference between
two values is less than fourteen. In our example with FMRadio, our class had several invariants:

• The radio's frequency is always between 87.5 MHz and 108.8 MHz.
• The radio's volume is a value between 0 and 10, inclusive.
• The radio's presets are numbered between 1 and 6, and are valid frequencies.

The struct version of FMRadio failed to enforce any of these invariants because clients could go in and
directly modify the fields responsible for holding the data. In the class version, however, any access to the

Chapter 8: Abstraction and Classes - 213 -

data members that represent these quantities must go through the appropriate set* and get* functions.
This allows the implementation to double-check that all of the invariants hold before modifying the class's
data members. For example, let's review the implementation of setPreset:

 void FMRadio::setPreset(int index, double freq) {
 assert(index >= 1 && index <= 6);
 assert(freq >= 87.5 && freq <= 108.0);
 presets[index] = freq;
 }

This is the only function in the interface that allows clients to modify the radio's presets. Before the
function writes a value to one of the presets, it verifies that the index and frequency are in range.
Consequently, if the data member is written to, it is only after the implementer has had a chance to inspect
the value and confirm that it is indeed in range. In other words, by restricting access to the data members
and instead providing a set of functions that modify the data members, the implementer can prevent
clients from modifying the implementation in a way that violates the class invariants.

Classes Enforce Encapsulation

Recall that when we implemented the FMRadio as a struct, changing any of the fields would break
existing code. The reason for this is that any manipulations of the struct required direct access to the
fields of the struct. When using classes, however, all operations on the class must go through an
additional layer – the interface – which is independent of the current implementation. For example,
consider the following code:

 FMRadio myRadio;

 myRadio.setVolume(10);
 cout << myRadio.getVolume() << endl;

This isn't the most exciting code we've written, but it illustrates how a client might read and set the radio's
volume. Now, suppose that we are implementing the FMRadio class so that it interacts with a real set of
speakers. Initially, you might think that the speaker volume is controlled by modifying how much power
the speakers receive; at lower power, the speakers output less sound. In reality, though, most speaker
volumes are controlled by modifying how much attenuation the sound signal receives. That is, when a
speaker is at full volume, the attenuation level is zero, and the speaker plays the sound at maximum
volume. When the volume is zero (the sound is muted), the attenuation level is 100% and the speakers
produce no sound. In other words, the volume control is represented by determining how much
attenuation to insert. Consequently, whenever we want to increase the volume, we would decrease the
attenuation, and vice-versa. Given this description, we therefore might change the implementation of the
FMRadio class so that the volume is represented internally as an attenuation amount. Here's the modified
class:

 class FMRadio {
 public:
 double getFrequency();
 void setFrequency(double newFreq);

 int getVolume();
 void setVolume(int newVolume);

 double setPreset(int index, double freq);
 bool presetExists(int index);
 double getPreset(int index);

- 214 - Chapter 8: Abstraction and Classes

 private:
 double frequency;
 int attenuation; // 0 is no attenuation, 10 is maximum attenuation
 map<int, double> presets;
 };

Because we've changed the internal representation of the FMRadio, we will need to change the implementation
of the get/setVolume functions. Now, these functions are designed so that the user inputs an amount of
volume, not an amount of attenuation, and so the functions will have to do a quick behind-the-scenes calculation
to convert between the two. Here's one possible implementation of setVolume:

 void FMRadio::setVolume(int newVol) {
 assert(newVol >= 0 && newVol <= 10); // Unchanged
 attenuation = 10 - newVol; // Convert from volume to attenuation level
 }

Here, the code for setVolume takes in a volume level from the client, then converts it into an attenuation
level by subtracting the volume from ten. This means that volume 10 corresponds to 0 attenuation, volume
7 to 3 attenuation, etc.

Now, how might we go about changing the implementation of getVolume? This function must return a
volume between 0 and 10 with 0 meaning no volume and 10 meaning maximum volume, but we've
implemented the volume level internally as the attenuation. This means that the function must do a quick
calculation to convert between the two. The resulting implementation is shown here:

 int FMRadio::getVolume() {
 return 10 - attenuation;
 }

I'll leave it as an exercise to the reader to verify that this computation is correct.☺

In this short discussion, we completely changed the internal implementation of the radio volume. But from
a client's perspective, absolutely nothing has changed. Recall the client code we wrote earlier on for
changing the radio volume:

 FMRadio myRadio;

 myRadio.setVolume(10);
 cout << myRadio.getVolume() << endl;

This code is still perfectly legal, and moreover it produces the exact same output as before. Because this
code only uses the class's public interface, the client cannot tell that calling myRadio.setVolume(10)
actually sets an internal field in the FMRadio to zero, nor can she tell that calling myRadio.getVolume()
will perform a conversion behind-the-scenes. In other words, using the public interface allows clients of
FMRadio to write code that will compile and run correctly even if the entire implementation of the
FMRadio has changed.

Class Constructors

One of the recurring themes of this chapter has been that classes can enforce invariants. However, using
only the techniques we've covered so far, there are some invariants that classes cannot enforce
automatically. To see this, let's return to the FMRadio class. If you'll recall, when implementing FMRadio
using a struct, we saw that one possible implementation of the preset list was to use an array of six

Chapter 8: Abstraction and Classes - 215 -

doubles, where an unprogrammed preset has value 0.0. Let's modify our original implementation of the
FMRadio class so that we use this implementation strategy. The new class looks like this:

- 216 - Chapter 8: Abstraction and Classes

 class FMRadio {
 public:
 double getFrequency();
 void setFrequency(double newFreq);

 int getVolume();
 void setVolume(int newVolume);

 double setPreset(int index, double freq);
 bool presetExists(int index);
 double getPreset(int index);

 private:
 double frequency;
 int volume;
 double presets[6];
 };

This, of course, necessitates that we change our implementation of presetExists, since we no longer
represent the preset list as a map. The new implementation is shown here:

 bool FMRadio::presetExists(int index) {
 assert(index >= 1 && index <= 6);
 return presets[index - 1] == 0.0; // -1 maps [1, 6] to [0, 5]
 }

Given this implementation, what is the result of running the following code snippet?

 FMRadio myRadio;
 if (myRadio.presetExists(1))
 cout << "Preset 1: " << myRadio.getPreset(1) << endl;
 else
 cout << "Preset 1 not programmed." << endl;

Intuitively, this program should print out that preset one is not programmed, since we just created the
radio. Unfortunately, though, this program produces undefined behavior. Here is the output from several
different runs of the program on my machine:

 Preset 1: 3.204e+108
 Preset 1 not programmed.
 Preset 1: -1.066e-34
 Preset 1: 4.334e+20

This certainly doesn't seem right! What's going on here?

The problem is that all of the data members of FMRadio are primitive types, and unless you explicitly
initialize a primitive type, it will hold whatever value happens to be in memory at the time that it is
created. In particular, this means that the presets array will be filled with garbage, and so the
presetExists and getPreset functions will be working with garbage data. Garbage data is never a good
thing, but it is even more problematic from the standpoint of class invariants. The FMRadio assumes that
certain constraints hold for its data members, but those data members are initialized randomly. How can
FMRadio ensure that it behaves consistently when it does not have control over its implementation? The
answer is simple: it can't, and we're going to need to refine our approach to make everything work
correctly.

Chapter 8: Abstraction and Classes - 217 -

A Step in the Right Direction: init()

One way that we could fix this problem is to create a new member function called init that initializes all
of the data members. We then require all clients of the FMRadio class to call this init function before
using the other member functions of the FMRadio class. Assuming that clients ensure to call init before
using the FMRadio, this should solve all of our problems.

Let's take a minute to see how we might implement the init function. First, we need to modify the class's
public interface, as shown here:

 class FMRadio {
 public:
 void init();

 double getFrequency();
 void setFrequency(double newFreq);

 int getVolume();
 void setVolume(int newVolume);

 double setPreset(int index, double freq);
 bool presetExists(int index);
 double getPreset(int index);

 private:
 double frequency;
 int volume;
 double presets[6];
 };

We could then implement init as follows:

 void FMRadio::init() {
 for(size_t i = 0; i < 6; ++i)
 presets[i] = 0.0;
 }

This is certainly a step in the right direction. We no longer have to worry about the presets array containing
uninitialized values. But what of the other data members, frequency and volume? They too must be initialized to
some meaningful value. We can therefore update the init function to set them to some reasonable value. For
simplicity, let's set the frequency to 87.5 MHz (the minimum possible frequency) and set the volume to five.
This is shown here:

 void FMRadio::init() {
 for(size_t i = 0; i < 6; ++i)
 presets[i] = 0.0;
 frequency = 87.5;
 volume = 5;
 }

It may seem strange that we have to initialize frequency and volume inside of the init function. After all,
why can't we do something like this?

- 218 - Chapter 8: Abstraction and Classes

 class FMRadio {
 public:
 void init();

 double getFrequency();
 void setFrequency(double newFreq);

 int getVolume();
 void setVolume(int newVolume);

 double setPreset(int index, double freq);
 bool presetExists(int index);
 double getPreset(int index);

 private:
 double frequency = 87.5; // Problem: Not legal C++
 int volume = 5; // Problem: Not legal C++
 double presets[6];
 };

Unfortunately, this is not legal C++ code. There isn't a particularly good reason why this is the case, and in
the next release of C++ this syntax will be supported, but for now we have to manually initialize everything
in the init function.

Why init() is Insufficient

The approach we've outlined above seems to solve all of our problems. Every time that we create an
FMRadio, we manually invoke the init function. This solves our problem, but puts an extra burden on the
client. In particular, if a client does not call the init function, our object's internals will not be configured
properly and any use of the object will almost certainly cause some sort of runtime error.

The problem with init is that it does not make logical sense. When you purchase a physical object, most
of the time, that object is fully assembled and ready to go. When you buy a stapler, you don't buy the
component parts and then assemble it; you buy a finished product. You don't purchase a car and then
manually connect the transmission to the rest of the engine; you assume that the car manufacturer has
done this for you. In other words, by the time that you begin using an object, you expect it to be assembled.
From the standpoint of physical objects, this is because you are buying a logically complete object, not a
collection of components. From the standpoint of abstraction, this is because it breaches the wall of
abstraction if you are required to set up an object into a well-formed state before you begin using it.

None of the objects we've seen so far have required any function like init. The STL vector and map are
initialized to sensible defaults before you begin using them, and strings default to holding the empty
string without any explicit intervention by the user. But how do they do this? It's through the magic of a
special member function called the constructor.

Class Constructors

A constructor is a special member function whose job is to initialize the object into a well-formed state
before clients start manipulating that object. In this sense, constructors are like the init function we
wrote earlier. However, constructors have the special property that they are called automatically whenever
an object is constructed. That is, if you have a class that defines a constructor, that constructor is
guaranteed to execute whenever you create an object of the class type.

Syntactically, a constructor is a member function whose name is the same as the name of the class. For
example, the string constructor is a function named string::string, and in our FMRadio example, the

Chapter 8: Abstraction and Classes - 219 -

constructor is a member function named FMRadio::FMRadio. Here is a refined interface for FMRadio that
includes a class constructor:

 class FMRadio {
 public:
 FMRadio();

 double getFrequency();
 void setFrequency(double newFreq);

 int getVolume();
 void setVolume(int newVolume);

 double setPreset(int index, double freq);
 bool presetExists(int index);
 double getPreset(int index);

 private:
 double frequency;
 int volume;
 double presets[6];
 };

Notice that the constructor has no return type, not even void. This may seem strange at first, but will make
substantially more sense once you see how and where the constructor is invoked.

Syntactically, one implements a constructor just as one would any other member function. The only
difference is that the constructor does not have a return type, and so the syntax for implementing a
constructor looks like this:

 FMRadio::FMRadio() {
 /* ... implementation goes here ... */
 }

Constructors are like any other function, and so we can put whatever code we feel like in the body of the
constructor. However, the constructor should ensure that all of the object's data members that need
manually initialization are manually initialized. In our case, this means that we might implement the
FMRadio constructor as follows:

 FMRadio::FMRadio() {
 for(size_t i = 0; i < 6; ++i)
 presets[i] = 0.0;
 frequency = 87.5;
 volume = 5;
 }

Now, whenever we create an instance of the FMRadio type, the object will be set up correctly. That is, when we
write code like this:

 FMRadio myRadio;
 if (myRadio.presetExists(1))
 cout << “Preset 1: “ << myRadio.getPreset(1) << endl;
 else
 cout << “Preset 1 not programmed.” << endl;

- 220 - Chapter 8: Abstraction and Classes

The output will always be “Preset 1 not programmed.” This is because in the line where we create the
myRadio object, C++ automatically invokes the constructor, which zeros out all of the presets.

It is illegal to call a class's constructor; C++ will always do this for you. For example, the following code will
not compile:

 FMRadio myRadio;
 myRadio.FMRadio(); // Problem: Cannot manually invoke constructor

This may seem like an unusual restriction, but is actually quite useful. Because the constructor is invoked
when and only when the class is being constructed for the first time, you don't need to worry about
unusual conditions where the class is being instantiated but meaningful data is already stored in the class.
Additionally, this makes the role of the constructor explicitly clear – its job is to initialize the class to a
meaningful state, nothing more. Second, as a consequence, constructors can never return values. The
constructor is invoked automatically, not giving you a chance to store a returned value even if one were to
exist.

Arguments to Constructors

In the above example, our FMRadio constructor takes in no parameters. However, it is possible to create
constructors that take in arguments that might be necessary for initialization. For example, our FMRadio
constructor arbitrarily sets the frequency to 87.5 MHz and the volume to 5 because we need these values
to be in certain ranges. There's no particular reason why we should initialize these values this way, but in
the absence of information about what the client wants to do with the object we cannot do any better. But
what if the client could tell us what she wanted the frequency and volume to be? In that case, we could
initialize the frequency and volume to the user's values, in essence creating a radio whose frequency and
volume were already set up for the user. To do this, we can create a second FMRadio constructor that takes
in a frequency and volume, then initializes the radio to those settings.

Syntactically, a constructor of this sort is a member function named FMRadio that takes in two parameters.
This is shown here:

 class FMRadio {
 public:
 FMRadio();
 FMRadio(double freq, int vol);

 double getFrequency();
 void setFrequency(double newFreq);

 int getVolume();
 void setVolume(int newVolume);

 double setPreset(int index, double freq);
 bool presetExists(int index);
 double getPreset(int index);

 private:
 double frequency;
 int volume;
 double presets[6];
 };

We could then implement this function as follows:

Chapter 8: Abstraction and Classes - 221 -

- 222 - Chapter 8: Abstraction and Classes

 FMRadio::FMRadio(double freq, int vol) {
 for(size_t i = 0; i < 6; ++i)
 presets[i] = 0.0;
 frequency = freq;
 volume = vol;
 }

Now that we have this constructor, how do we call it? That is, how do we create an object that is initialized
using this constructor? The syntax for this is reasonably straightforward and looks like this:

 FMRadio myRadio(88.5, 5);

That is, we write out the type of the object to create, the name of the object to create, and then a
parenthesized list of the arguments to pass into the constructor.

You may be wondering why in the case of a zero-argument constructor, we do not need to explicitly spell
out that we want to use the default constructor. In other words, why don't we write out code like this:

 FMRadio myRadio(); // Problem: Legal but incorrect

This code is perfectly legal, but it does not do what you'd expect. There is an unfortunate defect in C++ that
causes this statement to be interpreted as a function prototype rather than the creation of an object using
the default constructor. In fact, C++ will interpret this as “prototype a function called myRadio that takes in
no arguments and returns an FMRadio” rather than “create an FMRadio called myRadio using the zero-
argument constructor.” This is sometimes referred to as “C++'s most vexing parse” and causes extremely
difficult to understand warnings and error messages. Thus, if you want to invoke the default constructor,
omit the parentheses. If you want to invoke a parametrized constructor, parenthesize the arguments.

Another important point to remember when working with multiple constructors is that constructors
cannot invoke one another. This is an extension of the rule that you cannot directly call a constructor. If
you need to do the same work in multiple constructors, you can either duplicate the code (yuck!) or use a
private member function, which we'll discuss later.

Classes Without a Nullary Constructor

A function is called nullary if it takes no arguments. For example, the first FMRadio constructor we wrote
is a nullary constructor, since it takes no arguments. If you define a class and do not provide a constructor,
C++ will automatically provide you a default nullary constructor that does absolutely nothing. This is why
in the case of FMRadio, we needed to provide a nullary constructor to initialize the data members;
otherwise they would initialize to arbitrary values. However, if you define a class and provide any
constructors, C++ will not automatically generate a nullary constructor for you. This means that it is
possible to construct classes that do not have a zero-argument constructor. For example, suppose that we
remove the nullary constructor from FMRadio; this results in the following class definition:

Chapter 8: Abstraction and Classes - 223 -

 class FMRadio {
 public:
 FMRadio(double freq, int vol);

 double getFrequency();
 void setFrequency(double newFreq);

 int getVolume();
 void setVolume(int newVolume);

 double setPreset(int index, double freq);
 bool presetExists(int index);
 double getPreset(int index);

 private:
 double frequency;
 int volume;
 double presets[6];
 };

Because this class does not have a nullary constructor, we cannot construct instances of it without passing
in values for the frequency and volume. That is, the following code is illegal:

 FMRadio myRadio; // Problem: No default constructor available

At first, this may seem like a nuisance. However, this aspect of class design is extremely valuable because it
allows you to create types that must be initialized to a meaningful value. For example, suppose that you
are designing a class that represents a robot-controlled laser, either for automated welding or delicate
surgical procedures. When building such a laser, it is imperative that the laser know how much power to
deliver and what points the beam should be directed at. These values absolutely must be initialized to
meaningful data, or the laser might deliver megawatts of power at a patient or aim at random points firing
the beam. If you wanted to represent the laser as a C++ class, you could force clients to specify this data
before using the laser by making a RobotLaser class whose only constructor takes in both the laser
power and laser coordinates. This means that clients could not create instances of RobotLaser without
entering coordinates, reducing the possibility of a catastrophic failure.

Private Member Functions

Let's return once again to our FMRadio example, this time looking at the implementation of three
functions: setFrequency, setPreset, and presetExists. The implementations of these functions are
shown here:

 void FMRadio::setFrequency(double newFreq) {
 assert(newFreq >= 87.5 && newFreq <= 108.0);
 frequency = newFreq;
 }

 void FMRadio::setPreset(int index, double freq) {
 assert(index >= 1 && index <= 6);
 assert(freq >= 87.5 && freq <= 108.0);
 presets[index - 1] = freq;
 }

 double FMRadio::presetExists(int index) {
 assert(index >= 1 && index <= 6);
 return presets[index - 1] == 0.0;
 }

- 224 - Chapter 8: Abstraction and Classes

Notice that each highlighted line of code appears in two of the three functions. Normally this isn't too
serious a concern, but in this particular case makes the implementation brittle and fragile. In particular, if
we ever want to change the number of presets or the maximum frequency range, we'll need to modify
multiple parts of the code accordingly or risk inconsistent handling of presets and frequencies. To unify
the code, we might consider decomposing this logic into helper functions. However, since the code we're
decomposing out is an implementation detail of the FMRadio class, class clients shouldn't have access to
these helper functions. In other words, we want to create a set of functions that simplify class
implementation but which can't be accessed by class clients. For situations like these, we can use a
technique called private member functions.

Marking Functions private

If you'll recall from earlier, the private keyword indicates which parts of a class cannot be accessed by
clients. So far we have restricted ourselves to dealing only with private data members, but it is possible to
create member functions that are marked private. Like regular member functions, these functions can read
and write private class data, and are invoked relative to a receiver object. Unlike public member functions,
though, they can only be invoked by the class implementation. Therefore, private member functions are
not part of the class's interface and exist solely to simplify the class implementation.

Declaring a private member function is similar to declaring a public member function - we just add the
definition to the class's private data. In our FMRadio example, we will introduce two helper functions:
checkFrequency, which asserts that a frequency is in the proper range, and checkPreset, which ensures
that a preset index is in bounds. The updated class definition for FMRadio is shown here:

 class FMRadio {
 public:
 FMRadio();
 FMRadio(double freq, int vol);

 double getFrequency();
 void setFrequency(double newFreq);

 int getVolume();
 void setVolume(int newVolume);

 double setPreset(int index, double freq);
 bool presetExists(int index);
 double getPreset(int index);

 private:
 void checkFrequency(double freq);
 void checkPreset(int index);

 double frequency;
 int volume;
 double presets[6];
 };

We can then implement these functions as follows:

Chapter 8: Abstraction and Classes - 225 -

 void FMRadio::checkFrequency(double freq) {
 assert(freq >= 87.5 && freq <= 108.8);
 }

 void FMRadio::checkPreset(int index) {
 assert(index >= 1 && index <= 6);
 }

Using these functions yields the following implementations of the three aforementioned functions:

 void FMRadio::setFrequency(double newFreq) {
 checkFrequency(newFreq);
 frequency = newFreq;
 }

 void FMRadio::setPreset(int index, double freq) {
 checkPreset(index);
 checkFrequency(freq);
 presets[index - 1] = freq;
 }

 bool FMRadio::presetExists(int index) {
 checkPreset(index);
 return presets[index - 1] == 0.0;
 }

These functions are significantly cleaner than before, and the class as a whole is much more robust to
change.

Simplifying Constructors with Private Functions

Private functions can greatly reduce the implementation complexity of classes with multiple constructors.
Recall that our FMRadio class has two constructors, one which initializes the FMRadio to have a
reasonable default frequency and volume, and one which lets class clients specify the initial frequency and
volume. The implementation of these two functions is shown here:

 FMRadio::FMRadio() {
 for(size_t i = 0; i < 6; ++i)
 presets[i] = 0.0;
 frequency = 87.5;
 volume = 5;
 }

 FMRadio::FMRadio(double freq, int vol) {
 for(size_t i = 0; i < 6; ++i)
 presets[i] = 0.0;
 frequency = freq;
 volume = vol;
 }

These functions are extremely similar in structure, but because C++ does not allow you to manually call a
class's constructor. How, then, can the two functions be unified? Simple – we introduce a private member
function which does the initialization, then have the two constructors invoke this member function with
the proper arguments. This is illustrated below:

- 226 - Chapter 8: Abstraction and Classes

 class FMRadio {
 public:
 FMRadio();
 FMRadio(double freq, int vol);

 double getFrequency();
 void setFrequency(double newFreq);

 int getVolume();
 void setVolume(int newVolume);

 double setPreset(int index, double freq);
 bool presetExists(int index);
 double getPreset(int index);

 private:
 void checkFrequency(double freq);
 void checkPreset(int index);
 void initialize(double freq, int vol);

 double frequency;
 int volume;
 double presets[6];
 };

 void FMRadio::initialize(double freq, int vol) {
 for(size_t i = 0; i < 6; ++i)
 presets[i] = 0.0;
 frequency = freq;
 volume = vol;
 }

 FMRadio::FMRadio() {
 initialize(87.5, 5);
 }

 FMRadio::FMRadio(double freq, int vol) {
 initialize(freq, vol);
 }

As you can see, private member functions are extremely useful tools. We will continue to use them
throughout the remainder of this book, just as you will undoubtedly use them in the course of your
programming career.

Partitioning Classes Across Files

One of the motivations behind classes was to provide a means for separating out implementation and
interface. We have seen this already through the use of the public and private access specifiers, which
prevent clients from looking at implementation-specific details. However, there is another common means
by which implementation is separated from interface, and that is the split between header files and
implementation files. As you've seen before, almost all of the programs you've written begin with a series
of #include directives which tell the compiler to fetch certain files and include them in your programs.
Now that we've reached a critical mass and can begin writing our own classes, we will see how to design
your own header files.

At a high level, header files provide a means for exporting a class interface without also exporting
unnecessary implementation details. Programmers who wish to use your class in their code can

Chapter 8: Abstraction and Classes - 227 -

#include the header file containing your class declaration, and the linker will ensure that the class
implementation is bundled along with the final program. More concretely, a header file contains the class
declaration (including both public and private members), and the implementation file contains the
actual class implementation. For example, suppose that we want to export the FMRadio class we've just
designed in a header/implementation pair. We'll begin by constructing the header file. Traditionally,
header files that contain class declarations have the same name as the class and a .h suffix. In our case,
this means that we'll be creating a file called FMRadio.h that contains our class definition. This is shown
here:

File: FMRadio.h
#ifndef FMRadio_Included
#define FMRadio_Included

class FMRadio
{
public:
 FMRadio();
 FMRadio(double freq, int vol);

 double getFrequency();
 void setFrequency(double newFreq);

 int getVolume();
 void setVolume(int newVolume);

 double setPreset(int index, double freq);
 bool presetExists(int index);
 double getPreset(int index);

private:
 void checkFrequency(double freq);
 void checkPreset(int index);
 void initialize(double freq, int vol);

 double frequency;
 int volume;
 double presets[6];
};

#endif

Notice that we've surrounded the header file with an include guard. In case you've forgotten, the include
guard is a way to prevent compiler errors in the event that a client #includes the same file twice; see the
chapter on the preprocessor for more information. Beyond this, though, the header contains just the class
interface.

Now that we've built the .h file for our FMRadio class, let's see if we can provide a working implementation
file. Typically, an implementation file will have the same name as the class, suffixed with the .cpp
extension.* Appropriately, we'll name this file FMRadio.cpp. Unlike a .h file, which is designed to export
the class declaration to clients, the .cpp file just contains the implementation of the class. Here's one
possible version of the FMRadio.cpp file:

* It is also common to see the .cc extension. Older code might use the .C extension (capital C) or the .c++ extension.

- 228 - Chapter 8: Abstraction and Classes

File: FMRadio.cpp
#include "FMRadio.h"

FMRadio::FMRadio() {
 initialize(87.5, 5);
}

FMRadio::FMRadio(double freq, int vol) {
 initialize(freq, vol);
}

void FMRadio::initialize(double freq, int vol) {
 for(size_t i = 0; i < 6; ++i)
 presets[i] = 0.0;
 frequency = freq;
 volume = vol;
}

void FMRadio::checkFrequency(double freq) {
 assert(freq >= 87.5 && freq <= 108.8);
}

void FMRadio::checkPreset(int index) {
 assert(index >= 1 && index <= 6);
}

double FMRadio::getFrequency() {
 return frequency;
}

void FMRadio::setFrequency(double newFreq) {
 checkFrequency(newFreq);
 frequency = newFreq;
}

void FMRadio::setPreset(int index, double freq) {
 checkPreset(index);
 checkFrequency(freq);
 presets[index - 1] = freq;
}

bool FMRadio::presetExists(int index) {
 checkPreset(index);
 return presets[index - 1] == 0.0;
}

double FMRadio::getPreset(int index) {
 checkPreset(index);
 return presets[index – 1];
}

There are a few important aspects of this .cpp file to note. First, notice that at the top of the file, we
#included the .h file containing the class declaration. This is extremely important – if we don't include the
header file for the class, when the C++ compiler encounters the implementations of the class's member
functions, it won't have seen the class declaration and will flag all of the member function
implementations as errors. Second, note that when #include-ing the .h file, we surrounded the name of
the file in “double quotes” instead of <angle brackets.> If you'll recall, this is because the preprocessor

Chapter 8: Abstraction and Classes - 229 -

treats include directives using <angle brackets> as instructions to look for standard library files, and since
the classes you'll be writing aren't part of the standard library you'll want to use “double quotes” instead.*

Now that we've partitioned the class into a .h/.cpp pair, we can write programs that use the class without
having to tediously copy-and-paste the class definition and implementation. For example, here's a short
program which manipulates an FMRadio. Note that we never actually see the declaration or
implementation of the FMRadio class; #include-ing the header provides the compiler enough
information to let us use the FMRadio.

 #include <iostream>
 #include "FMRadio.h"
 using namespace std;

 int main() {
 FMRadio myRadio;
 myRadio.setFrequency(88.5);
 myRadio.setVolume(8);
 /* ... etc. ... */
 }

Throughout the remainder of this book, whenever we design and build classes, we will assume that the
classes are properly partitioned between .h and .cpp files.

Chapter Summary

• Software systems are often on the order of millions of lines of code, far larger than even the most
competent programmers can ever keep track of at once.

• A single incorrect value in a software system can cause that entire system to fail.

• The maximum number of possible interactions in a software system grows exponentially in the
number of components of that system.

• Abstractions give a way to present a complex object in simpler terms.

• Abstractions partition users into clients and implementers, each with separate tasks. This
separation is sometimes referred to as the wall of abstraction.

• Abstractions describe many possible implementations, and encapsulation prevents clients from
peeking at that implementation.

• The way in which a client interacts with an object is called that object's interface.

• Abstraction reduces the number of components in a software system, reducing the maximum
complexity of that system.

• C++ structs lack encapsulation because their implementation is their interface.

• The C++ class concept is a realization of an interface paired with an implementation.

* If you ever have the honor of getting to write a new standard library class, please contact me... I'd love to offer
comments and suggestions!

- 230 - Chapter 8: Abstraction and Classes

• The members of a class that are listed public form that class's interface and are accessible to
anyone.

• The members of a class that are listed private are part of the class implementation and can only be
viewed by member functions of that class.

• Constructors allow implementers to enforce invariants from the moment the class is created.

• Private member functions allow implementers to decompose code without revealing the
implementation to clients.

• Class implementations are traditionally partitioned into a .h file containing the class definition and
a .cpp file containing the class implementation.

• Design class interfaces before implementations to avoid overspecializing the interface on an
implementation artifact.

Practice Problems

1. In our discussion of abstraction, we talked about how interfaces and modularity can exponentially
reduce the maximum complexity of a system. Can you think of any examples from the real world
where introducing indirection makes a complex system more manageable?

2. What is the motivation behind functions along the lines of getFrequency and setFrequency over
just having a public frequency data member?

3. When is a constructor invoked? Why are constructors useful?

4. What is the difference between a public member function and a private member function?

5. What goes in a class's .h file? In its .cpp file?

6. We've talked at length about the streams library and STL without mentioning much of how those
libraries are implemented behind-the-scenes. Explain why abstraction makes it possible to use
these libraries without full knowledge of how they work.

7. Suppose that C++ were designed somewhat differently in that data members marked private could
only be read but not written to. That is, if a data member called volume were marked private, then
clients could read the value by writing myObject.volume, but could not write to the volume
variable directly. This would prohibit clients of a class from modifying the implementation
incorrectly, since any operations that could change the object's data members would have to go
through the public interface. However, this setup has a serious design flaw that would make class
implementations difficult to change. What is this flaw? (Hint: Think back to the
volume/attenuation example from earlier)

Chapter 8: Abstraction and Classes - 231 -

8. Below is an interface for a class that represents a grocery list:

 class GroceryList {
 public:
 GroceryList();

 void addItem(string quantity, string item);
 void removeItem(string item);

 string itemQuantity(string item);
 bool itemExists(string item);
 };

The GroceryList constructor sets the grocery list to contain no items. The addItem function
adds a certain quantity of an item to the grocery list. For example, the call

 gList.addItem("One Gallon", "Milk");

would add the item “Milk” to the list with quantity “One Gallon.” If the item already exists in the
list, then addItem should replace the original quantity with the new quantity.

The removeItem function should delete the specified item off of the shopping list. itemExists
returns whether the specified item exists in the shopping list, and itemQuantity takes in an item
and returns the quantity associated with it in the list. If the item doesn't exist, itemQuantity can
either raise an assert error or return the empty string.

Provide an implementation for the GroceryList class. You are free to use whatever
implementation you feel is best, and can implement the member functions as you see fit. However,
you might find it useful to use a map<string, string> to represent the items in the list.

9. What is the advantage of making a GroceryList class over just using a raw map<string,
string>?

10. Does the GroceryList class need a constructor? Why or why not?

11. Give an example of a parameterized constructor you have encountered in the STL.

12. Why are parameterized constructors useful?

13. Keno is a popular gambling game with similarities to a lottery or bingo. Players place a bet and
pick a set of numbers between 1 and 80, inclusive. The number of numbers chosen can be
anywhere from one to twenty, with each having a different payoff scale. Once the players have
chosen their numbers, twenty random numbers between 1 and 80 are chosen, and players receive
a payoff based on how many numbers they picked that matched the chosen numbers. For example,
if a player picked five numbers and all five were chosen, she might win around $1,000 for a one- or
two-dollar bet. The actual payoffs are based on the probabilities of hitting k numbers out of n
chosen, but this is irrelevant for our discussion.

Suppose that you are interested in writing a program that lets the user play Keno. You are not
interested in the payoffs, just letting the user enter numbers and reporting which of the user's
numbers came up. To do this, you decide to write a class KenoGame with the following interfaces:

- 232 - Chapter 8: Abstraction and Classes

 class KenoGame {
 public:
 KenoGame();

 void addNumber(int value);
 size_t numChosen();

 size_t numWinners(vector<int>& values);
 };

The KenoGame constructor initializes the class however you see fit. addNumber takes in a number
from the user and adds it to the set of numbers the user guessed. The numChosen member
function returns how many numbers the user has picked so far. Finally, the numWinners function
takes in a vector<int> corresponding to the numbers that were chosen and returns how many of
the user's numbers were winners.

Write an implementation of the KenoGame class.

14. Refer back to the implementation of Snake from the chapter on STL containers. Design and
implement a class that represents a snake. What operations will you support in the public
interface? How will you implement it?

Chapter 9: Refining Abstractions

In the previous chapter, we explored the class concept and saw how to use classes to model an interface
paired with an implementation. You learned how to realize the idealized versions of abstraction and
encapsulation using the public and private keywords, as well as how to use constructors to enforce
class invariants. However, our tour of classes has just begun, and there are many nuances of class design
we have yet to address. For example, since class clients cannot look at the class implementation, how can
they tell which parts of the public interface are designed to read the class's state and which parts will
write it? How can you more accurately control how constructors initialize data? And how can you share
data across all instances of a class? These questions are all essentially variants on a common theme: how
can we refine our abstractions to make them more precise?

This chapter explores some of C++'s language features that allow you as a programmer to more clearly
communicate your intentions when designing classes. The tools you will learn in this chapter will follow
you through the rest of your programming career, and appreciating exactly where each is applicable will
give you a significant advantage when designing software.

Parameterizing Classes with Templates

One of the most important lessons an upstart computer scientist or software engineer can learn is
decomposition or factoring – breaking problems down into smaller and smaller pieces and solving each
subproblem separately. At the heart of decomposition is the concept of generality – code should avoid
overspecializing on a single problem and should be robust enough to adapt to other situations. Take as an
example the STL. Rather than specializing the STL container classes on a single type, the authors decided
to parameterize the containers over the types they store. This means that the code written for the vector
class can be used to store almost any type, and the map can use arbitrary types as key/value pairs.
Similarly, the STL algorithms were designed to operate on all types of iterators rather than on specific
container classes, making them flexible and adaptable.

The STL is an excellent example of how versatile, flexible, and powerful C++ templates can be. In C++ a
template is just that – a code pattern that can be instantiated to produce a type or function that works on
an arbitrary type. Up to this point you've primarily been a client of template code, and now it's time to
gear up to write your own templates. In this section we'll cover the basics of templates and give a quick
tour of how template classes operate under the hood. We will make extensive use of templates later in this
text and especially in the extended examples, and hopefully by the time you've finished reading this book
you'll have an appreciation for just how versatile templates can be.

Class Templates

In C++, a class template is a class that, like the STL vector or map, is parameterized over some number of
types. In a sense, a class template is a class with a hole in it. When a client uses a template class, she fills
in these holes to yield a complete type. You have already seen this with the STL containers: you cannot
create a variable of type vector or map, though you can create a variable of type vector<int> or
map<string, string>.

Class templates are most commonly used to create types that represent particular data structures. For
example, the vector class template is an implementation of a linear sequence using a dynamically-
allocated array as an implementation. The operations that maintain the dynamic array are more or less

- 234 - Chapter 9: Refining Abstractions

independent of the type of elements in that array. By writing vector as a class template rather than a
concrete class, the designers of the STL make it possible to use linear sequences of arbitrary C++ types.

Of course, not all classes should be written as class templates. For example, the FMRadio class from the
previous chapter is an unlikely candidate for a class template because it does not hold a collection of data
that could be of arbitrary type. Although FMRadio does hold multiple pieces of data (notably the radio's
presets), those presets are always radio frequencies, which we've encoded with doubles. It would not
make sense for the FMRadio's presets to be stored as vector<int>s, nor as strings. As a general rule,
most classes don't need to be written as class templates.

Defining a Class Template

Once you've decided that the class you're writing is best parameterized over some arbitrary type, you can
indicate to C++ that you're defining a template class by using the template keyword and specifying what
types the template should be parameterized over. For example, suppose that we want to define our own
version of the pair struct used by the STL. If we want to call this struct MyPair and have it be
parameterized over two types, we can write the following:

 template <typename FirstType, typename SecondType> struct MyPair {
 FirstType first;
 SecondType second;
 };

Here, the syntax template <typename FirstType, typename SecondType> indicates to C++ that
what follows is a class template that is parameterized over two types, one called FirstType and one
called SecondType. In many ways, type arguments to a class template are similar to regular arguments to
C++ functions. For example, the actual names of the parameters are unimportant as far as clients are
concerned, much in the same way that the actual names of parameters to functions are unimportant. The
above definition is functionally equivalent to this one below:

 template <typename One, typename Two> struct MyPair {
 One first;
 Two second;
 };

Within the body of the class template, we can use the names One and Two (or FirstType and
SecondType) to refer to the types that the client specifies when she instantiates MyPair, much in the
same way that parameters inside a function correspond to the values passed into the function by its caller.

In this above example, we used the typename keyword to introduce a type argument to a class template. If
you work on other C++ code bases, you might see the above class template written as follows:

 template <class FirstType, class SecondType> struct MyPair {
 FirstType first;
 SecondType second;
 };

In this instance, typename and class are completely equivalent to one another. However, I find the use of
class misleading because it incorrectly implies that the parameter must be a class type. This is not the
case – you can still instantiate templates that are parameterized using class with primitive types like int
or double. From here on out, we will use typename instead of class.*

* You can only substitute class for typename in this instance – it's illegal to declare a regular C++ class using the
typename keyword.

Chapter 9: Refining Abstractions - 235 -

To create an instance of MyPair specialized over some particular types, we specify the name of the class
template, followed by the type arguments surrounded by angle brackets. For example:

 MyPair<int, string> one; // A pair of an int and a string.
 one.first = 137;
 one.second = "Templates are cool!";

This syntax should hopefully be familiar from the STL.

Classes and structs are closely related to one another, so unsurprisingly the syntax for declaring a
template class is similar to that for a template struct. Let's suppose that we want to convert our MyPair
struct into a class with full encapsulation (i.e. with accessor methods and constructors instead of
exposed data members). Then we would begin by declaring MyPair as

 template <typename FirstType, typename SecondType> class MyPair {
 public:
 /* ... */

 private:
 FirstType first;
 SecondType second;
 };

Now, what sorts of functions should we define for our MyPair class? Ideally, we'd like to have some way of
accessing the elements stored in the pair, so we'll define a pair of functions getFirst and setFirst along
with an equivalent getSecond and setSecond. This is shown here:

 template <typename FirstType, typename SecondType> class MyPair {
 public:
 FirstType getFirst();
 void setFirst(FirstType newValue);

 SecondType getSecond();
 void setSecond(SecondType newValue);

 private:
 FirstType first;
 SecondType second;
 };

Notice that we're using the template arguments FirstType and SecondType to stand for whatever types
the client parameterizes MyPair over. We don't need to indicate that FirstType and SecondType are at
all different from other types like int or string, since the C++ compiler already knows that from the
template declaration. In fact, with a few minor restrictions, once you've defined a template argument,
you can use it anywhere that an actual type could be used and C++ will understand what you mean.

Now that we've declared these functions, we should go about implementing them in the intuitive way. If
MyPair were not a template class, we could write the following:

 FirstType MyPair::getFirst() { // Problem: Not legal syntax
 return first;
 }

- 236 - Chapter 9: Refining Abstractions

The problem with this above code is that MyPair is a class template, not an actual class. If we don't tell
C++ that we're trying to implement a member function for a class template, the compiler won't understand
what we mean. Thus the proper way to implement this member function is

 template <typename FirstType, typename SecondType>
 FirstType MyPair<FirstType, SecondType>::getFirst() {
 return first;
 }

Here, we've explicitly prefaced the implementation of getFirst with a template declaration and we've
marked that the member function we're implementing is for MyPair<FirstType, SecondType>. The
template declaration is necessary for C++ to figure out what FirstType and SecondType mean here,
since without this information the compiler would think that FirstType and SecondType were actual
types instead of placeholders for types. That we've mentioned this function is available inside
MyPair<FirstType, SecondType> instead of just MyPair is also mandatory since there is no real
MyPair class – after all, MyPair is a class template, not an actual class.

The other member functions can be implemented similarly. For example, here's an implementation of
setSecond:

 template <typename FirstType, typename SecondType>
 void MyPair<FirstType, SecondType>::setSecond(SecondType newValue) {
 second = newValue;
 }

When implementing member functions for template classes, you do not need to repeat the template
definition if you define the function inside the body of the template class. Thus the following code is
perfectly legal:

 template <typename FirstType, typename SecondType> class MyPair {
 public:
 FirstType getFirst() {
 return first;
 }
 void setFirst(FirstType newValue) {
 first = newValue;
 }

 SecondType getSecond() {
 return second;
 }
 void setSecond(SecondType newValue) {
 second = newValue;
 }

 private:
 FirstType first;
 SecondType second;
 };

The reason for this is that inside of the class template, the compiler already knows that FirstType and
SecondType are templates, and it's not necessary to remind it.

Chapter 9: Refining Abstractions - 237 -

Now, let's suppose that we want to define a member function called swap which accepts as input a
reference to another MyPair class, then swaps the elements in that MyPair with the elements in the
receiver object. Then we can prototype the function like this:

 template <typename FirstType, typename SecondType> class MyPair {
 public:
 FirstType getFirst() {
 return first;
 }
 void setFirst(FirstType newValue) {
 first = newValue;
 }

 SecondType getSecond() {
 return second;
 }
 void setSecond(SecondType newValue) {
 second = newValue;
 }

 void swap(MyPair& other);

 private:
 FirstType first;
 SecondType second;
 };

Even though MyPair is a template class parameterized over two arguments, inside the body of the MyPair
template class definition we can use the name MyPair without mentioning that it's a
MyPair<FirstType, SecondType>. This is perfectly legal C++ and will come up more when we begin
discussing copying behavior in a few chapters. The actual implementation of swap is left as an exercise.

.h and .cpp files for template classes

When writing a C++ class, you normally partition the class into two files: a .h file containing the
declaration and a .cpp file containing the implementation. The C++ compiler can then compile the code
contained in the .cpp file and then link it into the rest of the program when needed. When writing a
template class, however, breaking up the definition like this will cause linker errors. The reason is that C+
+ templates are just that – they're templates for C++ code. Whenever you write code that instantiates a
template class, C++ generates code for the particular instance of the class by replacing all references to the
template parameters with the arguments to the template. For example, with the MyPair class defined
above, if we create a MyPair<int, string>, the compiler will generate code internally that looks like
this:

 class MyPair<int, string> {
 public:
 int getFirst();
 void setFirst(int newValue);

 string getSecond();
 void setSecond(string newValue);

 private:
 int first;
 string second;
 }

- 238 - Chapter 9: Refining Abstractions

Chapter 9: Refining Abstractions - 239 -

 int MyPair<int, string>::getFirst() {
 return first;
 }

 void MyPair<int, string>::setFirst(int newValue) {
 first = newValue;
 }

 string MyPair<int, string>::getSecond() {
 return second;
 }

 void MyPair<int, string>::setSecond(string newValue) {
 second = newValue;
 }

At this point, compilation continues as usual.

But what would happen if the compiler didn't have access to the implementation of the MyPair class?
That is, let's suppose that we've created a header file, my-pair.h, that contains only the class declaration
for MyPair, as shown here:

File: my-pair.h
#ifndef MyPair_Included // Include guard prevents multiple inclusions
#define MyPair_Included

template <typename FirstType, typename SecondType> class MyPair {
public:
 FirstType getFirst();
 void setFirst(FirstType newValue);

 SecondType getSecond();
 void setSecond(SecondType newValue);

private:
 FirstType first;
 SecondType second;
};

#endif

Suppose that we have a file that #includes the my-pair.h file and then tries to use the MyPair class.
Since all that the compiler has seen of MyPair is the above class definition, the compiler will only generate
the following code for MyPair:

 class MyPair<int, string> {
 public:
 int getFirst();
 void setFirst(int newValue);

 string getSecond();
 void setSecond(string newValue);
 private:
 int first;
 string second;
 }

- 240 - Chapter 9: Refining Abstractions

Notice that while all the member functions of MyPair<int, string> have been prototyped, they haven't
been implemented because the compiler didn't have access to the implementations of each of these
member functions. In other words, if a template class is instantiated and the compiler hasn't seen
implementations of its member functions, the resulting template class will have no code for its member
functions. This means that the program won't link, and our template class is now useless.

When writing a template class for use in multiple files, the entire class definition, including
implementations of member functions, must be visible in the header file. One way of doing this is to create
a .h file for the template class that contains both the class definition and implementation without creating
a matching .cpp file. This is the approach adopted by the C++ standard library; if you open up any of the
headers for the STL, you'll find the complete (and cryptic) implementations of all of the functions and
classes exported by those headers.

To give a concrete example of this approach, here's what the my-pair.h header file might look like if it
contained both the class and its implementation:

File: my-pair.h
/* This method of packaging the .h/.cpp pair puts the entire class definition and
 * implementation into the .h file. There is no .cpp file for this header.
 */

#ifndef MyPair_Included
#define MyPair_Included

template <typename FirstType, typename SecondType> class MyPair {
public:
 FirstType getFirst();
 void setFirst(FirstType newValue);

 SecondType getSecond();
 void setSecond(SecondType newValue);
private:
 FirstType first;
 SecondType second;
};

template <typename FirstType, typename SecondType>
 FirstType MyPair<FirstType, SecondType>::getFirst() {
 return first;
}

template <typename FirstType, typename SecondType>
 void MyPair<FirstType, SecondType>::setFirst(FirstType newValue) {
 first = newValue;
}

template <typename FirstType, typename SecondType>
 SecondType MyPair<FirstType, SecondType>::getSecond() {
 return second;
}

template <typename FirstType, typename SecondType>
 void MyPair<FirstType, SecondType>::setSecond(SecondType newValue) {
 second = newValue;
}

#endif

Chapter 9: Refining Abstractions - 241 -

Putting the class and its definition inside the header file is a valid way to prevent linker errors, but it
seems to violate the principle of separation of interface and implementation. After all, the reason we have
both .h and .cpp files is to hide a class implementation in a file that clients never have to look at.
Unfortunately, barring some particularly unsightly and hacky abuses of the preprocessor, you will need to
structure template code in this manner.

The Two Meanings of typename

One of the more unfortunate quirks of the C++ language is the dual meaning of the typename keyword. As
mentioned previously, when defining a template class, you can the typename keyword to declare type
parameters for the template class. However, there is another use of the typename keyword that can easily
catch you off guard unless you're on the lookout for it. Suppose, for example, that we wish to implement a
class akin to the STL stack which represents a LIFO container. Because the abstract notion of a stack only
concerns the ordering of the elements in the container rather than the type or contents of the elements in
the container, we should probably consider implementing the stack as a template class. Here is one
possible interface for such a class, which we'll call Stack to differentiate it from the STL stack:

 template <typename T> class Stack {
 public:
 void push(T value);
 T pop();

 size_t size();
 bool empty();
 };

There are many ways that we could implement this Stack class: we could use dynamically-allocated
arrays, or the STL vector or deque containers. Of these three choices, the vector and deque are
certainly simpler than using dynamically-allocated arrays. Moreover, since all of the additions and
deletions from a stack occur at the end of the container, the deque is probably a more suitable container
with which we could implement our Stack. We'll therefore implement the Stack using a deque, as shown
here:

 template <typename T> class Stack {
 public:
 void push(T value);
 T pop();

 size_t size();
 bool empty();

 private:
 deque<T> elems;
 };

Notice that we've used the template parameter T to parameterize the deque. This is perfectly valid, and is
quite common when implementing template classes.

Given this implementation strategy, we can implement each of the member functions as follows. Make
sure that you can read this code; it's fairly template-dense.

- 242 - Chapter 9: Refining Abstractions

 template <typename T> void Stack<T>::push(T value) {
 elems.push_front(value);
 }

 template <typename T> T Stack<T>::pop() {
 T result = elems.front();
 elems.pop_front();
 return result;
 }

 template <typename T> size_t Stack<T>::size() {
 return elems.size();
 }

 template <typename T> bool Stack<T>::empty() {
 return elems.empty();
 }

This is a perfectly reasonable implementation of a stack, and in fact the STL stack implementation is very
similar to this one.

Now, suppose that we're interested in extending the functionality of the Stack so that class clients can
iterate over the elements of the Stack in the order that they will be removed. For example, if we push the
elements 1, 2, 3, 4, 5 onto the stack, the iteration would visit the elements in the order 5, 4, 3, 2, 1. This
functionality is usually not found on a Stack, but is useful for debugging (e.g. printing out the contents of
the stack) or modifying the elements of the Stack after they've already been inserted. To do this, we'll
need to add begin() and end() functions to the Stack class that return iterators over the underlying
deque. Because the internal deque is a deque<T>, these iterators have type deque<T>::iterator.
Consequently, you might think that we would update the interface as follows:

 template <typename T> class Stack {
 public:
 void push(T value);
 T pop();

 size_t size();
 bool empty();

 deque<T>::iterator begin(); // Problem: Illegal syntax.
 deque<T>::iterator end(); // Problem: Illegal syntax.

 private:
 deque<T> elems;
 };

This code is perfectly well-intentioned, but unfortunately is not legal C++ code. The problem has to do
with the fact that deque<T> is a dependent type, a type that “depends” on a template parameter.
Intuitively, this is because deque<T> isn't a concrete type – it's a pattern that says “once you give me the
type T, I'll give you back a deque of T's”. Due to a somewhat arcane restriction in the C++ language, if you
try to access a type nested inside of a dependent type inside of a template class (for example, trying to use
the iterator type nested inside deque<T>), you must preface that type with the typename keyword. The
correct version of the Stack class is as follows:

Chapter 9: Refining Abstractions - 243 -

 template <typename T> class Stack {
 public:
 void push(T value);
 T pop();

 size_t size();
 bool empty();

 typename deque<T>::iterator begin(); // Now correct
 typename deque<T>::iterator end(); // Now correct

 private:
 deque<T> elems;
 };

This syntactic oddity is one of the truly embarrassing parts of C++. There is no high-level reason why
typename should be necessary, and its existence is a perpetual source of confusion and frustration among
new C++ programmers. I wholeheartedly wish that I could give you a nice clean explanation as to why
typename is necessary, but the real answer is highly technical and in many ways unsatisfactory. Of course,
this doesn't excuse you from having to put the typename keyword in when it's necessary, and you'll have
to make sure to use it where appropriate. The good news is that typename is unnecessary in most
circumstances. You only need to use the typename keyword when accessing a type nested inside of a
dependent type. From a practical standpoint, this means that if you want to look up a type nested inside of
a type that's either a template parameter or is parameterized over a template parameter, you must preface
the type with the typename keyword. In the examples used in the upcoming chapters, this will only occur
when looking up iterators inside of STL containers that themselves are parameterized over a template
argument, such as a deque<T>::iterator or a vector<T>::iterator.

To complete the above example, the implementation of the begin and end functions are shown here:

 template <typename T> typename deque<T>::iterator Stack<T>::begin() {
 return elems.begin();
 }

 template <typename T> typename deque<T>::iterator Stack<T>::end() {
 return elems.end();
 }

These functions might be the densest pieces of code you've encountered so far. The code template
<typename T> declares that the member function implementation is an implementation of a template
class's member function. typename deque<T>::iterator is the return type of the function, and
Stack<T>::begin() is the name of the member function and the (empty) parameter list. When writing
template classes, code like this is fairly ubiquitous, but with practice you'll be able to read this code much
more easily.

Clarifying Interfaces with const

At its core, C++ is a language based on modifying program state. ints get incremented in for loops;
vectors have innumerable calls to clear, resize, and push_back; and console I/O overwrites variables
with values read directly from the user.

Consider the following function:

- 244 - Chapter 9: Refining Abstractions

 void LoadFileContents(string filename, vector<string>& out) {
 ifstream input(filename.c_str()); // Open the file
 out.clear();

 string line;
 while (getline(input, line))
 out.push_back(line);
 }

This function takes in a string containing the name of a file, then reads the contents of the file into a
vector<string> specified as a reference parameter. Because this function writes the result to an existing
vector rather than creating a new vector for output, we say that the function has side effects. Side
effects are extremely common in C++ code, and in fact without side effects C++ programs would be very
difficult to write. However, when working with increasing large software systems, side effects can be
dangerous. As mentioned last chapter, a single incorrect bit can take down an entire software system.
Consequently, you must be very careful when designing functions with side effects so that the scope of
what those side effects can modify is minimized. To see exactly why this is, let's consider the extreme case.
Suppose every function in a program is allowed to modify any piece of data in the program. That is,
whenever a function is called, the values of all variables in all functions might be changed. What would
this mean for programming? Certainly, it would be much more difficult to reason about how programs
operate. Consider, for example, the following loop:

 for (size_t k = 0; k < 100; ++k)
 MyFunction();

Here, we iterate over the first one hundred integers, calling some function called MyFunction. What will
this program do? Certainly it depends on the implementation of MyFunction, but a reasonable
programmer would probably infer that MyFunction will be called exactly one hundred times. But this is
making the reasonable assumption that because MyFunction isn't passed k as a parameter, it has no way
of modifying the local variable k in the calling function. However, we're assuming that functions are
allowed to modify any data in the program. Given this assumption, there's no reason that the MyFunction
function couldn't change the value of k whenever it's called. It might, for example, set k to be 0 on every
iteration, meaning that the loop will never terminate (see if you can convince yourself why this is).
Similarly, the function might increment k by one every time it's called, causing the loop to execute half as
many times as it should (since k will take on values 0, 2, 4, 8, ... instead of 0, 1, 2, 3, ...). Without looking at
the implementation of MyFunction, there would be no way to know exactly what will happen to k. Trying
to infer what the program will do by looking at its complete source code would be substantially more
complicated, and building programs more than a few hundred lines of code would quickly become difficult
or impossible.

Hopefully the above example has convinced you that allowing functions to make arbitrary changes to
program state is not a viable option. Fortunately, C++ is specifically designed to allow programmers to
constrain where data can be modified. Many of the programming concepts we've explored so far revolve
around this idea. For example:

• Avoiding global variables. You have probably been hammered repeatedly with the idea that
global variables can be hazardous. Global variables make programs significantly harder to
maintain because globals can be modified by any function, at any time, for any reason. This means
that if a program encounters an error because a global variable has an incorrect value, it is difficult
to track down exactly where in the program that variable received the incorrect value. By using
local variables instead of globals, it is easier to track down exactly where errors occur by following
which functions have access to those variables.

Chapter 9: Refining Abstractions - 245 -

• Marking data members private. We initially explored encapsulation from a theoretical
perspective as a means for separating implementation from interface. However, encapsulation
also helps control where side effects can occur in a program. If a class's data members are marked
private, then any changes to those data members must result from the class's public interface.
Verifying that the class's interface is implemented correctly can therefore increase confidence that
data members aren't mercilessly clobbered.

• Decomposing large functions. Besides making code cleaner, more maintainable, and easier to
follow, decomposition minimizes the amount of code that has access to each local variable. If a
task is well-decomposed, then each function will have access only to a small number of variables
and thus cannot affect much program state.

Each of these programming patterns ensure that data can only be modified in places where a programmer
has explicitly granted particular functions access to that data. However, C++ provides an even stronger
mechanism for preventing unexpected side effects – the const keyword. You have already seen const in
the context of global constants, but the const keyword has many other uses. This section introduces the
mechanics of const (for example, where const can be used and what it means in these contexts) and how
to use it properly in C++ code.

const Variables

So far, you've only seen const in the context of global constants. For example, given the following global
declaration:

 const int MyConstant = 137;

Whenever you refer to the value MyConstant in code, the compiler knows that you're talking about the
value 137. If later in your program you were to write MyConstant = 42, the complier would flag the line
as an error because code to this effect modifies a value you explicitly indicated should never be modified.
However, const is not limited to global constants. You can also declare local variables const to indicate
that their values should never change. Consider the following code snippet:

 for (set<int>::iterator itr = mySet.lower_bound(42);
 itr != mySet.upper_bound(137); ++itr) {
 /* ... manipulate *itr ... */
 }

This code iterates over all of the values in an STL set whose values are in the range [42, 137].* However,
this code is not nearly as efficient as it could be. Because C++ evaluates the looping condition of a for loop
on each iteration, the program will evaluate the statement itr != mySet.upper_bound(137) once per
loop iteration, so the program will recompute mySet.upper_bound(137) multiple times. Although the
STL set is highly optimized and the upper_bound function is particularly fast (on a set with n elements,
upper_bound runs in time proportional to log2 n), if there are many elements in the range [42, 137] the
overhead of multiple calls to upper_bound may be noticeable. To fix this, we might consider computing
mySet.upper_bound exactly once, storing the value somewhere, and then referencing the precomputed
value inside the for loop. Here's one possible implementation:

 set<int>::iterator stop = mySet.upper_bound(137);
 for (set<int>::iterator itr = mySet.lower_bound(42); itr != stop; ++itr) {
 /* ... manipulate *itr ... */
 }

* If you're a bit rusty on the upper_bound and lower_bound functions, refer back to the chapter on STL associative
containers.

- 246 - Chapter 9: Refining Abstractions

This version of the loop will run much faster than its previous incarnation. However, this new version of
the loop now depends on the fact that stop holds the value of mySet.upper_bound(137) throughout the
loop. If we accidentally overwrite stop, we'll end up iterating the wrong number of times. In other words,
the variable stop isn't really a variable – it shouldn't vary – but instead should be a constant. To indicate
to C++ that the value of stop shouldn't change, we can mark the stop variable const. This prevents us
from changing the value of stop, and will cause a compile-time error if we try to do so. The updated code
is shown here:

 const set<int>::iterator stop = mySet.upper_bound(137);
 for (set<int>::iterator itr = mySet.lower_bound(42); itr != stop; ++itr) {
 /* ... manipulate *itr ... */
 }

This is your first glimpse of a const local variable. const local variables are similar to global constants:
they must be initialized to a value, their values can't change during the course of execution, etc. In fact, the
only difference between a const local variable and a global constant is scope. Global constants are
globally visible and persist throughout the course of a program, while const local variables are created
and destroyed like regular local variables.

const Objects

The main idea behind const is to let programmers communicate that the values of certain variables
should not change during program execution. When working with primitive types, the meaning of “should
not change” is fairly clear: an int changes if it is incremented, decremented or overwritten; a bool
changes if it flips from true to false; etc. However, when working with variables of class type, our notion
of “should not change” becomes substantially more nuanced. To give you a sense for why this is, let's
consider a const string, a C++ string whose contents cannot be modified. We can declare a const
string as we would any other const variable. For example:

 const string myString = "This is a constant string!";

Note that, like all const variables, we are still allowed to assign the string an initial value.

Because the string is const, we're not allowed to modify its contents, but we can still perform some
basic operations on it. For example, here's some code that prints out the contents of a const string:

 const string myString = "This is a constant string!";
 for(size_t i = 0; i < myString.length(); ++i)
 cout << myString[i] << endl;

To us humans, the above code seems completely fine and indeed it is legal C++ code. But how does the
compiler know that the length function doesn't modify the contents of the string? This question may
seem silly – of course the length function won't change the length of the string – but this is only obvious
because we humans have a gut feeling about how a function called length should behave. The compiler,
on the other hand, knows nothing of natural language, and could care less whether the function were
named “length” or “zyzzyzplyx.” This raises a natural question: given an arbitrary class, how can the
compiler tell which member functions might modify the receiver object and which ones cannot? To
answer this question, let's look at the prototype for the string member function length:*

* The actual implementation of the string class looks very different from this because string is a class template
rather than an actual class. For our discussion, though, this simplification is perfectly valid.

Chapter 9: Refining Abstractions - 247 -

 class string {
 public:
 size_t length() const;

 /* ... etc. ... */
 };

Note that there is a const after the member function declaration. This is another use of the const
keyword that indicates that the member function does not modify any of the class's instance variables.
That is, when calling a const member function, you're guaranteed that the object's contents cannot
change. (This isn't technically true, as you'll see later, but it's a perfectly valid way of thinking about const
functions).

When working with const objects, you are only allowed to call member functions on that object that have
been explicitly marked const. That is, even if you have a function that doesn't modify the object, unless
you tell the compiler that the member function is const, the compiler will treat it as a non-const function.
This may seem like a nuisance, but has the advantage that it forces you to decide whether or not a member
function should be const before you begin implementing it. That is, the constness of a member function
is an interface design decision, not an implementation design decision.

To see how const member functions work in practice, let's consider a simple Point class that stores a
point in two-dimensional space. Using the getter/setter paradigm, we end up with this class definition:

 class Point {
 public:
 Point(double x, double y);

 double getX();
 double getY();

 void setX(double newX);
 void setY(double newY);

 private:
 double x, y;
 };

Let's take a minute to think about which of these functions should be const and which should not be.
Clearly, the setX and setY functions should not be const, since these operations by their very nature
modify the receiver object. But what about getX and getY? Neither of these functions should modify the
receiver object, since they're designed to let clients query the object's internal state. We should therefore
mark these functions const to indicate that they cannot modify the object. This gives us the following
definition of Point:

- 248 - Chapter 9: Refining Abstractions

 class Point {
 public:
 Point(double x, double y);

 double getX() const;
 double getY() const;

 void setX(double newX);
 void setY(double newY);

 private:
 double x, y;
 };

There's only one function we've ignored so far – the Point constructor. However, in C++ it's illegal to mark
a constructor const, since the typical operation of a constructor runs contrary to the notion of const.
Take a minute to think about why this is; you'll be a better C++ coder for it!

Now that we've marked the getX and getY functions const, we can think about how we might go about
implementing these functions. You might think that we would implement them just as we would regular
member functions, and you would almost be right. However, the fact that the function is const is part of
that function's signature, and so in the implementation of the getX and getY functions we will need to
explicitly indicate that those member functions are const. Here is one possible implementation of getX;
similar code can be written for getY.

 double Point::getX() const {
 return x;
 }

Forgetting to add this const can be a source of much frustration because the C++ treats getX() and
getX() const as two different functions. We will discuss why this is later in this chapter.

In a const member function, all the class's instance variables are treated as const. You can read their
values, but must not modify them. Similarly, inside a const member function, you cannot call other non-
const member functions. The reason for this is straightforward: because non-const member functions
can modify the receiver object, if a const member function could invoke a non-const function, then the
const function might indirectly modify the receiver object. But beyond these restrictions, const member
functions can do anything that regular member functions can. Suppose, for example, that we wish to
update the Point class to support a member function called distanceToOrigin which returns the
distance between the receiver object and the point (0, 0). Because this function shouldn't modify the
receiver object, we'll mark it const, as shown here:

Chapter 9: Refining Abstractions - 249 -

 class Point {
 public:
 Point(double x, double y);

 double getX() const;
 double getY() const;

 void setX(double newX);
 void setY(double newY);

 double distanceToOrigin() const;

 private:
 double x, y;
 };

Mathematically, the distance between a point and the origin is defined as x2
 y2 . Using the sqrt

function from the <cmath> header file, we can implement the distanceToOrigin function as follows:

void Point::distanceToOrigin() const {
 double dx = getX(); // Legal! getX is const.
 double dy = y; // Legal! Reading an instance variable.
 dx *= dx; // Legal! We're modifying dx, which isn't an
 // instance variable.
 dy *= dy; // Legal! Same reason as above.
 return sqrt(dx + dy); // Legal! sqrt is a free function that can't
 // modify the current object.
}

Although this function is marked const, we have substantial leeway with what we can do in the
implementation. We can call the getX function, since it too is marked const. We can also read the value of y
and store it in another variable because this doesn't change its value. Additionally, we can change the values of
the local variables dx and dy, since doing so doesn't change any of the receiver object's data members.
Remember, const member functions guarantee that the receiver object doesn't change, not that the function
doesn't change the values of any variables. Finally, we can call free functions, since those functions don't have
access to the class's data members and therefore cannot modify the receiver.

const References

Throughout this text we've used pass-by-reference by default when passing heavy objects like vectors
and maps as parameters to functions. This improves program efficiency by avoiding expensive copy
operations. Unfortunately, though, using pass-by-reference in this way makes it more difficult to reason
about a function's behavior. For example, suppose you see the following function prototype:

 void DoSomething(vector<int>& vec);

You know that this function accepts a vector<int> by reference, but it's not clear why. Does
DoSomething modify the contents of the vector<int>, or is it just accepting by reference to avoid
making a deep copy of the vector? Without knowing which of the two meanings of pass-by-reference the
function writer intended, you should be wary about passing any important data into this function.
Otherwise, you might end up losing important data as the function destructively modifies the parameter.

We are in an interesting situation. If we don't use pass-by-reference on functions that take large objects as
parameters, our programs will pay substantial runtime costs unnecessarily. On the other hand, if we do
pass large objects by reference, we make it more difficult to reason about exactly what the functions in our

- 250 - Chapter 9: Refining Abstractions

program are trying to do. In other words, we can make a tradeoff between efficiency and clarity. In many
cases, this tradeoff is necessary. Clean, straightforward algorithms are often fast and efficient, but more
often than not they are slower than their more intricate counterparts. But in this particular arena, there is
an easy way to gain the efficiency of pass-by-reference without the associated ambiguity: const
references.

A const reference is, in many ways, like a normal reference. const references refer to objects and
variables declared elsewhere in the program, and any operations performed on the reference are instead
performed on the object being referred to. However, unlike regular references, const references treat the
object they alias as though it were const. In other words, const references capture the notion of looking
at an object without being able to modify it.

To see how const references work in practice, let's consider an example. Suppose that we want to write a
function which prints out the contents of a vector<int>. Such a function clearly should not modify the
vector, and so we can prototype this function as follows:

 void PrintVector(const vector<int>& vec);

Notice that this function takes in a const vector<int>&. This is a const reference (also called a
reference-to-const). Inside the PrintVector function, the vec parameter is treated as though it were
const, and so we cannot make any changes to it. Thus the following implementation of PrintVector is
perfectly legal:

 void PrintVector(const vector<int>& vec) {
 for (size_t k = 0; k < vec.size(); ++k)
 cout << vec[k] << endl;
 }

Although the PrintVector function takes in a reference to a const vector<int>, it is perfectly legal to
pass both const and non-const vector<int>s to PrintVector. Whether or not the original vector is
const, inside the PrintVector function C++ treats the vector as though it were const. Thus it's legal
(and encouraged) to write code like this:

 void PrintVector(const vector<int>& vec) {
 for (size_t k = 0; k < vec.size(); ++k)
 cout << vec[k] << endl;
 }

 int main() {
 vector<int> myVector(NUM_INTS);

 PrintVector(myVector); // Legal! myVector treated const in PrintVector

 myVector.push_back(137); // Legal! myVector isn't const out here.
 }

You might be a bit uneasy with the idea of passing a non-const variable into a function that takes a
reference-to-const. After all, something of type Type isn't the same as something of type const Type.
We can't assign values to const objects, nor can we invoke their non-const member functions. However,
it is perfectly safe to treat a non-const object as though it were const because the legal operations on a
const object are a subset of the legal operations on a non-const object. That is, every object's public
interface can be split into two parts, a const interface of non-mutating operations and a non-const
interface of operations which change the object's state. This is shown below:

Chapter 9: Refining Abstractions - 251 -

Object
State

Non-const
interface

const
interface

In this picture, the object's internal state is represented by the fuzzy cloud, with the const and non-const
interfaces each having access to the internals. When an object is non-const, it has both interfaces; when
const it has only the const interface. Using this mental model, let's think about what happens when we
pass an object by reference-to-const into a function. Because the called function takes in a reference-to-
const, we can treat the function as though it expects only the const interface for an object. Graphically:

Object
State

Non-const
interface

const
interface

c
o
n
s
t

in
te

rf
ac

e

 Called
Function

Calling Function

What does this idea mean for you as a programmer? In particular, when writing functions that need to be
able to look at data but not modify it, you should strongly consider using pass-by-reference-to-const.
This gives you the benefits of pass-by-reference (higher efficiency) with the added guarantee that the
parameter won't be destructively modified. Of course, while it's legal to pass non-const objects to
functions accepting const references, you cannot pass const objects into functions accepting non-const
references. The reason for this is simple: if an object is marked const, its value cannot be changed. If a
const object could be passed into a function by non-const reference, that function could modify the
original object, subverting constness. You can think of const as a universal accepter and of non-const as
the universal donor – you can convert both const and non-const data to const data, but you can't
convert const data to non-const data. Thinking about this using our two-interface analogy, if you have
access to a class's non-const interface, you can always ignore it and just use the const interface.
However, if you only have access to the const interface, you can't suddenly give yourself access to the non-
const interface.

- 252 - Chapter 9: Refining Abstractions

Although const references behave for the most part like regular references, there is one particularly
important behavioral aspect where they diverge. Suppose we are given the following prototype for a
function called DoSomething, which takes in a reference to an int:

 void DoSomething(int& x);

Given this prototype, each of the following calls to DoSomething is illegal:

 DoSomething(137); // Problem: Cannot pass literal by reference
 DoSomething(2.71828); // Problem: Cannot pass literal by reference

 double myDouble;
 DoSomething(myDouble); // Problem: int& cannot bind to double

Let's examine exactly why each of these three calls fail. In the first case, we tried to pass the integer literal
into the DoSomething function. This will cause problems if DoSomething tries to modify its parameter.
Suppose, for example, that DoSomething is implemented as follows:

 void DoSomething(int& x) {
 x = 0;
 }

If we pass 137 directly into DoSomething, the the line x = 0 would try to store the value 0 into the
integer literal 137. This is clearly nonsensical, and so the compiler disallows it. The second erroneous call
to DoSomething (where we pass in 2.71828) fails for the same reason. However, what of the third call,
DoSomething(myDouble)? This fails because myDouble is a double, not an int, and although it's
possible to typecast a double to an int the C++ language explicitly says that this is not acceptable. This
may seem harsh, but it allows C++ programs to run extremely efficiently because the compiler can assume
that the parameter x is bound to an actual int, not something implicitly convertible to an int.*

However, suppose we change the prototype of DoSomething to accept its parameter by const reference,
as shown here:

 void DoSomething(const int& x);

Then all of the following calls to DoSomething are perfectly legal:

 DoSomething(137); // Legal
 DoSomething(2.71828); // Legal

 double myDouble;
 DoSomething(myDouble); // Legal!

Why the difference? Think about why all of the above examples caused problems when mixed with non-
const references. In the first case, we might accidentally assign a new value to an integer literal; the
second case ran into similar problems. In the third case, due to hardware restrictions, we cannot bind an
int& to a double because writing a value to that int& would result in incorrect behavior. All of these

* I know that this explanation might seem a bit fuzzy, primarily because the main reason is technical and has to do
with how ints and doubles are represented in the machine. If you try to execute the machine code instructions to
store an integer value into a variable that's declared as a double, the double will take on a completely meaningless
value that has nothing to do with the integer that we intended to store in it. If you're interested in learning more
about why this is, consider taking a compilers course or studying an assembly language (MIPS or x86). If you still
don't understand why int&s can't be bound to doubles, send me an email and I can try to explain things in more
detail.

Chapter 9: Refining Abstractions - 253 -

cases have to do with the fact that the reference can be used to modify the object it's bound to. But when
working with const references, none of these problems are possible because the referenced value can't be
changed through the reference.

Because normal restrictions on references do not apply to const references, you can treat pass-by-
reference-to-const as a smarter version of pass-by-value. Any value that could be passed by value can be
passed by reference-to-const, but when using reference-to-const objects won't be copied in most cases.
We will address this later in this chapter. For now, treating pass-by-reference-to-const as a more efficient
pass-by-reference will be wise.

const and Pointers

The const keyword is useful, but has its share of quirks. Perhaps the most persistent source of confusion
when working with const arises when mixing const and pointers. For example, suppose that you want
to declare a C string as a global constant. Since to declare a global C++ string constant you use the syntax

 const string kGlobalCppString = "This is a string!";

You might assume that to make a global C string constant, the syntax would be:

 const char* kGlobalStr = "This is a string!"; // Problem: Legal but incorrect

This syntax is partially correct. If you were ever to write kGlobalString[0] = 'X', rather than getting
segmentation faults at runtime (see the C strings chapter for more info), you'd instead get a compiler error
that would direct you to the line where you tried to modify the global constant. But unfortunately this
variable declaration contains a subtle but crucial mistake. Suppose, for example, that we write the
following code:

 kGlobalString = "Reassigned!";

Here, we reassign kGlobalString to point to the string literal “Reassigned!” Note that we didn't modify
the contents of the character sequence kGlobalString points to – instead we changed what character
sequence kGlobalString points to. In other words, we modified the pointer, not the pointee, and so the
above line will compile correctly and other code that references kGlobalString will suddenly begin
using the string “Reassigned!” instead of “This is a string!” as we would hope.

C++ distinguishes between two similar-sounding entities: a pointer-to-const and a const pointer. A
pointer-to-const is a pointer like kGlobalString that points to data that cannot be modified. While
you're free to reassign pointers-to-const, you cannot change the value of the elements they point to. To
declare a pointer-to-const, use the syntax const Type* myPointer, with the const on the left of the
star. Alternatively, you can declare pointers-to-const by writing Type const* myPointer.

A const pointer, on the other hand, is a pointer that cannot be assigned to point to a different value. Thus
with a const pointer, you can modify the pointee but not the pointer. To declare a const pointer, you use
the syntax Type* const myConstPointer, with the const on the right side of the star. Here,
myConstPointer can't be reassigned, but you are free to modify the value it points to.

To illustrate by analogy, a pointer-to-const is like a telescope – it can look at other objects, and freely
change which objects it looks at, but it cannot apply any changes to those objects. A const pointer, on the
other hand, is like an industrial laser. The laser can be turned on at high power to cut a sheet of metal, or
at low power to get a sense of what the metal looks like, but the beam is always pointed at the same place.
You wouldn't try to cut a sheet of metal with a telescope, nor would you try to look at an object at a

- 254 - Chapter 9: Refining Abstractions

distance by blasting a high-energy laser at it. Remembering whether you want a pointer-to-const (look
but don't touch) or a const pointer (touch, but only touch one thing) will be tricky at first, but will become
more natural as you mature as a programmer.

Note that the syntax for a pointer-to-const is const Type * ptr while the syntax for a const pointer is
Type * const ptr. The only difference is where the const is in relation to the star. One trick for
remembering which is which is to read the variable declaration from right-to-left. For example, reading
const Type * ptr backwards says that “ptr is a pointer to a Type that's const,” while
Type * const ptr read backwards is “ptr is a const pointer to a Type.”

Returning to the C string example, to make kGlobalString behave as a true C string constant, we'd need
to make the pointer both a const pointer and a pointer-to-const. This may seem strange, but is perfectly
legal C++. The result is a const pointer-to-const, a pointer that can only refer to one object and that
cannot change the value of that object. Syntactically, this looks as follows:

 const char * const kGlobalString = "This is a string!";

Note that there are two consts here – one before the star and one after it. Here, the first const indicates
that you are declaring a pointer-to-const, while the second means that the pointer itself is const. Using
the trick of reading the declaration backwards, here we have “kGlobalString is a const pointer to a
char that's const.” This is the correct way to make the C string completely const, although it is
admittedly a bit clunky.

The following table summarizes what types of pointers you can create with const:

Declaration Syntax Name Can reassign? Can modify pointee?
const Type* myPtr Pointer-to-const Yes No

Type const* myPtr Pointer-to-const Yes No

Type* const myPtr const pointer No Yes

const Type* const myPtr const pointer-to-const No No

Type const* const myPtr const pointer-to-const No No

As with references and references-to-const, it is legal to set a pointer-to-const to point to a non-const
object. This simply means that the object cannot be modified through the pointer-to-const.

const_iterator

Suppose you have a function that accepts a vector<string> by reference-to-const and you'd like to
print out its contents. You might want to write code that looks like this:

 void PrintVector(const vector<string>& myVector) {
 for(vector<string>::iterator itr = myVector.begin(); // Problem
 itr != myVector.end(); ++itr)
 cout << *itr << endl;
 }

Initially, this code seems perfectly fine, but unfortunately the compiler will give you some positively
ferocious errors if you try to compile this code. The problem has to do with a subtlety involving STL
iterators and const. Notice that in the first part of the for loop we declare an object of type
vector<string>::iterator. Because the vector is const, somehow the compiler has to know that the

Chapter 9: Refining Abstractions - 255 -

iterator you're getting to the vector can't modify the vector's contents. Otherwise, we might be able to
do something like this:

 /* Note: This code doesn't compile. It just shows off what happens if we
 * could get an iterator to a const vector.
 */
 void EvilFunction(const vector<string>& myVector) {
 vector<string>::iterator itr = myVector.begin();

 *itr = 42; // Just modified a const object!
 }

In other words, if we could get an iterator to iterate over a const vector, that iterator could be used in
fiendish and diabolical ways to modify the contents of the vector, something we promised not to do. This
raises an interesting issue. Let's reconsider our (currently flawed) implementation of PrintVector:

 void PrintVector(const vector<string>& myVector) {
 for(vector<string>::iterator itr = myVector.begin(); // Problem
 itr != myVector.end(); ++itr)
 cout << *itr << endl;
 }

This code doesn't compile because the for loop tries to get an iterator that traverses the vector. As
shown above, given an iterator over a const vector, it's possible to modify the contents of that vector
and subvert constness. But in this function we don't modify the contents of the vector – we're
harmlessly traversing the vector elements and printing its contents! So why does the compiler
cryptically complain about our code? The reason is that constness is conservative. When the C++
compiler checks your code to ensure that you haven't violated the sanctity of const, its analysis is
imprecise. Rather than determining whether or not your code actually modifies a const variable, it
checks for syntactic structures which violate const – do you assign a a const variable? Do you invoke a
non-const function on a const variable? Do you pass a const variable into a function which takes an
argument by non-const reference? Because of this, it is possible to write code that cannot possibly
change the value of a const variable but which is still rejected by the compiler. For example, consider the
following code snippet:

 void SubtleFunction(const vector<string>& myVector) {
 if (myVector.empty())
 myVector.clear(); // Error! Calls non-const function.
 }

This function checks to see if the parameter is the empty vector, and, if so, calls clear on that vector.
Calling clear on the empty vector does nothing to that vector, and so technically speaking this function
never changes the value of its parameter. However, the C++ compiler will still reject this code, because you
invoked clear (a non-const member function) on a const vector.

Why does the compiler take this approach? The answer is that it is provably impossible to build a compiler
that can actually determine whether or not a C++ function will change the value of a particular variable.
You read that correctly – no compiler, no matter how sophisticated or clever, can correctly determine in all
cases whether a C++ program will read or write a particular variable. Because of this, C++'s rules for
constness have a margin of error. Some programs that will never change the value of a certain variable
will cause compiler errors, but any program that correctly obeys const will ensure that const variables
are never overwritten. This explains why, in our simple PrintVector example, the compiler complained.
Although we never actually overwrite the elements of the vector using our iterator, the fact that someone
with an iterator could overwrite the elements of the vector is enough to cause the compiler to panic.

- 256 - Chapter 9: Refining Abstractions

Because raw iterators don't play nicely with const containers, we're going to need to change our code.
One idea you may have had would be to mark the iterator const to prevent it from overwriting the
elements of the vector. While well-intentioned, this approach won't work. A const iterator is like a
const pointer – it can't change what element it iterates over, but it can change the value of the elements it
iterates over. This is the reverse of what we want – we want an iterator that can't change the values it
looks at but can change which elements it iterates over. For this, we can use const_iterators. Each STL
container that defines an iterator also defines a const_iterator that can read the values from the
container but not write them. Using a const_iterator, we can rewrite our implementation of
PrintVector as follows:

 void PrintVector(const vector<string>& myVector) {
 for(vector<string>::const_iterator itr = myVector.begin(); // Correct!
 itr != myVector.end(); ++itr)
 cout << *itr << endl;
 }

To maintain constness, you cannot use const_iterators in functions like insert or erase that modify
containers. You can, however, define iterator ranges using const_iterators for algorithms like
binary_search that don't modify the ranges they apply to.

There is one subtle point we have glossed over in this discussion – how does the vector know that it
should hand back a const_iterator when marked const and a regular iterator otherwise? That is, how
do the vector's begin and end functions hand back objects of two different types based on whether or
not the vector is const? The answer may surprise you. Here is a (slightly simplified) version of the
vector interface which showcases the begin and end functions:

 template <typename T> class vector {
 public:
 iterator begin();
 iterator end();

 const_iterator begin() const;
 const_iterator end() const;

 /* ... etc. ... */
 };

Notice that there are two begin functions – one of which is non-const and returns a regular iterator,
and one of which is const and returns a const_iterator. There are similarly two versions end function.
This is a technique known as const-overloading and allows a function to have two different behaviors
based on whether or not an object is const. When a const-overloaded function is invoked, the version of
the function is called that matches the constness of the receiver object. For example, if you call begin()
on a const vector, it will invoke the const version of begin() and return a const_iterator. If
begin() is invoked on a non-const vector, then the non-const version of begin() will be invoked and
the function will yield a regular iterator. We will see some examples of const-overloading in upcoming
sections.

Limitations of const

Although const is a useful programming construct, certain aspects of const are counterintuitive and can
lead to subtle violations of constness. One common problem arises when using pointers in const

Chapter 9: Refining Abstractions - 257 -

member functions. Suppose you have the following implementation of class Vector, which acts like a
vector<int>:

 class Vector {
 public:
 /* ... other members ...*/
 void constFunction() const;

 private:
 int* elems;
 };

Consider the following legal implementation of constFunction:

 Vector::constFunction() const {
 elems[0] = 137;
 }

Unfortunately, while this code modifies the value of the object pointed to by elems, it is perfectly legal C++
code because it doesn't modify the value of elems – instead, it modifies the value of the elements pointed
at by elems. In effect, because the member function is declared const, elems acts as a const pointer (the
pointer can't change) instead of a pointer-to-const (the pointee can't change). This raises the issue of the
distinction between “bitwise constness” and “semantic constness.” Bitwise constness, which is the type
enforced by C++, means that const objects are prohibited from making any bitwise changes to
themselves. In the above example, since the value of the elems pointer didn't change, C++ considers the
constFunction implementation const-correct. However, from the viewpoint of semantic constness,
const classes should be prohibited from modifying anything that would make the object appear somehow
different. With regards to the above scenario with elems, the class isn't semantically const because the
object, while const, was able to modify its data.

When working with const it's important to remember that while C++ will enforce bitwise constness, you
must take care to ensure that your program is semantically const. From your perspective as a
programmer, if you invoke a const member function on an object, you would expect the receiver to be
unchanged. If the function isn't semantically const, however, this won't be the case, and a const member
function might make significant changes to the object's state.

To demonstrate the difference between bitwise and semantically const code, let's consider another
member function of the Vector class that simply returns the internally stored string:

 int* Vector::rawElems() const {
 return elems;
 }

Initially, this code looks correct. Since returning theString doesn't modify the receiver object, the
function is bitwise const. But this code entirely bypasses constness. Consider, for example, this code:

 void ProcessRawElements(const Vector& v) {
 int* elems = v.rawElems();
 for (size_t i = 1; i < v.size(); ++i) // Problem: Subverts const!
 elems[i – 1] = elems[i];
 }

Here, we use the pointer obtained from rawElems to indirectly move around the elements of the array.
Although v is marked const in this example, we somehow have changed its contents. This entirely defeats

- 258 - Chapter 9: Refining Abstractions

the purpose of const and should convey why maintaining semantic constness is a crucial part of good
programming practice.

Chapter 9: Refining Abstractions - 259 -

The above implementation of rawElems is fatally flawed and allows clients to subvert the constness of
the receiver object. How can we modify rawElems so that the above code no longer works? One
particularly elegant solution is to modify the signature of rawElems so that it returns a const int*
instead of a raw int*. For example:

 const int* Vector::rawElems() const {
 return elems;
 }

Because the returned array has been marked const, clients cannot modify any of the characters in the
returned sequence. As a general rule of thumb, avoid returning non-const pointers from member
functions that are marked const. There are exceptions to this rule, of course, but in most cases const
functions should return pointers-to-const.

mutable

Because C++ enforces bitwise constness rather than semantic constness, you might find yourself in a
situation where a member function changes an object's bitwise representation while still being
semantically const. At first this might seem unusual – how could we possibly leave the object in the same
logical state if we change its binary representation? – but such situations can arise in practice. For
example, suppose that we want to write a class that represents a grocery list. The class definition is
provided here:

 class GroceryList {
 public:
 GroceryList(const string& filename); // Load from a file.

 /* ... other member functions ... */

 string getItemAt(int index) const;

 private:
 vector<string> data;
 };

The GroceryList constructor takes in a filename representing a grocery list (with one element per line),
then allows us to look up items in the list using the member function getItemAt. Initially, we might want
to implement this class as follows:

 GroceryList::GroceryList(const string& filename) {
 /* Read in the entire contents of the file and store in the vector. */
 ifstream input(filename.c_str());
 data.insert(data.begin(), istream_iterator<string>(input),
 istream_iterator<string>());
 }

 /* Returns the element at the position specified by index. */
 string GroceryList::getItemAt(int index) const {
 return data[index];
 }

Here, the GroceryList constructor takes in the name of a file and reads the contents of that file into a
vector<string> called data. The getItemAt member function then accepts an index and returns the
corresponding element from the vector. While this implementation works correctly, in many cases it is
needlessly inefficient. Consider the case where our grocery list is several million lines long (maybe if

- 260 - Chapter 9: Refining Abstractions

we're literally trying to find enough food to feed an army), but where we only need to look at the first few
elements of the list. With the current implementation of GroceryList, the GroceryList constructor will
read in the entire grocery list file, an operation which undoubtedly will take a long time to finish and
dwarfs the small time necessary to retrieve the stored elements. How can we resolve this problem?

There are several strategies we could use to eliminate this inefficiency. Perhaps the easiest approach is to
have the constructor open the file, and then to only read in data when it's explicitly requested in the
getItemAt function. That way, we don't read any data unless it's absolutely necessary. Here is one
possible implementation:

 class GroceryList {
 public:
 GroceryList(const string& filename);

 /* ... other member functions ... */

 string getItemAt(int index); // Problem: No longer const

 private:
 vector<string> data;
 ifstream sourceStream;
 };

 GroceryList::GroceryList(const string& filename) {
 sourceStream.open(filename.c_str()); // Open the file.
 }

 string GroceryList::getItemAt(int index) {
 /* Read in enough data to satisfy the request. If we've already read it
 * in, this loop will not execute and we won't read any data.
 */
 while(index >= data.length()) {
 string line;
 getline(sourceStream, line);

 data.push_back(line);
 }
 return data[index];
 }

Unlike our previous implementation, the new GroceryList constructor opens the file without reading
any data. The new getItemAt function is slightly more complicated. Because we no longer read all the
data in the constructor, when asked for an element, one of two cases will be true. First, we might have
already read in the data for that line, in which case we simply hand back the value stored in the data
object. Second, we may need to read more data from the file. In this case, we loop reading data until there
are enough elements in the data vector to satisfy the request, then return the appropriate string.

Although this new implementation is more efficient,* the getItemAt function can no longer be marked
const because it modifies both the data and sourceStream data members. If you'll notice, though,
despite the fact that the getItemAt function is not bitwise const, it is semantically const. GroceryList
is supposed to encapsulate an immutable grocery list, and by shifting the file reading from the constructor
to getItemAt we have only changed the implementation, not the guarantee that getItemAt will not
modify the list. We've reached an impasse: the interface for GroceryList should not depend on its

* The general technique of deferring computations until they are absolutely required is called lazy evaluation and is
an excellent way to improve program efficiency.

Chapter 9: Refining Abstractions - 261 -

implementation, and so the getItemAt function should be marked const. However, we have just
produced a perfectly reasonable implementation of GroceryList that is not bitwise const, meaning that
the interface needs to change to accommodate the implementation. Given our two conflicting needs –
good interface design and good implementation design – how can we strike a balance?

For situations such as these, where a function is semantically const but not bitwise const, C++ provides
the mutable keyword. mutable is an attribute that can be applied to data members that indicates that
those data members can be modified inside member functions that are marked const. Using mutable, we
can rewrite the GroceryList class definition to look like this:

 class GroceryList {
 public:
 GroceryList(const string& filename); // Load from a file.

 /* ... other member functions ... */

 string getItemAt(int index) const; // Now marked const

 private:
 /* These data members now mutable. */
 mutable vector<string> data;
 mutable ifstream sourceStream;
 };

Because data and sourceStream are both mutable, the new implementation of getItemAt can now be
marked const, as shown above.

mutable is a special-purpose keyword that should be used sparingly and with caution. Mutable data
members are exempt from the type-checking rules normally applied to const and consequently are prone
to the same errors as non-const variables. Also, once data members have been marked mutable, any
member function can modify them, so be sure to double-check your code for correctness. Most
importantly, though, do not use mutable to silence compiler warnings and errors unless you're absolutely
certain that it's the right thing to do. If you do, you run the risk of having functions marked const that are
neither bitwise nor semantically const, entirely defeating the purpose of the const keyword.

const-Correctness

I still sometimes come across programmers who think const isn't worth the trouble. “Aw, const
is a pain to write everywhere,” I've heard some complain. “If I use it in one place, I have to use it
all the time. And anyway, other people skip it, and their programs work fine. Some of the libraries
that I use aren't const-correct either. Is const worth it?”

We could imagine a similar scene, this time at a rifle range: “Aw, this gun's safety is a pain to set
all the time. And anyway, some other people don't use it either, and some of them haven't shot
their own feet off...”

Safety-incorrect riflemen are not long for this world. Nor are const-incorrect programmers,
carpenters who don't have time for hard-hats, and electricians who don't have time to identify the
live wire. There is no excuse for ignoring the safety mechanisms provided with a product, and
there is particularly no excuse for programmers too lazy to write const-correct code.

– Herb Sutter, author of Exceptional C++ and all-around C++ guru. [Sut98]

- 262 - Chapter 9: Refining Abstractions

Now that you're familiar with the mechanics of const, we'll explore how to use const correctly in real-
world C++ code. In the remainder of this section, we will explore const-correctness, a system for using
const to indicate the effects of your functions (or lack thereof). From this point forward, all of the code in
this book will be const-correct and you should make a serious effort to const-correct your own code.

What is const-correctness?

At a high-level, const-correct code is code that clearly indicates which variables and functions cannot
modify program state. More concretely, const-correctness requires that const be applied consistently
and pervasively. In particular, const-correct code tends to use const as follows:

• Objects are never passed by value. Any object that would be passed by value is instead passed
by reference-to-const or pointer-to-const.

• Member functions which do not change state are marked const. Similarly, a function that is
not marked const should mutate state somehow.

• Variables which are set but never modified are marked const. Again, a variable not marked
const should have its value changed at some point.

Let us take some time to explore the ramifications of each of these items individually.

Objects are never passed by value

C++ has three parameter-passing mechanisms – pass-by-value, pass-by-reference, and pass-by-pointer.
The first of these requires C++ to make a full copy of the parameter being passed in, while the latter two
initialize the parameter by copying a pointer to the object instead of the full object.* When passing
primitive types (int, double, char*, etc.) as parameters to a function, the cost of a deep copy is usually
negligible, but passing a heavy object like a string, vector, or map can at times be as expensive as the
body of the function using the copy. Moreover, when passing objects by value to a function, those objects
also need to be cleaned up by their destructors once that function returns. The cost of passing an object
by value is thus at least the cost of a call to the class's copy constructor (discussed in a later chapter) and a
call to the destructor, whereas passing that same object by reference or by pointer simply costs a single
pointer copy.

To avoid incurring the overhead of a full object deep-copy, you should avoid passing objects by value into
functions and should instead opt to pass either by reference or by pointer. To be const-correct, moreover,
you should consider passing the object by reference-to-const or by pointer-to-const if you don't plan on
mutating the object inside the function. In fact, you can treat pass-by-reference-to-const or pass-by-
pointer-to-const as the smarter, faster way of passing an object by value. With both pass-by-value and
pass-by-reference-to-const, the caller is guaranteed that the object will not change value inside the
function call.

There is one difference between pass-by-reference-to-const and pass-by-value, though, and that's when
using pass-by-value the function gets a fresh object that it is free to destructively modify. When using
pass-by-reference-to-const, the function cannot mutate the parameter. At times this might be a bit vexing.
For example, consider the ConvertToLowerCase function we wrote in the earlier chapter on STL
algorithms:

* References are commonly implemented behind-the-scenes in a manner similar to pointers, so passing an object
by reference is at least as efficient as passing an object by pointer.

Chapter 9: Refining Abstractions - 263 -

- 264 - Chapter 9: Refining Abstractions

 string ConvertToLowerCase(string toConvert) {
 transform(toConvert.begin(), toConvert.end(),
 toConvert.begin(),
 ::tolower);
 return toConvert;
 }

Here, if we simply change the parameter from being passed-by-value to being passed-by-reference-to-
const, the code won't compile because we modify the toConvert variable. In situations like these, it is
sometimes preferable to use pass-by-value, but alternatively we can rewrite the function as follows:

 string ConvertToLowerCase(const string& toConvert) {
 string result = toConvert;
 transform(result.begin(), result.end(), result.begin(), ::tolower);
 return result;
 }

Here, we simply create a new variable called result, initialize it to the parameter toConvert, then
proceed as in the above function.

Member functions which do not change state are const

If you'll recall from our earlier discussion of const member functions, when working with const
instances of a class, C++ only allows you to invoke member functions which are explicitly marked const.
No matter how innocuous a function is, if it isn't explicitly marked const, you cannot invoke it on a const
instance of an object. This means that when designing classes, you should take great care to mark const
every member function that does not change the state of the object. Is this a lot of work? Absolutely!
Does it pay off? Of course!

As an extreme example of why you should always mark nonmutating member functions const, suppose
you try to pass a CS106B/X Vector to a function by reference-to-const. Since the Vector is marked as
const, you can only call Vector member functions that themselves are const. Unfortunately, none of the
Vector's member functions are const, so you can't call any member functions of a const Vector. A
const CS106B/X Vector is effectively a digital brick. As fun as bricks are, from a functional standpoint
they're pretty much useless, so do make sure to constify your member functions.

If you take care to const correct all member functions that don't modify state, then your code will have an
additional, stronger property: member functions which are not marked const are guaranteed to make
some sort of change to the receiver's internal state. From an interface perspective this is wonderful – if
you want to call a particular function that isn't marked const, you can almost guarantee that it's going to
make some form of modification to the receiver object. Thus when you're getting accustomed to a new
code base, you can quickly determine what operations on an object modify that object and which just
return some sort of internal state.

Variables which are set but never changed are const

Variables vary. That's why they're called variables. Constants, on the other hand, do not. Semantically,
there is a huge difference between the sorts of operations you can perform on constants and the
operations you can perform on variables, and using one where you meant to use the other can cause all
sorts of debugging headaches. Using const, we can make explicit the distinction between constant values
and true variables, which can make debugging and code maintenance much easier. If a variable is const,
you cannot inadvertently pass it by reference or by pointer to a function which subtly modifies it, nor can
you accidentally overwrite it with = when you meant to check for equality with ==. Many years after

Chapter 9: Refining Abstractions - 265 -

you've marked a variable const, programmers trying to decipher your code will let out a sigh of relief as
they realize that they don't need to watch out for subtle operations which overwrite or change its value.

Without getting carried away, you should try to mark as many local variables const as possible. The
additional compile-time safety checks and readability will more than compensate for the extra time you
spent typing those extra five characters.

Example: CS106B/X Map

As an example of what const-correctness looks like in practice, we'll consider how to take a variant of the
CS106B/X Map class and modify it so that it is const-correct. The initial interface looks like this:

 template <typename ValueType> class Map {
 public:
 Map(int sizeHint = 101);
 ~Map();

 int size();
 bool isEmpty();

 void put(string key, ValueType value);
 void remove(string key);
 bool containsKey(string key);

 /* get causes an Error if the key does not exist. operator[] (the
 * function which is called when you use the map["key"] syntax) creates
 * an element with the specified key if the key does not already exist.
 */
 ValueType get(string key);
 ValueType& operator[](string key);

 void clear();

 void mapAll(void fn(string key, ValueType val));

 template <typename ClientDataType>
 void mapAll(void fn(string key, ValueType val, ClientDataType& data),
 ClientDataType& data);

 Iterator iterator();

 private:
 /* ... Implementation specific ... */
 };

The operator[] function shown here is what's called an overloaded operator and is the function that lets
us write code to the effect of myMap["Key"] = value and value = myMap["Key"]. We will cover
overloaded operators in a later chapter, but for now you can think of it simply as a function that is called
whenever the Map has the element-selection brackets applied to it.

The first set of changes we should make to the Map is to mark all of the public member functions which
don't modify state const. This results in the following interface:

- 266 - Chapter 9: Refining Abstractions

 /* Note: Still more changes to make. Do not use this code as a reference! */
 template <typename ValueType> class Map {
 public:
 Map(int sizeHint = 101);
 ~Map();

 int size() const;
 bool isEmpty() const;

 void put(string key, ValueType value);
 void remove(string key);
 bool containsKey(string key) const;

 /* get causes an Error if the key does not exist. operator[] (the
 * function which is called when you use the map["key"] syntax) creates
 * an element with the specified key if the key does not already exist.
 */
 ValueType get(string key) const;
 ValueType& operator[](string key);

 void clear();

 void mapAll(void fn(string key, ValueType val)) const;
 template <typename ClientDataType>
 void mapAll(void fn(string key, ValueType val, ClientDataType& data),
 ClientDataType& data) const;

 Iterator iterator() const;

 private:
 /* ... Implementation specific ... */
 };

The size, isEmpty, and containsKey functions are all const because they simply query object
properties without changing the Map. get is also const since accessing a key/value pair in the Map does
not actually modify the underlying state, but operator[] should definitely not be marked const because
it may update the container if the specified key does not exist.

The trickier functions to const-correct are mapAll and iterator. Unlike the STL iterators, CS106B/X
iterators are read-only and can't modify the underlying container. Handing back an iterator to the Map
contents therefore cannot change the Map's contents, so we have marked iterator const. In addition,
since mapAll passes its arguments to the callback function by value, there is no way for the callback
function to modify the underlying container. It should therefore be marked const.

Now that the interface has its member functions const-ified, we should make a second pass over the Map
and replace all instances of pass-by-value with pass-by-reference-to-const. In general, objects should
never be passed by value and should always be passed either by pointer or reference with the appropriate
constness. This eliminates unnecessary copying and can make programs perform asymptotically better.
The resulting class looks like this:

Chapter 9: Refining Abstractions - 267 -

 /* Note: Still more changes to make. Do not use this code as a reference! */
 template <typename ValueType> class Map {
 public:
 Map(int sizeHint = 101);
 ~Map();

 int size() const;
 bool isEmpty() const;

 void put(const string& key, const ValueType& value);
 void remove(const string& key);
 bool containsKey(const string& key) const;

 /* get causes an Error if the key does not exist. operator[] (the
 * function which is called when you use the map["key"] syntax) creates
 * an element with the specified key if the key does not already exist.
 */
 ValueType get(const string& key) const;
 ValueType& operator[](const string& key);

 void clear();

 void mapAll(void (fn)(const string& key, const ValueType& val)) const;
 template <typename ClientDataType>
 void mapAll(void (fn)(const string& key, const ValueType& val,
 ClientDataType& data),
 ClientDataType &data) const;

 Iterator iterator() const;

 private:
 /* ... Implementation specific ... */
 };

The parameters to put, remove, containsKey, get, and operator[] have all been updated to use pass-
by-reference-to-const instead of pass-by-value. The trickier functions to modify are the mapAll
functions. These functions themselves accept function pointers which initially took their values by value.
We have updated them appropriately so that the function pointers accept their arguments by reference-to-
const, since we assume that the class client will also be const-correct. Note that we did not mark the
ClientDataType& parameter to mapAll const, since the Map client may actually want to modify that
parameter.

There is one last change to make, and it concerns the get function, which currently returns a copy of the
value associated with a given key. At a high-level, there is nothing intuitively wrong with returning a copy
of the stored value, but from an efficiency standpoint we may end up paying a steep runtime cost by
returning the object by value. After all, this requires a full object deep copy, plus a call to the object's
destructor once the returned object goes out of scope. Instead, we'll modify the interface such that this
function returns the object by reference-to-const. This allows the Map client to look at the value and, if
they choose, copy it, but prevents clients from intrusively modifying the Map internals through a const
function. The final, correct interface for Map looks like this:

- 268 - Chapter 9: Refining Abstractions

 /* const-corrected version of the CS106B/X Map. */
 template <typename ValueType> class Map {
 public:
 Map(int sizeHint = 101);
 ~Map();

 int size() const;
 bool isEmpty() const;

 void put(const string& key, const ValueType& value);
 void remove(const string& key);
 bool containsKey(const string& key) const;

 /* get causes an Error if the key does not exist. operator[] (the
 * function which is called when you use the map["key"] syntax) creates
 * an element with the specified key if the key does not already exist.
 */
 const ValueType& get(const string& key) const;
 ValueType& operator[](const string& key);

 void clear();

 void mapAll(void (fn)(const string& key, const ValueType& val)) const;
 template <typename ClientDataType>
 void mapAll(void (fn)(const string& key, const ValueType& val,
 ClientDataType& data),
 ClientDataType &data) const;

 Iterator iterator() const;

 private:
 /* ... Implementation specific ... */
 };

As an interesting intellectual exercise, compare this code to the original version of the Map. The interface
declaration is considerably longer than before because of the additional consts, but ultimately is more
pleasing. Someone unfamiliar with the interface can understand, for example, that the Map's Iterator
type cannot modify the underlying container (since otherwise the iterator() function wouldn't be
const), and can also note that mapAll allows only a read-only map operation over the Map. This makes
the code more self-documenting, a great boon to programmers responsible for maintaining this code base
in the long run.

Why be const-correct?

As you can see from the example with the CS106B/X Map, making code const-correct can be tricky and
time-consuming. Indeed, typing out all the requisite consts and &s can become tedious after a while. So
why should you want to be const-correct in the first place?

There are multiple reasons why code is better off const-correct than non-const-correct. Here are a few:

• Code correctness. If nothing else, marking code const whenever possible reduces the possibility
for lurking bugs in your code. Because the compiler can check which regions of the code are and
are not mutable, your code is less likely to contain logic errors stemming either from a misuse of
an interface or from a buggy implementation of a member function.

Chapter 9: Refining Abstractions - 269 -

• Code documentation. const-correct code is self-documenting and clearly indicates to other
programmers what it is and is not capable of doing. If you are presented an interface for an
entirely foreign class, you may still be able to figure out which methods are safe to call with
important data by noting which member functions are const or accept parameters by reference-
to-const.

• Library integration. The C++ standard libraries and most third-party libraries are fully const-
correct and expect that any classes or functions that interface with them to be const-correct as
well. Writing code that is not const-correct can prevent you from fully harnessing the full power
of some of these libraries.

Optimizing Construction with Member Initializer Lists

We've just concluded a whirlwind tour of const, and now it's time to change gears and talk about an
entirely different aspect of class design: the member initializer list.

Normally, when you create a class, you'll initialize all of its data members in the body constructor.
However, in some cases you'll need to initialize instance variables before the constructor begins running.
Perhaps you'll have a const instance variable that you cannot assign a value, or maybe you have an object
as an instance variable where you do not want to use the default constructor. For situations like these, C+
+ has a construct called the member initializer list that you can use to fine-tune the way your data
members are set up. This section discusses initializer list syntax, situations where initializer lists are
appropriate, and some of the subtleties of initializer lists.

How C++ Constructs Objects

To fully understand why initializer lists exist in the first place, you'll need to understand the way that C++
creates and initializes new objects.

Let's suppose you have the following class:

 class SimpleClass {
 public:
 SimpleClass();

 private:
 int myInt;
 string myString;
 vector<int> myVector;
 };

Let's define the SimpleClass constructor as follows:

 SimpleClass::SimpleClass() {
 myInt = 5;
 myString = "C++!";
 myVector.resize(10);
 }

What happens when you create a new instance of the class MyClass? It turns out that the simple line of
code MyClass mc actually causes a cascade of events that goes on behind the scenes. Let's take a look at
what happens, step-by-step.

- 270 - Chapter 9: Refining Abstractions

The first step in constructing a C++ object is simply to get enough space to hold all of the object's data
members. The memory is not initialized to any particular value, so initially all of your object's data
members hold garbage values. In memory, this looks something like this:

As you can see, none of the instance variables have been initialized, so they all contain junk. At this point,
C++ calls the default constructor of each instance variable. For primitive types, this leaves the variables
unchanged. After this step, our object looks something like this:

Finally, C++ will invoke the object's constructor so you can perform any additional initialization code.
Using the constructor defined above, the final version of the new object will look like this:

int myInt 137

string myString
Length: 4
Text: "C++"

vector<int> myVector Size: 10
Elements: {0, 0, ... , 0}

int myInt ???

string myString
Length: 0
Text: ""

vector<int> myVector Size: 0
Elements: {}

int myInt ???

string myString
Length: ???
Text: ???

vector<int> myVector Size: ???
Elements: ???

Chapter 9: Refining Abstractions - 271 -

At this point, our object is fully-constructed and ready to use.

However, there's one thing to consider here. Before we reached the SimpleClass constructor, C++ called
the default constructor on both myString and myVector. myString was therefore initialized to the
empty string, and myVector was constructed to hold no elements. However, in the SimpleClass
constructor, we immediately assigned myString to hold “C++!” and resized myVector to hold ten
elements. This means that we effectively initialized myString and myVector twice – once with their
default constructors and once in the SimpleClass constructor.*

To improve efficiency and resolve certain other problems which we'll explore later, C++ has a feature
called an initializer list. An initializer list is simply a series of values that C++ will use instead of the default
values to initialize instance variables. For example, in the above example, you can use an initializer list to
specify that the variable myString should be set to “C++!” before the constructor even begins running.

To use an initializer list, you add a colon after the constructor and then list which values to initialize which
variables with. For example, here's a modified version of the SimpleClass constructor that initializes all
the instance variables in an initializer list instead of in the constructor:

 SimpleClass::SimpleClass() : myInt(5), myString("C++!"), myVector(10) {
 // Note: Empty constructor
 }

Here, we're telling C++ to initialize the variables myInt and myString to 5 and “C++!,” respectively, before
the class constructor is even called. Also, by writing myVector(10), we're telling C++ to invoke the
parametrized constructor of myVector passing in the value 10, which creates a vector with ten elements.
This time, when we create a new object of type myVector, the creation steps will look like this:

First, as in the previous case, the object is allocated somewhere in memory and all variables have garbage
values:

Next, C++ invokes all of the constructors for the object's data members using the values specified in the
initializer list. The object now looks like this:

* Technically speaking, the objects are only initialized once, but the runtime efficiency is as though the objects were
initialized multiple times. We'll talk about the differences between initialization and assignment in a later
chapter.

int myInt ???

string myString
Length: ???
Text: ???

vector<int> myVector Size: ???
Elements: ???

- 272 - Chapter 9: Refining Abstractions

Finally, C++ invokes the MyClass constructor, which does nothing. The final version of the class thus is
identical to the above version.

As you can see, the values of the instance variables myInt, myString, and myVector are correctly set
before the SimpleClass constructor is invoked. This is considerably more efficient than the previous
version and will run much faster.

Note that while in this example we used initializer lists to initialize all of the object's instance variables,
there is no requirement that you do so. However, in practice it's usually a good idea to set up all variables
in an initializer list to make clear what values you want for each of your data members.

Parameters in Initializer Lists

In the above example, the initializer list we used specified constant values for each of the data members.
However, it's both legal and useful to initialize data members with expressions instead of literal constants.
For example, consider the following class, which encapsulates a rational number:

 class RationalNumber
 {
 public:
 RationalNumber(int numerator = 0, int denominator = 1);

 /* ... */
 private:
 int numerator, denominator;
 };

The following is a perfectly legal constructor that initializes the data members to the values specified as
parameters to the function:

 RationalNumber::RationalNumber(int numerator, int denominator) :
 numerator(numerator), denominator(denominator)
 {
 // Empty constructor
 }

C++ is smart enough to realize that the syntax numerator(numerator) means to initialize the numerator
data member to the value held by the numerator parameter, rather than causing a compile-time error or

int myInt 137

string myString
Length: 4
Text: "C++"

vector<int> myVector Size: 10
Elements: {0, 0, ... , 0}

Chapter 9: Refining Abstractions - 273 -

initializing the numerator data member to itself. Code of this form might indicate that you need to
rename the parameters to the constructor, but is perfectly legal.

On an unrelated note, notice that in the RationalNumber class declaration we specified that the
numerator and denominator parameters to RationalNumber were equal to zero and one, respectively.
These are default arguments to the constructor and allow us to call the constructor with fewer than two
parameters. If we don't specify the parameters, C++ will use these values instead. For example:

 RationalNumber fiveHalves(5, 2);
 RationalNumber three(3); // Calls constructor with arguments (3, 1)
 RationalNumber zero; // Calls constructor with arguments (0, 1)

You can use default arguments in any function, provided that if a single parameter has a default argument
every parameter after it also has a default. Thus the following code is illegal:

 void DoSomething(int x = 5, int y); // Problem: y needs a default

While the following is legal:

 void DoSomething(int x, int y = 5); // Legal

When writing functions that take default arguments, you should only specify the default arguments in the
function prototype, not the function definition. If you don't prototype the function, however, you should
specify the defaults in the definition. C++ is very strict about this and even if you specify the same defaults
in both the prototype and definition the compiler will complain.

When Initializer Lists are Mandatory

Initializer lists are useful from an efficiency standpoint. However, there are times where initializer lists
are the only syntactically legal way to set up your instance variables.

Suppose we'd like to make an object called Counter that supports two functions, increment and
decrement, that adjust an internal counter. However, we'd like to add the restriction that the Counter
can't drop below 0 or exceed a user-defined limit. Thus we'll use a parametrized constructor that accepts
an int representing the maximum value for the Counter and stores it as an instance variable. Since the
value of the upper limit will never change, we'll mark it const so that we can't accidentally modify it in our
code. The class definition for Counter thus looks something like this:

 class Counter {
 public:
 Counter(int maxValue);

 void increment();
 void decrement();
 int getValue() const;

 private:
 int value;
 const int maximum;
 };

Then we'd like the constructor to look like this:

- 274 - Chapter 9: Refining Abstractions

 Counter::Counter(int maxValue) {
 value = 0;
 maximum = maxValue; // Problem: Writing to a const value!
 }

Unfortunately, the above code isn't valid because in the second line we're assigning a value to a variable
marked const. Even though we're in the constructor, we still cannot violate the sanctity of constness. To
fix this, we'll initialize the value of maximum in the initializer list, so that maximum will be initialized to the
value of maxValue, rather than assigned the value maxValue. This is a subtle distinction, so make sure to
think about it before proceeding.

The correct version of the constructor is thus

 Counter::Counter(int maxValue) : value(0), maximum(maxValue) {
 // Empty constructor
 }

Note that we initialized maximum based on the constructor parameter maxValue. Interestingly, if we had
forgotten to initialize maximum in the initializer list, the compiler would have reported an error. In C++, it
is mandatory to initialize all const primitive-type instance variables in an initializer list. Otherwise, you'd
have constants whose values were total garbage.

Another case where initializer lists are mandatory arises when a class contains objects with no legal or
meaningful default constructor. Suppose, for example, that you have an object that stores a CS106B/X Set
of a custom type customT with comparison callback MyCallback. Since the Set requires you to specify
the callback function in the constructor, and since you're always going to use MyCallback as that
parameter, you might think that the syntax looks like this:

 class SetWrapperClass {
 public:
 SetWrapperClass();

 private:
 Set<customT> mySet(MyCallback); // Problem: Need a comparison function
 };

Unfortunately, this isn't legal C++ syntax. However, you can fix this by rewriting the class as

 class SetWrapperClass {
 public:
 SetWrapperClass();

 private:
 Set<customT> mySet; // Note: no parameters specified
 };

And then initializing mySet in the initializer list as

 SetWrapperClass::SetWrapperClass() : mySet(MyCallback) {
 // Yet another empty constructor!
 }

Now, when the object is created, mySet will have MyCallback passed to its constructor and everything
will work out correctly.

Chapter 9: Refining Abstractions - 275 -

Multiple Constructors

If you write a class with multiple constructors (which, after we discuss of copy constructors, will be most
of your classes), you'll need to make initializer lists for each of your constructors. That is, an initializer list
for one constructor won't invoke if a different constructor is called.

Sharing Information With static

Suppose that we're developing a windowed operating system and want to write the code that draws
windows on the screen. We decide to create a class Window that exports a drawWindow function. In order
to display the window correctly, drawWindow needs access to a Palette object that performs primitive
rendering operations like drawing lines, arcs, and filled polygons. Assume that we know that the window
will always be drawn with the same Palette. Given this description, we might initially design Window so
that it has a Palette as a data member, as shown here:

 class Window {
 public:
 /* ... constructors, destructors, etc. ...*/

 /* All windows can draw themselves. */
 void drawWindow();
 private:
 /* ... other data members ... */
 Palette pal;
 };

Now, every window has its own palette and can draw itself appropriately.

There's nothing fundamentally wrong with this setup, but it contains a small flaw. Let's suppose that we
have three different window objects. In memory, those objects would look like this:

Since pal is a data member of Window, every Window has its own Palette. There might be an arbitrary
number of windows on screen at any time, but there's only one screen and it doesn't make sense for every
window to have its own palette. After all, each window is likely to use a similar set of colors as those used
by every other window, and it seems more reasonable for every window to share a single palette, as
shown here:

Other Window
Data Members

Palette pal

Other Window
Data Members

Other Window
Data Members

Palette pal Palette pal

First
Instance

Second
Instance

Third
Instance

- 276 - Chapter 9: Refining Abstractions

How can we model this in code? Using the techniques so far, we have few options. First, we could create a
global Palette object, then have each Window use this global Palette. This is a particularly bad choice
for two reasons:

• It uses global variables. Independently of any other strengths and weaknesses of this approach,
global variables are a big programming no-no. Globals can be accessed and modified anywhere in
the program, making debugging difficult should problems arise. It is also possible to inadvertently
reference global variables inside of unrelated functions, leading to subtle bugs that can take down
the entire program.

• It lacks encapsulation. Because the Palette is a global variable, other parts of the program can
modify the Window Palette without going through the Window class. This leads to the same sorts
of problems possible with public data members: class invariants breaking unexpectedly, code
written with one version of Window breaking when the Window is updated, etc.

Second, we could have each Window object contain a pointer to a Palette object, then pass a shared
Palette as a parameter to each instance of Window. For example, we could design the class like this:

 class Window {
 public:
 Window(Palette* p, /* ... */);
 /* ... other constructors, destructors, etc. ...*/

 /* All windows can draw themselves. */
 void drawWindow();

 private:
 /* ... other data members ... */
 Palette* pal;
 };

This allows us to share a single Palette across multiple Windows and looks remarkably like the above
diagram. However, this approach has its weaknesses:

Other Window
Data Members

Other Window
Data Members

Other Window
Data Members

First
Instance

Palette pal

Second
Instance

Third
Instance

Chapter 9: Refining Abstractions - 277 -

• It complicates Window creation. Let's think about how we would go about creating Windows with
this setup. Before creating our first Window, we'd need to create a Palette to associate with it, as
shown here:

 Palette* p = new Palette;
 Window* w = new Window(p, /* ... */);

If later we want to create more Windows, we'd need to keep track of the original Palette we used
so that we can provide it as a parameter to the Window constructor. This means that any part of
the program responsible for Window management needs to know about the shared Palette.

• It violates encapsulation. Clients of Window shouldn't have to know how Windows are
implemented, and by requiring Window users to explicitly manage the shared Palette we're
exposing too much detail about the Window class. This approach also locks us in to a fixed
implementation. For example, what if we want to switch from Palette to a TurboPalette that
draws twice as quickly? With the current approach all Window clients would need to upgrade their
code to match the new implementation.

• It complicates resource management. Who is responsible for cleaning up the Window Palette
at the end of the program? Window clients shouldn't have to, since the Palette really belongs to
the Window class. But no particular Window owns the Palette, since each instance of Window
shares a single Palette. There are systems we could use to make cleanup work correctly (see the
later extended example on smart pointers for one possibility), but they increase program
complexity.

Both of these approaches have their individual strengths, but have drawbacks that outweigh their benefits.
Let's review exactly what we're trying to do. We'd like to have a single Palette that's shared across
multiple different Windows. Moreover, we'd like this Palette to obey all of the rules normally applicable
to class design: it should be encapsulated and it should be managed by the class rather than clients. Using
the techniques we've covered so far it is difficult to construct a solution with these properties. For a clean
solution, we'll need to introduce a new language feature: static data members.

Static Data Members

Static data members are data members associated with a class as a whole rather than a particular instance
of that class. In the above example with Window and Palette, the window Palette is associated with
Windows in general rather than any one specific Window object and is an ideal candidate for a static data
member.

In many ways static data members behave similarly to regular data members. For example, if a class has a
private static data member, only member functions of the class can access that variable. However, static
data members behave differently from other data members because there is only one copy of each static
data member. Each instance of a class containing a static data member shares the same version of that
data member. That is, if a single class instance changes a static data member, the change affects all
instances of that class.

The syntax for declaring static data members is slightly more complicated than for declaring nonstatic
data members. There are two steps: declaration and definition. For example, if we want to create a static
Palette object inside of Window, we could declare the variable as shown here:

- 278 - Chapter 9: Refining Abstractions

 class Window {
 public:
 /* ... constructors, destructors, etc. ...*/

 /* All windows can draw themselves. */
 void drawWindow();

 private:
 /* ... other data members ... */
 static Palette sharedPal;
 };

Here, sharedPal is declared as a static data member using the static keyword. But while we've
declared sharedPal as a static data member, we haven't defined sharedPal yet. Much in the same way
that functions are separated into prototypes (declarations) and implementations (definitions), static data
members have to be both declared inside the class in which they reside and defined inside the .cpp file
associated with that class. For the above example, inside the .cpp file for the Window class, we would write

 Palette Window::sharedPal;

There are two important points to note here. First, when defining the static variable, we must use the
fully-qualified name (Window::sharedPal) instead of just its local name (sharedPal). Second, we do
not repeat the static keyword during the variable declaration – otherwise, the compiler will think we're
doing something completely different (see the “More to Explore” section). You may have noticed that even
though Window::sharedPal is private we're still allowed to use it outside the class. This is only legal
during definition, and outside of this one context it is illegal to use Window::sharedPal outside of the
Window class.

In some circumstances you may want to create a class containing a static data member where the data
member needs to take on an initial value. For example, if we want to create a class containing an int as a
static data member, we would probably want to initialize the int to a particular value. Given the following
class declaration:

 class MyClass {
 public:
 void doSomething();

 private:
 static int myStaticData;
 };

It is perfectly legal to initialize myStaticData as follows:

 int MyClass::myStaticData = 137;

As you'd expect, this means that myStaticData initially holds the value 137.

Although the syntax for creating a static data member can be intimidating, once initialized static data
members look just like regular data members. For example, consider the following member function:

Chapter 9: Refining Abstractions - 279 -

 void MyClass::doSomething() {
 ++myStaticData; // Modifies myStaticData for all classes
 }

Nothing here seems all that out-of-the-ordinary and this code will work just fine. Note, however, that
modifications to myStaticData are visible to all other instances of MyClass.

Let's consider another example where static data members can be useful. Suppose that you're debugging
the windowing code from before and you're pretty sure that you've forgotten to delete all instances of
Window that you've allocated with new. Since C++ won't give you any warnings about this, you'll need to
do the instance counting yourself. The number of active instances of a class is class-specific information
that doesn't pertain to any specific instance of the object, and this is the perfect spot to use static data
members. To handle our instance counting, we'll modify the Window definition as follows:

 class Window {
 public:
 /* ... constructors, destructors, etc. ...*/

 void drawWindow();

 private:
 /* ... other data members ... */
 static Palette sharedPal;
 static int numInstances;
 };

We'll also define the variable outside the class as

 int Window::numInstances = 0;

We know that whenever we create a new instance of a class, the class's constructor will be called. This
means that if we increment numInstances inside the Window constructor, we'll correctly track the
number of times the a Window has been created. Thus, we'll rewrite the Window constructor as follows:

 Window::Window(/* ... */) {
 /* ... All older initialization code ... */
 ++numInstances;
 }

Similarly, we'll decrement numInstances in the Window destructor. We'll also have the destructor print
out a message if this is the last remaining instance so we can see how many instances are left:

 Window::~Window() {
 /* ... All older cleanup code ... */
 --numInstances;
 if(numInstances == 0)
 cout << "No more Windows!*" << endl;
 }

Static Member Functions

Inside of member functions, a special variable called this acts as a pointer to the current object.
Whenever you access a class's instance variables inside a member function, you're really accessing the
instance variables of the this pointer. For example, given the following Point class:

* This is not meant as a slight to Microsoft.

- 280 - Chapter 9: Refining Abstractions

 class Point {
 public:
 Point(int xLoc, int yLoc);
 int getX() const;
 int getY() const;

 private:
 int x, y;
 };

If we implement the Point constructor as follows:

 Point::Point(int xLoc, int yLoc) {
 x = xLoc;
 y = yLoc;
 }

This code is equivalent to

 Point::Point(int xLoc, int yLoc) {
 this->x = xLoc;
 this->y = yLoc;
 }

How does C++ know what value this refers to? The answer is subtle but important. Suppose that we
have a Point object called pt and that we write the following code:

 int x = pt.getX();

The C++ compiler converts this into code along the lines of

 int x = Point::getX(&pt);

Where Point::getX is prototyped as

 int Point::getX(Point *const this);

This is not legal C++ code, but illustrates what's going on behind the scenes whenever you call a member
function.

The mechanism behind member function calls should rarely be of interest to you as a programmer.
However, the fact that an N-argument member function is really an (N+1)-argument free function can
cause problems in a few places. For example, suppose that we want to provide a comparison function for
Points that looks like this:

Chapter 9: Refining Abstractions - 281 -

 class Point {
 public:
 Point(int xLoc, int yLoc);
 int getX() const;
 int getY() const;

 bool compareTwoPoints(const Point& one, const Point& two) const;

 private:
 int x, y;
 };

 bool Point::compareTwoPoints(const Point& one, const Point& two) const {
 if(one.x != two.x)
 return one.x < two.x;
 return one.y < two.y;
 }

If you have a vector<Point> that you'd like to pass to the STL sort algorithm, you'll run into trouble if
you try to use this syntax:

 sort(myVector.begin(), myVector.end(), &Point::compareTwoPoints); // Problem

The problem is that sort expects a comparison function that takes two parameters and returns a bool.
However, Point::compareTwoPoints takes three parameters: two points to compare and an invisible
“this” pointer. Thus the above code will generate an error.

If you want to define a comparison or predicate function inside of a class, you'll want that member
function to not have an invisible this. What does this mean from a practical standpoint? A member
function without a this pointer does not have a receiver object, and thus can only operate on its
parameters and any static data members of the class it's declared in (since that data is particular to the
class rather than any particular instance). Functions of this sort are called static member functions and can
be created using the static keyword. In the above example with Point, we could create the Point
comparison function as a static member function using the following syntax:

 class Point {
 public:
 Point(int xLoc, int yLoc);

 int getX() const;
 int getY() const;

 static bool compareTwoPoints(const Point& one, const Point& two);

 private:
 int x, y;
 };

 bool Point::compareTwoPoints(const Point& one, const Point& two) const
 {
 if(one.x != two.x)
 return one.x < two.x;
 return one.y < two.y;
 }

- 282 - Chapter 9: Refining Abstractions

Now, the above call to sort will work since compareTwoPoints would no longer have a this pointer.

Unlike static data members, when writing static member functions you do not need to separate the code
out into a separate declaration and definition. You may want to do so anyway, though.

Let's return to our earlier example about tracking the number of Window instances currently in use. While
it's nice that the destructor prints out a message when the last instance has been cleaned up, we'd prefer a
more robust model where we can check how many more copies of the class exist. This function is not
specific to a particular class instance, so we'll make this function static. We'll call this function
getRemainingInstances and implement it as shown here:

 class Window {
 public:
 /* ... constructors, destructors, etc. ...*/
 void drawWindow();

 static int getRemainingInstances();

 private:
 /* ... other data members ... */
 static Palette sharedPal;
 static int numInstances;
 };

 Palette Window::sharedPal;
 int Window::numInstances = 0;

 int Window::getRemainingInstances()
 {
 return numInstances;
 }

As with static data, note that when defining static member functions, you omit the static keyword. Only
put static inside the class declaration.

You can invoke static member functions either using the familiar object.method syntax, or you can use
the fully qualified name of the function. For example, with the above example, we could check how many
remaining instances there were of the MyClass class by calling getRemainingInstances as follows:

 cout << Window::getRemainingInstances() << endl;

const and static

Unfortunately, the const and static keywords do not always interact intuitively. One of the biggest
issues to be aware of is that const member functions can modify static data. For example, consider the
following class:

 class ConstStaticClass {
 public:
 void constFn() const;

 private:
 static int staticData;
 };

 int ConstStaticClass::staticData = 0;

Chapter 9: Refining Abstractions - 283 -

Then the following implementation of constFn is completely valid:

 void ConstStaticClass::constFn() const {
 ++staticData;
 }

Although the above implementation of constFn increments a static data member, the above code will
compile and run without any problems. The reason is that the code doesn't modify the receiver object.
Static data members are not associated with a particular class instance, so modifications to static data
members do not change the state of any one instance of the class.

Additionally, since static member functions don't have a this pointer, they cannot be declared const.
In the case of getNumInstances, this means that although the function doesn't modify any class data, we
still cannot mark it const.

Integral Class Constants

There is one other topic concerning the interaction of const and static: class constants. Suppose we
want to make a constant variable accessible only in the context of a class. What we want is a variable
that's const, so it's immutable, and static, so that all copies of the class share the data. It's legal to
declare these variables like this:

 class ClassConstantExample {
 public:
 /* Omitted. */

 private:
 static const int MyConstant;
 };

 const int ClassConstantExample::MyConstant = 137;

Note the const in the definition of ClassConstantExample::MyConstant.

However, since the double declaration/definition can be a bit tedious, C++ has a built-in shorthand you can
use when declaring class constants of integral types. That is, if you have a static const int or a
static const char, you can condense the definition and declaration into a single statement by writing;

 class ClassConstantExample {
 public:
 /* Omitted. */

 private:
 static const int MyConstant = 137; // Condense into a single line
 };

This shorthand is common in professional code. Be careful when using the shorthand, though, because
some older compilers won't correctly interpret it. Also, be aware that this only works with integral types,
so you cannot initialize a static const double or static const float this way.

Integrating Seamlessly with Conversion Constructors

When designing classes, you might find that certain data types can logically be converted into objects of
the type you're creating. For example, when writing the aforementioned rational number class, you might
note that raw ints could have a defined conversion to RationalNumber objects. In these situations, it

- 284 - Chapter 9: Refining Abstractions

may be useful to define implicit conversions between the two types. To define implicit conversions, C++
uses conversion constructors, constructors that accept a single parameter and initialize an object to be a
copy of that parameter.

While useful, conversion constructors have several major idiosyncrasies, especially when C++ interprets
normal constructors as conversion constructors. This section explores implicit type conversions,
conversion constructors, and how to prevent coding errors stemming from inadvertent conversion
constructors.

Implicit Conversions

In C++, an implicit conversion is a conversion from one type to another that doesn't require an explicit
typecast. Perhaps the simplest example is the following conversion from an int to a double:

 double myDouble = 137 + 2.71828;

Here, even though 137 is an int while 2.71828 is a double, C++ will implicitly convert it to a double so
the operation can proceed smoothly.

When C++ performs implicit conversions, it does not “magically” figure out how to transform one data
type into another. Rather, it creates a temporary object of the correct type that's initialized to the value of
the implicitly converted object. Thus the above code is functionally equivalent to

 double temp = double(myInt);
 double myDouble = temp + 2.71828;

As seen here, the compiler created a temporary variable of type double, then initialized it by converting
the integer myInt to a double. When C++ performs these conversions, it uses a special function called a
conversion constructor to initialize the new object. Conversion constructors are simply class constructors
that accept a single parameter and initialize the new object to a copy of the parameter. In the double
example, the newly-created double had the same value as the int parameter.

Conversion constructors are surprisingly easy to write, and in fact our RationalNumber class already has
a conversion constructor. I've reprinted this class below:

 class RationalNumber
 {
 public:
 RationalNumber(int numerator = 0, int denominator = 1);

 /* ... */
 private:
 int numerator, denominator;
 };

Given just this class, we can write code like the following:

 RationalNumber myNumber = 137;

How is this possible? 137 is an int, not a RationalNumber. The reason is that C++ interprets this code as
a call to the RationalNumber constructor, passing in the integer 137. That is, the code is equivalent to

 RationalNumber myNumber(137);

Chapter 9: Refining Abstractions - 285 -

Which itself is equivalent to the more verbose

 RationalNumber myNumber(137, 1);

In general, if you define a class that has a constructor that can be called with one argument, C++ will treat
this constructor as a conversion constructor, and will translate code of the form

 Type variable = value;

Into code of the format

 Type variable(value);

While conversion constructors are quite useful in a wide number of circumstances, the fact that C++
automatically treats all single-parameter constructors as conversion constructors can lead to convoluted
or nonsensical code. One of my favorite examples of “conversion-constructors-gone-wrong” comes from
an older version of the CS106B/X ADT class libraries. Originally, the CS106B/X Vector was defined as

 template <typename ElemType> class Vector
 {
 public:
 Vector(int sizeHint = 10); // Hint about the size of the Vector

 /* ... */
 };

Nothing seems all that out-of-the-ordinary here – we have a Vector template class that lets you give the
class a hint about the number of elements you will be storing in it. However, because the constructor
accepts a single parameter, C++ will interpret it as a conversion constructor and thus will let us implicitly
convert from ints to Vectors. This can lead to some very strange behavior. For example, given the above
class definition, consider the following code:

 Vector<int> myVector = 137;

This code, while nonsensical, is legal and equivalent to Vector<int> myVector(137). Fortunately, this
probably won't cause any problems at runtime – it just doesn't make sense in code.

However, suppose we have the following code:

 void DoSomething(Vector<int>& myVector) {
 myVector = NULL;
 }

This code is totally legal even though it makes no logical sense. Since NULL is #defined to be 0, The above
code will create a new Vector<int> initialized with the parameter 0 and then assign it to myVector. In
other words, the above code is equivalent to

 void DoSomething(Vector<int>& myVector) {
 Vector<int> tempVector(0);
 myVector = tempVector;
 }

- 286 - Chapter 9: Refining Abstractions

tempVector is empty when it's created, so when we assign tempVector to myVector, we'll set myVector
to the empty vector. Thus the nonsensical line myVector = 0 is effectively an obfuscated call to
myVector.clear().

Chapter 9: Refining Abstractions - 287 -

This is a quintessential example of why conversion constructors can be dangerous. When writing single-
argument constructors, you run the risk of letting C++ interpret your constructor as a conversion
constructor.

explicit

To prevent problems like the one described above, C++ provides the explicit keyword to indicate that a
constructor must not be interpreted as a conversion constructor. If a constructor is marked explicit, it
indicates that the constructor should not be considered for the purposes of implicit conversions. For
example, let's look at the current version of the CS106B/X Vector, which has its constructor marked
explicit:

 template <typename ElemType> class Vector
 {
 public:
 explicit Vector(int sizeHint = 10); // Hint the size of the Vector

 /* ... */
 };

Now, if we write code like

 Vector<int> myVector = 10;

We'll get a compile-time error since there's no implicit conversion from int to Vector<int>. However,
we can still write

 Vector<int> myVector(10);

Which is what we were trying to accomplish in the first place. Similarly, we eliminate the myVector = 0
error, and a whole host of other nasty problems.

When designing classes, if you have a single-argument constructor that is not intended as a conversion
function, you must mark it explicit to avoid running into the “implicit conversion” trap. While indeed
this is more work for you as an implementer, it will make your code safer and more stable.

Chapter Summary

• Templates can be used to define a family of abstractions that depend on an arbitrary type.

• The typename keyword is used to declare parameters to a template class.

• A template class's interface and implementation should be put into the .h file and no .cpp file
should be created for the class.

• The typename keyword is also used in front of types nested inside of dependent types.

• Marking a variable const prevents its value from being changed after the variable is initialized.

• A const member function cannot modify any of the class's data members.

• const member functions clarify interfaces by indicating which member functions read values and
which member functions write values.

- 288 - Chapter 9: Refining Abstractions

• const can have different meanings when applied to pointers based on where the const occurs.

• C++ enforces bitwise constness; it is up to you to ensure that your classes are semantically const.

• The mutable keyword allows you to write semantically const functions which are not bitwise
const.

• Member initializer lists initialize data members to particular values before the constructor begins
running.

• The static keyword allows you to indicate that certain data is shared across all instances of a
class.

• static data members must be declared in the .h file and defined in the .cpp file.

• static member functions are functions associated with a class as a whole, rather than a particular
instance of a class.

• static member functions are invoked by writing ClassName::functionName().

• Integral class constants can be initialized in the body of the class and do not need to be separately
defined.

• Conversion constructors allow classes to be initialized to values of a different type.

• The explicit keyword prevents accidental implicit conversions from occurring.

Practice Problems

1. How do you declare a class template?

2. How do you implement member functions for a class template?

3. Is there a difference between the typename and class keywords when declaring template
arguments?

4. When is it necessary to preface a type with the typename keyword in a class template?

5. The following line of code declares a member function inside a class:

 const char * const MyFunction(const string& input) const;

Explain what each const in this statement means.

6. What is const-overloading?

7. What is the difference between semantic constness and bitwise constness?

8. What is the difference between a const pointer and a pointer-to-const?

9. How are const references different from regular references?

Chapter 9: Refining Abstractions - 289 -

10. What does the mutable keyword do?

11. What are the steps involved in class construction? In what order do they execute?

12. How do you declare an initializer list?

13. What is static data and how does it differ from regular member data?

14. What are the two steps required to add static data to a class?

15. What is a static member function? How do you call a static member function?

16. What is a conversion constructor?

17. Explain what the explicit keyword does.

18. The STL map's bracket operator accepts a key and returns a reference to the value associated with
that key. If the key is not found, the map will insert a new key/value pair so that the returned
reference is valid. Is this function bitwise const? Semantically const?

19. When working with pointers to pointers, const can become considerably trickier to read. For
example, a const int * const * const is a const pointer to a const pointer to a const int,
so neither the pointer, its pointee, or its pointee's pointee can be changed. What is an
int * const *? How about an int ** const **?

20. The CS106B/X Vector has the following interface:

 template <typename ElemType> class Vector {
 public:
 Vector(int sizeHint = 0);

 int size();
 bool isEmpty();

 ElemType getAt(int index);
 void setAt(int index, ElemType value);

 ElemType& operator[](int index);

 void add(ElemType elem);
 void insertAt(int index, ElemType elem);
 void removeAt(int index);

 void clear();

 void mapAll(void fn(ElemType elem));
 template <typename ClientDataType>
 void mapAll(void fn(ElemType elem, ClientDataType & data),
 ClientDataType & data);

 Iterator iterator();
 };

Modify this interface so that it is const-correct. (Hint: You may need to const-overload some of
these functions)

- 290 - Chapter 9: Refining Abstractions

21. Modify the Snake simulation code from the earlier extended example so that it is const-correct.

22. Explain each of the steps involved in object construction. Why do they occur in the order they do?
Why are each of them necessary?

23. Why must a function with a single parameter with default value must have default values specified
for each parameter afterwards?

24. NASA is currently working on Project Constellation, which aims to resume the lunar landings and
ultimately to land astronauts on Mars. The spacecraft under development consists of two parts –
an orbital module called Orion and a landing vehicle called Altair. During a lunar mission, the
Orion vehicle will orbit the Moon while the Altair vehicle descends to the surface. The Orion
vehicle is designed such that it does not necessarily have to have an Altair landing module and
consequently can be used for low Earth orbit missions in addition to lunar journeys. You have
been hired to develop the systems software for the spacecraft. Because software correctness and
safety are critically important, you want to design the system such that the compiler will alert you
to as many potential software problems as possible.

Suppose that we have two classes, one called OrionModule and one called AltairModule. Since
every Altair landing vehicle is associated with a single OrionModule, you want to define the
AltairModule class such that it stores a pointer to its OrionModule. The AltairModule class
should be allowed to modify the OrionModule it points to (since it needs to be able to
dock/undock and possibly to borrow CPU power for critical landing maneuvers), but it should
under no circumstance be allowed to change which OrionModule it's associated with. Here is a
skeleton implementation of the AltairModule class:

 class AltairModule
 public:
 /* Constructor accepts an OrionModule representing the Orion
 * spacecraft this Altair is associated with, then sets up
 * parentModule to point to that OrionModule.
 */
 AltairModule(OrionModule* owner);

 /* ... */
 private:
 OrionModule* parentModule;
 };

Given the above description about what the AltairModule should be able to do with its owner
OrionModule, appropriately insert const into the definition of the parentModule member
variable. Then, implement the constructor AltairModule such that the parentModule variable is
initialized to point to the owner parameter.

25. Explain why static member functions cannot be marked const.

26. Write a class UniquelyIdentified such that each instance of the class has a unique ID number
determined by taking the ID number of the previous instance and adding one. The first instance
should have ID number 1. Thus the third instance of the class will have ID 3, the ninety-sixth
instance 96, etc. Also write a const-correct member function getUniqueID that returns the
class's unique ID. Don't worry about reusing older IDs if their objects go out of scope.

Chapter 9: Refining Abstractions - 291 -

27. The C header file <cstdlib> exports two functions for random number generation – srand, which
seeds the randomizer, and rand, which generates a pseudorandom int between 0 and the
constant RAND_MAX. To make the pseudorandom values of rand appear truly random, you can
seed the randomizer using the value returned by the time function exported from <ctime>. The
syntax is srand((unsigned int)time(NULL)). Write a class RandomGenerator that exports a
function next that returns a random double in the range [0, 1). When created, the
RandomGenerator class should seed the randomizer with srand only if a previous instance of
RandomGenerator hasn't already seeded it.

28. Does it make sense to initialize static data members in a member initializer list? Explain why or
why not.

29. Should you ever mark static data members mutable? Why or why not?

These practice problems concern a RationalNumber class that encapsulates a rational number (that is, a
number expressible as the quotient of two integers). RationalNumber is declared as follows:

 class RationalNumber
 {
 public:
 RationalNumber(int num = 0, int denom = 1) :
 numerator(num), denominator(denom) {}

 double getValue() const {
 return static_cast<double>(numerator) / denominator;
 }

 void setNumerator(int value) {
 numerator = value;
 }
 void setDenominator(int value) {
 denominator = value;
 }

 private:
 int numerator, denominator;
 };

The constructor to RationalNumber accepts two parameters that have default values. This means that if
you omit one or more of the parameters to RationalNumber, they'll be filled in using the defaults. Thus
all three of the following lines of code are legal:

 RationalNumber zero; // Value is 0 / 1 = 0
 RationalNumber five(5); // Value is 5 / 1 = 5
 RationalNumber piApprox(355, 113); // Value is 355/113 = 3.1415929203...

30. Explain why the RationalNumber constructor is a conversion constructor.

31. Write a RealNumber class that encapsulates a real number (any number on the number line). It
should have a conversion constructor that accepts a double and a default constructor that sets the
value to zero. (Note: You only need to write one constructor. Use RationalNumber as an example)

32. Write a conversion constructor that converts RationalNumbers into RealNumbers.

- 292 - Chapter 9: Refining Abstractions

33. If a constructor has two or more arguments and no default values, can it be a conversion
constructor?

34. C++ will apply at most one implicit type conversion at a time. That is, if you define three types A, B,
and C such that A is implicitly convertible to B and B is implicitly convertible to C, C++ will not
automatically convert objects of type A to objects of type C. Give an reason for why this might be.
(Hint: Add another implicit conversion between these types)

Chapter 10: Operator Overloading

Consider the following C++ code snippet:

 vector<string> myVector(kNumStrings);
 for(vector<string>::iterator itr = myVector.begin();
 itr != myVector.end(); ++itr)
 *itr += "Now longer!";

Here, we create a vector<string> of a certain size, then iterate over it concatenating “Now longer!” to
each of the strings. Code like this is ubiquitous in C++, and initially does not appear all that exciting.
However, let's take a closer look at how this code is structured. First, let's look at exactly what operations
we're performing on the iterator:

 vector<string> myVector(kNumStrings);
 for(vector<string>::iterator itr = myVector.begin();
 itr != myVector.end(); ++itr)
 *itr += "Now longer!";

In this simple piece of code, we're comparing the iterator against myVector.end() using the != operator,
incrementing the iterator with the ++ operator, and dereferencing the iterator with the * operator. At a
high level, this doesn't seem all that out of the ordinary, since STL iterators are designed to look like
regular pointers and these operators are all well-defined on pointers. But the key thing to notice is that
STL iterators aren't pointers, they're objects, and !=, *, and ++ aren't normally defined on objects. We can't
write code like ++myVector or *myMap = 137, so why can these operations be applied to
vector<string>::iterator?

Similarly, notice how we're concatenating the string “Now longer!” onto the end of the string:

 vector<string> myVector(kNumStrings);
 for(vector<string>::iterator itr = myVector.begin();
 itr != myVector.end(); ++itr)
 *itr += "Now longer!";

Despite the fact that string is an object, somehow C++ “knows” what it means to apply += to strings.

All of the above examples are instances of operator overloading, the ability to specify how operators
normally applicable to primitive types can interact with custom classes. Operator overloading is
ubiquitous in professional C++ code and, used correctly, can make your programs more concise, more
readable, and more template-friendly.

There are two overarching purposes of operator overloading. First, operator overloading enables your
custom classes to act like primitive types. That is, if you have a class like vector that mimics a standard
C++ array, you can allow clients to use array notation to access individual elements. Similarly, when
designing a class encapsulating a mathematical entity (for example, a complex number), you can let clients
apply mathematical operators like +, -, and * to your type as though it were built into the language.
Second, operator overloading enables your code to interact correctly with template and library code. For
example, you can overload the << operator to make a class compatible with the streams library, or the <
operator to interface with STL containers.

- 294 - Chapter 10: Operator Overloading

This chapter discusses general topics in operator overloading, demonstrating how to overload some of the
more common operators. It also includes tricks and pitfalls to be aware of when overloading certain
operators.

A Word of Warning

I would be remiss to discuss operator overloading without first prefacing it with a warning: operator
overloading is a double-edged sword. When used correctly, operator overloading can lead to intuitive,
template-friendly code that elegantly performs complex operations behind the scenes. However,
incorrectly overloaded operators can lead to incredibly subtle bugs. Seemingly innocuous code along the
lines of *myItr = 5 can cause serious problems if implemented incorrectly, and without a solid
understanding of how to overload operators you may find yourself in serious trouble.

There is a pearl of design wisdom that is particularly applicable to operator overloading:

The Principle of Least Astonishment: A function's name should communicate its behavior and should be
consistent with other naming conventions and idioms.

The principle of least astonishment should be fairly obvious – you should design functions so that clients
can understand what those functions do simply by looking at the functions' names; that is, clients of your
code should not be “astonished” that a function with one name does something entirely different. For
example, a function named DoSomething violates the principle of least astonishment because it doesn't
communicate what it does, and a function called ComputePrimes that reads a grocery list from a file
violates the principle because the name of the function is completely different from the operation it
performs. However, other violations of the principle of least astonishment are not as blatant. For example,
a custom container class whose empty member function erases the contents of the container violates the
principle of least astonishment because C++ programmers expect empty to mean “is the container
empty?” rather than “empty the container.” Similarly, a class that is bitwise const but not semantically
const violates the principle, since programmers assume that objects can't be modified by const member
functions.

When working with operator overloading, it is crucial to adhere to the principle of least astonishment. C+
+ lets you redefine almost all of the built-in operators however you choose, meaning that it's possible to
create code that does something completely different from what C++ programmers might expect. For
example, suppose that you are working on a group project and that one of your teammates writes a class
CustomVector that acts like the STL vector but which performs some additional operations behind the
scenes. Your program contains a small bug, so you look over your teammate's code and find the following
code at one point:

 CustomVector one = /* ... */, two = /* ... */;
 one %= two;

What does the line one %= two do? Syntactically, this says “take the remainder when dividing one by
two, then store the result back in one.” But this makes no sense – how can you divide one CustomVector
by another? You ask your teammate about this, and he informs you that the %= operator means “remove
all elements from one that are also in two.” This is an egregious violation of the principle of least
astonishment. The code neither communicates what it does nor adheres to existing convention, since the
semantics of the %= operator are meaningless when applied to linear data structures. This is not to say, of
course, that having the ability to remove all elements from one CustomVector that are contained in
another is a bad idea – in fact, it can be quite useful – but this functionality should be provided by a
properly-named member function rather than a cryptically-overloaded operator. For example, consider
the following code:

Chapter 10: Operator Overloading - 295 -

 CustomVector one = /* ... */, two = /* ... */;
 one.removeAllIn(two);

This code accomplishes the same task as the above code, but does so by explicitly indicating what
operation is being performed. This code is much less likely to confuse readers and is far more descriptive
than before.

As another example, suppose that your teammate also implements a class called CustomString that acts
like the standard string type, but provides additional functionality. You write the following code:

 CustomString one = "Hello", two = " World";
 one += two;
 cout << one + "!" << endl;

Intuitively, this should create two strings, then concatenate the second onto the end of the first. Next, the
code prints out one followed by an exclamation point, yielding “Hello World!” Unfortunately, when you
compile this code, you get an unusual error message – for some reason the code one += two compiles
correctly, but the compiler rejects the code one + "!". In other words, your teammate has made it legal
to concatenate two strings using +=, but not by using +. Again, think back to the principle of least
astonishment. Programmers tacitly expect that objects that can be added with + can be added with += and
vice-versa, and providing only half of this functionality is likely to confuse code clients.

The moral of this story is simple: when overloading operators, make sure that you adhere to existing
conventions. If you don't, you will end up with code that is either incorrect, confusing, or both.

Hopefully this grim introduction has not discouraged you from using operator overloading. Operator
overloading is extraordinarily useful and you will not be disappointed with the possibilities that are about
to open up to you. With that said, let's begin discussing the mechanics behind this powerful technique.

Defining Overloaded Operators

We introduced operator overloading as a mechanism for redefining how the built-in operators apply to
custom classes. Syntactically, how do we communicate to the C++ compiler that we want to redefine these
operators? The answer is somewhat odd. Here's the original motivating example we had at the beginning
of the chapter:

 vector<string> myVector(kNumStrings);
 for(vector<string>::iterator itr = myVector.begin();
 itr != myVector.end(); ++itr)
 *itr += "Now longer!";

When you provide this code to the C++ compiler, it interprets it as follows:

vector<string> myVector(kNumStrings);
for(vector<string>::iterator itr = myVector.begin();
 operator!= (itr, myVector.end());
 itr.operator++())
 (itr.operator*()).operator +=("Now longer!");

Notice that everywhere we used the built-in operator in conjunction with an object, the compiler
reinterpreted the operator as a call to a specially-named function called operator op, where op is the
particular operator we used. Thus itr != myVector.end() translated into operator!= (itr,
myVector.end()), ++itr was interpreted as itr.operator++(), etc. Although these functions may

- 296 - Chapter 10: Operator Overloading

have cryptic names, they're just regular functions. Operator overloading is simply syntax sugar, a way of
rewriting one operation (in this case, function calls) using a different syntax (here, the built-in operators).
Overloaded operators are not somehow “more efficient” than other functions simply because the function
calls aren't explicit, nor are they treated any different from regular functions. They are special only in that
they can are invoked using the built-in operators rather than through an explicit function calls.

If you'll notice, some of the operators used above were translated into member function calls (particularly
++ and *), while others (!=) were translated into calls to free functions. With a few exceptions, any
operator can be overloaded as either a free function or a member function. Determining whether to use
free functions or member functions for overloaded operators is a bit tricky, and we'll discuss it more as we
continue our tour of overloaded operators.

Each of C++'s built-in operators has a certain number of operands. For example, the plus operator (a + b)
has two operands corresponding to the values on the left- and right-hand sides of the operator. The
pointer dereference operator (*itr), on the other hand, takes in only one operand: the pointer to
dereference. When defining a function that is an overloaded operator, you will need to ensure that your
function has one parameter for each of the operator's operands. For example, suppose that we want to
define a type RationalNumber which encapsulates a rational number (a ratio of two integers). Because
it's mathematically sound to add two rational numbers, we might want to consider overloading the +
operator as applied to RationalNumber so that we can add RationalNumbers using an intuitive syntax.
What would such a function look like? If we implement the + operator as a member function of
RationalNumber, the syntax would be as follows:

 class RationalNumber {
 public:
 const RationalNumber operator+ (const RationalNumber& rhs) const;

 /* ... etc. ... */
 };

(You might be wondering why the return type is const RationalNumber. For now, you can ignore that...
we'll pick this up in the next section)

With operator+ defined this way, then addition of RationalNumbers will be translated into calls to the
member function operator+ on RationalNumber. For example, the following code:

 RationalNumber one, two;
 RationalNumber three = one + two;

will be interpreted by the compiler as

 RationalNumber one, two;
 RationalNumber three = one.operator +(two);

Notice that the code one + two was interpreted as one.operator+ (two). That is, the receiver object of
the operator+ function is the left-hand operand, while the argument is the right-hand argument. This is
not a coincidence, and in fact C++ will guarantee that the relative ordering of the operands is preserved.
one + two will never be interpreted as two.operator+ (one) under any circumstance, and our
implementation of operator+ can take this into account.

Alternatively, we could consider implementing operator+ as a free function taking in two arguments. If
we chose this approach, then the interface for RationalNumber would be as follows:

Chapter 10: Operator Overloading - 297 -

- 298 - Chapter 10: Operator Overloading

 class RationalNumber {
 public:
 /* ... etc. ... */
 };

 const RationalNumber operator+ (const RationalNumber& lhs,
 const RationalNumber& rhs);

In this case, the code

 RationalNumber one, two;
 RationalNumber three = one + two;

would be interpreted by the compiler as

 RationalNumber one, two;
 RationalNumber three = operator+ (one, two);

Again, the relative ordering of the parameters is guaranteed to be stable, and so you can assume that the
first parameter to operator+ will always be on the left-hand side of the operator.

In some cases, two operators are syntactically identical but have different meanings. For example, the -
operator can refer either to the binary subtraction operator (a - b) or the unary negation operator (-a).
If overload the - operator, how does the compiler know whether your overloaded operator is the unary or
binary version of -? The answer is rather straightforward: if the function operates on two pieces of data,
the compiler treats operator- as the binary subtraction operator, and if the function uses just one piece
of data it's considered to be the unary negation operator. Let's make this discussion a bit more concrete.
Suppose that we want to implement subtraction on the RationalNumber class. Because the binary
subtraction operator has two operands, we would provide subtraction as an overloaded operator either as
a free function:

 const RationalNumber operator- (const RationalNumber& lhs,
 const RationalNumber& rhs);

or, alternatively, as a member function:

 class RationalNumber {
 public:
 const RationalNumber operator- (const RationalNumber& rhs) const;

 /* ... etc. ... */
 };

Notice that both of these functions operate on two pieces of data. In the first case, the function takes in
two parameters, and in the second, the receiver object is one piece of data and the parameter is the other.
If we now want to provide an implementation of operator- which represents the unary negation
operator, we could implement it as a free function with the following signature:

 const RationalNumber operator- (const RationalNumber& arg);

Or as a member function of this form:

Chapter 10: Operator Overloading - 299 -

 class RationalNumber {
 public:
 const RationalNumber operator- () const;

 /* ... etc. ... */
 };

Again, don't worry about why the return type is a const RationalNumber. We'll address this shortly.

What Operator Overloading Cannot Do

When overloading operators, you cannot define brand-new operators like # or @. After all, C++ wouldn't
know the associativity or proper syntax for the operator (is one # two + three interpreted as (one #
two) + three or one # (two + three)?) Additionally, you cannot overload any of the following
operators:

Operator Syntax Name

:: MyClass::value Scope resolution
. one.value Member selection
?: a > b ? -1 : 1 Ternary conditional
.* a.*myClassPtr; Pointer-to-member selection (beyond the scope of this text)

sizeof sizeof(MyClass) Size of object
typeid typeid(MyClass) Runtime type information operator
(T)

static_cast
dynamic_cast

reinterpret_cast
const_cast

(int) myClass; Typecast

Note that operator overloading only lets you define what built-in operators mean when applied to objects.
You cannot use operator overloading to redefine what addition means as applied to ints, nor can you
change how pointers are dereferenced. Then again, by the principle of least astonishment, you wouldn't
want to do this anyway.

Lvalues and Rvalues

Before we begin exploring some of the implementation issues associated with overloaded operators, we
need to take a quick detour to explore two concepts from programming language theory called lvalues and
rvalues. Lvalues and rvalues stand for “left values” and “right values” are are so-named because of where
they can appear in an assignment statement. In particular, an lvalue is a value that can be on the left-hand
side of an assignment, and an rvalue is a value that can only be on the right-hand side of an assignment.
For example, in the statement x = 5, x is an lvalue and 5 is an rvalue. Similarly, in *itr = 137, *itr is
the lvalue and 137 is the rvalue.

It is illegal to put an rvalue on the left-hand side of an assignment statement. For example, 137 = 42 is
illegal because 137 is an rvalue, and GetInteger() = x is illegal because the return value of
GetInteger() is an rvalue. However, it is legal to put an lvalue on the right-hand side of an assignment,
as in x = y or x = *itr.

- 300 - Chapter 10: Operator Overloading

At this point the distinction between lvalues and rvalues seems purely academic. “Okay,” you might say,
“some things can be put on the left-hand side of an assignment statement and some things can't. So
what?” When writing overloaded operators, the lvalue/rvalue distinction is extremely important. Because
operator overloading lets us define what the built-in operators mean when applied to objects of class type,
we have to be very careful that overloaded operators return lvalues and rvalues appropriately. For
example, by default the + operator returns an rvalue; that is, it makes no sense to write

 (x + y) = 5;

Since this would assign the value 5 to the result of adding x and y. However, if we're not careful when
overloading the + operator, we might accidentally make the above statement legal and pave the way for
nonsensical but legal code. Similarly, it is legal to write

 myArray[5] = 137;

So the element-selection operator (the brackets operator) should be sure to return an lvalue instead of an
rvalue. Failure to do so will make the above code illegal when applied to custom classes.

Recall that an overloaded operator is a specially-named function invoked when the operator is applied to
an object of a custom class type. Thus the code

 (x + y) = 5;

is equivalent to

 operator+ (x, y) = 5;

if either x or y is an object. Similarly, if myArray is an object, the code

 myArray[5] = 137;

is equivalent to

 myArray.operator[](5) = 137;

To ensure that these functions have the correct semantics, we need to make sure that operator+ returns
an rvalue and that operator[] returns an lvalue. How can we enforce this restriction? The answer has to
do with the return type of the two functions. To make a function that returns an lvalue, have that function
return a non-const reference. For example, the following function returns an lvalue:

 string& LValueFunction();

Because a reference is just another name for a variable or memory location, this function hands back a
reference to an lvalue and its return value can be treated as such. To have a function return an rvalue, have
that function return a const object by value. Thus the function

 const string RValueFunction();

Chapter 10: Operator Overloading - 301 -

returns an rvalue.* The reason that this trick works is that if we have a function that returns a const
object, then code like

 RValueFunction() = 137;

is illegal because the return value of RValueFunction is marked const.

Lvalues and rvalues are difficult to understand in the abstract, but as we begin to actually overload
particular operators the difference should become clearer.

Overloading the Element Selection Operator

Let's begin our descent into the realm of operator overloading by discussing the overloaded element
selection operator (the [] operator, used to select elements from arrays). You've been using the
overloaded element selection operator ever since you encountered the string and vector classes. For
example, the following code uses the vector's overloaded element selection operator:

 for(int i = 0; i < myVector.size(); ++i)
 myVector[i] = 137;

In the above example, while it looks like we're treating the vector as a primitive array, we are instead
calling the a function named operator [], passing i as a parameter. Thus the above code is equivalent to

 for(int i = 0; i < myVector.size(); ++i)
 myVector.operator [](i) = 137;

To write a custom element selection operator, you write a member function called operator [] that
accepts as its parameter the value that goes inside the brackets. Note that while this parameter can be of
any type (think of the STL map), you can only have a single value inside the brackets. This may seem like
an arbitrary restriction, but makes sense in the context of the principle of least astonishment: you can't
put multiple values inside the brackets when working with raw C++ arrays, so you shouldn't do so when
working with custom objects.

When writing operator [], as with all overloaded operators, you're free to return objects of whatever
type you'd like. However, remember that when overloading operators, it's essential to maintain the same
functionality you'd expect from the naturally-occurring uses of the operator. In the case of the element
selection operator, this means that the return value should be an lvalue, and in particular a reference to
some internal class data determined by the index. For example, here's one possible prototype of the C++
string's element selection operator:

 class string {
 public:
 /* ... */

 char& operator [] (size_t position);
 };

* Technically speaking any non-reference value returned from a function is an rvalue. However, when returning
objects from a function, the rvalue/lvalue distinction is blurred because the assignment operator and other
operators are member functions that can be invoked regardless of whether the receiver is an rvalue or lvalue. The
additional const closes this loophole.

- 302 - Chapter 10: Operator Overloading

Here, operator[] takes in an int representing the index and returns a reference to the character at that
position in the string. If string is implemented as a wrapper for a raw C string, then one possible
implementation for operator[] might be

 char& string::operator[] (size_t index) {
 return theString[index]; // Assuming theString is an array of characters
 }

Because operator[] returns a reference to an element, it is common to find operator[] paired with a
const-overload that returns a const reference to an element in the case where the receiver object is
immutable. There are exceptions to this rule, such as the STL map, but in the case of string we should
provide a const overload, as shown here:

 class string {
 public:
 /* ... */

 char& operator [] (size_t position);
 const char& operator [] (size_t position) const;
 };

The implementation of the const operator[] function is identical to the non-const version.

When writing the element selection operator, it's completely legal to modify the receiver object in
response to a request. For example, with the STL map, operator[] will silently create a new object and
return a reference to it if the key isn't already in the map. This is part of the beauty of overloaded
operators – you're allowed to perform any necessary steps to ensure that the operator makes sense.

Unfortunately, if your class encapsulates a multidimensional object, such as a matrix or hierarchical key-
value system, you cannot “overload the [][] operator.” A class is only allowed to overload one level of the
bracket syntax; it's not legal to design objects that doubly-overload [].*

Overloading Compound Assignment Operators

The compound assignment operators are operators of the form op= (for example, += and *=) that update
an object's value but do not overwrite it. Compound assignment operators are often declared as member
functions with the following basic prototype:

 MyClass& operator += (const ParameterType& param)

For example, suppose we have the following class, which represents a vector in three-dimensional space:

 class Vector3D {
 public:
 /* ... */
 private:
 static const int NUM_COORDINATES = 3;
 double coordinates[NUM_COORDINATES];
 };

* There is a technique called proxy objects that can make code along the lines of myObject[x][y] legal. The trick is
to define an operator[] function for the class that returns another object that itself overloads operator[]. We'll
see this trick used in the upcoming chapter on a custom grid class.

Chapter 10: Operator Overloading - 303 -

It is legal to add two mathematical vectors to one another; the result is the vector whose components are
the pairwise sum of each of the components of the source vectors. If we wanted to define a += operator for
Vector3D to let us perform this addition, we would modify the interface of Vector3D as follows:

 class Vector3D {
 public:
 /* ... */
 Vector3D& operator+= (const Vector3D& other);

 private:
 static const int NUM_COORDINATES = 3;
 double coordinates[NUM_COORDINATES];
 };

This could then be implemented as

 Vector3D& Vector3D::operator +=(const Vector3D& other) {
 for(int i = 0; i < NUM_COORDINATES; ++i)
 coordinates[i] += other.coordinates[i];
 return *this;
 }

If you'll notice, operator+= returns *this, a reference to the receiver object. Recall that when
overloading operators, you should make sure to define your operators such that they work identically to
the C++ built-in operators. It turns out that the += operator yields an lvalue, so the code below, though the
quintessence of abysmal style, is perfectly legal:

 int one, two, three, four;
 (one += two) += (three += four);

Since overloaded operators let custom types act like primitives, the following code should also compile:

 Vector3D one, two, three, four;
 (one += two) += (three += four);

If we expand out the calls to the overloaded += operator, we find that this is equivalent to

 Vector3D one, two, three, four;
 one.operator+=(two).operator +=(three.operator +=(four));

Note that the reference returned by one.operator+=(two) then has its own += operator invoked. Since
operator += is not marked const, had the += operator returned a const reference, this code would have
been illegal. Make sure to have any (compound) assignment operator return *this as a non-const
reference.

Unlike the regular assignment operator, with the compound assignment operator it's commonly
meaningful to accept objects of different types as parameters. For example, we might want to make
expressions like myVector *= 137 for Vector3Ds meaningful as a scaling operation. In this case, we can
simply define an operator *= that accepts a double as its parameter. For example:

- 304 - Chapter 10: Operator Overloading

 class Vector3D {
 public:
 /* ... */
 Vector3D& operator += (const Vector3D& other);
 Vector3D& operator *= (double scaleFactor);

 private:
 static const int NUM_COORDINATES = 3;
 double coordinates[NUM_COORDINATES];
 };

Despite the fact that the receiver and parameter have different types, this is perfectly legal C++. Here's one
possible implementation:

 Vector3D& Vector3D::operator*= (double scaleFactor) {
 for(int k = 0; k < NUM_COORDINATES; ++k)
 coordinates[k] *= scaleFactor;
 return *this;
 }

Although we have implemented operator+= and operator*= for the Vector3D class, C++ will not
automatically provide us an implementation of operator-= and operator/=, despite the fact that those
functions can easily be implemented as wrapped calls to the operators we've already implemented. This might
seem counterintuitive, but prevents errors from cases where seemingly symmetric operations are undefined. For
example, it is legal to multiply a vector and a matrix, though the division is undefined. For completeness' sake,
we'll prototype operator-= and operator/= as shown here:

 class Vector3D {
 public:
 /* ... */
 Vector3D& operator += (const Vector3D& other);
 Vector3D& operator -= (const Vector3D& other);

 Vector3D& operator *= (double scaleFactor);
 Vector3D& operator /= (double scaleFactor);

 private:
 static const int NUM_COORDINATES = 3;
 double coordinates[NUM_COORDINATES];
 };

Now, how might we go about implementing these operators? operator/= is the simplest of the two and can be
implemented as follows:

 Vector3D& Vector3D::operator /= (double scaleFactor) {
 *this *= 1.0 / scaleFactor;
 return *this;
 }

This implementation, though cryptic, is actually quite elegant. The first line, *this *= 1.0 /
scaleFactor, says that we should multiply the receiver object (*this) by the reciprocal of scaleFactor.
The *= operator is the compound multiplication assignment operator that we wrote above, so this code invokes
operator*= on the receiver. In fact, this code is equivalent to

Chapter 10: Operator Overloading - 305 -

 Vector3D& Vector3D::operator /= (double scaleFactor) {
 operator*= (1.0 / scaleFactor);
 return *this;
 }

Depending on your taste, you might find this particular syntax more readable than the first version. Feel free to
use either version.

Now, how would we implement operator-=, which performs a componentwise subtraction of two
Vector3Ds? At a high level, subtracting one vector from another is equal to adding the inverse of the second
vector to the first, so we might want to write code like this:

 Vector3D& Vector3D::operator -= (const Vector3D& other) {
 *this += -other;
 return *this;
 }

That is, we add -other to the receiver object. But this code is illegal because we haven't defined the unary
minus operator as applied to Vector3Ds. Not to worry – we can overload this operator as well. The syntax for
this function is as follows:

 class Vector3D {
 public:
 /* ... */
 Vector3D& operator += (const Vector3D& other);
 Vector3D& operator -= (const Vector3D& other);

 Vector3D& operator *= (double scaleFactor);
 Vector3D& operator /= (double scaleFactor);

 const Vector3D operator- () const;

 private:
 static const int NUM_COORDINATES = 3;
 double coordinates[NUM_COORDINATES];
 };

There are four pieces of information about this function that deserve attention:

• The name of the unary minus function is operator -.

• The function takes no parameters. This lets C++ know that the function is the unary minus function (I.e.
-myVector) rather than the binary minus function (myVector – myOtherVector).

• The function returns a const Vector3D. The unary minus function returns an rvalue rather than an
lvalue, since code like -x = 137 is illegal. As mentioned above, this means that the return value of this
function should be a const Vector3D.

• The function is marked const. Applying the unary minus to an object doesn't change its value, and to
enforce this restriction we'll mark operator – const.

One possible implementation of operator- is as follows:

- 306 - Chapter 10: Operator Overloading

 const Vector3D Vector3D::operator- () const {
 Vector3D result;
 for(int k = 0; k < NUM_COORDINATES; ++k)
 result.coordinates[k] = -coordinates[k];
 return result;
 }

Note that the return type of this function is const Vector3D while the type of result inside the function is
Vector3D. This isn't a problem, since returning an object from a function yields a new temporary object and it's
legal to initialize a const Vector3D using a Vector3D.

When writing compound assignment operators, as when writing regular assignment operators, you must be
careful that self-assignment works correctly. In the above example with Vector3D's compound assignment
operators we didn't need to worry about this because the code was structured correctly. However, when working
with the C++ string's += operator, since the string needs to allocate a new buffer capable of holding the
current string appended to itself, it would need to handle the self-assignment case, either by explicitly
checking for self-assignment or through some other means.

Overloading Mathematical Operators

In the previous section, we provided overloaded versions of the += family of operators. Thus, we can now
write classes for which expressions of the form one += two are valid. However, the seemingly equivalent
expression one = one + two will still not compile, since we haven't provided an implementation of the
lone + operator. C++ will not automatically provide implementations of related operators given a single
overloaded operator, since in some cases this could result in nonsensical or meaningless behavior.

The built-in mathematical operators yield rvalues, so code like (x + y) = 137 will not compile.
Consequently, when overloading the mathematical operators, make sure they return rvalues as well by
having them return const objects.

Let's consider an implementation of operator + for our Vector3D class. Because the operator yields an
rvalue, we're supposed to return a const Vector3D, and based on our knowledge of parameter passing,
we know that we should accept a const Vector3D & as a parameter. There's one more bit we're
forgetting, though, and that's to mark the operator + function const, since operator + creates a new
object and doesn't modify either of the values used in the arithmetic statement. This results in the
following code

 class Vector3D {
 public:
 /* ... */
 Vector3D& operator += (const Vector3D& other);
 const Vector3D operator+ (const Vector3D& other);

 Vector3D& operator -= (const Vector3D& other);

 Vector3D& operator *= (double scaleFactor);
 Vector3D& operator /= (double scaleFactor);

 const Vector3D operator- () const;

 private:
 static const int NUM_COORDINATES = 3;
 double coordinates[NUM_COORDINATES];
 };

Chapter 10: Operator Overloading - 307 -

How are we to implement this function? We could just do a component-by-component addition, but it's
actually much easier to just write the function in terms of our operator +=. The full version of this code
is shown below:

 const Vector3D Vector3D::operator +(const Vector3D& other) const {
 Vector3d result = *this; // Make a deep copy of this Vector3D.
 result += other; // Use existing addition code.
 return result;
 }

Now, all of the code for operator + is unified, which helps cut down on coding errors.

There is an interesting and common case we haven't addressed yet – what if one of the operands isn't of
the same type as the class? For example, if you have a Matrix class that encapsulates a 3x3 matrix, as
shown here:

 class Matrix {
 public:
 /* ... */

 Matrix& operator *= (double scalar); // Scale all entries

 private:
 static const int MATRIX_SIZE = 3;
 double entries[MATRIX_SIZE][MATRIX_SIZE];
 };

Note that there is a defined *= operator that scales all elements in the matrix by a double factor. Thus
code like myMatrix *= 2.71828 is well-defined. However, since there's no defined operator *,
currently we cannot write myMatrix = myMatrix * 2.71828.

Initially, you might think that we could define operator * just as we did operator + in the previous
example. While this will work in most cases, it will lead to some problems we'll need to address later. For
now, however, let's add the member function operator * to Matrix, which is defined as

 const Matrix Matrix::operator *(double scalar) const {
 MyMatrix result = *this;
 result *= scalar;
 return result;
 }

Now, we can write expressions like myMatrix = myMatrix * 2.71828. However, what happens if we
write code like myMatrix = 2.71828 * myMatrix? This is a semantically meaningful expression, but
unfortunately it won't compile. When interpreting overloaded operators, C++ will always preserve the
order of values in an expression.* Thus 2.71828 * myMatrix is not the same as myMatrix * 2.71828.
Remember that the reason that myMatrix * 2.71828 is legal is because it's equivalent to
myMatrix.operator *(2.71828). The expression 2.71828 * myMatrix, on the other hand, is illegal
because C++ will try to expand it into (2.71828).operator *(myMatrix), which makes no sense.

* One major reason for this is that sometimes the arithmetic operators won't be commutative. For example, given
matrices A and B, AB is not necessarily the same as BA, and if C++ were to arbitrarily flip parameters it could
result in some extremely difficult-to-track bugs.

- 308 - Chapter 10: Operator Overloading

To fix this, we can make operator * a free function that accepts two parameters, a double and a Matrix,
and returns a const Matrix. Thus code like 2.71828 * myMatrix will expand into calls to
operator *(2.71828, myMatrix). The new version of operator * is defined below:

 const Matrix operator * (double scalar, const Matrix& matrix) {
 Matrix result = *matrix;
 matrix *= scalar;
 return result;
 }

But here we run into the same problem as before if we write myMatrix * 2.71828, since we haven't
defined a function accepting a Matrix as its first parameter and an double as its second. To fix this, we'll
define a second free function operator * with the parameters reversed that's implemented as a call to
the other version:

 const Matrix operator *(const Matrix& matrix, double scalar) {
 return scalar * matrix; // Calls operator* (scalar, matrix)
 }

As a general rule, mathematical operators like + should always be implemented as free functions. This
prevents problems like those described here.

One important point to notice about overloading the mathematical operators versus the compound
assignment operators is that it's considerably faster to use the compound assignment operators over the
standalone mathematical operators. Not only do the compound assignment operators work in-place (that
is, they modify existing objects), but they also return references instead of full objects. From a
performance standpoint, this means that given these three strings:

 string one = "This ";
 string two = "is a ";
 string three = "string!";

Consider these two code snippets to concatenate all three strings:

 /* Using += */
 string myString = one;
 myString += two;
 myString += three;

 /* Using + */
 string myString = one + two + three

Oddly, the second version of this code is considerably slower than the first because the + operator
generates temporary objects. Remember that one + two + three is equivalent to

 operator +(one, operator +(two, three))

Each call to operator + returns a new string formed by concatenating the parameters, so the code one
+ two + three creates two temporary string objects. The first version, on the other hand, generates
no temporary objects since the += operator works in-place. Thus while the first version is less sightly, it is
significantly faster than the second.

Chapter 10: Operator Overloading - 309 -

Overloading ++ and --

Overloading the increment and decrement operators can be a bit tricky because there are two versions of
each operator: prefix and postfix. Recall that x++ and ++x are different operations – the first will evaluate
to the value of x, then increment x, while the second will increment x and then evaluate to the updated
value of x. You can see this below:

 int x = 0
 cout << x++ << endl; // Prints: 0
 cout << x << endl; // Prints: 1

 x = 0;
 cout << ++x << endl; // Prints: 1
 cout << x << endl; // Prints: 1

Although this distinction is subtle, it's tremendously important for efficiency reasons. In the postfix
version of ++, since we have to return the value of the variable was before it was incremented, we'll need
to make a full copy of the old version and then return it. With the prefix ++, since we're returning the
current value of the variable, we can simply return a reference to it. Thus the postfix ++ can be noticeably
slower than the prefix version; this is the reason that when advancing an STL iterator it's faster to use the
prefix increment operator.

The next question we need to address is how we can legally use ++ and -- in regular code. Unfortunately,
it can get a bit complicated. For example, the following code is totally legal:

 int x = 0;
 ++++++++++++++x; // Increments x seven times.

This is legal because it's equivalent to

 ++(++(++(++(++(++(++x))))));

The prefix ++ operator returns the variable being incremented as an lvalue, so this statement means
“increment x, then increment x again, etc.”

However, if we use the postfix version of ++, as seen here:

 x++++++++++++++; // Error

We get a compile-time error because x++ returns the original value of x as an rvalue, which can't be
incremented because that would require putting the rvalue on the left side of an assignment (in particular,
x = x + 1).

Now, let's actually get into some code. Unfortunately, we can't just sit down and write operator ++, since
it's unclear which operator ++ we'd be overloading. C++ uses a hack to differentiate between the prefix
and postfix versions of the increment operator: when overloading the prefix version of ++ or --, you write
operator ++ as a function that takes no parameters. To overload the postfix version, you'll overload
operator ++, but the overloaded operator will accept as a parameter the integer value 0. In code, these
two declarations look like

- 310 - Chapter 10: Operator Overloading

 class MyClass {
 public:
 /* ... */

 MyClass& operator ++(); // Prefix
 const MyClass operator ++(int dummy); // Postfix

 private:
 /* ... */
 };

Note that the prefix version returns a MyClass& as an lvalue and the postfix version a const MyClass as
an rvalue.

We're allowed to implement ++ and -- in any way we see fit. However, one of the more common tricks is
to write the ++ implementation as a wrapped call to operator +=. Assuming you've provided this
function, we can then write the prefix operator ++ as

 MyClass& MyClass::operator ++() {
 *this += 1;
 return *this;
 }

And the postfix operator ++ as

 const MyClass MyClass::operator ++(int dummy) {
 MyClass oldValue = *this; // Store the current value of the object.
 ++*this;
 return oldValue;
 }

Notice that the postfix operator++ is implemented in terms of the prefix operator++. This is a fairly
standard technique and cuts down on the amount of code that you will need to write for the functions.

In your future C++ career, you may encounter versions of operator++ that look like this:

 const MyClass MyClass::operator ++(int) {
 MyClass oldValue = *this; // Store the current value of the object.
 ++*this;
 return oldValue;
 }

Although this function takes in an int parameter, that parameter does not have a name. It turns out that it
is perfectly legal C++ code to write functions that accept parameters but do not give names to those
parameters. In this case, the function acts just like a regular function that accepts a parameter, except that
the parameter cannot be used inside of the function. In the case of operator++, this helps give a cue to
readers that the integer parameter is not meaningful and exists solely to differentiate the prefix and
postfix versions of the function.

Overloading Relational Operators

Perhaps the most commonly overloaded operators (other than operator =) are the relational operators;
for example, < and ==. Unlike the assignment operator, by default C++ does not provide relational
operators for your objects. This means that you must explicitly overload the == and related operators to

Chapter 10: Operator Overloading - 311 -

use them in code. The prototype for the relational operators looks like this (written for <, but can be for
any of the relational operators):

 class MyClass {
 public:
 /* ... */
 bool operator < (const MyClass& other) const;

 private:
 /* ... */
 };

You're free to choose any means for defining what it means for one object to be “less than” another.
However, when doing so, you must take great care to ensure that your less-than operator defines a total
ordering on objects of your type. This means that the following must be true about the behavior of the
less-than operator:

• Trichotomy: For any a and b, exactly one of a < b, a = b, and b < a is true.
• Transitivity: If a < b and b < c, then a < c.

These properties of < are important because they allow the notion of sorted order to make sense. If either
of these conditions does not hold, then it is possible to encounter strange situations in which a collection
of elements cannot be put into ascending order. For example, suppose that we have the following class,
which represents a point in two-dimensional space:

 class Point {
 public:
 Point(double x, double y);

 double getX() const;
 void setX(double value);

 double getY() const;
 void setY(double value);
 }

Now consider the following implementation of a less-than operator for comparing Points:

 bool operator< (const Point& one, const Point& two) {
 return one.getX() < two.getX() && one.getY() < two.getY();
 }

Intuitively, this may seem like a reasonable definition of the < operator: point a is less than point b if both
coordinates of a are less than the corresponding coordinates of b. However, this implementation of < is
bound to cause problems. In particular, consider the following code:

 Point one(1, 0), two(0, 1);
 cout << (one < two) << endl;
 cout << (two < one) << endl;

Here, we create two points called one and two and compare them using the < operator. What will the first
line print? Using the above definition of operator<, the comparison one < two will evaluate to false
because the x coordinate of one is greater than the x coordinate of two. But what about two < one? In
this case, two's x coordinate is less than one's, but its y coordinate is greater than one's. Consequently, we
have that two < one also evaluates to false. We have reached a precarious situation. We have found two

- 312 - Chapter 10: Operator Overloading

values, one and two, such that one and two do not have equal values, but neither is less than the other.
This means that we could not possibly sort a list of elements containing both one and two, since neither
one precedes the other.

The problem with the above implementation of operator< is that it violates trichotomy. Recall from the
above definition of a total ordering that trichotomy means that exactly one of a < b, a = b, a > b must hold
for any a and b. Our definition of operator< does not have this property, as illustrated above.
Consequently, we have a legal implementation of operator< that is wholly incorrect. We'll need to
redefine how operator< works in order to ensure that trichotomy holds.

One common strategy for implementing operator< is to use what's called a lexicographical ordering. To
illustrate a lexicographically ordering, consider the words about and above and think about how you
would compare them alphabetically. You'd begin by noting that the first letter of each word was the same,
as was the second and the third. However, the fourth letter of the words disagree, and in particular the
letter u from about precedes the letter v from above. Consequently, we would say that about comes
lexicographically before above. Interestingly, though, the last letter of about (t) comes after the last letter
of above (e). We don't care, though, because we stopped comparing letters as soon as we found the first
mismatch in the words.

This strategy has an elegant analog for arbitrary types. Given a type, one way to implement operator< is
as follows. Given two objects a and b of that type, check whether the first field of a and b are not the same.
If so, say that a is smaller if its first field is smaller than b's first field. Otherwise, look at the second field.
If the fields are not the same, then return a if a's second field is smaller than b's and b otherwise. If not,
then look at the third field, etc. To give you a concrete example of how this works, consider the following
revision to the Point's operator< function:

 bool operator< (const Point& one, const Point& two) {
 if (one.getX() != two.getX()) return one.getX() < two.getX();
 return one.getY() < two.getY();
 }

Here, we first check whether the points disagree in their x coordinate. If so, we say that one is less than
two only if it has a smaller x coordinate. Otherwise, if the points agree in their x coordinate, then
whichever has the lower y coordinate is said to have the smaller value. Amazingly, this implementation
strategy results in an ordering that is both trichotic and transitive, exactly the properties we want out of
the < operator.

Of course, this strategy works on classes that have more than two fields, provided that you compare each
field one at a time. It is an interesting exercise to convince yourself that a lexicographical ordering on any
type obeys trichotomy, and that such an ordering obeys transitivity as well.

Once you have a working implementation of operator<, it is possible to define all five other relational
operators solely in terms of the operator<. This is due to the following set of relations:

A < B ⇔ A < B

A <= B ⇔ !(B < A)

A == B ⇔ !(A < B || B < A)

A != B ⇔ A < B || B < A

A >= B ⇔ !(A < B)

A > B ⇔ B < A

Chapter 10: Operator Overloading - 313 -

For example, we could implement operator> for the Point class as

 bool operator> (const Point& one, const Point& two) {
 return two < one;
 }

We could similarly implement operator<= for Points as

 bool operator<= (const Point& one, const Point& two) {
 return !(one < two);
 }

This is a fairly standard technique, and it's well worth the effort to remember it.

Storing Objects in STL maps

Up to this point we've avoided storing objects as keys in STL maps. Now that we've covered operator
overloading, though, you have the necessary knowledge to store objects in the STL map and set
containers.

Internally, the STL map and set are layered on binary trees that use the relational operators to compare
elements. Due to some clever design decisions, STL containers and algorithms only require the < operator
to compare two objects. Thus, to store a custom class inside a map or set, you simply need to overload the
< operator and the STL will handle the rest. For example, here's some code to store a Point struct in a
map:

 struct pointT {
 int x, y;

 bool operator < (const pointT& other) const {
 if(x != other.x)
 return x < other.x;
 return y < other.y;
 }
 };
 map<pointT, int> myMap; // Now works using the default < operator.

You can use a similar trick to store objects as values in a set.

friend

Normally, when you mark a class's data members private, only instances of that class are allowed to access
them. However, in some cases you might want to allow specific other classes or functions to modify
private data. For example, if you were implementing the STL map and wanted to provide an iterator class
to traverse it, you'd want that iterator to have access to the map's underlying binary tree. There's a slight
problem here, though. Although the iterator is an integral component of the map, like all other classes, the
iterator cannot access private data and thus cannot traverse the tree.

How are we to resolve this problem? Your initial thought might be to make some public accessor methods
that would let the iterator modify the object's internal data representation. Unfortunately, this won't work
particularly well, since then any class would be allowed to use those functions, something that violates the
principle of encapsulation. Instead, to solve this problem, we can use the C++ friend keyword to grant
the iterator class access to the map or set's internals. Inside the map declaration, we can write the
following:

- 314 - Chapter 10: Operator Overloading

 template <typename KeyType, typename ValueType> class map {
 public:
 /* ... */

 friend class iterator;
 class iterator {
 /* ... iterator implementation here ... */
 };
 };

Now, since iterator is a friend of map, it can read and modify the map's private data members.

Just as we can grant other classes friend access to a class, we can give friend access to global functions.
For example, if we had a free function ModifyMyClass that accepted a MyClass object as a reference
parameter, we could let ModifyMyClass modify the internal data of MyClass if inside the MyClass
declaration we added the line

 class MyClass {
 public:
 /* ... */
 friend void ModifyMyClass(MyClass& param);

 };

The syntax for friend can be misleading. Even though we're prototyping ModifyMyClass inside the
MyClass function, because ModifyMyClass is a friend of MyClass it is not a member function of
MyClass. After all, the purpose of the friend declaration is to give outside classes and functions access to
the MyClass internals.

When using friend, there are two key points to be aware of. First, the friend declaration must precede
the actual implementation of the friend class or function. Since C++ compilers only make a single pass
over the source file, if they haven't seen a friend declaration for a function or class, when the function or
class tries to modify your object's internals, the compiler will generate an error. Second, note that while
friend is quite useful in some circumstances, it can quickly lead to code that entirely defeats the purpose
of encapsulation. Before you grant friend access to a piece of code, make sure that the code has a
legitimate reason to be modifying your object. That is, don't make code a friend simply because it's
easier to write that way. Think of friend as a way of extending a class definition to include other pieces of
code. The class, together with all its friend code, should comprise a logical unit of encapsulation.

When overloading an operator as a free function, you might want to consider giving that function friend
access to your class. That way, the functions can efficiently read your object's private data without having
to go through getters and setters.

Unfortunately, friend does not interact particularly intuitively with template classes. Suppose we want to
provide a friend function PQueueFriend for a template version of the CS106B/X PQueue. If
PQueueFriend is declared like this:

 template <typename T> void PQueueFriend(const PQueue<T>& pq) {
 /* ... */
 }

Chapter 10: Operator Overloading - 315 -

You'll notice that PQueueFriend itself is a template function. This means that when declaring
PQueueFriend a friend of the template PQueue, we'll need to make the friend declaration templatized,
as shown here:

- 316 - Chapter 10: Operator Overloading

 template <typename T> class PQueue {
 public:
 /* ... */
 template <typename T> friend PQueueFriend(const PQueue<T>& pq);
 };

If you forget the template declaration, then your code will compile correctly but will generate a linker
error. While this can be a bit of nuisance, it's important to remember since it arises frequently when
overloading the stream operators, as you'll see below.

Overloading the Stream Insertion Operator

Have you ever wondered why cout << "Hello, world!" << endl is syntactically legal? It's through
the overloaded << operator in conjunction with ostreams.* In fact, the entire streams library can be
thought of as a gigantic library of massively overloaded << and >> operators.

The C++ streams library is designed to give you maximum flexibility with your input and output routines
and even lets you define your own stream insertion and extraction operators. This means that you are
allowed to define the << and >> operators so that expressions like cout << myClass << endl and cin
>> myClass are well-defined. However, when writing stream insertion and extraction operators, there
are huge number of considerations to keep in mind, many of which are beyond the scope of this text. This
next section will discuss basic strategies for overloading the << operator, along with some limitations of
the simple approach.

As with all overloaded operators, we need to consider what the parameters and return type should be for
our overloaded << operator. Before considering parameters, let's think of the return type. We know that it
should be legal to chain stream insertions together – that is, code like cout << 1 << 2 << endl should
compile correctly. The << operator associates to the left, so the above code is equal to

 (((cout << 1) << 2) << endl);

Thus, we need the << operator to return an ostream. Now, we don't want this stream to be const, since
then we couldn't write code like this:

 cout << "This is a string!" << setw(10) << endl;

Since if cout << "This is a string!" evaluated to a const object, we couldn't set the width of the
next operation to 10. Also, we cannot return the stream by value, since stream classes have their copy
functions marked private. Putting these two things together, we see that the stream operators should
return a non-const reference to whatever stream they're referencing.

Now let's consider what parameters we need. We need to know what stream we want to write to or read
from, so initially you might think that we'd define overloaded stream operators as member functions that
look like this:

 class MyClass {
 public:
 ostream& operator << (ostream& input) const; // Problem: Legal but incorrect
 };

* As a reminder, the ostream class is the base class for output streams. This has to do with inheritance, which we'll
cover in a later chapter, but for now just realize that it means that both stringstream and ofstream are
specializations of the more generic ostream class.

Chapter 10: Operator Overloading - 317 -

Unfortunately, this isn't correct. Consider the following two code snippets:

 cout << myClass;
 myClass << cout;

The first of these two versions makes sense, while the second is backwards. Unfortunately, with the above
definition of operator <<, we've accidentally made the second version syntactically legal. The reason is
that these two lines expand into calls to

 cout.operator <<(myClass);
 myClass.operator <<(cout);

The first of these two isn't defined, since cout doesn't have a member function capable of writing our
object (if it did, we wouldn't need to write a stream operator in the first place!). However, based on our
previous definition, the second version, while semantically incorrect, is syntactically legal. Somehow we
need to change how we define the stream operator so that we are allowed to write cout << myClass. To
fix this, we'll make the overloaded stream operator a free function that takes two parameters – an
ostream to write to and a myClass object to write. The code for this is:

 ostream& operator << (ostream& stream, const MyClass& mc) {
 /* ... implementation ... */
 return stream;
 }

While this code will work correctly, because operator << is a free function, it doesn't have access to any
of the private data members of MyClass. This can be a nuisance, since we'd like to directly write the
contents of MyClass out to the stream without having to go through the (possibly inefficient) getters and
setters. Thus, we'll declare operator << a friend inside the MyClass declaration, as shown here:

 class MyClass {
 public:
 /* More functions. */
 friend ostream& operator <<(ostream& stream, const MyClass& mc);

 };

Now, we're all set to do reading and writing inside the body of the insertion operator. It's not particularly
difficult to write the stream insertion operator – all that we need to do is print out all of the meaningful
class information with some formatting information. So, for example, given a Point class representing a
point in 2-D space, we could write the insertion operator as

 ostream& operator <<(ostream& stream, const Point& pt) {
 stream << '(' << pt.x << ", " << pt.y << ')';
 return stream;
 }

While this code will work in most cases, there are a few spots where it just won't work correctly. For
example, suppose we write the following code:

 cout << "01234567890123456789" << endl; // To see the number of characters.
 cout << setw(20) << myPoint << endl;

Looking at this code, you'd expect that it would cause myPoint to be printed out and padded with space
characters until it is at least twenty characters wide. Unfortunately, this isn't what happens. Since
operator << writes the object one piece at a time, the output will look something like this:

- 318 - Chapter 10: Operator Overloading

 01234567890123456789
 (0, 4)

That's nineteen spaces, followed by the actual Point data. The problem is that when we invoke operator
<<, the function writes a single (character to stream. It's this operation, not the Point as a whole, that
will get aligned to 20 characters. There are many ways to circumvent this problem, but perhaps the
simplest is to buffer the output into a stringstream and then write the contents of the stringstream to
the destination in a single operation. This can get a bit complicated, especially since you'll need to copy
the stream formatting information over.

Writing a correct stream extraction operator (operator >>) is complicated. For more information on
writing stream extraction operators, consult a reference.

Overloading * and ->

Consider the following code snippet:

 for(set<string>::iterator itr = mySet.begin(); itr != mySet.end(); ++itr)
 cout << *itr << " has length " << itr->length() << endl;

Here, we traverse a set<string> using iterators, printing out each string and its length. Interestingly,
even though set iterators are not raw pointers (they're objects capable of traversing binary trees), thanks
to operator overloading, they can respond to the * and -> operators as though they were regular C++
pointers.

If you create a custom class that acts like a C++ pointer (perhaps a custom iterator or “smart pointer,” a
topic we'll return to later), you can provide implementations of the pointer dereference and member
selection operators * and -> by overloading their respective operator functions. The simpler of these two
functions is the pointer dereference operator. To make an object that can be dereferenced to yield an
object of type T, the syntax for its * operator is

 class PointerClass {
 public:
 T& operator *() const;
 /* ... */
 };

You can invoke the operator * function by “dereferencing” the custom pointer object. For example, the
following code:

 *myCustomPointer = 137;

is completely equivalent to

 myCustomPointer.operator *() = 137;

Because we can assign a value to the result of operator *, the operator * function should return an
lvalue (a non-const reference).

There are two other points worth noting here. First, how can C++ distinguish this operator * for pointer
dereference from the operator * used for multiplication? The answer has to do with the number of
parameters to the function. Since a pointer dereference is a unary operator, the function prototype for the
pointer-dereferencing operator * takes no parameters. Had we wanted to write operator * for

Chapter 10: Operator Overloading - 319 -

multiplication, we would have written a function operator * that accepts a parameter (or a free function
accepting two parameters). Second, why is operator * marked const? This has to do with the
difference between const pointers and pointers-to-const. Suppose that we have a const instance of a
custom pointer class. Since the pointer object is const, it acts as though it is a const pointer rather than a
pointer-to-const. Consequently, we should be able to dereference the object and modify its stored pointer
without affecting its constness.

The arrow operator operator -> is slightly more complicated than operator *. Initially, you might
think that operator -> would be a binary operator, since you use the arrow operator in statements like
myClassPtr->myElement. However, C++ has a rather clever mechanism for operator -> that makes it a
unary operator. A class's operator -> function should return a pointer to the object that the arrow
operator should actually be applied to. This may be a bit confusing, so an example is in order. Suppose we
have a class CustomStringPointer that acts as though it's a pointer to a C++ string object. Then if we
have the following code:

 CustomStringPointer myCustomPointer;
 cout << myCustomPointer->length() << endl;

This code is equivalent to

 CustomStringPointer myCustomPointer;
 cout << (myCustomPointer.operator ->())->length() << endl;

In the first version of the code, we treated the myCustomPointer object as though it was a real pointer by
using the arrow operator to select the length function. This code expands out into two smaller steps:

1. The CustomStringPointer's operator -> function is called to determine which pointer the
arrow should be applied to.

2. The returned pointer then has the -> operator applied to select the length function.

Thus when writing the operator -> function, you simply need to return the pointer that the arrow
operator should be applied to. If you're writing a custom iterator class, for example, this is probably the
element being iterator over.

We'll explore one example of overloading these operators in a later chapter.

List of Overloadable Operators

The following table lists the most commonly-used operators you're legally allowed to overload in C++,
along with any restrictions about how you should define the operator.

Operator Yields Usage

= Lvalue MyClass& operator =(const MyClass& other);

See the the earlier chapter for details.

+= -= *=
/= %=

(etc.)

Lvalue MyClass& operator +=(const MyClass& other);

When writing compound assignment operators, make sure that you correctly
handle “self-compound-assignment.”

- 320 - Chapter 10: Operator Overloading

+ - * / %

(etc.)

Rvalue const MyClass operator + (const MyClass& one,
 const MyClass& two);

These operator should be defined as a free functions.

< <= ==
> >= !=

Rvalue bool operator < (const MyClass& other) const;
bool operator < (const MyClass& one,
 const MyClass& two);

If you're planning to use relational operators only for the STL container classes,
you just need to overload the < operator. Otherwise, you should overload all six so
that users aren't surprised that one != two is illegal while !(one == two) is
defined.

[] Lvalue ElemType& operator [](const KeyType& key);
const ElemType& operator [](const KeyType& key) const;

Most of the time you'll need a const-overloaded version of the bracket operator.
Forgetting to provide one can lead to a real headache!

++ -- Prefix: Lvalue
Postfix: Rvalue

Prefix version: MyClass& operator ++();
Postfix version: const MyClass operator ++(int dummy);

- Rvalue const MyClass operator -() const;

* Lvalue ElemType& operator *() const;

With this function, you're allowing your class to act as though it's a pointer. The
return type should be a reference to the object it's “pointing” at. This is how the
STL iterators and smart pointers work. Note that this is the unary * operator and
is not the same as the * multiplicative operator.

-> Lvalue ElemType* operator ->() const;

If the -> is overloaded for a class, whenever you write myClass->myMember, it's
equivalent to myClass.operator ->()->myMember. Note that the function
should be const even though the object returned can still modify data. This has to
do with how pointers can legally be used in C++. For more information, refer to
the chapter on const.

<< >> Lvalue friend ostream& operator << (ostream& out,
 const MyClass& mc);
friend istream& operator >> (istream& in,
 MyClass& mc);

() Varies See the chapter on functors.

Extended Example: grid

The STL encompasses a wide selection of associative and sequence containers. However, one useful data type
that did not find its way into the STL is a multidimensional array class akin to the CS106B/X Grid. In this
extended example, we will implement an STL-friendly version of the CS106B/X Grid class, which we'll call
grid, that will support STL-compatible iterators, intuitive element-access syntax, and relational operators.
Once we're done, we'll have an industrial-strength container class we will use later in this book to implement
more complex examples.

Implementing a fully-functional grid may seem daunting at first, but fortunately it's easy to break the
work up into several smaller steps that culminate in a working class.

Chapter 10: Operator Overloading - 321 -

Step 0: Implement the Basic grid Class.

Before diving into some of the grid's more advanced features, we'll begin by implementing the grid
basics. Below is a partial specification of the grid class that provides core functionality:

Figure 0: Basic (incomplete) interface for the grid class
template <typename T> class grid {
public:
 /* Constructors, destructors. */
 grid(); // Create empty grid
 grid(size_t rows, size_t cols); // Construct to specified size

 /* Resizing operations. */
 void clear(); // Empty the grid
 void resize(size_t rows, size_t cols); // Resize the grid

 /* Query operations. */
 size_t numRows() const; // Returns number of rows in the grid
 size_t numCols() const; // Returns number of columns in the grid
 bool empty() const; // Returns whether the grid is empty
 size_t size() const; // Returns the number of elements

 /* Element access. */
 T& getAt(size_t row, int col); // Access individual elements
 const T& getAt(int row, int col) const; // Same, but const
};

These functions are defined in greater detail here:

grid(); Constructs a new, empty grid.

grid(size_t rows, size_t cols); Constructs a new grid with the specified number
of rows and columns. Each element in the grid is
initialized to its default value.

void clear(); Resizes the grid to 0x0.

void resize(size_t rows, size_t cols); Discards the current contents of the grid and
resizes the grid to the specified size. Each element
in the grid is initialized to its default value.

size_t numRows() const;
size_t numCols() const;

Returns the number of rows and columns in the
grid.

bool empty() const; Returns whether the grid contains no elements.
This is true if either the number of rows or columns
is zero.

size_t size() const; Returns the number of total elements in the grid.

 T& getAt(size_t row, size_t col);
const T& getAt(size_t row, size_t col) const;

Returns a reference to the element at the specified
position. This function is const-overloaded. We
won't worry about the case where the indices are
out of bounds.

Because grids can be dynamically resized, we will need to back grid with some sort of dynamic memory
management. Because the grid represents a two-dimensional entity, you might think that we need to use

- 322 - Chapter 10: Operator Overloading

a dynamically-allocated multidimensional array to store grid elements. However, working with
dynamically-allocated multidimensional arrays is tricky and greatly complicates the implementation.
Fortunately, we can sidestep this problem by implementing the two-dimensional grid object using a
single-dimensional array. To see how this works, consider the following 3x3 grid:

0 1 2

3 4 5

6 7 8

We can represent all of the elements in this grid using a one-dimensional array by laying out all of the
elements sequentially, as seen here:

0 1 2 3 4 5 6 7 8

If you'll notice, in this ordering, the three elements of the first row appear in order as the first three
elements, then the three elements of the second row in order, and finally the three elements of the final
row in order. Because this one-dimensional representation of a two-dimensional object preserves the
ordering of individual rows, it is sometimes referred to as row-major order.

To represent a grid in row-major order, we need to be able to convert between grid coordinates and array
indices. Given a coordinate (row, col) in a grid of dimensions (nrows, ncols), the corresponding position in
the row-major order representation of that grid is given by index = col + row * ncols. The intuition behind
this formula is that because the ordering within any row is preserved, each horizontal step in the grid
translates into a single step forward or backward in the row-major order representation of the grid.
However, each vertical step in the grid requires us to advance forward to the next row in the linearized
grid, skipping over ncols elements.

Using row-major order, we can back the grid class with a regular STL vector, as shown here:

 template <typename T> class grid {
 public:
 grid();
 grid(size_t rows, size_t cols);

 void clear();
 void resize(size_t rows, size_t cols);

 size_t numRows() const;
 size_t numCols() const;
 bool empty() const;
 size_t size() const;

 T& getAt(size_t row, size_t col);
 const T& getAt(size_t row, size_t col) const;

 private:
 vector<T> elems;
 size_t rows;
 size_t cols;
 };

Chapter 10: Operator Overloading - 323 -

Serendipitously, implementing the grid with a vector allows us to use C++'s automatically-generated
copy constructor and assignment operator for grid. Since vector already manages its own memory, we
don't need to handle it manually.

Note that we explicitly keep track of the number of rows and columns in the grid even though the vector
stores the total number of elements. This is necessary so that we can compute indices in the row-major
ordering for points in two-dimensional space.

The above functions have relatively straightforward implementations that are given below:

 template <typename T> grid<T>::grid() : rows(0), cols(0) {

 }

 template <typename T>
 grid<T>::grid(size_t rows, size_t cols)
 : elems(rows * cols), rows(rows), cols(cols) {
 }

 template <typename T> void grid<T>::clear() {
 resize(0, 0);
 }

 template <typename T> void grid<T>::resize(size_t rows, size_t cols) {
 /* See below for assign */
 elems.assign(rows * cols, ElemType());

 /* Explicit this-> required since parameters have same name as members. */
 this->rows = rows;
 this->cols = cols;
 }

 template <typename T> size_t grid<T>::numRows() const {
 return rows;
 }

 template <typename T> size_t grid<T>::numCols() const {
 return cols;
 }

 template <typename T> bool grid<T>::empty() const {
 return size() == 0;
 }

 template <typename T> size_t grid<T>::size() const {
 return numRows() * numCols();
 }

 /* Use row-major ordering to access the proper element of the vector. */
 template <typename T> T& grid<T>::getAt(size_t row, size_t col) {
 return elems[col + row * cols];
 }
 template <typename T> const T& grid<T>::getAt(size_t row,size_t col) const {
 return elems[col + row * cols];
 }

- 324 - Chapter 10: Operator Overloading

Most of these functions are one-liners and are explained in the comments. The only function that you may
find interesting is resize, which uses the vector's assign member function. assign is similar to
resize in that it changes the size of the vector, but unlike resize assign discards all of the current
vector contents and replaces them with the specified number of copies of the specified element. The use
of ElemType() as the second parameter to assign means that we will fill the vector with copies of the
default value of the type being stored (since ElemType() uses the temporary object syntax to create a new
ElemType).

Step 1: Add Support for Iterators

Now that we have the basics of a grid class, it's time to add iterator support. This will allow us to plug the
grid directly into the STL algorithms and will be invaluable in a later chapter.

Like the map and set, the grid does not naturally lend itself to a linear traversal – after all, grid is two-
dimensional – and so we must arbitrarily choose an order in which to visit elements. Since we've
implemented the grid in row-major order, we'll have grid iterators traverse the grid row-by-row, top to
bottom, from left to right. Thus, given a 3x4 grid, the order of the traversal would be

0 1 2

3 4 5

6 7 8

9 10 11

This order of iteration maps naturally onto the row-major ordering we've chosen for the grid. If we
consider how the above grid would be laid out in row-major order, the resulting array would look like this:

0 1 2 3 4 5 6 7 8 9 10 11

Thus this iteration scheme maps to a simple linear traversal of the underlying representation of the grid.
Because we've chosen to represent the elements of the grid using a vector, we can iterate over the
elements of the grid using vector iterators. We thus add the following definitions to the grid class:

Chapter 10: Operator Overloading - 325 -

 template <typename T> class grid {
 public:
 grid();
 grid(size_t rows, size_t cols);

 void clear();
 void resize(size_t rows, size_t cols);

 size_t numRows() const;
 size_t numCols() const;
 bool empty() const;
 size_t size() const;

 T& getAt(size_t row, size_t col);
 const T& getAt(size_t row, size_t col) const;

 typedef typename vector<T>::iterator iterator;
 typedef typename vector<T>::const_iterator const_iterator;

 private:
 vector<T> elems;
 size_t rows;
 size_t cols;
 };

Now, clients of grid can create grid<int>::iterators rather than vector<int>::iterators. This
makes the interface more intuitive and increases encapsulation; since iterator is a typedef, if we later
decide to replace the underlying representation with a dynamically-allocated array, we can change the
typedefs to

 typedef ElemType* iterator;
 typedef const ElemType* const_iterator;

And clients of the grid will not notice any difference.

Notice that in the above typedefs we had to use the typename keyword to name the type
vector<ElemType>::iterator. This is the pesky edge case mentioned in the chapter on templates and
somehow manages to creep into more than its fair share of code. Since iterator is a nested type inside
the template type vector<ElemType>, we have to use the typename keyword to indicate that iterator
is the name of a type rather than a class constant.

We've now defined an iterator type for our grid, so what functions should we export to the grid
clients? We'll at least want to provide support for begin and end, as shown here:

- 326 - Chapter 10: Operator Overloading

 template <typename T> class grid {
 public:
 grid();
 grid(size_t rows, size_t cols);

 void clear();
 void resize(size_t rows, size_t cols);

 size_t numRows() const;
 size_t numCols() const;
 bool empty() const;
 size_t size() const;

 T& getAt(size_t row, size_t col);
 const T& getAt(size_t row, size_t col) const;

 typedef typename vector<T>::iterator iterator;
 typedef typename vector<T>::const_iterator const_iterator;

 iterator begin();
 const_iterator begin() const;
 iterator end();
 const_iterator end() const;
 private:
 vector<T> elems;
 size_t rows;
 size_t cols;
 };

We've provided two versions of each function so that clients of a const grid can still use iterators. These
functions are easily implemented by returning the value of the underlying vector's begin and end
functions, as shown here:

 template <typename T> typename grid<T>::iterator grid<T>::begin() {
 return elems.begin();
 }

Notice that the return type of this function is typename grid<ElemType>::iterator rather than just
iterator. Because iterator is a nested type inside grid, we need to use grid<ElemType>::iterator
to specify which iterator we want, and since grid is a template type we have to use the typename
keyword to indicate that iterator is a nested type. Otherwise, this function should be straightforward.

The rest of the functions are implemented here:

 template <typename T> typename grid<T>::const_iterator grid<T>::begin() const {
 return elems.begin();
 }

 template <typename T> typename grid<T>::iterator grid<T>::end() {
 return elems.end();
 }

 template <typename T> typename grid<T>::const_iterator grid<T>::end() const {
 return elems.end();
 }

Chapter 10: Operator Overloading - 327 -

Because the grid is implemented in row-major order, elements of a single row occupy consecutive
locations in the vector. It's therefore possible to return iterators delineating the start and end of each
row in the grid. This is useful functionality, so we'll provide it to clients of the grid through a pair of
member functions row_begin and row_end (plus const overloads). These functions are declared here:

 template <typename T> class grid {
 public:
 grid();
 grid(size_t rows, size_t cols);

 void clear();
 void resize(size_t rows, size_t cols);

 size_t numRows() const;
 size_t numCols() const;
 bool empty() const;
 size_t size() const;

 T& getAt(size_t row, size_t col);
 const T& getAt(size_t row, size_t col) const;

 typedef typename vector<ElemType>::iterator iterator;
 typedef typename vector<ElemType>::const_iterator const_iterator;

 iterator begin();
 const_iterator begin() const;
 iterator end();
 const_iterator end() const;

 iterator row_begin(size_t row);
 const_iterator row_begin(size_t row) const;
 iterator row_end(size_t row);
 const_iterator row_end(size_t row) const;

 private:
 vector<T> elems;
 size_t rows;
 size_t cols;
 };

Before implementing these functions, let's take a minute to figure out exactly where the iterations we
return should point to. Recall that the element at position (row, 0) in a grid of size (rows, cols) can be
found at position row * cols. We should therefore have row_begin(row) return an iterator to the row *
cols element of the vector. Since there are cols elements in each row and row_end should return an
iterator to one position past the end of the row, this function should return an iterator to the position cols
past the location returned by row_begin. Given this information, we can implement these functions as
shown here:

 template <typename T> typename grid<T>::iterator grid<T>::row_begin(int row) {
 return begin() + numCols() * row;
 }

 template <typename T>
 typename grid<T>::const_iterator grid<T>::row_begin(int row) const {
 return begin() + numCols() * row;
 }

- 328 - Chapter 10: Operator Overloading

 template <typename T> typename grid<T>::iterator grid<T>::row_end(int row) {
 return row_begin(row) + numCols();
 }

 template <typename T>
 typename grid<T>::const_iterator grid<T>::row_end(int row) const {
 return row_begin(row) + numCols();
 }

We now have an elegant iterator interface for the grid class. We can iterate over the entire container as
a whole, just one row at a time, or some combination thereof. This enables us to interface the grid with
the STL algorithms. For example, to zero out a grid<int>, we can use the fill algorithm, as shown here:

 fill(myGrid.begin(), myGrid.end(), 0);

We can also sort the elements of a row using sort:

 sort(myGrid.row_begin(0), myGrid.row_end(0));

With only a handful of functions we're now capable of plugging directly into the full power of the
algorithms. This is part of the beauty of the STL – had the algorithms been designed to work on containers
rather than iterator ranges, this would not have been possible.

Step 2: Add Support for the Element Selection Operator

When using regular C++ multidimensional arrays, we can write code that looks like this:

 int myArray[137][42];
 myArray[2][4] = 271828;
 myArray[9][0] = 314159;

However, with the current specification of the grid class, the above code would be illegal if we replaced
the multidimensional array with a grid<int>, since we haven't provided an implementation of
operator [].

Adding support for element selection to linear classes like the vector is simple – we simply have the
brackets operator return a reference to the proper element. Unfortunately, it is much trickier to design
grid such that the bracket syntax works correctly. The reason is that if we write code that looks like this:

 grid<int> myGrid(137, 42);
 int value = myGrid[2][4];

By replacing the bracket syntax with calls to operator [], we see that this code expands out to

 grid<int> myGrid(137, 42);
 int value = (myGrid.operator[] (2)).operator[] (4);

Here, there are two calls to operator [], one invoked on myGrid and the other on the value returned by
myGrid.operator[](2). To make the above code compile, the object returned by the grid's
operator[] must itself define an operator [] function. It is this returned object, rather than the grid
itself, which is responsible for retrieving the requested element from the grid. Since this temporary
object is used to perform a task normally reserved for the grid, it is sometimes known as a proxy object.

Chapter 10: Operator Overloading - 329 -

How can we implement the grid's operator [] so that it works as described above? First, we will need
to define a new class representing the object returned by the grid's operator []. In this discussion,
we'll call it MutableReference, since it represents an object that can call back into the grid and mutate
it. For simplicity and to maximize encapsulation, we'll define MutableReference inside of grid. This
results in the following interface for grid:

 template <typename T> class grid {
 public:
 /* ... previously-defined functions ... */

 class MutableReference {
 public:
 friend class grid;
 T& operator[] (size_t col);

 private:
 MutableReference(grid* owner, size_t row);

 grid* const owner;
 const size_t row;
 };

 private:
 vector<T> elems;
 size_t rows;
 size_t cols;
 };

The MutableReference object stores some a pointer to the grid that created it, along with the index
passed in to the grid's operator [] function when the MutableReference was created. That way,
when we invoke the MutableReference's operator [] function specifying the col coordinate of the grid,
we can pair it with the stored row coordinate, then query the grid for the element at (row, col). We have
also made grid a friend of MutableReference so that the grid can call the private constructor
necessary to initialize a MutableReference.

We can implement MutableReference as follows:

 template <typename T>
 grid<T>::MutableReference::MutableReference(grid* owner, int row) :
 owner(owner), row(row) {
 }

 template <typename T>
 T& grid<T>::MutableReference::operator[] (int col) {
 return owner->getAt(row, col);
 }

Notice that because MutableReference is a nested class inside grid, the implementation of the
MutableReference functions is prefaced with grid<ElemType>::MutableReference instead of just
MutableReference. However, in this particular case the pesky typename keyword is not necessary
because we are prototyping a function inside MutableReference rather than using the type
MutableReference in an expression.

Now that we've implemented MutableReference, we'll define an operator [] function for the grid
class that constructs and returns a properly-initialized MutableReference. This function accepts an row

- 330 - Chapter 10: Operator Overloading

coordinate, and returns a MutableReference storing that row number and a pointer back to the grid.
That way, if we write

 int value = myGrid[1][2];

The following sequences of actions occurs:

1. myGrid.operator[] is invoked with the parameter 1.

2. myGrid.operator[] creates a MutableReference storing the row coordinate 1 and a means for
communicating back with the myGrid object.

3. myGrid.operator[] returns this MutableReference.

4. The returned MutableReference then has its operator[] function called with parameter 2.

5. The returned MutableReference then calls back to the myGrid object and asks for the element at
position (1, 2).

This sequence of actions is admittedly complex, but is transparent to the client of the grid class and runs
efficiently.

operator[] is defined and implemented as follows:

 template <typename T> class grid {
 public:
 /* ... previously-defined functions ... */

 class MutableReference {
 public:
 friend class grid;
 T& operator[] (size_t col);

 private:
 MutableReference(grid* owner, size_t row);

 grid* const owner;
 const size_t row;
 };
 MutableReference operator[] (int row);

 private:
 vector<T> elems;
 size_t rows;
 size_t cols;
 };

 template <typename T>
 typename grid<T>::MutableReference grid<T>::operator[] (int row) {
 return MutableReference(this, row);
 }

Notice that we've only provided an implementation of the non-const version of operator[]. But what if
we want to use operator[] on a const grid? We would similarly need to return a proxy object, but that
object would need to guarantee that grid clients could not write code like this:

Chapter 10: Operator Overloading - 331 -

 const grid<int> myGrid(137, 42);
 myGrid[0][0] = 2718; // Ooops! Modified const object!

To prevent this sort of problem, we'll have the const version of operator[] return a proxy object of a
different type, called ImmutableReference which behaves similarly to MutableReference but which
returns const references to the elements in the grid. This results in the following interface for grid:

 template <typename T> class grid {
 public:
 /* ... previously-defined functions ... */

 class MutableReference {
 public:
 friend class grid;
 T& operator[] (size_t col);

 private:
 MutableReference(grid* owner, size_t row);

 grid* const owner;
 const size_t row;
 };
 MutableReference operator[] (int row);

 class ImmutableReference {
 public:
 friend class grid;
 const T& operator[] (size_t col) const;

 private:
 MutableReference(const grid* owner, size_t row);

 const grid* const owner;
 const size_t row;
 };
 ImmutableReference operator[] (size_t row) const;

 private:
 vector<T> elems;
 size_t rows;
 size_t cols;
 };

ImmutableReference and the const version of operator[] are similar to MutableReference and the
non-const version of operator[], and to save space we won't write it here. The complete listing of the
grid class at the end of this chapter contains the implementation if you're interested.

Step 3: Define Relational Operators

Now that our grid has full support for iterators and a nice bracket syntax that lets us access individual
elements, it's time to put on the finishing touches. As a final step in the project, we'll provide
implementations of the relational operators for our grid class. We begin by updating the grid interface
to include the following functions:

- 332 - Chapter 10: Operator Overloading

 template <typename T> class grid {
 public:
 /* ... previously-defined functions ... */

 bool operator < (const grid& other) const;
 bool operator <= (const grid& other) const;
 bool operator == (const grid& other) const;
 bool operator != (const grid& other) const;
 bool operator >= (const grid& other) const;
 bool operator > (const grid& other) const;

 private:
 vector<T> elems;
 size_t rows;
 size_t cols;
 };

Note that of the six operators listed above, only the == and != operators have intuitive meanings when
applied to grids. However, it also makes sense to define a < operator over grids so that we can store
them in STL map and set containers, and to ensure consistency, we should define the other three
operators as well.

Because there is no natural interpretation for what it means for one grid to be “less than” another, we are
free to implement these functions in any way that we see fit, provided that we obey transitivity and
trichotomy. As mentioned earlier it is possible to implement all six of the relational operators in terms of
the less-than operator. One strategy for implementing the relational operators is thus to implement just
the less-than operator and then to define the other five as wrapped calls to operator <. But what is the
best way to determine whether one grid compares less than another? One general approach is to define a
lexicographical ordering over grids. We will compare each field one at a time, checking to see if the fields
are equal. If so, we move on to the next field. Otherwise, we immediately return that one grid is less than
another without looking at the remaining fields. If we go through every field and find that the grids are
equal, then we can return that neither grid is less than the other. This is similar to the way that we might
order words alphabetically – we find the first mismatched character, then return which word compares
first. We can begin by implementing operator < as follows:

 template <typename T> bool grid<T>::operator < (const grid& other) const {
 /* Compare the number of rows and return if there's a mismatch. */
 if(rows != other.rows)
 return rows < other.rows;

 /* Next compare the number of columns the same way. */
 if(cols != other.cols)
 return cols < other.cols;

 /* ... */
 }

Here, we compare the rows fields of the two objects and immediately return if they aren't equal. We can
then check the cols fields in the same way. Finally, if the two grids have the same number of rows and
columns, we need to check how the elements of the grids compare. Fortunately, this is straightforward
thanks to the STL lexicographical_compare algorithm. lexicographical_compare accepts four
iterators delineating two ranges, then lexicographically compares the elements in those ranges and
returns if the first range compares lexicographically less than the second. Using
lexicographical_compare, we can finish our implementation of operator < as follows:

Chapter 10: Operator Overloading - 333 -

 template <typename T> bool grid<T>::operator < (const grid& other) const {
 /* Compare the number of rows and return if there's a mismatch. */
 if(rows != other.rows)
 return rows < other.rows;

 /* Next compare the number of columns the same way. */
 if(cols != other.cols)
 return cols < other.cols;

 return lexicographical_compare(begin(), end(), other.begin(), other.end());
 }

All that's left to do now is to implement the other five relational operators in terms of operator <. This is
done below:

 template <typename T> bool grid<T>::operator >=(const grid& other) const {
 return !(*this < other);
 }

 template <typename T> bool grid<T>::operator ==(const grid& other) const {
 return !(*this < other) && !(other < *this);
 }

 template <typename T> bool grid<T>::operator !=(const grid& other) const {
 return (*this < other) || (other < *this);
 }

 template <typename T> bool grid<T>::operator > (const grid& other) const {
 return other < *this;
 }

 template <typename T> bool grid<T>::operator <=(const grid& other) const {
 return !(other < *this);
 }

At this point we're done! We now have a complete working implementation of the grid class that
supports iteration, element access, and the relational operators. To boot, it's implemented on top of the
vector, meaning that it's slick and efficient. This class should be your one-stop solution for applications
that require a two-dimensional array.

- 334 - Chapter 10: Operator Overloading

More to Explore

Operator overloading is an enormous topic in C++ and there's simply not enough space to cover it all in
this chapter. If you're interested in some more advanced topics, consider reading into the following:

1. Overloaded new and delete: You are allowed to overload the new and delete operators, in case
you want to change how memory is allocated for your class. Note that the overloaded new and
delete operators simply change how memory is allocated, not what it means to write new
MyClass. Overloading new and delete is a complicated task and requires a solid understanding of
how C++ memory management works, so be sure to consult a reference for details.

2. Conversion functions: In an earlier chapter, we covered how to write conversion constructors,
functions that convert objects of other types into instances of your new class. However, it's
possible to use operator overloading to define an implicit conversion from objects of your class
into objects of other types. The syntax is operator Type(), where Type is the data type to
convert your object to. Many professional programmers advise against conversion functions, so
make sure that they're really the best option before proceeding.

Practice Problems

Operator overloading is quite difficult because your functions must act as though they're the built-in
operators. Here are some practice problems to get you used to overloading operators:

1. What is an overloaded operator?

2. What is an lvalue? An rvalue? Does the + operator yield an lvalue or an rvalue? How about the
pointer dereference operator?

3. Are overloaded operators inherently more efficient than regular functions?

4. Explain how to implement operator + in terms of operator +=.

5. What is the signature of an overloaded operator for subtraction? For unary negation?

6. How do you differentiate between the prefix and postfix versions of the ++ operator?

7. What does the -> operator return?

8. What is a friend function? How do you declare one?

9. How do you declare an overloaded stream insertion operator?

10. What is trichotomy and why is it important to C++ programmers?

11. What is transitivity and why is it important to C++ programmers?

12. In Python, it is legal to use negative array indices to mean “the element that many positions from
the end of the array.” For example, myArray[-1] would be the last element of an array,
myArray[-2] the penultimate element, etc. Using operator overloading, it's possible to
implement this functionality for a custom array class. Do you think it's a good idea to do so? Why
or why not? Think about the principle of least astonishment when answering.

Chapter 10: Operator Overloading - 335 -

13. Why is it better to implement + in terms of += instead of += in terms of +? (Hint: Think about the
number of objects created using += and using +.)

14. Consider the following definition of a Span struct:

struct Span {
 int start, stop;
};

The Span struct allows us to define the range of elements from [start, stop) as a single variable.
Given this definition of Span and assuming start and stop are both non-negative, provide
another bracket operator for our Vector class that selects a range of elements.

15. Consider the following interface for a class that iterates over a container of ElemTypes:

class iterator {
public:
 bool operator== (const iterator& other);
 bool operator!= (const iterator& other);

 iterator operator++ ();

 ElemType* operator* () const;
 ElemType* operator-> () const;
};

There are several mistakes in the definition of this iterator. What are they? How would you fix
them?

16. The implementation of the grid class's operator== and operator!= functions implemented
those operators in terms of the less-than operator. This is somewhat inefficient, since it's more
direct to simply check if the two grids are equal or unequal rather than to use the comparison
operators. Rewrite the grid's operator== function to directly check whether the grids are
identical. Then rewrite operator!= in terms of operator==.

Chapter 11: Resource Management

This chapter is about two things – putting away your toys when you're done with them, and bringing
enough of your toys for everyone to share. These are lessons you (hopefully!) learned in kindergarten
which happen to pop up just about everywhere in life. We're supposed to clean up our own messes so that
they don't accumulate and start to interfere with others, and try to avoid hogging things so that others
don't hurt us by trying to take those nice things away from us.

The focus of this chapter is how to play nice with others when it comes to resources. In particular, we will
explore two of C++'s most misunderstood language features, the copy constructor and the assignment
operator. By the time you're done reading this chapter, you should have a much better understanding of
how to manage resources in ways that will keep your programs running and your fellow programmers
happy. The material in this chapter is somewhat dense, but fear not! We'll make sure to go over all of the
important points neatly and methodically.

Consider the STL vector. Internally, vector is backed by a dynamically-allocated array whose size grows
when additional space is needed for more elements. For example, a ten-element vector might store those
elements in an array of size sixteen, increasing the array size if we call push_back seven more times.
Given this description, consider the following code:

 vector<int> one(kNumInts);
 for(size_t k = 0; k < one.size(); ++k)
 one.push_back(int(k));

 vector<int> two = one;

In the first three lines, we fill one with the first kNumInts integers, and in the last line we create a new
vector called two that's a copy of one. How does C++ know how to correctly copy the data from one into
two? It can't simply copy the pointer to the dynamically-allocated array from one into two, since that
would cause one and two to share the same data and changes to one vector would show up in the other.
Somehow C++ is aware that to copy a vector it needs to dynamically allocate a new array of elements,
then copy the elements from the source to the destination. This is not done by magic, but by two special
functions called the copy constructor and the assignment operator, which control how to copy instances of
a particular class.

Before discussing the particulars of the copy constructor and assignment operator, we first need to dissect
exactly how an object can be copied. In order to copy an object, we first have to answer an important
question – where do we put the copy? Do we store it in a new object, or do we reuse an existing object?
These two options are fundamentally different from one another and C++ makes an explicit distinction
between them. The first option – putting the copy into a new location – creates the copy by initializing the
new object to the value of the object to copy. The second – storing the copy in an existing variable –
creates the copy by assigning the existing object the value of the object to copy. What do these two copy
mechanisms look like in C++? That is, when is an object initialized to a value, and when is it assigned a
new value?

In C++, initialization can occur in three different places:

- 338 - Chapter 11: Resource Management

1. A variable is created as a copy of an existing value. For example, suppose we write the following
code:

 MyClass one;
 MyClass two = one;

Here, since two is told to hold the value of one, C++ will initialize two as a copy of one. Although it
looks like we're assigning a value to two using the = operator, since it is a newly-created object, the
= indicates initialization, not assignment. In fact, the above code is equivalent to the more explicit
initialization code below:

 MyClass one;
 MyClass two(one); // Identical to above.

This syntax makes more clear that two is being created as a copy of one, indicating initialization
rather than assignment.

2. An object is passed by value to a function. Consider the following function:

 void MyFunction(MyClass arg) {
 /* ... */
 }

If we write

 MyClass mc;
 MyFunction(mc);

Then the function MyFunction somehow has to set up the value of arg inside the function to have
the same value as mc outside the function. Since arg is a new variable, C++ will initialize it as a
copy of mc.

3. An object is returned from a function by value. Suppose we have the following function:

 MyClass MyFunction() {
 MyClass mc;
 return mc;
 }

When the statement return mc executes, C++ needs to return the mc object from the function.
However, mc is a local variable inside the MyFunction function, and to communicate its value to
the MyFunction caller C++ needs to create a copy of mc before it is lost. This is done by creating a
temporary MyClass object for the return value, then initializing it to be a copy of mc.

Notice that in all three cases, initialization took place because some new object was created as a copy of an
existing object. In the first case this was a new local variable, in the second a function parameter, and in
the third a temporary object.

Assignment in C++ is much simpler than initialization and only occurs if an existing object is explicitly
assigned a new value. For example, the following code will assign two the value of one, rather than
initializing two to one:

Chapter 11: Resource Management - 339 -

 MyClass one, two;
 two = one;

It can be tricky to differentiate between initialization and assignment because in some cases the syntax is
almost identical. For example, if we rewrite the above code as

 MyClass one;
 MyClass two = one;

two is now initialized to one because it is declared as a new variable. Always remember that the
assignment only occurs when giving an existing object a new value.

Why is it important to differentiate between assignment and initialization? After all, they're quite similar;
in both cases we end up with a new copy of an existing object. However, assignment and initialization are
fundamentally different operations. When initializing a new object as a copy of an existing object, we
simply need to copy the existing object into the new object. When assigning an existing object a new value,
the existing object's value ceases to be and we must make sure to clean up any resources the object may
have allocated before setting it to the new value. In other words, initialization is a straight copy, while
assignment is cleanup followed by a copy. This distinction will become manifest in the code we will write
for the copy functions later in this chapter.

Copy Functions: Copy Constructors and Assignment Operators

Because initialization and assignment are separate tasks, C++ handles them through two different
functions called the copy constructor and the assignment operator. The copy constructor is a special
constructor responsible for initializing new class instances as copies of existing instances of the class. The
assignment operator is a special function called an overloaded operator (see the chapter on operator
overloading for more details) responsible for assigning the receiver object the value of some other
instance of the object. Thus the code

 MyClass one;
 MyClass two = one;

will initialize two to one using the copy constructor, while the code

 MyClass one, two;
 two = one;

will assign one to two using the assignment operator.

Syntactically, the copy constructor is written as a one-argument constructor whose parameter is another
instance of the class accepted by reference-to-const. For example, given the following class:

 class MyClass {
 public:
 MyClass();
 ~MyClass();

 /* ... */
 };

The copy constructor would be declared as follows:

- 340 - Chapter 11: Resource Management

 class MyClass {
 public:
 MyClass();
 ~MyClass();

 MyClass(const MyClass& other); // Copy constructor

 /* ... */
 };

The syntax for the assignment operator is substantially more complex than that of the copy constructor
because it is an overloaded operator; in particular, operator =. For reasons that will become clearer
later in the chapter, the assignment operator should accept as a parameter another instance of the class by
reference-to-const and should return a non-const reference to an object of the class type. For a concrete
example, here's the assignment operator for MyClass:

 class MyClass {
 public:
 MyClass();
 ~MyClass();

 MyClass(const MyClass& other); // Copy constructor
 MyClass& operator = (const MyClass& other); // Assignment operator
 /* ... */
 };

We'll defer discussing exactly why this syntax is correct until later, so for now you should take it on faith.

What C++ Does For You

Unless you specify otherwise, C++ will automatically provide any class you write with a basic copy
constructor and assignment operator that invoke the copy constructors and assignment operators of all
the class's data members. In many cases, this is exactly what you want. For example, consider the
following class:

 class DefaultClass {
 public:
 /* ... */

 private:
 int myInt;
 string myString;
 };

Suppose you have the following code:

 DefaultClass one;
 DefaultClass two = one;

The line DefaultClass two = one will invoke the copy constructor for DefaultClass. Since we
haven't explicitly provided our own copy constructor, C++ will initialize two.myInt to the value of
one.myInt and two.myString to one.myString. Since int is a primitive and string has a well-defined
copy constructor, this code is totally fine.

Chapter 11: Resource Management - 341 -

However, in many cases this is not the behavior you want. Let's consider the example of a class Vector
that acts as a wrapper for a dynamic array. Suppose we define Vector as shown here:

 class Vector {
 public:
 Vector();
 ~Vector();
 /* Note: No copy constructor or assignment operator */

 /* ... */

 private:
 int* elems;
 /* ... */
 };

Here, if we rely on C++'s default copy constructor or assignment operator, we'll run into trouble. For
example, consider the following code:

 Vector one;
 Vector two = one;

Because we haven't provided a copy constructor, C++ will initialize two.elems to one.elems. Since
elems is an int*, instead of getting a deep copy of the elements, we'll end up with two pointers to the
same array. Thus changes to one will show up in two and vice-versa. This is dangerous, especially when
the destructors for both one and two try to deallocate the memory for elems. In situations like these,
you'll need to override C++'s default behavior by providing your own copy constructors and assignment
operators.

There are a few circumstances where C++ does not automatically provide default copy constructors and
assignment operators. If your class contains a reference or const variable as a data member, your class
will not automatically get an assignment operator. Similarly, if your class has a data member that doesn't
have a copy constructor or assignment operator (for example, an ifstream), your class won't be copyable.
There is one other case involving inheritance where C++ won't automatically create the copy functions for
you, and in the chapter on inheritance we'll see how to exploit this to disable copying.

The Rule of Three

There's a well-established C++ principle called the “rule of three” that identifies most spots where you'll
need to write your own copy constructor and assignment operator. If this were a math textbook, you'd
probably see the rule of three written out like this:

Theorem (The Rule of Three): If a class has any of the following three member functions:
• Destructor
• Copy Constructor
• Assignment Operator

Then that class should have all three of those functions.

Corollary: If a class has a destructor, it should also have a copy constructor and assignment operator.

The rule of three holds because in almost all situations where you have any of the above functions, C++'s
default behavior won't correctly manage your objects. In the above example with Vector, this is the case
because copying the elems* pointer doesn't actually duplicate the elements array. Similarly, if you have a

- 342 - Chapter 11: Resource Management

class holding an open file handle, making a shallow copy of the object might cause crashes further down
the line as the destructor of one class closed the file handle, corrupting the internal state of all “copies” of
that object.

Both C++ libraries and fellow C++ coders will expect that, barring special circumstances, all objects will
correctly implement the three above functions, either by falling back on C++'s default versions or by
explicitly providing correct implementations. Consequently, you must keep the rule of three in mind when
designing classes or you will end up with insidious or seemingly untraceable bugs as your classes start to
destructively interfere with each other.

Writing Copy Constructors

For the rest of this chapter, we'll discuss copy constructors and assignment operators through a case study
of a Vector class, a generalization of the above Vector which behaves similarly to the STL vector. The
class definition for Vector looks like this:

 template <typename T> class Vector {
 public:
 Vector();
 Vector(const Vector& other); // Copy constructor
 Vector& operator =(const Vector& other); // Assignment operator
 ~Vector();

 typedef T* iterator;
 typedef const T* const_iterator;

 iterator begin();
 iterator end();
 const_iterator begin() const;
 const_iterator end() const;

 /* ... other member functions ... */
 private:
 T* array;
 size_t allocatedLength;
 size_t logicalLength;
 static const size kStartSize = 16;
 };

Internally, Vector is implemented as a dynamically-allocated array of elements. Two data members,
allocatedLength and logicalLength, track the allocated size of the array and the number of elements
stored in it, respectively. Vector also has a class constant kStartSize that represents the default size of
the allocated array.

The Vector constructor is defined as

 template <typename T> Vector<T>::Vector() {
 allocatedLength = kStartSize;
 logicalLength = 0;
 array = new T[allocatedLength];
 }

Similarly, the Vector destructor is

Chapter 11: Resource Management - 343 -

 template <typename T> Vector<T>::~Vector() {
 delete [] array;
 }

Now, let's write the copy constructor. We know that we need to match the prototype given in the class
definition, so we'll write that part first:

 template <typename T> Vector<T>::Vector(const Vector& other) {
 /* ... */
 }

Inside the copy constructor, we need to initialize the object so that we're holding a deep copy of the other
Vector. This necessitates making a full deep-copy of the other Vector's array, as well as copying over
information about the size and capacity of the other Vector. This second step is relatively
straightforward, and can be done as follows:

 template <typename T> Vector<T>::Vector(const DebugVector& other) {
 logicalLength = other.logicalLength;
 allocatedLength = other.allocatedLength;

 /* ... */
 }

Note that this implementation of the copy constructor sets logicalLength to other.logicalLength
and allocatedLength to other.allocatedLength, even though other.logicalLength and
other.allocatedLength explicitly reference private data members of the other object. This is legal
because other is an object of type Vector and the copy constructor is a member function of Vector. A
class can access both its private fields and private fields of other objects of the same type. This is called
sibling access and is true of any member function, not just the copy constructor. If the copy constructor
were not a member of Vector or if other were not a Vector, this code would not be legal.

Now, we'll make a deep copy of the other Vector's elements by allocating a new array that's the same size
as other's and then copying the elements over. The code looks something like this:

 template <typename T> Vector<T>::Vector(const Vector& other) {
 logicalLength = other.logicalLength;
 allocatedLength = other.allocatedLength;

 array = new T[allocatedLength];
 for(size_t i = 0; i < logicalLength; ++i)
 array[i] = other.array[i];
 }

Interestingly, since Vector is a template, it's unclear what the line array[i] = other.array[i] will
actually do. If we're storing primitive types, then the line will simply copy the values over, but if we're
storing objects, the line invokes the class's assignment operator. Notice that in both cases the object will
be correctly copied over. This is one of driving forces behind defining copy constructors and assignment
operators, since template code can assume that expressions like object1 = object2 will be meaningful.

An alternative means for copying data over from the other object uses the STL copy algorithm. Recall that
copy takes three parameters – two delineating an input range of iterators and one denoting the beginning
of an output range – then copies the specified iterator range to the destination. Although designed to work
on iterators, it is possible to apply STL algorithms directly to ranges defined by raw C++ pointers. Thus we
could rewrite the copy constructor as follows:

- 344 - Chapter 11: Resource Management

 template <typename T> Vector<T>::Vector(const Vector& other) {
 logicalLength = other.logicalLength;
 allocatedLength = other.allocatedLength;

 array = new T[allocatedLength];
 copy(other.begin(), other.end(), array);
 }

Here, the range spanned by other.begin() and other.end() is the entire contents of the other Vector,
and array is the beginning of the newly-allocated data we've reserved for this Vector. I personally find
this syntax preferable to the explicit for loop, since it increases readability.

At this point we have a complete and correct implementation of the copy constructor. The code for this
constructor is not particularly dense, and it's remarkably straightforward. In some cases, however, it can
be a bit trickier to write a copy constructor. We'll see some of these cases later in the chapter.

Writing Assignment Operators

We've now successfully written a copy constructor for our Vector class. Unfortunately, writing an
assignment operator is significantly more involved than writing a copy constructor. C++ is designed to
give you maximum flexibility when designing an assignment operator, and thus won't alert you if you've
written a syntactically legal assignment operator that is completely incorrect. For example, consider this
legal but incorrect assignment operator for an object of type MyClass:

 void MyClass::operator =(const MyClass& other) {
 cout << "I'm sorry, Dave. I'm afraid I can't copy that object." << endl;
 }

Here, if we write code like this:

 MyClass one, two;
 two = one;

Instead of making two a deep copy of one, instead we'll get a message printed to the screen and two will
remain unchanged. This is one of the dangers of a poorly-written assignment operator – code that looks
like it does one thing can instead do something totally different. This section discusses how to correctly
implement an assignment operator by starting with invalid code and progressing towards a correct, final
version.

Let's start off with a simple but incorrect version of the assignment operator for Vector. Intuitively, since
both the copy constructor and the assignment operator make a copy of another object, we might consider
implementing the assignment operator by naively copying the code from the copy constructor into the
assignment operator. This results in the following (incorrect!) version of the assignment operator:

 /* Many major mistakes here. Do not use this code as a reference! */
 template <typename T> void Vector<T>::operator= (const Vector& other) {
 logicalLength = other.logicalLength;
 allocatedLength = other.allocatedLength;

 array = new T[allocatedLength];
 copy(other.begin(), other.end(), array);
 }

This code is based off the copy constructor, which we used to initialize the object as a copy of an existing
object. Unfortunately, this code contains a substantial number of mistakes that we'll need to correct

Chapter 11: Resource Management - 345 -

before we end up with the final version of the function. Perhaps the most serious error here is the line
array = new T[allocatedLength]. When the assignment operator is invoked, this Vector already
holds its own array of elements. This line therefore orphans the old array and leaks memory. To fix this,
before we make this object a copy of the one specified by the parameter, we'll take care of the necessary
deallocations. This is shown here:

If you'll notice, we've already written the necessary cleanup code in the DebugVector destructor. Rather
than rewriting this code, we'll decompose out the generic cleanup code into a clear function, as shown
here:

 /* Many major mistakes here. Do not use this code as a reference! */
 template <typename T> void Vector<T>::operator= (const Vector& other) {
 delete [] array;

 logicalLength = other.logicalLength;
 allocatedLength = other.allocatedLength;

 array = new T[allocatedLength];
 copy(other.begin(), other.end(), array);
 }

At this point, we can make a particularly useful observation. If you'll notice, the cleanup code to free the
existing array is identical to the code for the destructor, which has the same task. This is no coincidence.
In general, when writing an assignment operator, the assignment operator will need to free all of the
resources acquired by the object, much in the same way that the destructor must. To avoid unnecessary
code duplication, we can factor out the code to free the Vector's resources into a helper function called
clear(), which is shown here:

 template <typename T> void Vector<T>::clear() {
 delete [] array;
 }

We can then rewrite the destructor as

 template <typename T> Vector<T>::~Vector() {
 clear();
 }

And we can insert this call to clear into our assignment operator as follows:

 /* This code still has errors. Do not use it as a reference! */
 template <typename T> void Vector<T>::operator= (const Vector& other) {
 clear();

 logicalLength = other.logicalLength;
 allocatedLength = other.allocatedLength;

 array = new T[allocatedLength];
 copy(other.begin(), other.end(), array);
 }

Along the same lines, you might have noticed that all of the code after the call to clear is exactly the same
code we wrote inside the body of the copy constructor. This isn't a coincidence – in fact, in most cases
you'll have a good deal of overlap between the assignment operator and copy constructor. Since we can't

- 346 - Chapter 11: Resource Management

invoke our own copy constructor directly (or any constructor, for that matter), instead we'll decompose
the copying code into a member function called copyOther as follows:

 template <typename T> void Vector<T>::copyOther(const Vector& other) {
 logicalLength = other.logicalLength;
 allocatedLength = other.allocatedLength;

 array = new T[allocatedLength];
 copy(other.begin(), other.end(), array);
 }

Now we can rewrite the copy constructor as

 template <typename T> Vector<T>::Vector(const Vector& other) {
 copyOther(other);
 }

And the assignment operator as

 /* Not quite perfect yet. Do not use this code as a reference! */
 template <typename T> void Vector<T>::operator= (const Vector& other) {
 clear();
 copyOther(other);
 }

This simplifies the copy constructor and assignment operator and highlights the general pattern of what
the two functions should do. With a copy constructor, you'll simply copy the contents of the other object.
With an assignment operator, you'll clear out the receiver object, then copy over the data from another
object.

However, we're still not done yet. There are two more issues we need to fix with our current
implementation of the assignment operator. The first one has to do with self-assignment. Consider, for
example, the following code:

 MyClass one;
 one = one;

While this code might seem a bit silly, cases like this come up frequently when accessing elements
indirectly through pointers or references. Unfortunately, with our current DebugVector assignment
operator, this code will lead to unusual runtime behavior, possibly including a crash. To see why, let's trace
out the state of our object when its assignment operator is invoked on itself.

At the start of the assignment operator, we call clear to clean out the object for the copy. During this call
to clear, we deallocate the memory associated with the object. We then invoke the copyOther function
to set the current object to be a copy of the receiver object. Unfortunately, things don't go quite as
expected. Because we're assigning the object to itself, the parameter to the assignment operator is the
receiver object itself. This means that when we called clear trying to clean up the resources associated
with the receiver object, we also cleaned up all the resources associated with the parameter to the
assignment operator. In other words, clear destroyed both the data we wanted to clean up and the data
we were meaning to copy. The call to copyOther will therefore copy garbage data into the receiver object,
since the resources it means to copy have already been cleaned up. This is extremely bad, and will almost
certainly cause a program crash.

Chapter 11: Resource Management - 347 -

When writing assignment operators, you must ensure that your code correctly handles self-assignment.
While there are many ways we can do this, perhaps the simplest is to simply check to make sure that the
object to copy isn't the same object pointed at by the this pointer. The code for this logic looks like this:

 /* Not quite perfect yet. Do not use this code as a reference! */
 template <typename T> void Vector<T>::operator= (const Vector& other) {
 if(this != &other) {
 clear();
 copyOther(other);
 }
 }

Note that we check if(this != &other). That is, we compare the addresses of the current object and
the parameter. This will determine whether or not the object we're copying is exactly the same object as
the one we're working with. In the practice problems for this chapter, you'll explore what would happen if
you were to write if(*this != other). One detail worth mentioning is that the self-assignment check
is not necessary in the copy constructor, since an object can't be a parameter to its own constructor.

There's one final bug we need to sort out, and it has to do with how we're legally allowed to use the =
operator. Consider, for example, the following code:

 MyClass one, two, three;
 three = two = one;

This code is equivalent to three = (two = one). Since our current assignment operator does not return
a value, (two = one) does not have a value, so the above statement is meaningless and the code will not
compile. We thus need to change our assignment operator so that performing an assignment like two =
one yields a value that can then be assigned to other values. The final version of our assignment operator
is thus

 /* The correct version of the assignment operator. */
 template <typename T> Vector<T>& Vector<T>::operator= (const Vector& other) {
 if(this != &other) {
 clear();
 copyOther(other);
 }
 return *this;
 }

One General Pattern

Although each class is different, in many cases the default constructor, copy constructor, assignment
operator, and destructor will share a general pattern. Here is one possible skeleton you can fill in to get
your copy constructor and assignment operator working.

MyClass::MyClass() : /* Fill in initializer list. */ {
 /* Default initialization here. */
}

MyClass::MyClass(const MyClass& other) {
 copyOther(other);
}

- 348 - Chapter 11: Resource Management

MyClass& MyClass::operator =(const MyClass& other) {
 if(this != &other) {
 clear();
 // Note: When we cover inheritance, there's one more step here.
 copyOther(other);
 }
 return *this;
}

MyClass::~MyClass() {
 clear();
}

Semantic Equivalence and copyOther Strategies

Consider the following code snippet:

 Vector<int> one;
 Vector<int> two = one;

Here, we know that two is a copy of one, so the two objects should behave identically to one another. For
example, if we access an element of one, we should get the same value as if we had accessed the
corresponding element of two and vice-versa. However, while one and two are indistinguishable from
each other in terms of functionality, their memory representations are not identical because one and two
point to two different dynamically-allocated arrays. This raises the distinction between semantic
equivalence and bitwise equivalence. Two objects are said to be bitwise equivalent if they have identical
representations in memory. For example, any two ints with the value 137 are bitwise equivalent, and if
we define a pointT struct as a pair of ints, any two pointTs holding the same values will be bitwise
equivalent. Two objects are semantically equivalent if, like one and two, any operations performed on the
objects will yield identical results. When writing a copy constructor and assignment operator, you attempt
to convert an object into a semantically equivalent copy of another object. Consequently, you are free to
pick any copying strategy that creates a semantically equivalent copy of the source object.

In the preceding section, we outlined one possible implementation strategy for a copy constructor and
assignment operator that uses a shared function called copyOther. While in the case of the DebugVector
it was relatively easy to come up with a working copyOther implementation, when working with more
complicated objects, it can be difficult to devise a working copyOther. For example, consider the
following class, which represents a mathematical set implemented as a linked list:

Chapter 11: Resource Management - 349 -

 template <typename T> class ListSet {
 public:
 ListSet();
 ListSet(const ListSet& other);
 ListSet& operator =(const ListSet& other);
 ~ListSet();

 void insert(const T& toAdd);
 bool contains(const T& toFind) const;

 private:
 struct cellT {
 T data;
 cellT* next;
 };
 cellT* list;

 void copyOther(const ListSet& other);
 void clear();
 };

This ListSet class exports two functions, insert and contains, that insert an element into the list and
determine whether the list contains an element, respectively. This class represents a mathematical set, an
unordered collection of elements, so the underlying linked list need not be in any particular order. For
example, the lists {0, 1, 2, 3, 4} and {4, 3, 2, 1, 0} are semantically equivalent because
checking whether a number is an element of the first list yields the same result as checking whether the
number is in the second. In fact, any two lists containing the same elements are semantically equivalent to
one another. This means that there are multiple ways in which we could implement copyOther. Consider
these two:

 /* Version 1: Duplicate the list as it exists in the original ListSet. */
 template <typename T> void ListSet<T>::copyOther(const ListSet& other) {
 /* Keep track of what the current linked list cell is. */
 cellT** current = &list;

 /* Iterate over the source list. */
 for(cellT* source = other.list; source != NULL; source = source->next) {
 /* Duplicate the cell. */
 *current = new cellT;
 (*current)->data = source->data;
 (*current)->next = NULL;

 /* Advance to next element. */
 current = &((*current)->next);
 }
 }

 /* Version 2: Duplicate list in reverse order of original ListSet */
 template <typename T> void ListSet<T>::copyOther(const ListSet& other) {
 for(cellT* source = other.list; source != NULL; source = source->next) {
 cellT* newNode = new cellT;
 newNode->data = source->data;
 newNode->next = list;
 list = newNode;
 }
 }

- 350 - Chapter 11: Resource Management

As you can see, the second version of this function is much, much cleaner than the first. There are no
address-of operators floating around, so everything is expressed in terms of simpler pointer operations.
But while the second version is cleaner than the first, it duplicates the list in reverse order. This may
initially seem problematic but is actually perfectly safe. As the original object and the duplicate object
contain the same elements in some order, they will be semantically equivalent, and from the class interface
we would be unable to distinguish the original object and its copy.

There is one implementation of copyOther that is considerably more elegant than either of the two
versions listed above:

 /* Version 3: Duplicate list using the insert function */
 template <typename T> void ListSet<T>::copyOther(const ListSet& other) {
 for(cellT* source = other.list; source != NULL; source = source->next)
 insert(source->data);
 }

Notice that this implementation uses the ListSet's public interface to insert the elements from the source
ListSet into the receiver object. This version of copyOther is unquestionably the cleanest. If you'll
notice, it doesn't matter exactly how insert adds elements into the list (indeed, insert could insert the
elements at random positions), but we're guaranteed that at the end of the copyOther call, the receiver
object will be semantically equivalent to the parameter.

Conversion Assignment Operators

When working with copy constructors, we needed to define an additional function, the assignment
operator, to handle all the cases in which an object can be copied or assigned. However, in the chapter on
conversion constructors, we provided a conversion constructor without a matching “conversion
assignment operator.” It turns out that this is not a problem because of how the assignment operator is
invoked. Suppose that we have a CString class that has a defined copy constructor, assignment operator,
and conversion constructor that converts raw C++ char * pointers into CString objects. Now, suppose
we write the following code:

 CString myCString;
 myCString = "This is a C string!";

Here, in the second line, we assign an existing CString a new value equal to a raw C string. Despite the
fact that we haven't defined a special assignment operator to handle this case, the above is perfectly legal
code. When we write the line

 myCString = "This is a C string!";

C++ converts it into the equivalent code

 myCString.operator= ("This is a C string!");

This syntax may look entirely foreign, but is simply a direct call to the assignment operator. Recall that the
assignment operator is a function named operator =, so this code passes the C string "This is a C
string!" as a parameter to operator =. Because operator = accepts a CString object rather than a
raw C string, C++ will invoke the CString conversion constructor to initialize the parameter to operator
=. Thus this code is equivalent to

 myCString.operator =(CString("This is a C string!"));

Chapter 11: Resource Management - 351 -

In other words, the conversion constructor converts the raw C string into a CString object, then the
assignment operator sets the receiver object equal to this temporary CString.

In general, you need not provide a “conversion assignment operator” to pair with a conversion
constructor. As long as you've provided well-defined copy behavior, C++ will link the conversion
constructor and assignment operator together to perform the assignment.

Disabling Copying

In CS106B/X we provide you the DISALLOW_COPYING macro, which causes a compile error if you try to
assign or copy objects of the specified type. DISALLOW_COPYING, however, is not a standard C++ feature.
Without using the CS106B/X library, how can we replicate the functionality? We can't prevent object
copying by simply not defining a copy constructor and assignment operator. All this will do is have C++
provide its own default version of these two functions, which is not at all what we want. To solve this
problem, instead we'll provide an assignment operator and copy constructor, but declare them private so
that class clients can't access them. For example:

 class CannotBeCopied {
 public:
 CannotBeCopied();
 /* Other member functions. */

 private:
 CannotBeCopied(const CannotBeCopied& other);
 CannotBeCopied& operator = (const CannotBeCopied& other);
 };

Now, if we write code like this:

 CannotBeCopied one;
 CannotBeCopied two = one;

We'll get a compile-time error on the second line because we're trying to invoke the copy constructor,
which has been declared private. We'll get similar behavior when trying to use the assignment operator.

This trick is almost one hundred percent correct, but does have one edge case: what if we try to invoke the
copy constructor or assignment operator inside a member function of the class? The copy functions might
be private, but that doesn't mean that they don't exist, and if we call them inside a member function might
accidentally create a copy of an otherwise uncopyable object. To prevent this from happening, we'll use a
cute trick. Although we'll prototype the copy functions inside the private section of the class, we won't
implement them. This means that if we accidentally do manage to call either function, we will get a linker
error because the compiler can't find code for either function. This is admittedly a bit hackish, so in C+
+0x, the next revision of C++, there will be a way to explicitly indicate that a class is uncopyable. In the
meantime, though, the above approach is perhaps your best option. We'll see another way to do this later
when we cover inheritance.

Extended Example: SmartPointer

In C++ parlance, a raw pointer like an int* or a char* is sometimes called a dumb pointer because the
pointer has no “knowledge” of the resource it owns. If an int* goes out of scope, it doesn't inform the
object it's pointing at and makes no attempt whatsoever to clean it up. The int* doesn't own its resource,
and assigning one int* to another doesn't make a deep copy of the resource or inform the other int* that
another pointer now references its pointee.

- 352 - Chapter 11: Resource Management

Because raw pointers are so problematic, many C++ programmers prefer to use smart pointers, objects
that mimic raw pointers but which perform functions beyond merely pointing at a resource. For example,
the C++ standard library class auto_ptr, which we'll cover in the chapter on exception handling, acts like
a regular pointer except that it automatically calls delete on the resource it owns when it goes out of
scope. Other smart pointers are custom-tuned for specific applications and might perform functions like
logging access, synchronizing multithreaded applications, or preventing accidental null pointer
dereferences. Thanks to operator overloading, smart pointers can be built to look very similar to regular
C++ pointers. We can provide an implementation of operator * to support dereferences like *myPtr,
and can define operator -> to let clients write code to the effect of myPtr->clear(). Similarly, we can
write copy constructors and assignment operators for smart pointers that do more than just transfer a
resource.

Reference Counting

Memory management in C++ is tricky. You must be careful to balance every new with exactly one delete, and
must make sure that no other pointers to the resource exist after delete-ing it to ensure that later on you don't
access invalid memory. If you delete memory too many times you run into undefined behavior, and if you
delete it too few you have a memory leak. Is there a better way to manage memory? In many cases, yes, and
in this extended example we'll see one way to accomplish this using a technique called reference counting. In
particular, we'll design a smart pointer class called SmartPointer which acts like a regular C++ pointer, except
that it uses reference counting to prevent resource leaks.

To motivate reference counting, let's suppose that we have a smart pointer class that stores a pointer to a
resource. The destructor for this smart pointer class can then delete the resource automatically, so
clients of the smart pointer never need to explicitly clean up any resources. This system is fine in
restricted circumstances, but runs into trouble as soon as we have several smart pointers pointing to the
same resource. Consider the scenario below:

Smart
Pointer

Resource

Smart
Pointer

Both of these pointers can access the stored resource, but unfortunately neither smart pointer knows of
the other's existence. Here we hit a snag. If one smart pointer cleans up the resource while the other
still points to it, then the other smart pointer will point to invalid memory. If both of the pointers try to
reclaim the dynamically-allocated memory, we will encounter a runtime error from double-delete-ing a
resource. Finally, if neither pointer tries to clean up the memory, we'll get a memory leak.

To resolve this problem, we'll use a system called reference counting where we will explicitly keep track of
the number of pointers to a dynamically-allocated resource. While there are several ways to make such a
system work, perhaps the simplest is to use an intermediary object. This can be seen visually:

Chapter 11: Resource Management - 353 -

Smart
Pointer

Resource

Intermediary

1

Now, the smart pointer stores a pointer to an intermediary object rather than a pointer directly to the
resource. This intermediary object has a counter (called a reference counter) that tracks the number of
smart pointers accessing the resource, as well as a pointer to the managed resource. This intermediary
object lets the smart pointers tell whether or not they are the only pointer to the stored resource; if the
reference count is anything other than one, some other pointer shares the resource. Provided that we
accurately track the reference count, each pointer can tell if it's the last pointer that knows about the
resource and can determine whether to deallocate it.

To see how reference counting works, let's walk through an example. Given the above system, suppose
that we want to share the resource with another smart pointer. We simply make this new smart pointer
point to the same intermediary object as our original pointer, then update the reference count. The
resulting scenario looks like this:

Smart
Pointer

Resource
Intermediary

2

Smart
Pointer

Although in this diagram we only have two objects pointing to the intermediary, the reference-counting
system allows for any number of smart pointers to share a single resource.

Now, suppose one of these smart pointers needs to stop pointing to the resource – maybe it's being
assigned to a different resource, or perhaps it's going out of scope. That pointer decrements the reference
count of the intermediary variable and notices that the reference count is nonzero. This means that at
least one smart pointer still references the resource, so the smart pointer simply leaves the resource as it
is. Memory now looks like this:

- 354 - Chapter 11: Resource Management

Smart
Pointer

Resource

Intermediary

1

Finally, suppose this last smart pointer needs to stop pointing to this resource. It decrements the
reference count, but this time notices that the reference count is zero. This means that no other smart
pointers reference this resource, and the smart pointer knows that it needs to deallocate the resource and
the intermediary object, as shown here:

The resource has now been deallocated and no other pointers reference the memory. We've safely and
effectively cleaned up our resources. Moreover, this process is completely automatic – the user never
needs to explicitly deallocate any memory.

The following summarizes the reference-counting scheme described above:

• When creating a smart pointer to manage newly-allocated memory, first create an intermediary
object and make the intermediary point to the resource. Then, attach the smart pointer to the
intermediary and set the reference count to one.

• To make a new smart pointer point to the same resource as an existing one, make the new smart
pointer point to the old smart pointer's intermediary object and increment the intermediary's
reference count.

• To remove a smart pointer from a resource (either because the pointer goes out of scope or
because it's being reassigned), decrement the intermediary object's reference count. If the count
reaches zero, deallocate the resource and the intermediary object.

While reference counting is an excellent system for managing memory automatically, it does have its
limitations. In particular, reference counting can sometimes fail to clean up memory in “reference cycles,”
situations where multiple reference-counted pointers hold references to one another. If this happens,
none of the reference counters can ever drop to zero, since the cyclically-linked elements always refer to
one another. But barring this sort of setup, reference counting is an excellent way to automatically manage
memory. In this extended example, we'll see how to implement a reference-counted pointer, which we'll

Smart
Pointer

Resource

Intermediary

0

Chapter 11: Resource Management - 355 -

call SmartPointer, and will explore how the correct cocktail of C++ constructs can make the resulting
class slick and efficient.

Designing SmartPointer

The above section details the implementation the SmartPointer class, but we have not talked about its
interface. What functions should we provide? We'll try to make SmartPointer resemble a raw C++
pointer as closely as possible, meaning that it should support operator * and operator -> so that the
client can dereference the SmartPointer. Here is one possible interface for the SmartPointer class:

 template <typename T> class SmartPointer {
 public:
 explicit SmartPointer(T* memory);
 SmartPointer(const SmartPointer& other);
 SmartPointer& operator =(const SmartPointer& other);
 ~SmartPointer();

 T& operator * () const;
 T* operator -> () const;
 };

Here is a breakdown of what each of these functions should do:

explicit SmartPointer(T* memory);

Constructs a new SmartPointer that manages the resource specified as the parameter. The reference
count is initially set to one. We will assume that the provided pointer came from a call to new. This
function is marked explicit so that we cannot accidentally convert a regular C++ pointer to a
SmartPointer. At first this might seem like a strange design decision, but it prevents a wide range of
subtle bugs. For example, suppose that this constructor is not explicit and consider the following
function:

void PrintString(const SmartPointer<string>& ptr) {
 cout << *ptr << endl;
}

This function accepts a SmartPointer by reference-to-const, then prints out the stored string. Now,
what happens if we write the following code?

string* ptr = new string("Yay!");
PrintString(ptr);
delete ptr;

The first line dynamically-allocates a string, passes it to PrintString, and finally deallocates it.
Unfortunately, this code will almost certainly cause a runtime crash. The problem is that PrintString
expects a SmartPointer<string> as a parameter, but we've provided a string*. C++ notices that the
SmartPointer<string> has a conversion constructor that accepts a string*, and makes a temporary
SmartPointer<string> using the pointer we passed as a parameter. This new SmartPointer starts
tracking the pointer with a reference count of one. After the function returns, the parameter is cleaned
up and its destructor invokes. This decrements the reference count to zero, and then deallocates the
pointer stored in the SmartPointer. The above code then tries to delete ptr a second time, causing a
runtime crash. To prevent this problem, we'll mark the constructor explicit, which makes the implicit
conversion illegal and prevents this buggy code from compiling.

- 356 - Chapter 11: Resource Management

SmartPointer(const SmartPointer& other);

Constructs a new SmartPointer that shares the resource contained in another SmartPointer, updating
the reference count appropriately.

SmartPointer& operator=(const SmartPointer& other);

Causes this SmartPointer to stop pointing to the resource it's currently managing and to share the
resource held by another SmartPointer. If the smart pointer was the last pointer to its resource, it
deletes it.

~SmartPointer();

Detaches the SmartPointer from the resource it's sharing, freeing the associated memory if necessary.

T& operator* () const;

“Dereferences” the pointer and returns a reference to the object being pointed at. Note that operator* is
const; see the last chapter for more information why.

T* operator-> () const;

Returns the object that the arrow operator should really be applied to if the arrow is used on the
SmartPointer. Again, see the last chapter for more information on this.

Given this public interface for SmartPointer, we can now begin implementing the class. We first need to
decide on how we should represent the reference-counting information. One simple method is to define a
private struct inside SmartPointer that represents the reference-counting intermediary. This looks as
follows:

 template <typename T> class SmartPointer {
 public:
 explicit SmartPointer(T* memory);
 SmartPointer(const SmartPointer& other);
 SmartPointer& operator =(const SmartPointer& other);
 ~SmartPointer();

 T& operator * () const;
 T* operator -> () const;

 private:
 struct Intermediary {
 T* resource;
 size_t refCount;
 };
 Intermediary* data;
 };

Here, the resource field of the Intermediary is the actual pointer to the stored resource and refCount
is the reference count. Notice that we did not declare the reference count as a direct data member of the
SmartPointer, but rather in the Intermediary object. This is because the reference count of a resource
is not owned by any one SmartPointer, but rather is shared across all SmartPointers that point to a
particular resource. This way, any changes to the reference count by one SmartPointer will become
visible in all of the other SmartPointers referencing the resource. You might ask – could we have made
the refCount a static data member? This would indeed make the reference count visible across

Chapter 11: Resource Management - 357 -

multiple SmartPointers, but unfortunately it won't work out correctly. In particular, if we use
SmartPointer to manage multiple resources, each one needs to have its own refCount or changes to the
refCount for a particular resource will show up in the refCount for other resources.

Given this setup, we can implement the SmartPointer constructor by creating a new Intermediary that
points to the specified resource and has an initial reference count of one:

 template <typename T> SmartPointer<T>::SmartPointer(T* res) {
 data = new Intermediary;
 data->resource = res;
 data->refCount = 1;
 }

It's very important that we allocate the Intermediary object on the heap rather than as a data member.
That way, when the SmartPointer is cleaned up (either by going out of scope or by an explicit call to
delete), if it isn't the last pointer to the shared resource, the intermediary object isn't cleaned up.

We can similarly implement the destructor by decrementing the reference count, then cleaning up
memory if appropriate. Note that if the reference count hits zero, we need to delete both the resource and
the intermediary. Forgetting to deallocate either of these leads to memory leaks, the exact problem we
wanted to avoid. The code for this is shown here:

 template <typename T> SmartPointer<T>::~SmartPointer() {
 --data->refCount;
 if(data->refCount == 0) {
 delete data->resource;
 delete data;
 }
 }

This is an interesting destructor in that it isn't guaranteed to actually clean up any memory. Of course, this
is exactly the behavior we want, since the memory might be shared among multiple SmartPointers.

Implementing operator * and operator -> simply requires us to access the pointer stored inside the
SmartPointer. These two functions can be implemented as follows:*

 template <typename T> T& SmartPointer<T>::operator * () const {
 return *data->resource;
 }
 template <typename T> T* SmartPointer<T>::operator -> () const {
 return data->resource;
 }

Now, we need to implement the copy behavior for this SmartPointer. One way to do this is to write
helper functions clear and copyOther which perform deallocation and copying. We will use a similar

* It is common to see operator -> implemented as

RetType* MyClass::operator -> () const
{
 return &**this;
}

&**this is interpreted by the compiler as &(*(*this)), which means “dereference the this pointer to get the receiver
object, then dereference the receiver. Finally, return the address of the referenced object.” At times this may be the
best way to implement operator ->, but I advise against it in general because it's fairly cryptic.

- 358 - Chapter 11: Resource Management

approach here, except using functions named detach and attach to make explicit the operations we're
performing. This leads to the following definition of SmartPointer:
 template <typename T> class SmartPointer {
 public:
 explicit SmartPointer(T* memory);
 SmartPointer(const SmartPointer& other);
 SmartPointer& operator =(const SmartPointer& other);
 ~SmartPointer();

 T& operator * () const;
 T* operator -> () const;

 private:
 struct Intermediary {
 T* resource;
 size_t refCount;
 };
 Intermediary* data;

 void detach();
 void attach(Intermediary* other);
 };

Now, what should these functions do? The first of these, detach, should detach the SmartPointer from
the shared intermediary and clean up the memory if it was the last pointer to the shared resource. In case
this sounds familiar, it's because this is exactly the behavior of the SmartPointer destructor. To avoid
code duplication, we'll move the code from the destructor into detach as shown here:

 template <typename T> void SmartPointer<T>::detach() {
 --data->refCount;
 if(data->refCount == 0) {
 delete data->resource;
 delete data;
 }
 }

We can then implement the destructor as a wrapped call to detach, as seen here:

 template <typename T> SmartPointer<T>::~SmartPointer() {
 detach();
 }

The attach function, on the other hand, makes this SmartPointer begin pointing to the specified Intermediary
and increments the reference count. Here's one possible implementation of attach:

 template <typename T> void SmartPointer<T>::attach(Intermediary* to) {
 data = to;
 ++data->refCount;
 }

Given these two functions, we can implement the copy constructor and assignment operator for
SmartPointer as follows:

Chapter 11: Resource Management - 359 -

 template <typename T> SmartPointer<T>::SmartPointer(const SmartPointer& other){
 attach(other.data);
 }

 template <typename T>
 SmartPointer<T>& SmartPointer<T>::operator= (const SmartPointer& other) {
 if(this != &other) {
 detach();
 attach(other.data);
 }
 return *this;
 }

It is crucial that we check for self-assignment inside the operator= function, since otherwise we might
destroy the data that we're trying to keep track of!

At this point we have a rather slick SmartPointer class. Here's some code demonstrating how a client
might use SmartPointer:

 SmartPointer<string> myPtr(new string);
 *myPtr = "This is a string!";
 cout << *myPtr << endl;

 SmartPointer<string> other = myPtr;
 cout << *other << endl;
 cout << other->length() << endl;

The beauty of this code is that client code using a SmartPointer<string> looks almost identical to code
using a regular C++ pointer. Isn't operator overloading wonderful?

Extending SmartPointer

The SmartPointer defined above is useful but lacks some important functionality. For example, suppose
that we have the following function:

 void DoSomething(string* ptr);

Suppose that we have a SmartPointer<string> managing a resource and that we want to pass the
stored string as a parameter to DoSomething. Despite the fact that SmartPointer<string> mimics a
string*, it technically is not a string* and C++ won't allow us to pass the SmartPointer into
DoSomething. Somehow we need a way to have the SmartPointer hand back the resource it manages.

Notice that the only SmartPointer member functions that give back a pointer or reference to the actual
resource are operator* and operator->. Technically speaking, we could use these functions to pass the
stored string into DoSomething, but the syntax would be messy (in the case of operator*) or
nightmarish (for operator ->). For example:

- 360 - Chapter 11: Resource Management

 SmartPointer<string> myPtr(new string);

 /* To use operator* to get the stored resource, we have to first dereference
 * the SmartPointer, then use the address-of operator to convert the returned
 * reference into a pointer.
 */
 DoSomething(&*myPtr);

 /* To use operator-> to get the stored resource, we have to explicitly call the
 * operator-> function. Yikes!
 */
 DoSomething(myPtr.operator-> ());

Something is clearly amiss and we cannot reasonably expect clients to write code like this routinely. We'll
need to extend the SmartPointer class to provide a way to return the stored pointer directly. This
necessitates the creation of a new member function, which we'll call get, to do just that. Given a function
like this, we could then invoke DoSomething as follows:

DoSomething(myPtr.get());

The updated interface for SmartPointer looks like this:

 template <typename T> class SmartPointer {
 public:
 explicit SmartPointer(T* memory);
 SmartPointer(const SmartPointer& other);
 SmartPointer& operator =(const SmartPointer& other);
 ~SmartPointer();

 T& operator * () const;
 T* operator -> () const;

 T* get() const;

 private:
 struct Intermediary {
 T* resource;
 size_t refCount;
 };
 Intermediary* data;

 void detach();
 void attach(Intermediary* other);
 };

The implementation of get is fairly straightforward and is shown here:

 template <typename T> T* SmartPointer<T>::get() const {
 return data->resource;
 }

Further Extensions

There are several more extensions to the SmartPointer class that we might want to consider, of which
this section explores two. The first is rather straightforward. At times, we might want to know exactly
how many SmartPointers share a resource. This might enable us to perform some optimizations, in

Chapter 11: Resource Management - 361 -

particular a technique called copy-on-write. We will not explore this technique here, though you are
encouraged to do so on your own.

Using the same logic as above, we'll define another member function called getShareCount which
returns the number of SmartPointers pointing to the managed resource (including the receiver object).
This results in the following class definition:

 template <typename T> class SmartPointer {
 public:
 explicit SmartPointer(T* memory);
 SmartPointer(const SmartPointer& other);
 SmartPointer& operator =(const SmartPointer& other);
 ~SmartPointer();

 T& operator * () const;
 T* operator -> () const;

 T* get() const;
 size_t getShareCount() const;

 private:
 struct Intermediary {
 T* resource;
 size_t refCount;
 };
 Intermediary* data;

 void detach();
 void attach(Intermediary* other);
 };

And the following implementation:

 template <typename T> size_t SmartPointer<T>::getShareCount() const {
 return data->refCount;
 }

The last piece of functionality we'll consider is the ability to “reset” the SmartPointer to point to a
different resource. When working with a SmartPointer, at times we may just want to drop whatever
resource we're holding and begin managing a new one. As you might have suspected, we'll add yet
another member function called reset which resets the SmartPointer to point to a new resource. The
final interface and code for reset is shown here:

- 362 - Chapter 11: Resource Management

 template <typename T> class SmartPointer {
 public:
 explicit SmartPointer(T* memory);
 SmartPointer(const SmartPointer& other);
 SmartPointer& operator =(const SmartPointer& other);
 ~SmartPointer();

 T& operator * () const;
 T* operator -> () const;

 T* get() const;
 size_t getShareCount() const;
 void reset(T* newRes);

 private:
 struct Intermediary {
 T* resource;
 size_t refCount;
 };
 Intermediary* data;

 void detach();
 void attach(Intermediary* other);
 };

 template <typename T> void SmartPointer<T>::reset(T* newRes) {
 /* We're no longer associated with our current resource, so drop it. */
 detach();

 /* Attach to a new intermediary object. */
 data = new Intermediary;
 data->resource = newRes;
 data->refCount = 1
 }

Practice Problems

The only way to learn copy constructors and assignment operators is to play around with them to gain
experience. Here are some practice problems and thought questions to get you started:

1. When is the copy constructor invoked?

2. When is the assignment operator invoked?

3. What is the signature of the copy constructor?

4. What is the signature of the assignment operator?

5. What is the rule of three? What are the “three” it refers to?

6. What is the behavior of the default-generated copy constructor and assignment operator?

7. Why does the assignment operator have to check for self-assignment but the copy constructor not
need to check for “self-initialization?”

8. What is bitwise equivalence? What is semantic equivalence? Which of the two properties should
be guaranteed by the two copy functions?

Chapter 11: Resource Management - 363 -

9. What is a smart pointer?

10. What is reference-counting?

11. Realizing that the copy constructor and assignment operator for most classes have several
commonalities, you decide to implement a class's copy constructor using the class's assignment
operator. For example, you try implementing the Vector's copy constructor as

 template <typename T> Vector<T>::Vector(const Vector& other) {
 *this = other;
 }

(Since this is a pointer to the receiver object, *this is the receiver object, so *this = other
means to assign the receiver object the value of the parameter other)

This idea, while well-intentioned, has a serious flaw that causes the copy constructor to almost
always cause a crash. Why is this? (Hint: Were any of the Vector data members initialized before
calling the assignment operator? Walk through the assignment operator and see what happens if the
receiver object's data members haven't been initialized.)

12. It is illegal to write a copy constructor that accepts its parameter by value. Why is this? However,
it's perfectly acceptable to have an assignment operator that accepts its parameter by value. Why
is this legal? Why the difference?

13. An alternative implementation of the assignment operator uses a technique called copy-and-swap.
The copy-and-swap approach is broken down into two steps. First, we write a member function
that accepts a reference to another instance of the class, then exchanges the data members of the
receiver object and the parameter. For example, when working with the DebugVector, we might
write a function called swapWith as follows:

 template <typename ElemType> void Vector<ElemType>::swapWith(Vector& other)
 {
 swap(array, other.array);
 swap(logicalLength, other.logicalLength);
 swap(allocatedLength, other.allocatedLength);
 }

Here, we use the STL swap algorithm to exchange data members. Notice that we never actually
make a deep-copy of any of the elements in the array – we simply swap pointers with the other
DebugVector. We can then implement the assignment operator as follows:

 template <typename T> Vector<T>& Vector<T>::operator= (const Vector& other)
 {
 DebugVector temp(other);
 swapWith(temp);
 return *this;
 }

Trace through this implementation of the assignment operator and explain how it sets the receiver
object to be a deep-copy of the parameter. What function actually deep-copies the data? What
function is responsible for cleaning up the old data members?

- 364 - Chapter 11: Resource Management

14. When writing an assignment operator using the pattern covered earlier in the chapter, we had to
explicitly check for self-assignment in the body of the assignment operator. Explain why this is no
longer necessary using the copy-and-swap approach, but why it still might be a good idea to insert
the self-assignment check anyway.

15. A singleton class is a class that can have at most one instance. Typically, a singleton class has its
default constructor and destructor marked private so that clients cannot instantiate the class
directly, and exports a static member function called getInstance() that returns a reference to
the only instance of the class. That one instance is typically a private static data member of the
class. For example:

 class Singleton {
 public:
 static Singleton& getInstance();

 private:
 Singleton(); // Clients cannot call this function; it's private
 ~Singleton(); // ... nor can they call this one

 static Singleton instance; // ... but they can be used here because
 // instance is part of the class.
 };

Singleton Singleton::instance;

Does it make sense for a singleton class to have a copy constructor or assignment operator? If so,
implement them. If not, modify the Singleton interface so that they are disabled.

16. Given this chapter's description about how to disable copying in a class, implement a macro
DISALLOW_COPYING that accepts as a parameter the name of the current class such that if
DISALLOW_COPYING is placed into the private section of a class, that class is uncopyable. Note that
it is legal to create macros that span multiple lines by ending each line with the \ character. For
example, the following is all one macro:

#define CREATE_PRINTER(str) void Print##str() {\
 cout << #str << endl;\
}

17. Consider the following alternative mechanism for disabling copying in a class: instead of marking
those functions private, instead we implement those functions, but have them call abort (a
function from <cstdlib> that immediately terminates the program) after printing out an error
message. For example:

 class PseudoUncopyable {
 public:
 PseudoUncopyable(const PseudoUncopyable& other) {
 abort();
 }
 PseudoUncopyable& operator= (const PseudoUncopyable& other) {
 abort();
 return *this; // Never reached; suppresses compiler warnings
 }
 };

Why is this approach a bad idea?

Chapter 11: Resource Management - 365 -

18. Should you copy static data members in a copy constructor or assignment operator? Why or
why not?

19. In the canonical implementation of the assignment operator we saw earlier in this chapter, we
used the check if (this != &other) to avoid problems with self-assignment. In this exercise,
we'll see what happens if we replace this check with if (*this != other).

1. What is the meaning of if (*this != other)? Will this code compile for any class, or does

that class have to have a special property?

2. Will the check if (*this != other) correctly detect whether an object is being assigned to
itself? Will it detect anything else?

3. Assume that the Vector has an implementation of operator!= that checks whether the
operands have exactly the same size and elements. What is the asymptotic (big-O) complexity
of the check if(*this != other)? How about if (this != &other)? Does this give you
a better sense why the latter is preferable to the former?

20. In a sense, our implementation of the Vector assignment operator is wasteful. It works by
completely discarding the internal array, then constructing a new array to hold the other Vector's
elements. An alternative implementation would work as follows. If the other Vector's elements
can fit in the space currently allocated by the Vector, then the elements from the other Vector
are copied directly into the existing space. Otherwise, new space is allocated as before. Rewrite
the Vector's operator= function using this optimization. Why won't this technique work for the
copy constructor?

Chapter 12: Error Handling

Forty years ago, goto-laden code was considered perfectly good practice. Now we strive to write
structured control flows. Twenty years ago, globally accessible data was considered perfectly
good practice. Now we strive to encapsulate data. Ten years ago, writing functions without
thinking about the impact of exceptions was considered good practice. Now we strive to write
exception-safe code.

Time goes on. We live. We learn.

– Scott Meyers, author of Effective C++ and one of the leading experts on C++. [Mey05]

In an ideal world, network connections would never fail, files would always exist and be properly
formatted, users would never type in malformed input, and computers would never run out of memory.
Realistically, though, all of the above can and will occur and your programs will have to be able to respond
to them gracefully. In these scenarios, the normal function-call-and-return mechanism is not robust
enough to signal and report errors and you will have to rely on exception handling, a C++ language feature
that redirects program control in case of emergencies.

Exception handling is a complex topic and will have far-reaching effects on your C++ code. This chapter
introduces the motivation underlying exception handling, basic exception-handling syntax, and some
advanced techniques that can keep your code operating smoothly in an exception-filled environment.

A Simple Problem

Up to this point, all of the programs you've written have proceeded linearly – they begin inside a special
function called main, then proceed through a chain of function calls and returns until (hopefully) hitting
the end of main. While this is perfectly acceptable, it rests on the fact that each function, given its
parameters, can perform a meaningful task and return a meaningful value. However, in some cases this
simply isn't possible.

Suppose, for example, that we'd like to write our own version of the CS106B/X StringToInteger
function, which converts a string representation of an number into an int equivalent. One possible
(partial) implementation of StringToInteger might look like this:*

 int StringToInteger(const string &input) {
 stringstream converter(input);
 int result; // Try reading an int, fail if we're unable to do so.

 converter >> result;
 if (converter.fail())
 // What should we do here?

 char leftover; // See if anything's left over. If so, fail.
 converter >> leftover;
 if (!converter.fail())
 return result;
 else
 // What should we do here?
 }

* This is based off of the GetInteger function we covered in the chapter on streams. Instead of looping and
reprompting the user for input at each step, however, it simply reports errors on failure.

- 370 - Chapter 12: Error Handling

If the parameter input is a string with a valid integer representation, then this function simply needs to
perform the conversion. But what should our function do if the parameter doesn't represent an integer?
One possible option, and the one used by the CS106B/X implementation of StringToInteger, is to call a
function like Error that prints an error and terminates the program. This response seems a bit drastic
and is a decidedly suboptimal solution for several reasons. First, calling Error doesn't give the program a
chance to recover from the problem. StringToInteger is a simple utility function, not a critical
infrastructure component, and if it fails chances are that there's an elegant way to deal with the problem.
For example, if we're using StringToInteger to convert user input in a text box into an integer for
further processing, it makes far more sense to reprompt the user than to terminate the program. Second,
in a very large or complicated software system, it seems silly to terminate the program over a simple
string error. For example, if this StringToInteger function were used in an email client to convert a
string representation of a time to an integer format (parsing the hours and minutes separately), it would
be disastrous if the program crashed whenever receiving malformed emails. In essence, while using a
function like Error will prevent the program from continuing with garbage values, it is simply too drastic
a move to use in serious code.

This approach suggests a second option, one common in pure C – sentinel values. The idea is to have
functions return special values meaning “this value indicates that the function failed to execute correctly.”
In our case, we might want to have StringToInteger return -1 to indicate an error, for example.
Compared with the “drop everything” approach of Error this may seem like a good option – it reports the
error and gives the calling function a chance to respond. However, there are several major problems with
this method. First, in many cases it is not possible to set aside a value to indicate failure. For example,
suppose that we choose to reserve -1 as an error code for StringToInteger. In this case, we'd make all
of our calls to StringToInteger as

 if (StringToInteger(myParam) == -1) {
 /* ... handle error ... */
 }

But what happens if the input to StringToInteger is the string "-1"? In this case, whether or not the
StringToInteger function completes successfully, it will still return -1 and our code might confuse it
with an error case.

Another serious problem with this approach is that if each function that might possibly return an error
has to reserve sentinel values for errors, we might accidentally check the return value of one function
against the error code of another function. Imagine if there were several constants floating around named
ERROR, STATUS_ERROR, INVALID_RESULT, etc., and whenever you called a function you needed to check
the return value against the correct one of these choices. If you chose incorrectly, even with the best of
intentions your error-checking would be invalid.

Yet another shortcoming of this approach is that in some cases it will be impossible to reserve a value for
use as a sentinel. For example, suppose that a function returns a vector<double>. What special
vector<double> should we choose to use as a sentinel?

However, the most serious problem with the above approach is that you as a programmer can ignore the
return value without encountering any warnings. Even if StringToInteger returns a sentinel value
indicating an error, there are no compile-time or runtime warnings if you choose not to check for a return
value. In the case of StringToInteger this may not be that much of a problem – after all, holding a
sentinel value instead of a meaningful value will not immediately crash the program – but this can lead to
problems down the line that can snowball into fully-fledged crashes. Worse, since the crash will probably
be caused by errors from far earlier in the code, these sorts of problems can be nightmarish to debug.

Chapter 12: Error Handling - 371 -

Surprisingly, experience shows that many programmers – either out of negligence or laziness – forget to
check return values for error codes and snowball effects are rather common.

We seem to have reached an unsolvable problem. We'd like an error-handling system that, like Error,
prevents the program from continuing normally when an error occurs. At the same time, however, we'd
like the elegance of sentinel values so that we can appropriately process an error. How can we combine
the strengths of both of these approaches into a single system?

Exception Handling

The reason the above example is such a problem is that the normal C++ function-call-and-return system
simply isn't robust enough to communicate errors back to the calling function. To resolve this problem,
C++ provides language support for an error-messaging system called exception handling that completely
bypasses function-call-and-return. If an error occurs inside a function, rather than returning a value, you
can report the problem to the exception handling system to jump to the proper error-handling code.

The C++ exception handling system is broken into three parts – try blocks, catch blocks, and throw
statements. try blocks are simply regions of code designated as areas that runtime errors might occur. To
declare a try block, you simply write the keyword try, then surround the appropriate code in curly
braces. For example, the following code shows off a try block:

 try {
 cout << "I'm in a try block!" << endl;
 }

Inside of a try block, code executes as normal and jumps to the code directly following the try block once
finished. However, at some point inside a try block your program might run into a situation from which it
cannot normally recover – for example, a call to StringToInteger with an invalid argument. When this
occurs, you can report the error by using the throw keyword to “throw” the exception into the nearest
matching catch clause. Like return, throw accepts a single parameter that indicates an object to throw
so that when handling the exception your code has access to extra information about the error. For
example, here are three statements that each throw objects of different types:

 throw 0; // Throw an int
 throw new vector<double>; // Throw a vector<double> *
 throw 3.14159; // Throw a double

When you throw an exception, it can be caught by a catch clause specialized to catch that error. catch
clauses are defined like this:

 catch(ParameterType param) {
 /* Error-handling code */
 }

Here, ParameterType represents the type of variable this catch clause is capable of catching. catch blocks
must directly follow try blocks, and it's illegal to declare one without the other. Since catch clauses are
specialized for a single type, it's perfectly legal to have cascading catch clauses, each designed to pick up a
different type of exception. For example, here's code that catches exceptions of type int, vector<int>,
and string:

- 372 - Chapter 12: Error Handling

 try {
 // Do something
 }
 catch(int myInt) {
 // If the code throws an int, execution continues here.
 }
 catch(const vector<int>& myVector) {
 // Otherwise, if the code throws a vector<int>, execution resumes here.
 }
 catch(const string& myString) {
 // Same for string
 }

Now, if the code inside the try block throws an exception, control will pass to the correct catch block.
You can visualize exception handling as a room of people and a ball. The code inside the try block begins
with the ball and continues talking as long as possible. If an error occurs, the try block throws the ball to
the appropriate catch handler, which begins executing.

Let's return to our earlier example with StringToInteger. We want to signal an error in case the user
enters an invalid parameter, and to do so we'd like to use exception handling. The question, though, is
what type of object we should throw. While we can choose whatever type of object we'd like, C++ provides
a header file, <stdexcept>, that defines several classes that let us specify what error triggered the
exception. One of these, invalid_argument, is ideal for the situation. invalid_argument accepts in its
constructor a string parameter containing a message representing what type of error occurred, and has
a member function called what that returns what the error was.* We can thus rewrite the code for
StringToInteger as

int StringToInteger(const string& input) {
 stringstream converter(input);
 int result; // Try reading an int, fail if we're unable to do so.

 converter >> result;
 if (converter.fail())
 throw invalid_argument("Cannot parse " + input + " as an integer.");

 char leftover; // See if anything's left over. If so, fail.
 converter >> leftover;
 if (!converter.fail())
 return result;
 else
 throw invalid_argument(string("Unexpected character: ") + leftover);
}

Notice that while the function itself does not contain a try/catch pair, it nonetheless has a throw
statement. If this statement is executed, then C++ will step backwards through all calling functions until it
finds an appropriate catch statement. If it doesn't find one, then the program will halt with a runtime
error. Now, we can write code using StringToInteger that looks like this:

* what is a poor choice of a name for a member function. Please make sure to use more descriptive names in your
code!

Chapter 12: Error Handling - 373 -

 try {
 int result = StringToInteger(myString);
 cout << "The result was: " << result;
 }
 catch(const invalid_argument& problem) {
 cout << problem.what() << endl; // Prints out the error message.
 }
 cout << "Yay! We're done." << endl;

Here, if StringToInteger encounters an error and throws an exception, control will jump out of the try
block into the catch clause specialized to catch objects of type invalid_argument. Otherwise, code
continues as normal in the try block, then skips over the catch clause to print “Yay! We're done.”

There are several things to note here. First, if StringToInteger throws an exception, control
immediately breaks out of the try block and jumps to the catch clause. Unlike the problems we had with
our earlier approach to error handling, here, if there is a problem in the try block, we're guaranteed that
the rest of the code in the try block will not execute, preventing runtime errors stemming from
malformed objects. Second, if there is an exception and control resumes in the catch clause, once the
catch block finishes running, control does not resume back inside the try block. Instead, control
resumes directly following the try/catch pair, so the program above will print out “Yay! We're done.”
once the catch block finishes executing. While this might seem unusual, remember that the reason for
exception handling in the first place is to halt code execution in spots where no meaningful operation can
be defined. Thus if control leaves a try block, chances are that the rest of the code in the try could not
complete without errors, so C++ does not provide a mechanism for resuming program control. Third, note
that we caught the invalid_argument exception by reference (const invalid_argument& instead of
invalid_argument). As with parameter-passing, exception-catching can take values either by value or
by reference, and by accepting the parameter by reference you can avoid making an unnecessary copy of
the thrown object.

A Word on Scope

Exception handling is an essential part of the C++ programming language because it provides a system for
recovering from serious errors. As its name implies, exception handling should be used only for
exceptional circumstances – errors out of the ordinary that necessitate a major change in the flow of
control. While you can use exception handling as a fancy form of function call and return, it is highly
recommended that you avoid doing so. Throwing an exception is much slower than returning a value
because of the extra bookkeeping required, so be sure that you're only using exception handling for
serious program errors.

Also, the exception handling system will only respond when manually triggered. Unless a code snippet
explicitly throws a value, a catch block cannot respond to it. This means that you cannot use exception
handling to prevent your program from crashing from segmentation faults or other pointer-based errors,
since pointer errors result in operating-system level process termination, not C++-level exception
handling.*

Programming with Exception Handling

While exception handling is a robust and elegant system, it has several sweeping implications for C++
code. Most notably, when using exception handling, unless you are absolutely certain that the classes and
functions you use never throw exceptions, you must treat your code as though it might throw an exception

* If you use Microsoft's Visual Studio development environment, you might notice that various errors like null-
pointer dereferences and stack overflows result in errors that mention “unhandled exception” in their
description. This is a Microsoft-specific feature and is different from C++'s exception-handling system.

- 374 - Chapter 12: Error Handling

at any point. In other words, you can never assume that an entire code block will be completed on its own,
and should be prepared to handle cases where control breaks out of your functions at inopportune times.
For example, consider the following function:

 void SimpleFunction() {
 int* myArray = new int[128];
 DoSomething(myArray);
 delete [] myArray;
 }

Here, we allocate space for a raw array, pass it to a function, then deallocate the memory. While this code
seems totally safe, when you introduce exceptions into the mix, this code can be very dangerous. What
happens, for example, if DoSomething throws an exception? In this case, control would jump to the
nearest catch block and the line delete [] myArray would never execute. As a result, our program will
leak the array. If this program runs over a sufficiently long period of time, eventually we will run out of
memory and our program will crash.

There are three main ways that we can avoid these problems. First, it's completely acceptable to just avoid
exception-handling all together. This approach might seem like a cop-out, but it is a completely valid
option that many C++ developers choose. Several major software projects written in C++ do not use
exception handling (including the Mozilla Firefox web browser), partially because of the extra difficulties
encountered when using exceptions. However, this approach results in code that runs into the same
problems discussed earlier in this chapter with StringToInteger – functions can only communicate
errors through return values and programmers must be extra vigilant to avoid ignoring return values.

The second approach to writing exception-safe code uses a technique called “catch-and-rethrow.” Let's
return to the above code example with a dynamically-allocated character buffer. We'd like to guarantee
that the array we've allocated gets deallocated, but as our code is currently written, it's difficult to do so
because the DoSomething function might throw an exception and interrupt our code flow. If there is an
exception, what if we were able to somehow intercept that exception, clean up the buffer, and then
propagate the exception outside of the SimpleFunction function? From an outside perspective, it would
look as if the exception had come from inside the DoSomething function, but in reality it would have taken
a quick stop inside SimpleFunction before proceeding outwards.

The reason this method works is that it is legal to throw an exception from inside a catch block. Although
catch blocks are usually reserved for error handling, there is nothing preventing us from throwing the
exception we catch. For example, this code is completely legal:

 try{
 try {
 DoSomething();
 }
 catch(const invalid_argument& error) {
 cout << "Inner block: Error: " << error.what() << endl;
 throw error; // Propagate the error outward
 }
 }
 catch(const invalid_argument& error) {
 cout << "Outer block: Error: " << error.what() << endl;
 }

Here, if the DoSomething function throws an exception, it will first be caught by the innermost try block,
which prints it to the screen. This catch handler then throws error again, and this time it is caught by
the outermost catch block.

Chapter 12: Error Handling - 375 -

With this technique, we can almost rewrite our SimpleFunction function to look something like this:

 void SimpleFunction() {
 int myArray = new int[128];

 /* Try to DoSomething. If it fails, catch the exception and rethrow it. */
 try {
 DoSomething(myCString);
 }
 catch (/* What to catch? */) {
 delete [] myArray;
 throw /* What to throw? */;
 }

 /* Note that if there is no exception, we still need to clean things up. */
 delete [] myArray;
 }

There's a bit of a problem here – what sort of exceptions should we catch? Suppose that we know every
sort of exception DoSomething might throw. Would it be a good idea to write a catch block for each one
of these types? At first this may seem like a good idea, but it can actually cause more problems than it
solves. First, in each of the catch blocks, we'd need to write the same delete [] statement. If we were
to make changes to the SimpleFunction function that necessitated more cleanup code, we'd need to
make progressively more changes to the SimpleFunction catch cascade, increasing the potential for
errors. Also, if we forget to catch a specific type of error, or if DoSomething later changes to throw more
types of errors, then we might miss an opportunity to catch the thrown exception and will leak resources.
Plus, if we don't know what sorts of exceptions DoSomething might throw, this entire approach will not
work.

The problem is that in this case, we want to tell C++ to catch anything that's thrown as an exception. We
don't care about what the type of the exception is, and need to intercept the exception simply to ensure
that our resource gets cleaned up. Fortunately, C++ provides a mechanism specifically for this purpose. To
catch an exception of any type, you can use the special syntax catch(...), which catches any exception.
Thus we'll have the catch clause inside DoSomething be a catch(...) clause, so that we can catch any
type of exception that DoSomething might throw. But this causes another problem: we'd like to rethrow
the exception, but since we've used a catch(...) clause, we don't have a name for the specific exception
that's been caught. Fortunately, C++ has a special use of the throw statement that lets you throw the
current exception that's being processed. The syntax is

 throw;

That is, a lone throw statement with no parameters. Be careful when using throw;, however, since if
you're not inside of a catch block the program will crash!

The final version of SimpleFunction thus looks like this:

- 376 - Chapter 12: Error Handling

void SimpleFunction() {
 int myArray = new int[128];

 /* Try to DoSomething. If it fails, catch the exception and rethrow it. */
 try {
 DoSomething(myCString);
 }
 catch (...) {
 delete [] myArray;
 throw;
 }

 /* Note that if there is no exception, we still need to clean things up. */
 delete [] myArray;
 }

As you can tell, the “catch-and-rethrow” approach to exception handling results in code that can be rather
complicated. While in some circumstances catch-and-rethrow is the best option, in many cases there's a
much better alternative that results in concise, readable, and thoroughly exception-safe code – object
memory management.

Object Memory Management and RAII

C++'s memory model is best described as “dangerously efficient.” Unlike other languages like Java, C++
does not have a garbage collector and consequently you must manually allocate and deallocate memory.
At first, this might seem like a simple task – just delete anything you allocate with new, and make sure not
to delete something twice. However, it can be quite difficult to keep track of all of the memory you've
allocated in a program. After all, you probably won't notice any symptoms of memory leaks unless you run
your programs for hours on end, and in all likelihood will have to use a special tool to check memory
usage. You can also run into trouble where two objects each point to a shared object. If one of the objects
isn't careful and accidentally deletes the memory while the other one is still accessing it, you can get
some particularly nasty runtime errors where seemingly valid data has been corrupted. The situation gets
all the more complicated when you introduce exception-handling into the mix, where the code to delete
allocated memory might not be reached because of an exception.

In some cases having a high degree of control over memory management can be quite a boon to your
programming, but much of the time it's simply a hassle. What if we could somehow get C++ to manage our
memory for us? While building a fully-functional garbage collection system in C++ would be just short of
impossible, using only basic C++ concepts it's possible to construct an excellent approximation of
automatic memory management. The trick is to build smart pointers, objects that acquire a resource when
created and that clean up the resource when destroyed. That is, when the objects are constructed, they
wrap a newly-allocated pointer inside an object shell that cleans up the mess when the object goes out of
scope. Combined with features like operator overloading, it's possible to create slick smart pointers that
look almost exactly like true C++ pointers, but that know when to free unused memory.

The C++ header file <memory> exports the auto_ptr type, a smart pointer that accepts in its constructor a
pointer to dynamically-allocated memory and whose constructor calls delete on the resource.*
auto_ptr is a template class whose template parameter indicates what type of object the auto_ptr will
“point” at. For example, an auto_ptr<string> is a smart pointer that points to a string. Be careful – if
you write auto_ptr<string *>, you'll end up with an auto_ptr that points to a string *, which is
similar to a string **. Through the magic of operator overloading, you can use the regular dereference
and arrow operators on an auto_ptr as though it were a regular pointer. For example, here's some code

* Note that auto_ptr calls delete, not delete [], so you cannot store dynamically-allocated arrays in auto_ptr. If
you want the functionality of an array with automatic memory management, use a vector.

Chapter 12: Error Handling - 377 -

that dynamically allocates a vector<int>, stores it in an auto_ptr, and then adds an element into the
vector:

 /* Have the auto_ptr point to a newly-allocated vector<int>. The constructor
 * is explicit, so we must use parentheses.
 */
 auto_ptr<vector<int> > managedVector(new vector<int>);
 managedVector->push_back(137); // Add 137 to the end of the vector.
 (*managedVector)[0] = 42; // Set element 0 by dereferencing the pointer.

While in many aspects auto_ptr acts like a regular pointer with automatic deallocation, auto_ptr is
fundamentally different from regular pointers in assignment and initialization. Unlike objects you've
encountered up to this point, assigning or initializing an auto_ptr to hold the contents of another
destructively modifies the source auto_ptr. Consider the following code snippet:

 auto_ptr<int> one(new int);
 auto_ptr<int> two;
 two = one;

After the final line executes, two will hold the resource originally owned by one, and one will be empty.
During the assignment, one relinquished ownership of the resource and cleared out its state.
Consequently, if you use one from this point forward, you'll run into trouble because it's not actually
holding a pointer to anything. While this is highly counterintuitive, it has several advantages. First, it
ensures that there can be at most one auto_ptr to a resource, which means that you don't have to worry
about the contents of an auto_ptr being cleaned up out from underneath you by another auto_ptr to
that resource. Second, it means that it's safe to return auto_ptrs from functions without the resource
getting cleaned up. When returning an auto_ptr from a function, the original copy of the auto_ptr will
transfer ownership to the new auto_ptr during return-value initialization, and the resource will be
transferred safely.* Finally, because each auto_ptr can assume that it has sole ownership of the resource,
auto_ptr can be implemented extremely efficiently and has almost zero overhead.

As a consequence of the “auto_ptr assignment is transference” policy, you must be careful when passing
an auto_ptr by value to a function. Since the parameter will be initialized to the original object, it will
empty the original auto_ptr. Similarly, you should not store auto_ptrs in STL containers, since when
the containers reallocate or balance themselves behind the scenes they might assign auto_ptrs around in
a way that will trigger the object destructors.

For reference, here's a list of the member functions of the auto_ptr template class:

* For those of you interested in programming language design, C++ uses what's known as copy semantics for most
of its operations, where assigning objects to one another creates copies of the original objects. auto_ptr seems
strange because it uses move semantics, where assigning auto_ptrs to one another transfers ownership of some
resource. Move semantics are not easily expressed in C++ and the code to correctly implement auto_ptr is
surprisingly complex and requires an intricate understanding of the C++ language. The next revision of C++, C+
+0x, will add several new features to the language to formalize and simply move semantics and will replace
auto_ptr with unique_ptr, which formalizes the move semantics.

- 378 - Chapter 12: Error Handling

explicit auto_ptr (Type* resource) auto_ptr<int> ptr(new int);

Constructs a new auto_ptr wrapping the specified pointer, which
must be from dynamically-allocated memory.

auto_ptr(auto_ptr& other) auto_ptr<int> one(new int);
auto_ptr<int> two = one;

Constructs a new auto_ptr that acquires resource ownership from
the auto_ptr used in the initialization. Afterwards, the old auto_ptr
will not encapsulate any dynamically-allocated memory.

T& operator *() const *myAutoPtr = 137;

Dereferences the stored pointer and returns a reference to the
memory it's pointing at.

T* operator-> () const myStringAutoPtr->append("C++!");

References member functions of the stored pointer.

T* release() int *regularPtr = myPtr.release();

Relinquishes control of the stored resource and returns it so it can be
stored in another location. The auto_ptr will then contain a NULL
pointer and will not manage the memory any more.

void reset(T* ptr = NULL) myPtr.reset();
myPtr.reset(new int);

Releases any stored resources and optionally stores a new resource
inside the auto_ptr.

T* get() const SomeFunction(myPtr.get()); // Retrieve stored resource

Returns the stored pointer. Useful for passing the managed
resource to other functions.

Of course, dynamically-allocated memory isn't the only C++ resource that can benefit from object memory
management. For example, when working with OS-specific libraries like Microsoft's Win32 library, you
will commonly have to manually manage handles to system resources. In spots like these, writing
wrapper classes that act like auto_ptr but that do cleanup using methods other than a plain delete can
be quite beneficial. In fact, the system of having objects manage resources through their constructors and
destructors is commonly referred to as resource acquisition is initialization, or simply RAII.

Exceptions and Smart Pointers

Up to this point, smart pointers might seem like a curiosity, or perhaps a useful construct in a limited
number of circumstances. However, when you introduce exception handling to the mix, smart pointers
will be invaluable. In fact, in professional code where exceptions can be thrown at almost any point, smart
pointers are almost as ubiquitous as regular C++ pointers.

Let's suppose you're given the following linked list cell struct:

 struct nodeT {
 int data;
 nodeT *next;
 };

Chapter 12: Error Handling - 379 -

Now, consider this function:

 nodeT* GetNewCell() {
 nodeT* newCell = new nodeT;
 newCell->next = NULL;
 newCell->data = SomeComplicatedFunction();
 return newCell;
 }

This function allocates a new nodeT cell, then tells it to hold on to the value returned by
SomeComplicatedFunction. If we ignore exception handling, this code is totally fine, provided of course
that the calling function correctly holds on to the nodeT * pointer we return. However, when we add
exception handling to the mix, this function is a recipe for disaster. What happens if
SomeComplicatedFunction throws an exception? Since GetNewCell doesn't have an associated try
block, the program will abort GetNewCell and search for the nearest catch clause. Once the catch
finishes executing, we have a problem – we allocated a nodeT object, but we didn't clean it up. Worse,
since GetNewCell is no longer running, we've lost track of the nodeT entirely, and the memory is
orphaned.

Enter auto_ptr to save the day. Suppose we change the declaration nodeT* newCell to
auto_ptr<nodeT> newCell. Now, if SomeComplicatedFunction throws an exception, we won't leak
any memory since when the auto_ptr goes out of scope, it will reclaim the memory for us. Wonderful! Of
course, we also need to change the last line from return newCell to return newCell.release(),
since we promised to return a nodeT *, not an auto_ptr<nodeT>. The new code is printed below:

 nodeT* GetNewCell() {
 auto_ptr<nodeT> newCell(new nodeT);
 newCell->next = NULL;
 newCell->data = SomeComplicatedFunction();
 return newCell.release(); // Tell the auto_ptr to stop managing memory.
 }

This function is now wonderfully exception-safe thanks to auto_ptr. Even if we prematurely exit the
function from an exception in SomeComplicatedFunction, the auto_ptr destructor will ensure that our
resources are cleaned up. However, we can make this code even safer by using the auto_ptr in yet
another spot. What happens if we call GetNewCell but don't store the return value anywhere? For
example, suppose we have a function like this:

 void SillyFunction() {
 GetNewCell(); // Oh dear, there goes the return value.
 }

When we wrote GetNewCell, we tacitly assumed that the calling function would hold on to the return
value and clean the memory up at some later point. However, it's totally legal to write code like
SillyFunction that calls GetNewCell and entirely discards the return value. This leads to memory
leaks, the very problem we were trying to solve earlier. Fortunately, through some creative use of
auto_ptr, we can eliminate this problem. Consider this modified version of GetNewCell:

 auto_ptr<nodeT> GetNewCell() {
 auto_ptr<nodeT> newCell(new nodeT);
 newCell->next = NULL;
 newCell->data = SomeComplicatedFunction();
 return newCell; // See below
 }

- 380 - Chapter 12: Error Handling

Here, the function returns an auto_ptr, which means that the returned value is itself managed. Now, if
we call SillyFunction, even though we didn't grab the return value of GetNewCell, because
GetNewCell returns an auto_ptr, the memory will still get cleaned up.

Documenting Invariants with assert

The exception-handling techniques we've covered so far are excellent ways of handling and recovering
from errors that can only be detected at compile-time. If a network connection fails to open, or your
graphics card fails to initialize correctly, you can use exceptions to report the error so that your program
can detect and recover from the problem.

However, there is an entirely different class of problems that your programs might encounter at runtime –
logic errors. As much as we'd all like to think that we can write perfect software on the first try, we all
make mistakes when designing programs. We pass NULL pointers into functions that expect them to be
non-NULL. We make accidental changes to linked lists while iterating over them. We pass in values by
reference that we meant to pass in by value. These are normal errors in the programming process, and
while time and experience can reduce their frequency, they can never entirely be eliminated. The question
then arises – given that you are going to make mistakes during development, how can you design your
software to make it easier to detect and correct these errors?

When designing software, at various points in the program you will expect certain conditions to hold true.
You might expect that a certain integer is even, or that a pointer is non-NULL, etc. If these conditions don't
hold, it's often a sign that your program contains a bug.

One trick you can use to make it easier to detect and diagnose bugs is to have the program check that these
invariants hold at runtime. If they do, then everything is going according to plan, but if for some reason
the invariants do not hold it could signal the presence of a bug. If the program can then report that an
invariant failed to hold, it will make it significantly easier to debug. For this purpose, C++ provides the
assert macro. assert, exported by the header <cassert>, checks to see that some condition holds true.
If so, the macro has no effect. Otherwise, it prints out the statement that did not evaluate to true, along
with the file and line number in which it was written, then terminates the program. For example, consider
the following code:

 void MyFunction(int *myPtr) {
 assert(myPtr != NULL);
 *myPtr = 137;
 }

If a caller passes a null pointer into MyFunction, the assert statement will halt the program and print out a
message that might look something like this:

 Assertion Failed: 'myPtr != NULL': File: main.cpp, Line: 42

Because assert abruptly terminates the program without giving the rest of the application a chance to
respond, you should not use assert as a general-purpose error-handling routine. In practical software
development, assert is usually used to express programmer assumptions about the state of execution
that can only be broken if the software is written incorrectly. If an assert fails, it means that the
programmer made a mistake, not that something unusual occurred at runtime. For errors that might arise
during normal execution, such as missing files or malformed user input, user exception handling. For
errors that represent a bug in the original code, assert is a much better choice.

Chapter 12: Error Handling - 381 -

Let's consider a concrete example. Assume we have some enumerated type Color, which might look like
this:

 enum Color {Red, Green, Blue, Magenta, Cyan, Yellow, Black, White};

Now, suppose that we want to write a function called IsPrimaryColor that takes in a Color and reports
whether that color is a primary color (red, green, or blue). Here's one implementation:

 bool IsPrimaryColor(Color c) {
 switch(c) {
 case Red:
 case Green:
 case Blue:
 return true;
 default:
 /* Otherwise, must not be a primary color. */
 return false;
 }
 }

Here, if the color is Red, Green, or Blue, we return that the color is indeed a primary color. Otherwise, we
return that it is not a primary color. However, what happens if the parameter is not a valid Color, perhaps
if the call is IsPrimaryColor(Color(-1))? In this function, since we assume that that the parameter is
indeed a color, we might want to indicate that to the program by explicitly putting in an assert test.
Here's a modified version of the function, using assert and assuming the existence of a function IsColor:

 bool IsPrimaryColor(Color c) {
 assert(IsColor(c)); // We assume that this is really a color.
 switch (c) {
 case Red:
 case Green:
 case Blue:
 return true;
 default:
 /* Otherwise, must not be a primary color. */
 return false;
 }
 }

Now, if the caller passes in an invalid Color, the program will halt with an assertion error pointing us to
the line that caused the problem. If we have a good debugger, we should be able to figure out which caller
erroneously passed in an invalid Color and can better remedy the problem. Were we to ignore this case
entirely, we might have considerably more trouble debugging the error, since we would have no indication
of where the problem originated.

While assert can be used to catch a good number of programmer errors during development, it has the
unfortunate side-effect of slowing a program down at runtime because of the overhead of the extra
checking involved. Consequently, most major compilers disable the assert macro in release or optimized
builds. This may seem dangerous, since it eliminates checks for inconsistent state, but is actually not a
problem because, in theory, you shouldn't be compiling a release build of your program if assert
statements fail during execution.* Because assert is entirely disabled in optimized builds, you should use
assert only to check that specific relations hold true, never to check the return value of a function. If an
assert contains a call to a function, when assert is disabled in release builds, the function won't be called,

* In practice, this isn't always the case. But it's still a nice theory!

- 382 - Chapter 12: Error Handling

leading to different behavior in debug and release builds. This is a persistent source of debugging
headaches.

Chapter 12: Error Handling - 383 -

More to Explore

Exception-handling and RAII are complex topics that have impressive ramifications for the way that your
write C++ code. However, we simply don't have time to cover every facet of exception handling. In case
you're interested in exploring more advanced topics in exception handling and RAII, consider looking into
the following:

1. The Standard Exception Classes: In this chapter we discussed invalid_argument, one of the
many exception classes available in the C++ standard library. However, there are several more
exception classes that form an elaborate hierarchy. Consider reading into some of the other classes
– some of them even show up in the STL!

2. Exception Specifications. Because functions can throw exceptions at any time, it can be difficult
to determine which pieces of code can and cannot throw exceptions. Fortunately, C++ has a feature
called an exception specification which indicates what sorts of exceptions a function is allowed to
throw. When an exception leaves a function with an exception specification, the program will
abort unless the type of the exception is one of the types mentioned in the specification.

3. Function try Blocks. There is a variant of a regular try block that lets you put the entire contents
of a function into a try/catch handler pair. However, it is a relatively new feature in C++ and is not
supported by several popular compilers. Check a reference for more information.

4. new and Exceptions. If your program runs out of available memory, the new operator will indicate
a failure by throwing an exception of type bad_alloc. When designing custom container classes,
it might be worth checking against this case and acting accordingly.

5. The Boost Smart Pointers: While auto_ptr is useful in a wide variety of circumstances, in many
aspects it is limited. Only one auto_ptr can point to a resource at a time, and auto_ptrs cannot
be stored inside of STL containers. The Boost C++ libraries consequently provide a huge number
of smart pointers, many of which employ considerably more complicated resource-management
systems than auto_ptr. Since many of these smart pointers are likely to be included in the next
revision of the C++ standard, you should be sure to read into them.

Bjarne Stroustrup (the inventor of C++) wrote an excellent introduction to exception safety, focusing
mostly on implementations of the C++ Standard Library. If you want to read into exception-safe code, you
can read it online at http://www.research.att.com/~bs/3rd_safe.pdf. Additionally, there is a most
excellent reference on auto_ptr available at
http://www.gotw.ca/publications/using_auto_ptr_effectively.htm that is a great resource on the subject.

Practice Problems

1. Explain why the auto_ptr constructor is marked explicit. (Hint: Give an example of an error you
can make if the constructor is not marked explicit).

2. The SimpleFunction function from earlier in this chapter ran into difficulty with exception-safety
because it relied on a manually-managed C string. Explain why this would not be a problem if it
instead used a C++ string.

http://www.gotw.ca/publications/using_auto_ptr_effectively.htm
http://www.research.att.com/~bs/3rd_safe.pdf

- 384 - Chapter 12: Error Handling

3. Consider the following C++ function:

 void ManipulateStack(stack<string>& myStack) {
 if (myStack.empty())
 throw invalid_argument("Empty stack!");

 string topElem = myStack.top();
 myStack.pop();

 /* This might throw an exception! */
 DoSomething(myStack);

 myStack.push(topElem);
 }

This function accepts as input a C++ stack<string>, pops off the top element, calls the
DoSomething function, then pushes the element back on top. Provided that the DoSomething
function doesn't throw an exception, this code will guarantee that the top element of the stack
does not change before and after the function executes. Suppose, however, that we wanted to
absolutely guarantee that the top element of the stack never changes, even if the function throws
an exception. Using the catch-and-rethrow strategy, explain how to make this the case.

5. Write a class called AutomaticStackManager whose constructor accepts a stack<string> and
pops off the top element (if one exists) and whose destructor pushes the element back onto the
stack. Using this class, rewrite the code in Problem 4 so that it's exception safe. How does this
version of the code compare to the approach using catch-and-rethrow?

Part Three
Generic Programming

Chapter 13: Functors

Consider a simple task. Suppose you have a vector<string> and you'd like to count the number of
strings that have length less than five. You stumble upon the STL count_if algorithm, which accepts a
range of iterators and a predicate function, then returns the number of elements in the range for which the
function returns true. For example, you could use count_if as follows to count the number of even
integers in a vector:

 bool IsEven(int val) {
 return val % 2 == 0;
 }

 vector<int> myVector = /* ... */
 int numEvens = count_if(myVector.begin(), myVector.end(), IsEven);

In our case, since we want to count the number of strings with length less than five, we could write a
function like this one:

 bool LengthIsLessThanFive(const string& str) {
 return str.length() < 5;
 }

And then call count_if(myVector.begin(), myVector.end(), LengthIsLessThanFive) to get the
number of short strings in the vector. Similarly, if we want to count the number of strings with length
less than ten, we could write a LengthIsLessThanTen function like this one:

 bool LengthIsLessThanTen(const string& str) {
 return str.length() < 10;
 }

and then call count_if(myVector.begin(), myVector.end(), LengthIsLessThanTen). In general,
if we know in advance what length we want to compare the string lengths against, we can write a function
that returns whether a particular string's length is less than that value, then pass it into count_if to get
our result. This approach is legal C++, but is not particularly elegant. Every time we want to compare the
string length against a particular value, we have to write an entirely new function to perform the
comparison. Good programming practice suggests that we should instead just write one function that
looks like this:

 bool LengthIsLessThan(const string& str, size_t length) {
 return str.length() < length;
 }

This more generic function takes in a string and a length, then returns whether the string's length is less
than the requested length. This way, we can specify the maximum length as the second parameter rather
than writing multiple instances of similar functions.

While this new function is more generic than the previous version, unfortunately we can't use it in
conjunction with count_if. count_if requires a unary function (a function taking only one argument)
as its final parameter, and the new LengthIsLessThan is a binary function. Our new LengthIsLessThan
function, while more generic than the original version, is actually less useful in this context. There must be
some way to compromise between the two approaches. We need a way to construct a function that takes

- 388 - Chapter 13: Functors

in only one parameter (the string to test), but which can be customized to accept an arbitrary maximum
length. How can we do this?

This problem boils down to a question of data flow. To construct this hybrid function, we need to
somehow communicate the upper bound into the function so that it can perform the comparison. So how
can we give this data to the function? Recall that a function has access the following information:

• Its local variables.
• Its parameters.
• Global variables.

Is there some way that we can store the maximum length of the string in one of these locations? We can't
store it in a local variable, since local variables don't persist between function calls and aren't accessible to
callers. As mentioned above, we also can't store it in a parameter, since count_if is hardcoded to accept a
unary function. That leaves global variables. We could solve this problem using global variables: we would
store the maximum length in a global variable, then compare the string parameter length against the
global. For example:

 size_t gMaxLength; // Value to compare against

 bool LengthIsLessThan(const string& str) {
 return str.length() < gMaxLength;
 }

This approach works: if our vector<string> is called v, then we can count the number of elements less
than some value by writing

 gMaxLength = /* ... some value ... */
 int numShort = count_if(v.begin(), v.end(), LengthIsLessThan);

But just because this approach works does not mean that it is optimal. This approach is deeply flawed for
several reasons, a handful of which are listed here:

• It is error-prone. Before we use LengthIsLessThan, we must take care to set gMaxLength to
the maximum desired length. If we forget to do so, then LengthIsLessThan will use the wrong
value in the comparison and we will get the wrong answer. Moreover, because there is no formal
relationship between the gMaxLength variable and the LengthIsLessThan function, the compiler
can't verify that we correctly set gMaxLength before calling LengthIsLessThan, putting an extra
burden on the programmer

• It is not scalable. If every time we encounter a problem like this one we create a new global
variable, programs we write will begin to fill up with global variables that are used only in the
context of a single function. This leads to namespace pollution, where too many variables are in
scope and it is easy to accidentally use one when another is expected.

• It uses global variables. Any use of global variables should send a shiver running down your
spine. Global variables should be avoided at all costs, and the fact that we're using them here
suggests that something is wrong with this setup.

None of the options we've considered are feasible or attractive. There has to be a better way to solve this,
but how?

Chapter 13: Functors - 389 -

Functors to the Rescue

The fundamental issue at heart here is that a unary function does not have access to enough information
to answer the question we're asking. Essentially, we want a unary function to act like a binary function
without taking an extra parameter. Using only the tools we've seen so far, this simply isn't possible. To
solve this problem, we'll turn to a more powerful C++ entity: a functor. A functor (or function object) is an
C++ class that acts like a function. Functors can be called using the familiar function call syntax, and can
yield values and accept parameters just like regular functions. For example, suppose we create a functor
class called MyClass imitating a function accepting an int and returning a double. Then we could “call”
an object of type MyClass as follows:

 MyClass myFunctor;
 cout << myFunctor(137) << endl; // "Call" myFunctor with parameter 137

Although myFunctor is an object, in the second line of code we treat it as though it were a function by
invoking it with the parameter 137.

At this point, functors might seem utterly baffling: why would you ever want to create an object that
behaves like a function? Don't worry, we'll answer that question in a short while. In the meantime, we'll
discuss the syntax for functors and give a few motivating examples.

To create a functor, we create an object that overloads the function call operator, operator (). The name
of this function is a bit misleading – it is a function called operator (), not a function called operator
that takes no parameters. Despite the fact that the name looks like “operator parentheses,” we're not
redefining what it means to parenthesize the object. Instead, we're defining a function that gets called if
we invoke the object like a function. Thus in the above code,

 cout << myFunctor(137) << endl;

is equivalent to

 cout << myFunctor.operator()(137) << endl;

Unlike other operators we've seen so far, when overloading the function call operator, you're free to return
an object of any type (or even void) and can accept any number of parameters. Remember that the point
of operator overloading is to allow objects to act like built-in types, and since a regular function can have
arbitrarily many parameters and any return type, functors are allowed the same freedom. For example,
here's a sample functor that overloads the function call operator to print out a string:

 class MyFunctor {
 public:
 void operator() (const string& str) const {
 cout << str << endl;
 }
 };

Note that in the function definition there are two sets of parentheses. The first group is for the function
name – operator () – and the second for the parameters to operator (). If we separated the
implementation of operator () from the class definition, it would look like this:

- 390 - Chapter 13: Functors

 class MyFunctor {
 public:
 void operator() (const string& str) const;
 };

 void MyFunctor::operator() (const string& str) const {
 cout << str << endl;
 }

Now that we've written MyFunctor, we can use it as follows:

 MyFunctor functor;
 functor("Functor power!");

This code calls the functor and prints out “Functor power!”

At this point functors might seem like little more than a curiosity. “Sure,” you might say, “I can make an
object that can be called like a function. But what does it buy me?” A lot more than you might initially
suspect, it turns out. The key difference between a function and a functor is that a functor's function call
operator is a member function whereas a raw C++ function is a free function. This means that a functor can
access the following information when being called:

• Its local variables.
• Its parameters.
• Global variables.
• Class data members.

This last point is extremely important and is the key difference between a regular function and a functor.
If a functor's operator() member function requires access to data beyond what can be communicated by
its parameters, we can store that information as a data member inside the functor class. Since
operator() is a member of the functor class, it can then access that data freely. For example, consider the
following functor class:

 class StringAppender {
 public:
 /* Constructor takes and stores a string. */
 explicit StringAppender(const string& str) : toAppend(str) {}

 /* operator() prints out a string, plus the stored suffix. */
 void operator() (const string& str) const {
 cout << str << ' ' << toAppend << endl;
 }

 private:
 const string toAppend;
 };

This functor's constructor takes in a string and stores it for later use. Its operator () function accepts a
string, then prints that string suffixed with the string stored by the constructor. We can then use the
StringAppender functor like this:

 StringAppender myFunctor("is awesome");
 myFunctor("C++");

Chapter 13: Functors - 391 -

This code will print out “C++ is awesome,” since the constructor stored the string “is awesome” and we
passed “C++” as a parameter to the function. If you'll notice, though, in the actual function call we only
passed in one piece of information – the string “C++.” This is precisely why functors are so useful. Like
regular functions, functors are invoked with a fixed number of parameters. Unlike raw functions, however,
functors can be constructed to store as much information is necessary to solve the task at hand.

Let's return to the above example with count_if. Somehow we need to provide a unary function that can
return whether a string is less than an arbitrary length. To solve this problem, instead of writing a unary
function, we'll create a unary functor whose constructor stores the maximum length and whose
operator () accepts a string and returns whether it's of the correct length. Here's one possible
implementation:

 class ShorterThan {
 public:
 /* Accept and store an int parameter */
 explicit ShorterThan(size_t maxLength) : length(maxLength) {}

 /* Return whether the string length is less than the stored int. */
 bool operator() (const string& str) const {
 return str.length() < length;
 }

 private:
 const size_t length;
 };

In this code, the constructor accepts a single size_t, then stores it as the length data member. From that
point forward, whenever the functor is invoked on a particular string, the functor's operator() function
can compare the length of that string against length data member. This is exactly what we want – a unary
function that knows what value to compare the parameter's length against. To tie everything together,
here's the code we'd use to count the number of strings in the vector that are shorter than the specified
value:

 ShorterThan st(length);
 count_if(myVector.begin(), myVector.end(), st);

Functors are incredible when combined with STL algorithms for this very reason – they look and act like
regular functions, but have access to extra information. This is just our first taste of functors, as we
continue our exploration of C++ you will recognize exactly how much they will influence your program
design.

Look back to the above code with count_if. If you'll notice, we created a new ShorterThan object, then
fed it to count_if. After the call to count_if, odds are we'll never use that particular ShorterThan
object again. This is an excellent spot to use temporary objects, since we need a new ShorterThan for the
function call but don't plan on using it afterwards. Thus, we can convert this code:

 ShorterThan st(length)
 count_if(myVector.begin(), myVector.end(), st);
Into this code:

 count_if(myVector.begin(), myVector.end(), ShorterThan(length));

Here, ShorterThan(length) constructs a temporary ShorterThan functor with parameter length, then
passes it to the count_if algorithm. Don't get tripped up by the syntax – ShorterThan(length) does
not call the ShorterThan's operator () function. Instead, it invokes the ShorterThan constructor with

- 392 - Chapter 13: Functors

the parameter length to create a temporary object. Even if we had written the operator() function to
take in an int, C++ would realize that the parentheses here means “construct an object” instead of “invoke
operator()” from context.

Writing Functor-Compatible Code

In previous chapters, you've seen how to write code that accepts a function pointer as a parameter. For
example, the following code accepts a function that takes and returns a double, then prints a table of
some values of that function:

 const double kLowerBound = 0.0;
 const double kUpperBound = 1.0;
 const int kNumSteps = 25;
 const double kStepSize = (kUpperBound – kLowerBound) / kNumSteps;

 void TabulateFunctionValues(double function(double)) {
 for(double i = kLowerBound; i <= kUpperBound; i += kStepSize)
 cout << "f(" << i << ") = " << function(i) << endl;
 }

For any function accepting and returning a double, we can call TabulateFunctionValues with that
function as an argument. But what about functors? Can we pass them to TabulateFunctionValues as
well? As an example, consider the following implementation of a Reciprocal functor, whose operator()
takes in a double and returns the reciprocal of that double:

 class Reciprocal {
 public:
 double operator() (double val) const {
 return 1.0 / val;
 }
 };

Given this class implementation, is the following code legal?

 TabulateFunctionValues(Reciprocal());

(Recall that Reciprocal() constructs a temporary Reciprocal object for use as the parameter to
TabulateFunctionValues.)

At a high level, this code seems perfectly fine. After all, Reciprocal objects can be called as though they
were unary functions taking and returning doubles, so it seems perfectly reasonable to pass a
Reciprocal into TabulateFunctionValues. But despite the similarities, Reciprocal is not a function
– it's a functor – and so the above code will not compile. The problem is that C++'s static type system
prevents function pointers from pointing to functors, even if the functor has the same parameter and
return type as the function pointer. This is not without reason – the machine code for calling a function is
very different from machine code for calling a functor, and if C++ were to conflate the two it would result
either in slower function calls or undefined runtime behavior.

Given that this code doesn't compile, how can we fix it? Let's begin with some observations, then
generalize to the optimal solution. The above code does not compile because we're trying to provide a
Reciprocal object to a function expecting a function pointer. This suggests one option – could we rewrite
the TabulateFunctionValues function such that it accepts a Reciprocal as a parameter instead of a
function pointer? For example, we could write the following:

Chapter 13: Functors - 393 -

 void TabulateFunctionValues(Reciprocal function) {
 for(double i = kLowerBound; i <= kUpperBound; i += kStepSize)
 cout << "f(" << i << ") = " << function(i) << endl;
 }

Now, if we call the function as

 TabulateFunctionValues(Reciprocal());

The code is perfectly legal because the argument has type Reciprocal and the
TabulateFunctionValues function is specifically written to take in objects of type Reciprocal. But
what if we have another functor we want to use in TabulateFunctionValues? For example, we might
write a functor called Arccos that computes the inverse cosine of its parameter, as seen here:

 class Arccos {
 public:
 double operator() (double val) const {
 return acos(val); // Using the acos function from <cmath>
 }
 };

Unfortunately, if we try to call TabulateFunctionValues passing in an Arccos object, as shown here:

 TabulateFunctionValues(Arccos());

we'll get yet another compile-time error, this time because the TabulateFunctionValues function is
hardcoded to accept a Reciprocal, but we've tried to provide it an object of type Arccos. Again, if we
rewrite TabulateFunctionValues to only accept objects of type Arccos, we could alleviate this
problem. Of course, in doing so, we would break all code that accepted objects of type Reciprocal. How
can we resolve this problem? Fortunately, the answer is yes, thanks to a particularly ingenious trick.
Below are three versions of TabulateFunctionValues, each of which take in a parameter of a different
type:

 void TabulateFunctionValues(double function(double)) {
 for(double i = kLowerBound; i <= kUpperBound; i += kStepSize)
 cout << "f(" << i << ") = " << function(i) << endl;
 }
 void TabulateFunctionValues(Reciprocal function) {
 for(double i = kLowerBound; i <= kUpperBound; i += kStepSize)
 cout << "f(" << i << ") = " << function(i) << endl;
 }
 void TabulateFunctionValues(Arccos function) {
 for(double i = kLowerBound; i <= kUpperBound; i += kStepSize)
 cout << "f(" << i << ") = " << function(i) << endl;
 }

Notice that the only difference between the three implementations of TabulateFunctionValues is the
type of the parameter to the function. The rest of the code is identical. This suggests a rather elegant
solution using templates. Instead of providing multiple different versions of TabulateFunctionValues,
each specialized for a particular type of function or functors, we'll write a single template version of
TabulateFunctionValues parameterized over the type of the argument. This is shown here:

- 394 - Chapter 13: Functors

 template <typename UnaryFunction>
 void TabulateFunctionValues(UnaryFunction function) {
 for(double i = kLowerBound; i <= kUpperBound; i += kStepSize)
 cout << "f(" << i << ") = " << function(i) << endl;
 }

Now, we can pass any type of object to TabulateFunctionValues that we want, provided that the
argument can be called with a single double as a parameter to produce a value. This means that we can
pass in raw functions, Reciprocal objects, Arccos objects, and any other functor classes that happen to
mimic functions from doubles to doubles. This hearkens back to our discussion of concepts in the
previous chapter. By writing TabulateFunctionValues as a template function parameterized over an
arbitrary type, we let clients provide objects of whatever type they see fit, as long as it can be called as a
function taking a double and returning a double.

When writing functions that require a user-specified callback, you may want to consider parameterizing
the function over the type of the callback instead of using function pointers. The resulting code will be
more flexible and future generations of programmers will be much the better for your extra effort.

STL Algorithms Revisited

Now that you're armed with the full power of C++ functors, let's revisit some of the STL algorithms we've
covered and discuss how to maximize their firepower.

The very first algorithm we covered was accumulate, defined in the <numeric> header. If you'll recall,
accumulate sums up the elements in a range and returns the result. For example, given a vector<int>,
the following code returns the sum of all of the vector's elements:

 accumulate(myVector.begin(), myVector.end(), 0);

The first two parameters should be self-explanatory, and the third parameter (zero) represents the initial
value of the sum.

However, this view of accumulate is limited, and to treat accumulate as simply a way to sum container
elements would be an error. Rather, accumulate is a general-purpose function for transforming a
collection of elements into a single value.

There is a second version of the accumulate algorithm that takes a binary function as a fourth parameter.
This version of accumulate is implemented like this:

 template <typename InputIterator, typename Type, typename BinaryFn>
 inline Type accumulate(InputIterator start,
 InputIterator stop,
 Type accumulator,
 BinaryFn fn) {
 while(start != stop) {
 accumulator = fn(accumulator, *start);
 ++start;
 }
 return initial;
 }

This accumulate iterates over the elements of a container, calling the binary function on the accumulator
and the current element of the container and storing the result back in the accumulator. In other words,
accumulate continuously updates the value of the accumulator based on its initial value and the values

Chapter 13: Functors - 395 -

contained in the input range. Finally, accumulate returns the accumulator. Note that the version of
accumulate we encountered earlier is actually a special case of the above version where the provided
callback function computes the sum of its parameters.

To see accumulate in action, let's consider an example. Recall that the STL algorithm lower_bound
returns an iterator to the first element in a range that compares greater than or equal to some value.
However, lower_bound requires the elements in the iterator range to be in sorted order, so if you have an
unsorted vector, you cannot use lower_bound. Let's write a function UnsortedLowerBound that
accepts a range of iterators and a lower bound, then returns the value of the least element in the range
greater than or equal to the lower bound. For simplicity, let's assume we're working with a vector<int>
so that we don't get bogged down in template syntax, though this approach can easily be generalized.

Although this function can be implemented using loops, we can leverage off of accumulate to come up
with a considerably more concise solution. Thus, we'll define a functor class to pass to accumulate, then
write UnsortedLowerBound as a wrapper call to accumulate with the proper parameters.
Consider the following functor:

 class LowerBoundHelper {
 public:
 explicit LowerBoundHelper(int lower) : lowestValue(lower) {}
 int operator() (int bestSoFar, int current) {
 return current >= lowestValue && current < bestSoFar?
 current : bestSoFar;
 }

 private:
 const int lowestValue;
 };

This functor's constructor accepts the value that we want to lower-bound. Its operator () function
accepts two ints, the first representing the lowest known value greater than lowestValue and the
second the current value. If the value of the current element is greater than or equal to the lower bound
and also less than the best value so far, operator () returns the value of the current element. Otherwise,
it simply returns the best value we've found so far. Thus if we call this functor on every element in the
vector and keep track of the return value, we should end up with the lowest value in the vector greater
than or equal to the lower bound. We can now write the UnsortedLowerBound function like this:

 int UnsortedLowerBound(const vector<int>& input, int lowerBound) {
 return accumulate(input.begin(), input.end(),
 numeric_limits<int>::max(),
 LowerBoundHelper(lowerBound));
 }

Our entire function is simply a wrapped call to accumulate, passing a specially-constructed
LowerBoundHelper object as a parameter. Note that we've used the value
numeric_limits<int>::max() as the initial value for the accumulator. numeric_limits, defined in the
<limits> header, is a traits class that exports useful information about the bounds and behavior of
numeric types, and its max static member function returns the maximum possible value for an element of
the specified type. We use this value as the initial value for the accumulator since any integer is less than
it, so if the range contains no elements greater than the lower bound we will get
numeric_limits<int>::max() back as a sentinel.

If you need to transform a range of values into a single result (of any type you wish), use accumulate. To
transform a range of values into another range of values, use transform. We discussed transform briefly

- 396 - Chapter 13: Functors

in the chapter on STL algorithms in the context of ConvertToUpperCase and ConvertToLowerCase, but
such examples are just the tip of the iceberg. transform is nothing short of a miracle function, and it
arises a whole host of circumstances.*

Higher-Order Programming

This discussion of functors was initially motivated by counting the number of short strings inside of an
STL vector. We demonstrated that by using count_if with a custom functor as the final parameter, we
were able to write code that counted the number of elements in a vector<string> whose length was less
than a certain value. But while this code solved the problem efficiently, we ended up writing so much code
that any potential benefits of the STL algorithms were dwarfed by the time spent writing the functor. For
reference, here was the code we used:

 class ShorterThan {
 public:
 explicit ShorterThan(size_t maxLength) : length(maxLength) {}
 bool operator() (const string& str) const {
 return str.length() < length;
 }

 private:
 size_t length;
 };

 const size_t myValue = GetInteger();
 count_if(myVector.begin(), myVector.end(), ShorterThan(myValue));

Consider the following code which also solves the problem, but by using a simple for loop:

 const int myValue = GetInteger();
 int total = 0;
 for(int i = 0; i < myVector.size(); ++i)
 if(myVector[i].length() < myValue) ++total;

This code is considerably more readable than the functor version and is approximately a third as long. By
almost any metric, this code is superior to the earlier version.

If you'll recall, we were motivated to write this ShorterThan functor because we were unable to use
count_if in conjunction with a traditional C++ function. Because count_if accepts as a parameter a
unary function, we could not write a C++ function that could accept both the current container element
and the value to compare its length against. However, we did note that were count_if to accept a binary
function and extra client data, then we could have written a simple C++ function like this one:

 bool LengthIsLessThan(const string& str, int threshold) {
 return str.length() < threshold;
 }

And then passed it in, along with the cutoff length, to the count_if function.

The fundamental problem is that the STL count_if algorithm requires a single-parameter function, but
the function we want to use requires two pieces of data. We want the STL algorithms to use our
two-parameter function LengthIsLessThan, but with the second parameter always having the same

* Those of you familiar with functional programming might recognize accumulate and transform as the classic
higher-order functions Map and Reduce.

Chapter 13: Functors - 397 -

value. What if somehow we could modify LengthIsLessThan by “locking in” the second parameter? In
other words, we'd like to take a function that looks like this:

bool LengthIsLessThan

string str

(parameter)

int length

(parameter)

And transform it into another function that looks like this:

Modified LengthIsLessThan

string str

(parameter)

int length

5

Now, if we call this special version of LengthIsLessThan with a single parameter (call it str), it would be
as though we had called the initial version of LengthIsLessThan, passing as parameters the value of str
and the stored value 5. This then returns whether the length of the str string is less than 5. Essentially,
by binding the second parameter of the two-parameter LengthIsLessThan function, we end up with a
one-parameter function that describes exactly the predicate function we want to provide to count_if.
Thus, at a high level, the code we want to be able to write should look like this:

 count_if(v.begin(), v.end(),
 the function formed by locking 5 as the second parameter of LengthIsLessThan);

This sort of programming, where functions can be created and modified just like regular objects, is known
as higher-order programming. While by default C++ does not support higher-order programming, using
functors and the STL functional programming libraries, in many cases it is possible to write higher-order
code in C++. In the remainder of this chapter, we'll explore the STL functional programming libraries and
see how to use higher-order programming to supercharge STL algorithms.

Adaptable Functions

To provide higher-order programming support, standard C++ provides the <functional> library.
<functional> exports several useful functions that can transform and modify functions on-the-fly to
yield new functions more suitable to the task at hand. However, because of several language limitations,
the <functional> library can only modify specially constructed functions called “adaptable functions,”
functors (not regular C++ functions) that export information about their parameter and return types.
Fortunately, any one- or two-parameter function can easily be converted into an equivalent adaptable
function. For example, suppose you want to make an adaptable function called MyFunction that takes a
string by reference-to-const as a parameter and returns a bool, as shown below:

- 398 - Chapter 13: Functors

 class MyFunction {
 public:
 bool operator() (const string& str) const {
 /* Function that manipulates a string */
 }
 };

Now, to make this function an adaptable function, we need to specify some additional information about
the parameter and return types of this functor's operator () function. To assist in this process, the
functional library defines a helper template class called unary_function, which is prototyped below:

 template <typename ParameterType, typename ReturnType>
 class unary_function;

The first template argument represents the type of the parameter to the function; the second, the
function's return type.

Unlike the other classes you have seen before, the unary_function class contains no data members and
no member functions. Instead, it performs some behind-the-scenes magic with the typedef keyword to
export the information expressed in the template types to the rest of the functional programming library.
Since we want our above functor to also export this information, we'll inheritance to import all of the
information from unary_function into our MyFunction functor. Because MyFunction accepts as a
parameter an object of type string and returns a variable of type bool, we will have MyFunction inherit
from the type unary_function<string, bool>. The syntax to accomplish this is shown below:

 class MyFunction : public unary_function<string, bool> {
 public:
 bool operator() (const string& str) const {
 /* Function that manipulates a string */
 }
 };

We'll explore inheritance in more detail later, but for now just think of it as a way for importing
information from class into another. Note that although the function accepts as its parameter a const
string&, we chose to use a unary_function specialized for the type string. The reason is somewhat
technical and has to do with how unary_function interacts with other functional library components, so
for now just remember that you should not specify reference-to-const types inside the unary_function
template parametrization.

The syntax for converting a binary functor into an adaptable binary function works similarly to the above
code for unary functions. Suppose that we'd like to make an adaptable binary function that accepts a
string and an int and returns a bool. We begin by writing the basic functor code, as shown here:

 class MyOtherFunction {
 public:
 bool operator() (const string& str, int val) const {
 /* Do something, return a bool. */
 }
 };

To convert this functor into an adaptable function, we'll have it inherit from binary_function. Like
unary_function, binary_function is a template class that's defined as

Chapter 13: Functors - 399 -

 template <typename Param1Type, typename Param2Type, typename ResultType>
 class binary_function;

Thus the adaptable version of MyOtherFunction would be

 class MyOtherFunction: public binary_function<string, int, bool> {
 public:
 bool operator() (const string& str, int val) const {
 /* Do something, return a bool. */
 }
 };

While the above approach for generating adaptable functions is perfectly legal, it's a bit clunky and we still
have a high ratio of boilerplate code to actual logic. Fortunately, the STL functional library provides the
powerful but cryptically named ptr_fun* function that transforms a regular C++ function into an
adaptable function. ptr_fun can convert both unary and binary C++ functions into adaptable functions
with the correct parameter types, meaning that you can skip the hassle of the above code by simply
writing normal functions and then using ptr_fun to transform them into adaptable functions. For
example, given the following C++ function:

 bool LengthIsLessThan(string myStr, int threshold) {
 return myStr.length() < threshold;
 }

If we need to get an adaptable version of that function, we can write ptr_fun(LengthIsLessThan) in the
spot where the adaptable function is needed.

ptr_fun is a useful but imperfect tool. Most notably, you cannot use ptr_fun on functions that accept
parameters as reference-to-const. ptr_fun returns a unary_function object, and as mentioned above,
you cannot specify reference-to-const as template arguments to unary_function. Also, because of the
way that the C++ compiler generates code for functors, code that uses ptr_fun can be a bit slower than
code using functors.

For situations where you'd like to convert a member function into an adaptable function, you can use the
mem_fun or mem_fun_ref functions. These functions convert member functions into unary functions that
accept as input a receiver object, then invoke that member function on the receiver. The difference
between mem_fun and mem_fun_ref is how they accept their parameters – mem_fun accepts a pointer to
the receiver object, while mem_fun_ref accepts a reference to the receiver. For example, given a
vector<string>, the following code will print out the lengths of all of the strings in the vector:

 transform(myVector.begin(), myVector.end(), ostream_iterator<int>(cout, "\n"),
 mem_fun_ref(&string::length));

Let's dissect this call to transform, since there's a lot going on. The first two parameters delineate the input
range, in this case the full contents of myVector. The third parameter specifies where to put the output, and
since here it's an ostream_iterator the output will be printed directly to the console instead of stored in some
other location. The final parameter is mem_fun_ref(&string::length), a function that accepts as input a
string and then returns the value of the length member function called on that string.

mem_fun_ref can also be used to convert unary (one-parameter) member functions into adaptable binary
functions that take as a first parameter the object to apply the function to and as a second parameter the

* ptr_fun is short for “pointer function”, not “fun with pointers.”

- 400 - Chapter 13: Functors

parameter to the function. When we cover binders in the next section, you should get a better feel for
exactly how useful this is.

Binding Parameters

Now that we've covered how the STL functional library handles adaptable functions, let's consider how we
can use them in practice.

At the beginning of this chapter, we introduced the notion of parameter binding, converting a two-
parameter function into a one-parameter function by locking in the value of one of its parameters. To
allow you to bind parameters to functions, the STL functional programming library exports two functions,
bind1st and bind2nd, which accept as parameters an adaptable function and a value to bind and return
new functions that are equal to the old functions with the specified values bound in place. For example,
given the following implementation of LengthIsLessThan:

 bool LengthIsLessThan(string str, int threshold) {
 return str.length() < threshold;
 }

We could use the following syntax to construct a function that's LengthIsLessThan with the value five
bound to the second parameter:

 bind2nd(ptr_fun(LengthIsLessThan), 5)

The line bind2nd(ptr_fun(LengthIsLessThan), 5) first uses ptr_fun to generate an adaptable
version of the LengthIsLessThan function, then uses bind2nd to lock the parameter 5 in place. The
result is a new unary function that accepts a string parameter and returns if that string's length is less
than 5, the value we bound to the second parameter. Since bind2nd is a function that accepts a function as
a parameter and returns a function as a result, bind2nd is a function that is sometimes referred to as a
higher-order function.

Because the result of the above call to bind2nd is a unary function that determines if a string has length
less than five, we can use the count_if algorithm to count the number of values less than five by using the
following code:

 count_if(container.begin(), container.end(),
 bind2nd(ptr_fun(LengthIsLessThan), 5));

Compare this code to the functor-based approach illustrated at the start of this chapter. This version of the
code is much, much shorter than the previous version. If you aren't beginning to appreciate exactly how
much power and flexibility the <functional> library provides, skip ahead and take a look at the practice
problems.

The bind1st function acts similarly to bind2nd, except that (as its name suggests) it binds the first
parameter of a function. Returning to the above example, given a vector<int>, we could count the
number of elements in that vector smaller than the length of string “C++!” by writing

 count_if(myVector.begin(), myVector.end(),
 bind1st(ptr_fun(LengthIsLessThan), "C++!"));

(Admittedly, this isn't the most practical use case for bind1st, but it does get the point across).

Chapter 13: Functors - 401 -

In the STL functional programming library, parameter binding is restricted only to binary functions. Thus
you cannot bind a parameter in a three-parameter function to yield a new binary function, nor can you
bind the parameter of a unary function to yield a zero-parameter (“nullary”) function. For these
operations, you'll need to create your own custom functors, as shown in the practice problems at the end
of this chapter.

Negating Results

Suppose that given a function LengthIsLessThan, we want to find the number of strings in a container
that are not less than a certain length. While we could simply write another function
LengthIsNotLessThan, it would be much more convenient if we could somehow tell C++ to take
whatever value LengthIsLessThan returns and to use the opposite result. That is, given a function that
looks like this:

We'd like to change it into a function that looks like this:

This operation is negation – constructing a new function whose return value has the opposite value of the
input function. There are two STL negator functions – not1 and not2 – that return the negated result of a
unary or binary predicate function, respectively. Thus, the above function that's a negation of
LengthIsLessThan could be written as not2(ptr_fun(LengthIsLessThan)). Since not2 returns an
adaptable function, we can then pass the result of this function to bind2nd to generate a unary function
that returns whether a string's length is at least a certain threshold value. For example, here's code that
returns the number of strings in a container with length at least 5:

count_if(container.begin(), container.end(),
 bind2nd(not2(ptr_fun(LengthIsLessThan)), 5));

LengthIsLessThan
Input

NO

YES

inverter

LengthIsLessThan
Input

YES

NO

- 402 - Chapter 13: Functors

While this line is dense, it elegantly solves the problem at hand by combining and modifying existing code
to create entirely different functions. Such is the beauty and simplicity of higher-order programming –
why rewrite code from scratch when you already have all the pieces individually assembled?

Chapter 13: Functors - 403 -

Operator Functions

Let's suppose that you have a container of ints and you'd like to add 137 to each of them. Recall that you
can use the STL transform algorithm to apply a function to each element in a container and then store the
result. Because we're adding 137 to each element, we might consider writing a function like this one:

 int Add137(int param) {
 return param + 137;
 }

And then writing

 transform(container.begin(), container.end(), container.begin(), Add137);

While this code works correctly, this approach is not particularly robust. What if later on we needed to
increment all elements in a container by 42, or perhaps by an arbitrary value? Thus, we might want to
consider replacing Add137 by a function like this one:

 int AddTwoInts(int one, int two) {
 return one + two;
 }

And then using binders to lock the second parameter in place. For example, here's code that's equivalent
to what we've written above:

 transform(container.begin(), container.end(), container.begin(),
 bind2nd(ptr_fun(AddTwoInts), 137));

At this point, our code is correct, but it can get a bit annoying to have to write a function AddTwoInts that
simply adds two integers. Moreover, if we then need code to increment all doubles in a container by 1.37,
we would need to write another function AddTwoDoubles to avoid problems from typecasts and
truncations. Fortunately, the designers of the STL functional library recognized how tedious it is to write
out this sort of code, and so the STL functional library provides a large number of template adaptable
function classes that simply apply the basic C++ operators to two values. For example, in the above code,
we can use the adaptable function class plus<int> instead of our AddTwoInts function, resulting in code
that looks like this:

 transform(container.begin(), container.end(), container.begin(),
 bind2nd(plus<int>(), 137));

Note that we need to write plus<int>() instead of simply plus<int>, since we're using the temporary
object syntax to construct a plus<int> object for bind2nd. Forgetting the parentheses can cause a major
compiler error headache that can take a while to track down. Also notice that we don't need to use
ptr_fun here, since plus<int> is already an adaptable function.

For reference, here's a list of the “operator functions” exported by <functional>:

plus minus multiplies divides modulus negate

equal_to not_equal_to greater less greater_equal less_equal

logical_and logical_or logical_not

To see an example that combines the techniques from the previous few sections, let's consider a function
that accepts a vector<double> and converts each element in the vector to its reciprocal (one divided by

- 404 - Chapter 13: Functors

the value). Because we want to convert each element with value x to the value 1/x, we can use a
combination of binders and operator functions to solve this problem by binding the value 1.0 to the first
parameter of the divides<double> functor. The result is a unary function that accepts a parameter of
type double and returns the element's reciprocal. The resulting code looks like this:

 transform(v.begin(), v.end(), v.begin(), bind1st(divides<double>(), 1.0));

This code is concise and elegant, solving the problem in a small space and making explicit what operations
are being performed on the data.

Unifying Functions and Functors

There are a huge number of ways to define a function or function-like object in C++, each of which has
slightly different syntax and behavior. For example, suppose that we want to write a function that accepts
as input a function that can accept an int and return a double. While of course we could accept a
double (*) (int) – a pointer to a function accepting an int and returning a double – this is overly
restrictive. For example, all of the following functions can be used as though they were functions taking in
an int and returning a double:

 double Fn1(const int&); /* Accept by reference-to-const, yield double. */
 int Fn2(int); /* Accept parameter as a int, return int. */
 int Fn3(const int&); /* Accept reference-to-const int, return int. */

In addition, if we just accept a double (*) (int), we also can't accept functors as input, meaning that
neither of these objects below – both of which can accept an int and return a double – could be used:

 /* Functor accepting an int and returning a double. */
 class MyFunctor {
 public:
 double operator() (int);
 };

 /* Adaptable function accepting double and returning a double. */
 bind2nd(multiplies<int>(), 137);

Earlier in this chapter, we saw how we can write functions that accept any of the above functions using
templates, as shown here:

 template <typename UnaryFunction> void DoSomething(UnaryFunction fn) {
 /* ... */
 }

If we want to write a function that accepts a function as input we can rely on templates, but what if we
want to write a class that needs to store a function of any arbitrary type? To give a concrete example,
suppose that we're designing a class representing a graphical window and we want the client to be able to
control the window's size and position. The window object, which we'll assume is of type Window, thus
allows the user to provide a function that will be invoked whenever the window is about to change size.
The user's function then takes in an int representing the potential new width of the window and returns
an int representing what the user wants the new window size to be. For example, if we want to create a
window that can't be more than 100 pixels wide, we could pass in this function:

 int ClampTo100Pixels(int size) {
 return min(size, 100);
 }

Chapter 13: Functors - 405 -

Alternatively, if we want the window size to always be 100 pixels, we could pass in this function:

 int Always100Pixels(int) {
 return 100; // Ignore parameter
 }

Given that we need to store a function of an arbitrary type inside the Window class, how might we design
Window? Using the approach outlined above, we could parameterize the Window class over the type of the
function it stores, as shown here:

 template <typename WidthFunction> class Window {
 public:
 Window(WidthFunction fn, /* ... */);

 /* ... */

 private:
 WidthFunction width;

 /* ... */
 };

Given this implementation of Window, we could then specify that a window should be no more than 100
pixels wide by writing

 Window<int (*)(int)> myWindow(ClampTo100Pixels);

This Window class lets us use any reasonable function to determine the window size, but has several
serious drawbacks. First, it requires the Window client to explicitly parameterize Window over the type of
callback being stored. When working with function pointers this results in long and convoluted variable
declarations (look above for an example), and when working with library functors such as those in the STL
<functional> library (e.g. bind2nd (ptr_fun(MyFunction), 137))*, we could end up with a Window
of such a complicated type that it would be infeasible to use with without the aid of typedef. But a more
serious problem is that this approach causes two Windows that don't use the same type of function to
compute width to have completely different types. That is, a Window using a raw C++ function to compute
its size would have a different type from a Window that computed its size with a functor. Consequently, we
couldn't make a vector<Window>, but instead would have to make a vector<Window<int (*)(int)> >
or a vector<Window<MyFunctorType> >. Similarly, if we want to write a function that accepts a Window,
we can't just write the following:

 void DoSomething(const Window& w) { // Error – Window is a template, not a type
 /* ... */
 }

We instead would have to write

 template <typename WindowType>
 void DoSomething(const WindowType& w) { // Legal but awkward
 /* ... */
 }

* As an FYI, the type of bind2nd(ptr_fun(MyFunction), 137) is

 binder2nd<pointer_to_binary_function<Arg1, Arg2, Ret> >

where Arg1, Arg2, and Ret are the argument and return types of the MyFunction function.

- 406 - Chapter 13: Functors

It should be clear that templatizing the Window class over the type of the callback function does not work
well. How can we resolve this problem? In the remainder of this chapter, see a beautiful solution to this
problem that will unify our treatment of functors, inheritance, templates, operator overloading, copy
functions, and conversion constructors. The result is amazingly elegant and hopefully will impress upon
you exactly how powerful functors are as a technique.

Inheritance to the Rescue

Let's take a few minutes to think about the problem we're facing. We have a collection of different objects
that each have similar functionality (they can be called as functions), but we don't know exactly which
object the user will provide. This sounds exactly like the sort of problem we can solve using inheritance
and virtual functions. But we have a problem – inheritance only applies to objects, but some of the values
we might want to store are simple function pointers, which are primitives. Fortunately, we can apply a
technique called the Fundamental Theorem of Software Engineering (or FTSE) to solve this problem:

Theorem (The Fundamental Theorem of Software Engineering): Any problem can be solved by
adding enough layers of indirection.

This is a very useful programming concept that will prove relevant time and time again – make sure you
remember it!

In this particular application, the FTSE says that we need to distance ourselves by one level from raw
function pointers and functor classes. This leads to the following observation: while we might not be able
to treat functors and function pointers polymorphically, we certainly can create a new class hierarchy and
then treat that class polymorphically. The idea goes something like this – rather than having the user
provide us a functor or function pointer which could be of any type, instead we'll define an abstract class
exporting the callback function, then will have the user provide a subclass which implements the callback.

One possible base class in this hierarchy is shown below:

 class IntFunction {
 public:
 /* Polymorphic classes need virtual destructors. */
 virtual ~IntFunction() {}

 /* execute() actually calls the proper function and returns the value. */
 virtual int execute(int value) const = 0;
 };

IntFunction exports a single function called execute which accepts an int and returns an int. This
function is marked purely virtual since it's unclear exactly what this function should do. After all, we're trying to
store an arbitrary function, so there's no clearly-defined default behavior for execute.

We can now modify the implementation of Window to hold a pointer to an IntFunction instead of being
templatized over the type of the function, as shown here:

 class Window {
 public:
 Window(IntFunction* sizeFunction, /* ... */);

 /* ... */
 private:
 IntFunction* fn;
 };

Chapter 13: Functors - 407 -

Now, if we wanted to clamp the window to 100 pixels, we can do the following:

 class ClampTo100PixelsFunction: public IntFunction {
 public:
 virtual int execute(int size) const {
 return min(size, 100);
 }
 };

 Window myWindow(new ClampTo100PixelsFunction, /* ... */);

Similarly, if we want to have a window that's always 100 pixels wide, we could write

 class FixedSizeFunction: public IntFunction {
 public:
 virtual int execute(int size) const {
 return 100;
 }
 };

 Window myWindow(new FixedSizeFunction, /* ... */);

It seems as though we've solved the problem – we now have a Window class that allows us to fully
customize its resizing behavior – what more could we possibly want?

The main problem with our solution is the sheer amount of boilerplate code clients of Window have to
write if they want to change the window's resizing behavior. Our initial goal was to let class clients pass
raw C++ functions and functors to the Window class, but now clients have to subclass IntFunction to get
the job done. Both of the above subclasses are lengthy even though they only export a single function. Is
there a simpler way to do this?

The answer, of course, is yes. Suppose we have a pure C++ function that accepts an int by value and
returns an int that we want to use for our resizing function in the Window class; perhaps it's the
ClampTo100Pixels function we defined earlier, or perhaps it's Always100Pixels. Rather than defining
a new subclass of IntFunction for every single one of these functions, instead we'll build a single class
that's designed to wrap up a function pointer in a package that's compatible with the IntFunction
interface. That is, we can define a subclass of IntFunction whose constructor accepts a function pointer
and whose execute calls this function. This is the Fundamental Theorem of Software Engineering in action
– we couldn't directly treat the raw C++ function polymorphically, but by abstracting by a level we can
directly apply inheritance.

Here's one possible implementation of the subclass:

 class ActualFunction: public IntFunction {
 public:
 explicit ActualFunction(int (*fn)(int)) : function(fn) {}

 virtual int execute(int value) const {
 return function(value);
 }

 private:
 int (*function)(int);
 };

Now, if we want to use ClampTo100Pixels inside of Window, we can write:

- 408 - Chapter 13: Functors

 Window myWindow(new ActualFunction(ClampTo100Pixels), /* ... */);

There is a bit of extra code for creating the ActualFunction object, but this is a one-time cost. We can
now use ActualFunction to wrap any raw C++ function accepting an int and returning an int and will
save a lot of time typing out new subclasses of IntFunction for every callback.

Now, suppose that we have a functor class, which we'll call MyFunctor, that we want to use inside the
Window class. Then we could define a subclass that looks like this:

 class MyFunctorFunction: public IntFunction {
 public:
 explicit MyFunctorFunction(MyFunctor fn) : function(fn) {}

 virtual int execute(int value) const {
 return function(value);
 }

 private:
 MyFunctor function;
 };

And could then use it like this:

 Window myWindow(new MyFunctorFunction(MyFunctor(137)), /* ... */);

Where we assume for simplicity that the MyFunctor class has a unary constructor.

We're getting much closer to an ideal solution. Hang in there; the next step is pretty exciting.

Templates to the Rescue

At this point we again could just call it quits – we've solved the problem we set out to solve and using the
above pattern our Window class can use any C++ function or functor we want. However, we are close to an
observation that will greatly simplify the implementation of Window and will yield a much more general
solution.

Let's reprint the two subclasses of IntFunction we just defined above which wrap function pointers and
functors:

Chapter 13: Functors - 409 -

 class ActualFunction: public IntFunction {
 public:
 explicit ActualFunction(int (*fn)(int)) : function(fn) {}

 virtual int execute(int value) const {
 return function(value);
 }

 private:
 int (*const function)(int);
 };

 class MyFunctorFunction: public IntFunction {
 public:
 explicit MyFunctorFunction(MyFunctor fn) : function(fn) {}

 virtual int execute(int value) const {
 return function(value);
 }

 private:
 MyFunctor function;
 };

If you'll notice, besides the name of the classes, the only difference between these two classes is what type of
object is being stored. This similarity is no coincidence – any callable function or functor would require a
subclass with exactly this structure. Rather than requiring the client of Window to reimplement this subclass
from scratch each time, we can instead create a template class that's a subclass of IntFunction. It's rare in
practice to see templates and inheritance mixed this way, but here it works out beautifully. Here's one
implementation:

 template <typename UnaryFunction> class SpecificFunction: public IntFunction {
 public:
 explicit SpecificFunction(UnaryFunction fn) : function(fn) {}

 virtual int execute(int value) const {
 return function(value);
 }

 private:
 UnaryFunction function;
 };

We now can use the Window class as follows:

 Window myWindow(new SpecificFunction<int(*)(int)>(ClampTo100Pixels), /*...*/);
 Window myWindow(new SpecificFunction<MyFunctor>(MyFunctor(137)), /*...*/);

The syntax here might be a bit tricky, but we've greatly reduced the complexity associated with the Window class
since clients no longer have to implement their own subclasses of IntFunction.

- 410 - Chapter 13: Functors

One More Abstraction

This design process has consisted primarily of adding more and more abstractions on top of the system
we're designing, and it's time for one final leap. Let's think about what we've constructed so far. We've
built a class hierarchy with a single base class and a template for creating as many subclasses as we need.
However, everything we've written has been hardcoded with the assumption that the Window class is the
only class that might want this sort of functionality. Having the ability to store and call a function of any
conceivable type is enormously useful, and if we can somehow encapsulate all of the necessary machinery
to get this working into a single class, we will be able to reuse what we've just built time and time again. In
this next section, that's exactly what we'll begin doing.

We'll begin by moving the code from Window that manages the stored function into a dedicated class called
Function. The basic interface for Function is shown below:

 class Function {
 public:
 /* Constructor and destructor. We'll implement copying in a bit. */
 Function(IntFunction* fn);
 ~Function();

 /* Function is a functor that calls into the stored resource. */
 int operator() (int value) const;

 private:
 IntFunction* function;
 };

We'll leave the Function constructor left as an implicit conversion constructor, since that way we can
implicitly convert between a callable IntFunction pointer and a Function functor. We can then
implement the above functions as follows:

 /* Constructor accepts an IntFunction and stores it. */
 Function::Function(IntFunction* fn) : function(fn) {
 // Handled in initializer list
 }

 /* Destructor deallocates the stored function. */
 Function::~Function() {
 delete function;
 }

 /* Function call just calls through to the pointer and returns the result. */
 int Function::operator() (int value) const {
 return function->execute(value);
 }

Nothing here should be too out-of-the-ordinary – after all, this is pretty much the same code that we had
inside the Window class.

Given this version of Function, we can write code that looks like this:

Chapter 13: Functors - 411 -

 Function myFunction = new SpecificFunction<int (*)(int)>(ClampTo100Pixels);
 cout << myFunction(137) << endl; // Prints 100
 cout << myFunction(42) << endl; // Prints 42

If you're a bit worried that the syntax new SpecificFunction<int (*)(int)>(ClampTo100Pixels)
is unnecessarily bulky, that's absolutely correct. Don't worry, in a bit we'll see how to eliminate it. In the
meantime, however, let's implement the copy behavior for the Function class. After all, there's no reason
that we shouldn't be able to copy Function objects, and defining copy behavior like this will lead to some
very impressive results in a bit.

We'll begin by defining the proper functions inside the Function class, as seen here:

 class Function {
 public:
 /* Constructor and destructor. */
 Function(IntFunction* fn);
 ~Function();

 /* Copy support. */
 Function(const Function& other);
 Function& operator= (const Function& other);

 /* Function is a functor that calls into the stored resource. */
 int operator() (int value) const;

 private:
 IntFunction* function;

 void clear();
 void copyOther(const Function& other);
 };

Now, since the Function class contains only a single data member (the IntFunction pointer), to make a
deep-copy of a Function we simply need to make a deep copy of its requisite IntFunction. But here we
run into a problem. IntFunction is an abstract class and we can't tell at compile-time what type of object
is actually being pointed at by the function pointer. How, then, can we make a deep-copy of the
IntFunction? The answer is surprisingly straightforward – we'll just introduce a new virtual function to
the IntFunction class that returns a deep copy of the receiver object. Since this function duplicates an
existing object, we'll call it clone. The interface for IntFunction now looks like this:

 class IntFunction {
 public:
 /* Polymorphic classes should have virtual destructors. */
 virtual ~IntFunction() { }

 /* execute() actually calls the proper function and returns the value. */
 virtual int execute(int value) const = 0;

 /* clone() returns a deep-copy of the receiver object. */
 virtual IntFunction* clone() const = 0;
 };

We can then update the template class SpecificFunction to implement clone as follows:

- 412 - Chapter 13: Functors

 template <typename UnaryFunction> class SpecificFunction: public IntFunction {
 public:
 explicit SpecificFunction(UnaryFunction fn) : function(fn) {}

 virtual int execute(int value) const {
 return function(value);
 }

 virtual IntFunction* clone() const {
 return new SpecificFunction(*this);
 }

 private:
 UnaryFunction function;
 };

Here, the implementation of clone returns a new SpecificFunction initialized via the copy constructor
as a copy of the receiver object. Note that we haven't explicitly defined a copy constructor for
SpecificFunction and are relying here on C++'s automatically-generated copy function to do the trick
for us. This assumes, of course, that the UnaryFunction type correctly supports deep-copying, but this
isn't a problem since raw function pointers can trivially be deep-copied as can all primitive types and it's
rare to find functor classes with no copy support.

We can then implement the copy constructor, assignment operator, destructor, and helper functions for
Function as follows:

 Function::~Function() {
 clear();
 }

 Function::Function(const Function& other) {
 copyOther(other);
 }

 Function& Function::operator= (const Function& other) {
 if(this != &other) {
 clear();
 copyOther(other);
 }
 return *this;
 }

 void Function::clear() {
 delete function;
 }

 void Function::copyOther(const Function& other) {
 /* Have the stored function tell us how to copy itself. */
 function = other.function->clone();
 }

Our Function class is now starting to take shape!

Hiding SpecificFunction

Right now our Function class has full deep-copy support and using SpecificFunction<T> can store any
type of callable function. However, clients of Function have to explicitly wrap any function they want to

Chapter 13: Functors - 413 -

store inside Function in the SpecificFunction class. This has several problems. First and foremost,
this breaks encapsulation. SpecificFunction is only used internally to the Function class, never
externally, so requiring clients of Function to have explicit knowledge of its existence violates
encapsulation. Second, it requires the user to know the type of every function they want to store inside
the Function class. In the case of ClampTo100Pixels this is rather simple, but suppose we want to store
bind2nd(multiplies<int>(), 137) inside of Function. What is the type of the object returned by
bind2nd(multiplies<int>(), 137)? For reference, it's binder2nd<multiplies<int> >, so if we
wanted to store this in a Function we'd have to write

 Function myFunction =
 new SpecificFunction<binder2nd<multiplies<int> > >(bind2nd(multiplies<int>(),137));

This is a syntactic nightmare and makes the Function class terribly unattractive.

Fortunately, however, this problem has a quick fix – we can rewrite the Function constructor as a
template function parameterized over the type of argument passed into it, then construct the relevant
SpecificFunction for the Function client. Since C++ automatically infers the parameter types of
template functions, this means that clients of Function never need to know the type of what they're storing
– the compiler will do the work for them. Excellent!

If we do end up making the Function constructor a template, we should also move the IntFunction and
SpecificFunction classes so that they're inner classes of Function. After all, they're specific to the
implementation of Function and the outside world has no business using them.

The updated interface for the Function class is shown here:

 class Function {
 public:
 /* Constructor and destructor. */
 template <typename UnaryFunction> Function(UnaryFunction fn);
 ~Function();

 /* Copy support. */
 Function(const Function& other);
 Function& operator= (const Function& other);

 /* Function is a functor that calls into the stored resource. */
 int operator() (int value) const;

 private:
 class IntFunction { /* ... */ };
 template <typename UnaryFunction> class SpecificFunction { /* ... */ };

 IntFunction* function;

 void clear();
 void copyOther(const Function& other);
 };

- 414 - Chapter 13: Functors

We can then implement the constructor as follows:

 template <typename UnaryFunction> Function::Function(UnaryFunction fn) {
 function = new SpecificFunction<UnaryFunction>(fn);
 }

Since we've left the Function constructor not marked explicit, this template constructor is a conversion
constructor. Coupled with the assignment operator, this means that we can use Function as follows:

 Function fn = ClampTo100Pixels;
 cout << fn(137) << endl; // Prints 100
 cout << fn(42) << endl; // Prints 42

 fn = bind2nd(multiplies<int>(), 2);
 cout << fn(137) << endl; // Prints 274
 cout << fn(42) << endl; // Prints 84

This is exactly what we're looking for – a class that can store any callable function that takes in an int and
returns an int. If this doesn't strike you as a particularly elegant piece of code, take some time to look
over it again.

There's one final step we should take, and that's to relax the restriction that Function always acts as a
function from ints to ints. There's nothing special about int, and by giving Function clients the ability
to specify their own parameter and return types we'll increase the scope of what Function is capable of
handling. We'll thus templatize Function as Function<ArgType, ReturnType>. We also need to make
some minor edits to IntFunction (which we'll rename to ArbitraryFunction since IntFunction is no
longer applicable), but in the interest of brevity we won't reprint them here.

The final interface for Function thus looks like this:

 template <typename ArgType, typename ReturnType> class Function {
 public:
 /* Constructor and destructor. */
 template <typename UnaryFunction> Function(UnaryFunction);
 ~Function();

 /* Copy support. */
 Function(const Function& other);
 Function& operator= (const Function& other);

 /* Function is a functor that calls into the stored resource. */
 ReturnType operator() (ArgType value) const;

 private:
 class ArbitraryFunction { /* ... */ };
 template <typename UnaryFunction> class SpecificFunction { /* ... */ }

 ArbitraryFunction* function;

 void clear();
 void copyOther(const Function& other);
 };

Chapter 13: Functors - 415 -

To conclude our discussion of Window, using the new Function type we could rewrite the Window class
using Function as follows:

 class Window {
 public:
 Window(const Function<int, int>& widthFn, /* ... */
 /* ... other member functions ... */

 private:
 Function<int, int> widthFunction;
 };

Now, clients can pass any unary function (or functor) that maps from ints to ints as a parameter to
Window and the code will compile correctly.

External Polymorphism

The Function type we've just developed is subtle in its cleverness. Because we can convert any callable
unary function into a Function, when writing code that needs to work with some sort of unary function,
we can have that code use Function instead of any specific function type. This technique of abstracting
away from the particular types that provide a behavior into an object representing that behavior is
sometimes known as external polymorphism. As opposed to internal polymorphism, where we explicitly
define a set of classes containing virtual functions, external polymorphism “grafts” a set of virtual
functions onto any type that supports the requisite behavior.

Virtual functions can be slightly more expensive than regular functions because of the virtual function
table lookup required. External polymorphism is implemented using inheritance and thus also incurs an
overhead, but the overhead is slightly greater than regular inheritance. Think for a minute how the
Function class we just implemented is designed. Calling Function::operator() requires the
following:

1. Following the ArbitraryFunction pointer in the Function class to its virtual function table.

2. Calling the function indicated by the virtual function table, which corresponds to the particular
SpecificFunction being pointed at.

3. Calling the actual function object stored inside the SpecificFunction.

This is slightly more complex than a regular virtual function call, and illustrates the cost associated with
external polymorphism. That said, in some cases (such as the Function case outlined here) the cost is
overwhelming offset by the flexibility afforded by external polymorphism.

Implementing the <functional> Library

Now what we've seen how the <functional> library works from a client perspective, let's discuss how
the library is put together. What's so special about adaptable functions? How does ptr_fun convert a
regular function into an adaptable one? How do functions like bind2nd and not1 work? This discussion
will be highly technical and will push the limits of your knowledge of templates, but by the time you're
done you should have an excellent grasp of how template libraries are put together. Moreover, the
techniques used here are applicable beyond just the <functional> library and will almost certainly come
in handy later in your programming career.

- 416 - Chapter 13: Functors

Let's begin by looking at exactly what an adaptable function is. Recall that adaptable functions are
functors that inherit from either unary_function or binary_function. Neither of these template
classes are particularly complicated; here's the complete definition of unary_function:*

 template <typename ArgType, typename RetType> class unary_function {
 public:
 typedef ArgType argument_type;
 typedef RetType result_type;
 };

This class contains no data members and no member functions. Instead, it exports two typedefs – one
renaming ArgType to argument_type and one renaming RetType to result_type. When you create an
adaptable function that inherits from unary_function, your class acquires these typedefs. For example,
if we write the following adaptable function:

 class IsPositive: public unary_function<double, bool> {
 public:
 bool operator() (double value) const {
 return value > 0.0;
 }
 };

The statement public unary_function<double, double> imports two typedefs into IsPositive:
argument_type and return_type, equal to double and bool, respectively. Right now it might not be
apparent how these types are useful, but as we begin implementing the other pieces of the <functional>
library it will become more apparent.

Implementing not1

To begin our behind-the-scenes tour of the <functional> library, let's see how to implement the not1
function. Recall that not1 accepts as a parameter a unary adaptable predicate function, then returns a
new adaptable function that yields opposite values as the original function. For example,
not1(IsPositive()) would return a function that returns whether a value is not positive.

Implementing not1 requires two steps. First, we'll create a template functor class parameterized over the
type of the adaptable function to negate. This functor's constructor will take as a parameter an adaptable
function of the proper type and store it for later use. We'll then implement its operator() function such
that it calls the stored function and returns the negation of the result. Graphically, this is shown here:

Negation Functor

Stored function Inverter

Input Output

Once we have designed this functor, we'll have not1 accept an adaptable function, wrap it in our negating
functor, then return the resulting object to the caller. This means that the return value of not1 is an
adaptable unary predicate function that returns the opposite value of its parameter, which is exactly what
we want.

* Technically speaking unary_function and binary_function are structs, but this is irrelevant here.

Chapter 13: Functors - 417 -

Let's begin by writing the template functor class, which we'll call unary_negate (this is the name of the
functor class generated by the <functional> library's not1 function). We know that this functor should
be parameterized over the type of the adaptable function it negates, so we can begin by writing the
following:

 template <typename UnaryPredicate> class unary_negate {
 public:
 explicit unary_negate(const UnaryPredicate& pred) : p(pred) {}

 /* ... */
 private:
 UnaryPredicate p;
 };

Here, the constructor accepts an object of type UnaryPredicate, then stores it in the data member p.

Now, let's implement the operator() function, which, as you'll recall, should take in a parameter, feed it
into the stored function p, then return the inverse result. The code for this function looks like this:

 template <typename UnaryPredicate> class unary_negate {
 public:
 explicit unary_negate(const UnaryPredicate& pred) : p(pred) {}

 bool operator() (const /* what goes here? */& param) const {
 return !p(param); // Call function and return the opposite result.
 }
 private:
 UnaryPredicate p;
 };

We've almost finished writing our unary_negate class, but we have a slight problem – what is the type of
the parameter to operator()? This is where adaptable functions come in. Because UnaryPredicate is
adaptable, it must export a type called argument_type corresponding to the type of its argument. We can
thus define our operator() function to accept a parameter of type typename
UnaryPredicate::argume nt_type to guarantee that it has the same parameter type as the
UnaryPredicate class.* The updated code for unary_negate looks like this:

 template <typename UnaryPredicate> class unary_negate {
 public:
 explicit unary_negate(const UnaryPredicate& pred) : p(pred) {}

 bool
 operator() (const typename UnaryPredicate::argument_type& param) const {
 return !p(param); // Call stored function and return opposite result.
 }
 private:
 UnaryPredicate p;
 };

That's quite a mouthful, but it's exactly the solution we're looking for. If it weren't for the fact that
UnaryPredicate is an adaptable function, we would not have been able to determine the parameter type
for the operator() member function, and code like this would not have been possible.

* Remember that the type is typename UnaryPredicate::argument_type, not UnaryPredicate::argument_type.
argument_type is nested inside UnaryPredicate, and since UnaryPredicate is a template argument we have to
explicitly use typename to indicate that argument_type is a type.

- 418 - Chapter 13: Functors

There's one step left to finalize this functor class, and that's to make the functor into an adaptable function
by having it inherit from the proper unary_function. Since the functor's argument type is typename
UnaryPredicate::argument_type and its return type is bool, we'll inherit from unary_function
<typename UnaryPredicate:: argument_type, bool>. The final code for unary_negate is shown
here:

 template <typename UnaryPredicate>
 class unary_negate:
 public unary_function<typename UnaryPredicate::argument_type, bool>
 {
 public:
 explicit unary_negate(const UnaryPredicate& pred) : p(pred) {}

 bool
 operator() (const typename UnaryPredicate::argument_type& param) const {
 return !p(param); // Call stored function and return opposite result.
 }
 private:
 UnaryPredicate p;
 };

We've now finished writing our functor class to perform the negation, and all that's left to do is write not1.
not1 is much simpler than unary_negate, since it simply has to take in a parameter and wrap it in a
unary_negate functor. This is shown here:

 template <typename UnaryPredicate>
 unary_negate<UnaryPredicate> not1(const UnaryPredicate& pred) {
 return unary_negate<UnaryPredicate>(pred);
 }

That's all there is to it – we've successfully implemented not1!

You might be wondering why there are two steps involved in writing not1. After all, once we have the
functor that performs negation, why do we need to write an additional function to create it? The answer is
simplicity. We don't need not1, but having it available reduces complexity. For example, using the
IsPositive adaptable function from above, let's suppose that we want to write code to find the first
nonpositive element in a vector. Using the find_if algorithm and not1, we'd write this as follows:

 vector<double>::iterator itr =
 find_if(v.begin(), v.end(), not1(IsPositive()));

If instead of using not1 we were to explicitly create a unary_negate object, the code would look like this:

 vector<double>::iterator itr =
 find_if(v.begin(), v.end(), unary_negate<IsPositive>(IsPositive()));

That's quite a mouthful. When calling the template function not1, the compiler automatically infers the
type of the argument and constructs an appropriately parameterized unary_negate object. If we directly
use unary_negate, C++ will not perform type inference and we'll have to spell out the template
arguments ourselves. The pattern illustrated here – having a template class and a template function to
create it – is common in library code because it lets library clients use complex classes without ever having
to know how they're implemented behind-the-scenes.

Chapter 13: Functors - 419 -

Implementing ptr_fun

Now that we've seen how not1 works, let's see if we can construct the ptr_fun function. At a high level
ptr_fun and not1 work the same way – they each accept a parameter, construct a special functor class
based on the parameter, then return it to the caller. The difference between not1 and ptr_fun, however,
is that there are two different versions of ptr_fun – one for unary functions and one for binary functions.
The two versions work almost identically and we'll see how to implement them both, but for simplicity
we'll begin with the unary case.

To convert a raw C++ unary function into an adaptable unary function, we need to wrap it in a functor that
inherits from the proper unary_function base class. We'll make this functor's operator() function
simply call the stored function and return its value. To be consistent with the naming convention of the
<functional> library, we'll call the functor pointer_to_unary_function and will parameterize it over
the argument and return types of the function. This is shown here:

 template <typename ArgType, typename RetType>
 class pointer_to_unary_function: public unary_function<ArgType, RetType>
 {
 public:
 explicit pointer_to_unary_function(ArgType fn(RetType)) : function(fn) {}

 RetType operator() (const ArgType& param) const {
 return function(param);
 }
 private:
 ArgType (*function)(RetType);
 };

There isn't that much code here, but it's fairly dense. Notice that we inherit from
unary_function<ArgType, RetType> so that the resulting functor is adaptable. Also note that the
argument and return types of operator() are considerably easier to determine than in the
unary_negate case because they're specified as template arguments.

Now, how can we implement ptr_fun to return a correctly-constructed pointer_to_unary_function?
Simple – we just write a template function parameterized over argument and return types, accept a
function pointer of the appropriate type, then wrap it in a pointer_to_unary_function object. This is
shown here:

 template <typename ArgType, typename RetType>
 pointer_to_unary_function<ArgType, RetType>
 ptr_fun(RetType function(ArgType)) {
 return pointer_to_unary_function<ArgType, RetType>(function);
 }

This code is fairly dense, but gets the job done.

The implementation of ptr_fun for binary functions is similar to the implementation for unary functions.
We'll create a template functor called pointer_to_binary_function parameterized over its argument
and return types, then provide an implementation of ptr_fun that constructs and returns an object of this
type. This is shown here:

- 420 - Chapter 13: Functors

 template <typename Arg1, typename Arg2, typename Ret>
 class pointer_to_binary_function: public binary_function<Arg1, Arg2, Ret> {
 public:
 explicit pointer_to_binary_function(Ret fn(Arg1, Arg2)) : function(fn) {}

 Ret operator() (const Arg1& arg1, const Arg2& arg2) const {
 return function(arg1, arg2);
 }
 private:
 Ret (*function)(Arg1, Arg2);
 };

 template <typename Arg1, typename Arg2, typename Ret>
 pointer_to_binary_function<Arg1, Arg2, Ret> ptr_fun(Ret function(Arg1, Arg2)) {
 return pointer_to_binary_function<Arg1, Arg2, Ret>(function);
 }

Note that we now have two versions of ptr_fun – one that takes in a unary function and one that takes in
a binary function. Fortunately, C++ overloading rules allow for the two functions to coexist, since they
have different signatures.

Implementing bind1st

To wrap up our tour of the <functional> library, let's see how to implement bind1st. If you'll recall,
bind1st takes in a binary adaptable function and a value, then returns a new unary function equal to the
input function with the first parameter locked in place. We'll follow the pattern of not1 and ptr_fun by
writing a template functor class called binder1st that actually does the binding, then having bind1st
construct and return an object of the proper type.

Before proceeding with our implementation of binder1st, we need to take a quick detour into the inner
workings of the binary_function class. Like unary_function, binary_function exports typedefs
so that other parts of the <functional> library can recover the argument and return types of adaptable
functions. However, since a binary function has two arguments, the names of the exported types are
slightly different. binary_function provides the following three typedefs:

• first_argument_type, the type of the first argument,

• second_argument_type, the type of the second argument, and

• result_type, the function's return type.

We will need to reference each of these type names when writing bind1st.

Now, how do we implement the binder1st functor? Here is one possible implementation. The
binder1st constructor will accept and store an adaptable binary function and the value for its first
argument. binder1st then provides an implementation of operator() that takes a single parameter,
then invokes the stored function passing in the function parameter and the saved value. This is shown
here:

Chapter 13: Functors - 421 -

Let's begin implementing binder1st. The functor has to be a template, since we'll be storing an arbitrary
adaptable function and value. However, we only need to parameterize the functor over the type of the
binary adaptable function, since we can determine the type of the first argument from the adaptable
function's first_argument_type. We'll thus begin with the following implementation:

 template <typename BinaryFunction> class binder1st {
 /* ... */
 };

Now, let's implement the constructor. It should take in two parameters – one representing the binary
function and the other the value to lock into place. The first will have type BinaryFunction; the second,
typename BinaryFunction::first_argument_type. This is shown here:

 template <typename BinaryFunction> class binder1st {
 public:
 binder1st(const BinaryFunction& fn,
 const typename BinaryFunction::first_argument_type& arg) :
 function(fn), first(arg) {}

 /* ... */

 private:
 BinaryFunction function;
 typename BinaryFunction::first_argument_type first;
 };

Phew! That's quite a mouthful, but is the reality of much library template code. Look at the declaration of
the first data member. Though it may seem strange, this is the correct way to declare a data member whose
type is a type nested inside a template argument.

We now have the constructor written and all that's left to take care of is operator(). Conceptually, this
function isn't very difficult, and if we ignore the parameter and return types have the following
implementation:

Binding Functor

Stored
Function

Param 1

Param 2

Stored
Value

 Input

Output

- 422 - Chapter 13: Functors

 template <typename BinaryFunction> class binder1st {
 public:
 binder1st(const BinaryFunction& fn,
 const typename BinaryFunction::first_argument_type& arg) :
 function(fn), first(arg) {}

 /* ret */ operator() (const /* arg */& param) const {
 return function(first, param);
 }

 private:
 BinaryFunction function;
 typename BinaryFunction::first_argument_type first;
 };

What are the argument and return types for this function? Well, the function returns whatever object is
produced by the stored function, which has type typename BinaryFunction::result_type. The
function accepts a value for use as the second parameter to the stored function, so it must have type
typename BinaryFunction:: second_argument_type. This results in the following code:

 template <typename BinaryFunction> class binder1st {
 public:
 binder1st(const BinaryFunction& fn,
 const typename BinaryFunction::first_argument_type& arg) :
 function(fn), first(arg) {}

 typename BinaryFunction::result_type
 operator() (const typename BinaryFunction::second_argument_type& param) const {
 return function(first, param);
 }
 private:
 BinaryFunction function;
 typename BinaryFunction::first_argument_type first;
 };

We're almost finished, and all that's left for binder1st is to make it adaptable. Using the logic from above,
we'll have it inherit from the proper instantiation of unary_function, as shown here:

 template <typename BinaryFunction> class binder1st :
 public unary_function<typename BinaryFunction::second_argument_type,
 typename BinaryFunction::result_type> {
 public:
 binder1st(const BinaryFunction& fn,
 const typename BinaryFunction::first_argument_type& arg) :
 function(fn), first(arg) {}

 typename BinaryFunction::result_type
 operator() (const typename BinaryFunction::second_argument_type& param) const {
 return function(first, param);
 }
 private:
 BinaryFunction function;
 typename BinaryFunction::first_argument_type first;
 };

That's it for the binder1st class. As you can see, the code is dense and does a lot of magic with typename
and nested types. Without adaptable functions, code like this would not be possible.

To finish up our discussion, let's implement bind1st. This function isn't particularly tricky, though we do
need to do a bit of work to extract the type of the value to lock in place:

Chapter 13: Functors - 423 -

 template <typename BinaryFunction>
 binder1st<BinaryFunction>
 bind1st(const BinaryFunction& fn,
 const typename BinaryFunction::first_argument_type& arg) {
 return binder1st<BinaryFunction>(fn, arg);
 }

We now have a complete working implementation of bind1st. If you actually open up the <functional>
header and peek around inside, the code you'll find will probably bear a strong resemblance to what we've
written here.

Limitations of the Functional Library

While the STL functional library is useful in a wide number of cases, the library is unfortunately quite
limited. <functional> only provides support for adaptable unary and binary functions, but commonly
you'll encounter situations where you will need to bind and negate functions with more than two
parameters. In these cases, one of your only options is to construct functor classes that accept the extra
parameters in their constructors. Similarly, there is no support for function composition, so we could not
create a function that computes 2x + 1 by calling the appropriate combination of the plus and multiplies
functors. However, the next version of C++, nicknamed “C++0x,” promises to have more support for
functional programming of this sort. For example, it will provide a general function called bind that lets
you bind as many values as you'd like to a function of arbitrary arity. Keep your eyes peeled for the next
release of C++ – it will be far more functional than the current version!

Practice Problems

We've covered a lot of programming techniques in this chapter and there are no shortage of applications
for the material. Here are some problems to get you thinking about how functors and adaptable functions
can influence your programming style:

1. What is a functor?

2. What restrictions, if any, exist on the parameter or return types of operator()?

3. Why are functors more powerful than regular functions?

4. How do you define a function that can accept both functions and functors as parameters?

5. What is an adaptable function?

6. How do you convert a regular C++ function into an adaptable function?

7. What does the bind1st function do?

8. What does the not2 function do?

9. The STL algorithm for_each accepts as parameters a range of iterators and a unary function, then
calls the function on each argument. Unusually, the return value of for_each is the unary function
passed in as a parameter. Why might this be?

- 424 - Chapter 13: Functors

10. Using the fact that for_each returns the unary function passed as a parameter, write a function
MyAccumulate that accepts as parameters a range of vector<int>::iterators and an initial
value, then returns the sum of all of the values in the range, starting at the specified value. Do not
use any loops – instead, use for_each and a custom functor class that performs the addition.

11. Write a function AdvancedBiasedSort that accepts as parameters a vector<string> and a
string “winner” value, then sorts the range, except that all strings equal to the winner are at the
front of the vector. Do not use any loops. (Hint: Use the STL sort algorithm and functor that
stores the “winner” parameter.)

12. Modify the above implementation of AdvancedBiasedSort so that it works over an arbitrary
range of iterators over strings, not just a vector<string>. Then modify it once more so that the
iterators can iterate over any type of value.

13. The STL generate algorithm is defined as void generate(ForwardIterator start,
ForwardIterator end, NullaryFunction fn) and iterates over the specified range storing
the return value of the zero-parameter function fn as it goes. For example, calling
generate(v.begin(), v.end(), rand) would fill the range [v.begin() to v.end()) with
random values. Write a function FillAscending that accepts an iterator range, then sets the first
element in the range to zero, the second to one, etc. Do not use any loops.

14. Write a function ExpungeLetter that accepts four parameters – two iterators delineating an input
range of strings, one iterator delineating the start of an output range, and a character – then
copies the strings in the input range that do not contain the specified character into the output
range. The function should then return an iterator one past the last location written. Do not use
loops. (Hint: Use the remove_copy_if algorithm and a custom functor).

15. The standard deviation of a set of data is a measure of how much the data varies from its average
value. Data with a small standard deviation tends to cluster around a point, while data with large
standard deviation will be more spread out.

The formula for the standard deviation of a set of data {x1, x2, ..., xn} is

 1
n∑i=1

n

x i−x
2

Here, x is the average of the data points.

To give a feeling for this formula, given the data points 1, 2, 3, the average of the data points is 2, so
the standard deviation is given by

 1
n∑i=1

n

x i−x
2=1

3∑i=1

3

x i−22= 1
3
1−222−223−22= 1

3
101=2

3

Write a function StandardDeviation that accepts an input range of iterators over doubles (or
values implicitly convertible to doubles) and returns its standard deviation. Do not use any loops
– instead use the accumulate function to compute the average, then use accumulate once more
to compute the sum. (Hint: To get the number of elements in the range, you can use the distance
function)

Chapter 13: Functors - 425 -

16. Write a function ClearAllStrings that accepts as input a range of iterators over strings that
sets each string to be the empty string. If you harness the <functional> library correctly here,
the function body will be only a single line of code.

17. The ROT128 cipher is a weak encryption cipher that works by adding 128 to the value of each
character in a string to produce a garbled string. Since char can only hold 256 different values,
two successive applications of ROT128 will produce the original string. Write a function
ApplyROT128 that accepts a string and returns the string's ROT128 cipher equivalent.

18. Write a template function CapAtValue that accepts a range of iterators and a value by reference-
to-const and replaces all elements in the range that compare greater than the parameter with a
copy of the parameter. (Hint: use the replace_if algorithm)

19. One piece of functionality missing from the <functional> library is the ability to bind the first
parameter of a unary function to form a nullary function. In this practice problem, we'll implement
a function called BindOnly that transforms a unary adaptable function into a nullary function.

a. Write a template functor class BinderOnly parameterized whose constructor accepts an
adaptable function and a value to bind and whose operator() function calls the stored
function passing in the stored value as a parameter. Your class should have this interface:

 template <typename UnaryFunction> class BinderOnly {
 public:
 BinderOnly(const UnaryFunction& fn,
 const typename UnaryFunction::argument_type& value);
 RetType operator() () const;
 };

b. Write a template function BindOnly that accepts the same parameters as the BinderOnly
constructor and returns a BinderOnly of the proper type. The signature for this function
should be

template <typename UnaryFunction>
 BinderOnly<UnaryFunction>
 BindOnly(const UnaryFunction &fn,
 const typename UnaryFunction::argument_type& value);

20. Another operation not supported by the <functional> library is function composition. For example,

given two functions f and g, the composition g ○ f is a function such that g ○ f(x) = g(f(x)). In this
example, we'll write a function Compose that lets us compose two unary functions of compatible
types.

a. Write a template functor UnaryCompose parameterized over two adaptable function types
whose constructor accepts and stores two unary adaptable functions and whose operator()
accepts a single parameter and returns the composition of the two functions applied to that
argument. Make sure that UnaryCompose is an adaptable unary function.

b. Write a wrapper function Compose that takes in the same parameters as UnaryCompose and
returns a properly-constructed UnaryCompose object.

c. Explain how to implement not1 using Compose and logical_not, a unary adaptable function
exported by <functional> that returns the logical inverse of its argument.

Part Three
More to Explore

Whew! You've made it through the first three sections and are now a seasoned and competent C++ programmer.
But your journey has just begun. There are many parts of the C++ programming language that we have not
covered, and it's now up to you to begin the rest of your journey.

This last section of the book contains two chapters. The first, on C++0x, discusses what changes are expected
for the C++ programming language over the next few years. Now that you've seen C++'s strengths and
weaknesses, I hope that this chapter proves enlightening and exciting. The second chapter is all about how to
continue your journey into further C++ mastery and hopefully can give you a boost in the right direction.

Chapter 14: C++0x

C++0x feels like a new language: The pieces just fit together better than they used to and I find a
higher-level style of programming more natural than before and as efficient as ever. If you timidly
approach C++ as just a better C or as an object-oriented language, you are going to miss the
point. The abstractions are simply more flexible and affordable than before. Rely on the old
mantra: If you think [o]f it as a separate idea or object, represent it directly in the program;
model real-world objects, concepts, and abstractions directly in code. It's easier now: Your ideas
will map to enumerations, objects, classes (e.g. control of defaults), class hierarchies (e.g.
inherited constructors), templates, concepts, concept maps, axioms, aliases, exceptions, loops,
threads, etc., rather than to a single “one size fits all” abstraction mechanism.

My ideal is to use programming language facilities to help programmers think differently about
system design and implementation. I think C++0x can do that – and do it not just for C++
programmers but for programmers used to a variety of modern programming languages in the
general and very broad area of systems programming.

In other words, I'm still an optimist.

– Bjarne Stroustrup, inventor of C++. [Str09.3]

C++ is constantly evolving. Over the past few years the C++ standards body has been developing the next
revision of C++, nicknamed C++0x. C++0x is a major upgrade to the C++ programming language and as we
wrap up our tour of C++, I thought it appropriate to conclude by exploring what C++0x will have in store.
This chapter covers some of the more impressive features of C++0x and what to expect in the future.

Be aware that C++0x has not yet been finalized, and the material in this chapter may not match the final C+
+0x specification. However, it should be a great launching point so that you know where to look to learn
more about the next release of C++.

Automatic Type Inference

Consider the following piece of code:

 void DoSomething(const multimap<string, vector<int> >& myMap) {
 const pair<multimap<string, vector<int> >::const_iterator,
 multimap<string, vector<int> >::const_iterator> eq =
 myMap.equal_range("String!");
 for(multimap<string, vector<int> >::const_iterator itr = eq.first;
 itr != eq.second; ++itr)
 cout << itr->size() << endl;
 }

This above code takes in a multimap mapping from strings to vector<int>s and prints out the length
of all vectors in the multimap whose key is “String!” While the code is perfectly legal C++, it is extremely
difficult to follow because more than half of the code is spent listing the types of two variables, eq and itr.
If you'll notice, these variables can only take on one type – the type of the expression used to initialize
them. Since the compiler knows all of the types of the other variables in this code snippet, couldn't we just
ask the compiler to give eq and itr the right types? Fortunately, in C++0x, the answer is yes thanks to a

- 430 - Chapter 14: C++0x

new language feature called type inference. Using type inference, we can rewrite the above function in
about half as much space:

 void DoSomething(const multimap<string, vector<int>>& myMap) {
 const auto eq = myMap.equal_range("String!");
 for(auto itr = eq.first; itr != eq.second; ++itr)
 cout << itr->size() << endl;
 }

Notice that we've replaced all of the bulky types in this expression with the keyword auto, which tells the
C++0x compiler that it should infer the proper type for a variable. The standard iterator loop is now
considerably easier to write, since we can replace the clunky multimap<string, vector<int>
>::const_iterator with the much simpler auto. Similarly, the hideous return type associated with
equal_range is entirely absent.

Because auto must be able to infer the type of a variable from the expression that initializes it, you can
only use auto when there is a clear type to assign to a variable. For example, the following is illegal:

 auto x;

Since x could theoretically be of any type.

auto is also useful because it allows complex libraries to hide implementation details behind-the-scenes.
For example, recall that the ptr_fun function from the STL <functional> library takes as a parameter a
regular C++ function and returns an adaptable version of that function. In our discussion of the library's
implementation, we saw that the return type of ptr_fun is either pointer_to_unary_function<Arg,
Ret> or pointer_to_binary_function<Arg1, Arg2, Ret>, depending on whether the parameter is a
unary or binary function. This means that if you want to use ptr_fun to create an adaptable function and
want to store the result for later use, using current C++ you'd have to write something to the effect of

 pointer_to_unary_function<int, bool> ouchies = ptr_fun(SomeFunction);

This is terribly hard to read but more importantly breaks the wall of abstraction of ptr_fun. The entire
purpose of ptr_fun is to hide the transformation from function to functor, and as soon as you are required
to know the return type of ptr_fun the benefits of the automatic wrapping facilities vanish. Fortunately,
auto can help maintain the abstraction, since we can rewrite the above as

 auto howNice = ptr_fun(SomeFunction);

C++0x will provide a companion operator to auto called decltype that returns the type of a given
expression. For example, decltype(1 + 2) will evaluate to int, while decltype(new char) will be
char *. decltype does not evaluate its argument – it simply yields its type – and thus incurs no cost at
runtime.

One potential use of decltype arises when writing template functions. For example, suppose that we
want to write a template function as follows:

 template <typename T> /* some type */ MyFunction(const T& val) {
 return val.doSomething();
 }

This function accepts a T as a template argument, invokes that object's doSomething member function,
then returns its value (note that if the type T doesn't have a member function doSomething, this results in

Chapter 14: C++0x - 431 -

a compile-time error). What should we use as the return type of this function? We can't tell by simply
looking at the type T, since the doSomething member function could theoretically return any type.
However, by using decltype and a new function declaration syntax, we can rewrite this as

 template <typename T>
 auto MyFunction(const T& val) -> decltype(val.doSomething()) {
 return val.doSomething();
 }

Notice that we defined the function's return type as auto, and then after the parameter list said that the
return type is decltype(val.doSomething()). This new syntax for function declarations is optional,
but will make complicated function prototypes easier to read.

Move Semantics

If you'll recall from our discussion of copy constructors and assignment operators, when returning a value
from a function, C++ initializes the return value by invoking the class's copy constructor. While this
method guarantees that the returned value is always valid, it can be grossly inefficient. For example,
consider the following code:

 vector<string> LoadAllWords(const string& filename) {
 ifstream input(filename.c_str());
 if(!input.is_open())
 throw runtime_error("File not found!");

 /* Use the vector's insert function, plus some istream_iterators, to
 * load the contents of the file.
 */
 vector<string> result;
 result.insert(result.begin(), istream_iterator<string>(input),
 istream_iterator<string>());

 return result;
 }

Here, we open the file specified by filename, then use a pair of istream_iterators to load the contents
of the file into the vector. At the end of this function, before the return result statement executes, the
memory associated with the result vector looks something like this (assuming a vector is
implemented as a pointer to a raw C++ array):

Alpha

Beta

Gamma

...

Chi

Psi

Omega

result

137len

elems

Now, the statement return result executes and C++ initializes the return value by invoking the vector
copy constructor. After the copy the program's memory looks like this:

- 432 - Chapter 14: C++0x

Alpha

Beta

Gamma

...

Chi

Psi

Omega

result

137len

elems

Alpha

Beta

Gamma

...

Chi

Psi

Omega

return value

137len

elems

After the return value is initialized, result will go out of scope and its destructor will clean up its
memory. Memory now looks like this:

Alpha

Beta

Gamma

...

Chi

Psi

Omega

return value

137len

elems

Here, we made a full deep copy of the contents of the returned object, then deallocated all of the original
memory. This is inefficient, since we needlessly copied a long list of strings. There is a much better way to
return the vector from the function. Instead of initializing the return value by making a deep copy,
instead we'll make it a shallow copy of vector we're returning. The in-memory representations of these
two vectors thus look like this:

Alpha

Beta

Gamma

...

Chi

Psi

Omega

result

137len

elems

return value

137 len

elems

Although the two vectors share the same memory, the returned vector has the same contents as the
source vector and is in fact indistinguishable from the original. If we then modify the original vector by
detaching its pointer from the array and having it point to NULL (or, since this is C++0x, the special value
nullptr), then we end up with a picture like this:

Chapter 14: C++0x - 433 -

Alpha

Beta

Gamma

...

Chi

Psi

Omega

result
nullptr

0len

elems

return value

137 len

elems

Now, result is an empty vector whose destructor will not clean up any memory, and the calling function
will end up with a vector whose contents are exactly those returned by the function. We've successfully
returned the value from the function, but avoided the expensive copy. In our case, if we have a vector of n
strings of length at most m, then the algorithm for copying the vector will take O(mn). The algorithm
for simply transferring the pointer from the source vector to the destination, on the other hand, is O(1)
for the pointer manipulations.

The difference between the current method of returning a value and this improved version of returning a
value is the difference between copy semantics and move semantics. An object has copy semantics if it can
be duplicated in another location. An object has move semantics (a feature introduced in C++0x) if it can
be moved from one variable into another, destructively modifying the original. The key difference
between the two is the number of copies at any point. Copying an object duplicates its data, while moving
an object transfers the contents from one object to another without making a copy.

To support move semantics, C++0x introduces a new variable type called an rvalue reference whose syntax
is Type &&. For example, an rvalue reference to a vector<int> would be a vector<int> &&. Informally,
you can view an rvalue reference as a reference to a temporary object, especially one whose contents are
to be moved from one location to another.

Let's return to the above example with returning a vector from a function. In the current version of C++,
we'd define a copy constructor and assignment operator for vector to allow us to return vectors from
functions and to pass vectors as parameters. In C++0x, we can optionally define another special function,
called a move constructor, that initializes a new vector by moving data out of one vector into another. In
the above example, we might define a move constructor for the vector as follows:

 /* Move constructor takes a vector&& as a parameter, since we want to move
 * data from the parameter into this vector.
 */
 template <typename T> vector<T>::vector(vector&& other) {
 /* We point to the same array as other and have the same length. */
 elems = other.elems;
 len = other.len;

 /* Destructively modify the source vector to stop sharing the array. */
 other.elems = nullptr;
 other.len = 0;
 }

Now, if we return a vector from a function, the new vector will be initialized using the move constructor
rather than the regular copy constructor.

We can similarly define a move assignment operator (as opposed to the traditional copy assignment
operator), as shown here:

- 434 - Chapter 14: C++0x

 template <typename T> vector<T>& vector<T>::operator= (vector&& other) {
 if(this != &other) {
 delete [] elems;

 elems = other.elems;
 len = other.len;

 /* Modify the source vector to stop sharing the array. */
 other.elems = nullptr;
 other.len = 0;
 }
 return *this;
 }

The similarity between a copy constructor and copy assignment operator is also noticeable here in the
move constructor and move assignment operator. In fact, we can rewrite the pair using helper functions
clear and moveOther:

 template <typename T> void vector<T>::moveOther(vector&& other) {
 /* We point to the same array as the other vector and have the same
 * length.
 */
 elems = other.elems;
 len = other.len;

 /* Modify the source vector to stop sharing the array. */
 other.elems = nullptr;
 other.len = 0;
 }

 template <typename T> void vector<T>::clear() {
 delete [] elems;
 len = 0;
 }

 template <typename T> vector<T>::vector(vector&& other) {
 moveOther(move(other)); // See later section for move
 }

 template <typename T> vector<T>& vector<T>::operator =(vector&& other) {
 if(this != &other) {
 clear();
 moveOther(move(other));
 }
 return *this;
 }

Move semantics are also useful in situations other than returning objects from functions. For example,
suppose that we want to insert an element into an array, shuffling all of the other values down one spot to
make room for the new value. Using current C++, the code for this operation is as follows:

 template <typename T>
 void InsertIntoArray(T* elems, int size, int position, const T& toAdd) {
 for(int i = size; i > position; ++i)
 elems[i] = elems[i – 1]; // Shuffle elements down.
 elems[i] = toAdd;
 }

Chapter 14: C++0x - 435 -

There is nothing wrong per se with this code as it's written, but if you'll notice we're using copy semantics
to shuffle the elements down when move semantics is more appropriate. After all, we don't want to copy
the elements into the spot one element down; we want to move them.

In C++0x, we can use an object's move semantics (if any) by using the special helper function move,
exported by <utility>, which simply returns an rvalue reference to an object. Now, if we write

 a = move(b);

If a has support for move semantics, this will move the contents of b into a. If a does not have support for
move semantics, however, C++ will simply fall back to the default object copy behavior using the
assignment operator. In other words, supporting move operations is purely optional and a class can still
use the old fashioned copy constructor and assignment operator pair for all of its copying needs.

Here's the rewritten version of InsertIntoArray, this time using move semantics:

 template <typename T>
 void InsertIntoArray(T* elems, int size, int position, const T& toAdd) {
 for(int i = size; i > position; ++i)
 elems[i] = move(elems[i – 1]); // Move elements down.
 elems[i] = toAdd;
 }

Curiously, we can potentially take this one step further by moving the new element into the array rather
than copying it. We thus provide a similar function, which we'll call MoveIntoArray, which moves the
parameter into the specified position:

 template <typename T>
 void MoveIntoArray(T* elems, int size, int position, T&& toAdd) {
 for(int i = size; i > position; ++i)
 elems[i] = move(elems[i – 1]); // Move elements down.

 /* Note that even though toAdd is an rvalue reference, we still must
 * explicitly move it in. This prevents us from accidentally using
 * move semantics in a few edge cases.
 */
 elems[i] = move(toAdd);
 }

Move semantics and copy semantics are independent and in C++0x it will be possible to construct objects
that can be moved but not copied or vice-versa. Initially this might seem strange, but there are several
cases where this is exactly the behavior we want. For example, it is illegal to copy an ofstream because
the behavior associated with the copy is undefined – should we duplicate the file? If so, where? Or should
we just share the file? However, it is perfectly legitimate to move an ofstream from one variable to
another, since at any instant only one ofstream variable will actually hold a reference to the file stream.
Thus functions like this one:

 ofstream GetTemporaryOutputFile() {
 /* Use the tmpnam() function from <cstdio> to get the name of a
 * temporary file. Consult a reference for more detail.
 */
 char tmpnamBuffer[L_tmpnam];
 ofstream result(tmpnam(tmpnamBuffer));
 return result; // Uses move constructor, not copy constructor!
 }

- 436 - Chapter 14: C++0x

Will be perfectly legal in C++0x because of move constructors, though the same code will not compile in
current C++ because ofstream has no copy constructor.

Another example of an object that has well-defined move behavior but no copy behavior is the C++
auto_ptr class. If you'll recall, assigning one auto_ptr to another destructively modifies the original
auto_ptr. This is exactly the definition of move semantics. However, under current C++ rules,
implementing auto_ptr is extremely difficult and leads to all sorts of unexpected side effects. Using move
constructors, however, we can eliminate these problems. C++0x will introduce a replacement to auto_ptr
called unique_ptr which, like auto_ptr, represents a smart pointer that automatically cleans up its
underlying resource when it goes out of scope. Unlike auto_ptr, however, unique_ptr cannot be copied
or assigned but can be moved freely. Thus code of this sort:

 unique_ptr<int> myPtr(new int);
 unique_ptr<int> other = myPtr; // Error! Can't copy unique_ptr.

Will not compile. However, by explicitly indicating that the operation is a move, we can transfer the
contents from one unique_ptr to another:

 unique_ptr<int> myPtr(new int);
 unique_ptr<int> other = move(myPtr); // Legal; myPtr is now empty

Move semantics and rvalue references may seem confusing at first, but promise to be a powerful and
welcome addition to the C++ family.

Lambda Expressions

Last chapter, we considered the problem of counting the number of strings in a vector whose lengths
were less than some value determined at runtime. We explored how to solve this problem using the
count_if algorithm and a functor. Our solution was as follows:

 class ShorterThan {
 public:
 explicit ShorterThan(int maxLength) : length(maxLength) {}
 bool operator() (const string& str) const {
 return str.length() < length;
 }
 private:
 int length;
 };

 const int myValue = GetInteger();
 count_if(myVector.begin(), myVector.end(), ShorterThan(myValue));

This functor-based approach works correctly, but has a huge amount of boilerplate code that obscures the
actual mechanics of the solution. What we'd prefer instead is the ability to write code to this effect:

 const int myValue = GetInteger()
 count_if(myVector.begin(), myVector.end(), the string is shorter than myValue);

Using a new C++0x language feature known as lambda expressions (a term those of you familiar with
languages like Scheme, ML, or Haskell might recognize), we can write code that very closely mirrors this
structure. One possibility looks like this:

Chapter 14: C++0x - 437 -

 const int myValue = GetInteger();
 count_if(myVector.begin(), myVector.end(),
 [myValue](const string& x) { return x.length() < myValue; });

The construct in the final line of code is a lambda expression, an unnamed (“anonymous”) function that
exists only as a parameter to count_if. In this example, we pass as the final parameter to count_if a
temporary function that accepts a single string parameter and returns a bool indicating whether or not
its length is less than myValue. The bracket syntax [myValue] before the parameter declaration (int x)
is called the capture list and indicates to C++ that the lambda expression can access the value of myValue
in its body.

Behind the scenes, C++ converts lambda expressions such as the one above into uniquely-named functors,
so the above code is identical to the functor-based approach outlined above.

For those of you with experience in a functional programming language, the example outlined above
should strike you as an extraordinarily powerful addition to the C++ programming language. Lambda
expressions greatly simplify many tasks and represent an entirely different way of thinking about
programming. It will be interesting to see how rapidly lambda expressions are adopted in professional
code.

Variadic Templates

In the previous chapter we implemented a class called Function that wrapped an arbitrary unary
function. Recall that the definition of Function is as follows:

 template <typename ArgType, typename ReturnType> class Function {
 public:
 /* Constructor and destructor. */
 template <typename UnaryFunction> Function(UnaryFunction);
 ~Function();

 /* Copy support. */
 Function(const Function& other);
 Function& operator= (const Function& other);

 /* Function is a functor that calls into the stored resource. */
 ReturnType operator() (ArgType value) const;
 private:
 /* ... */
 };

What if we want to generalize Function to work with functions of arbitrary arity? That is, what if we
want to create a class that encapsulates a binary, nullary, or ternary function? Using standard C++, we
could do this by introducing new classes BinaryFunction, NullaryFunction, and TernaryFunction
that were implemented similarly to Function but which accepted a different number of parameters. For
example, here's one possible interface for BinaryFunction:

- 438 - Chapter 14: C++0x

 template <typename ArgType1, typename ArgType2, typename ReturnType>
 class BinaryFunction {
 public:
 /* Constructor and destructor. */
 template <typename BinaryFn> BinaryFunction(BinaryFn);
 ~BinaryFunction();

 /* Copy support. */
 BinaryFunction(const BinaryFunction& other);
 BinaryFunction& operator= (const BinaryFunction& other);

 /* Function is a functor that calls into the stored resource. */
 ReturnType operator() (ArgType1 arg2, ArgType2 arg2) const;
 private:
 /* ... */
 };

Writing different class templates for functions of each arity is troublesome. If we write Function-like
classes for a fixed number of arities (say, functions between zero and ten arguments) and then discover
that we need a wrapper for a function with more arguments, we we'll have to write that class from scratch.
Moreover, the structure of each function wrapper is almost identical. Compare the BinaryFunction and
Function class interfaces mentioned above. If you'll notice, the only difference between the classes is the
number of template arguments and the number of arguments to operator(). Is there some way that we
can use this commonality to implement a single class that works with functions of arbitrary arity? Using
the current incarnation of C++ this is not possible, but using a C++0x feature called variadic templates we
can do just this.

A variadic template is a template that can accept an arbitrary number of template arguments. These
arguments are grouped together into arguments called parameter packs that can be expanded out to code
for each argument in the pack. For example, the following class is parameterized over an arbitrary
number of arguments:

 template <typename... Args> class Tuple {
 /* ... */
 };

The syntax typename... Args indicates that Args is a parameter pack that represents an arbitrary
number of arguments. Since Args represents a list of arguments rather than an argument itself, it is illegal
to use Args in an expression by itself. Instead, Args must be used in a pattern expression indicating what
operation should be applied to each argument in the pack. For example, if we want to create a constructor
for Tuple that accepts a list of arguments with one argument for each type in Args, we could write the
following:

 template <typename... Args> class Tuple {
 public:
 Tuple(const Args& ...);
 };

Here, the syntax const Args& ... is a pattern expression indicating that for each argument in Args,
there should be a parameter to the constructor that's passed by reference-to-const. For example, if we
created a Tuple<int>, the constructor would be Tuple<int>(const int&), and if we create a
Tuple<int, double>, it would be Tuple<int, double>(const int&, const double&).

Chapter 14: C++0x - 439 -

Let's return to the example of Function. Suppose that we want to convert Function from encoding a
unary function to encoding a function of arbitrary arity. Then we could change the class interface to look
like this:

 template <typename ReturnType, typename... ArgumentTypes> class Function {
 public:
 /* Constructor and destructor. */
 template <typename Callable> Function(Callable);
 ~Function();

 /* Copy support. */
 Function(const Function& other);
 Function& operator= (const Function& other);

 /* Function is a functor that calls into the stored resource. */
 ReturnType operator() (ArgumentTypes... args) const;
 private:
 /* ... */
 };

Function is now parameterized such that the first argument is the return type and the remaining
arguments are argument types. For example, a Function<int, string> is a function that accepts a
string and returns an int, while a Function<bool, int, int> would be a function accepting two ints
and returning a bool.

We've just seen how the interface for Function looks with variadic templates, but what about the
implementation? If you'll recall, the original implementation of Function's operator() function looked
as follows:

 template <typename ArgType, typename ReturnType>
 ReturnType Function<ArgType, ReturnType>::operator()(ArgType param) const {
 return function->execute(param);
 }

Let's begin converting this to use variadic templates. The first step is to adjust the signature of the
function, as shown here:

 template <typename RetType, typename... ArgTypes>
 RetType Function<RetType, ArgTypes...>::operator()(ArgTypes... args) const {
 /* ... */
 }

Notice that we've specified that this is a member of Function<RetType, ArgTypes...>.

In the unary version of Function, we implemented operator() by calling a stored function object's
execute member function, passing in the parameter given to operator(). But how can we now call execute
passing in an arbitrary number of parameters? The syntax for this again uses ... to tell C++ to expand the
args parameters to the function into an actual list of parameters. This is shown here:

 template <typename RetType, typename... ArgTypes>
 RetType Function<RetType, ArgTypes...>::operator()(ArgTypes... args) const {
 return function->execute(args...);
 }

- 440 - Chapter 14: C++0x

Just as using ... expands out a parameter pack into its individual parameters, using ... here expands out
the variable-length argument list args into each of its individual parameters. This syntax might seem a bit
tricky at first, but is easy to pick up with practice.

Library Extensions

In addition to all of the language extensions mentioned in the above sections, C++0x will provide a new set
of libraries that should make certain common tasks much easier to perform:

• Enhanced Smart Pointers. C++0x will support a wide variety of smart pointers, such as the
reference-counted shared_ptr and the aforementioned unique_ptr.

• New STL Containers. The current STL associative containers (map, set, etc.) are layered on top of
balanced binary trees, which means that traversing the map and set always produce elements in
sorted order. However, the sorted nature of these containers means that insertion, lookup, and
deletion are all O(lg n), where n is the size of the container. In C++0x, the STL will be enhanced
with unordered_map, unordered_set, and multicontainer equivalents thereof. These containers
are layered on top of hash tables, which have O(1) lookup and are useful when ordering is not
important.

• Multithreading Support. Virtually all major C++ programs these days contain some amount of
multithreading and concurrency, but the C++ language itself provides no support for concurrent
programming. The next incarnation of C++ will support a threading library, along with atomic
operations, locks, and all of the bells and whistles needed to write robust multithreaded code.

• Regular Expressions. The combination of C++ strings and the STL algorithms encompasses a
good deal of string processing functionality but falls short of the features provided by other
languages like Java, Python, and (especially) Perl. C++0x will augment the strings library with full
support for regular expressions, which should make string processing and compiler-authoring
considerably easier in C++.

• Upgraded <functional> library. C++0x will expand on <functional> with a generic function
type akin to the one described above, as well as a supercharged bind function that can bind
arbitrary parameters in a function with arbitrary values.

• Random Number Generation. C++'s only random number generator is rand, which has
extremely low randomness (on some implementations numbers toggle between even and odd)
and is not particularly useful in statistics and machine learning applications. C++0x, however, will
support a rich random number generator library, complete with a host of random number
generators and probability distribution functors.

• Metaprogramming Traits Classes. C++0x will provide a large number of classes called traits
classes that can help generic programmers write optimized code. Want to know if a template
argument is an abstract class? Just check if is_abstract<T>::type evaluates to true_type or
false_type.

Chapter 14: C++0x - 441 -

Other Key Language Features

Here's a small sampling of the other upgrades you might find useful:

• Unified Initialization Syntax: It will be possible to initialize C++ classes by using the curly brace
syntax (e.g. vector<int> v = {1, 2, 3, 4, 5};)

• Delegating Constructors: Currently, if several constructors all need to access the same code, they
must call a shared member function to do the work. In C++0x, constructors can invoke each other
in initializer lists.

• Better Enumerations: Currently, enum can only be used to create integral constants, and those
constants can be freely compared against each other. In C++0x, you will be able to specify what
type to use in an enumeration, and can disallow automatic conversions to int.

• Angle Brackets: It is currently illegal to terminate a nested template by writing two close brackets
consecutively, since the compiler confuses it with the stream insertion operator >>. This will be
fixed in C++0x.

• C99 Compatibility: C++0x will formally introduce the long long type, which many current C++
compilers support, along with various preprocessor enhancements.

C++0x Today

Although C++0x has not yet been adopted as a standard, there are several freely-available compilers that
support a subset of C++0x features. For example, g++ versions 4.4 and up have support for much of C++0x,
and Microsoft Visual Studio 2010 has a fair number of features implemented, including lambda
expressions and the auto keyword. If you want to experience the future of C++ today, consider
downloading one of these compilers.

Chapter 15: Where to Go From Here

Congratulations! You've made it through CS106L. You've taken the first step on your journey toward a
mastery of the C++ programming language. This is no easy feat! In the course of reading through this far,
you now have a command of the following concepts:

• The streams library, including how to interface with it through operator overloading.
• STL containers, iterators, algorithms, adapters, and functional programming constructs, including

a working knowledge of how these objects are put together.
• Pointer arithmetic and how objects are laid out in memory.
• The preprocessor and how to harness it to automatically generate C++ code.
• Generic programming in C++ and just how powerful the C++ template system can be.
• The const keyword and how to use it to communicate function side-effects to other programmers.
• Object layout and in-memory representation.
• Copy semantics and how to define implicit conversions between types.
• Operator overloading and how to make a C++ class act like a primitive type.
• What a functor is and how surprisingly useful and flexible they are.
• Exception handling and how to use objects to automatically manage resources.
• C++0x and what C++ will look like in the future.
• ... and a whole host of real-world examples of each of these techniques.

Despite all of the material we've covered here, there is much more to learn in the world of C++ and your
journey has just begun. I feel that it is a fitting conclusion to this course reader to direct you toward other
C++ resources that will prove invaluable along your journey into the wondrous realm of this language. In
particular, there are several excellent C++ resources I would be remiss to omit:

Effective C++, More Effective C++, and Effective STL by Scott
Meyers. Picking up and reading this trio of books is perhaps the
best thing you can do for yourself as a C++ programmer. The
books in the Effective C++ series will help you transition from a
solid C++ programmer into an excellent C++ programmer and are
widely regarded as among the best C++ books on the market.
What separates the Effective C++ series from most other C++
books is that Effective C++ focuses almost exclusively on correct
usage of core C++ language features and how to avoid common
pitfalls. If you plan on using C++ in the professional world, you
should own copies of this book.

- 444 - Chapter 15: Where to Go From Here

Exceptional C++ by Herb Sutter. This book is an invaluable tool in
any C++ programmer's arsenal. The book is largely organized as
a set of puzzles that give you a chance to think about the best way
to solve a problem and what C++ issues you'll encounter in the
process. Along with Effective C++, Exceptional C++ is one of the
most highly-recommended C++ books out there. Herb Sutter's
personal website is also an excellent resource for all your C++
needs.

The Design and Evolution of C++ by Bjarne Stroustrup. This book,
affectionately known to hardcore C++ programmers as D&E, is a
glimpse into Bjarne Stroustrup's thought processes as he went
about designing C++. D&E is not a programming guide, but
rather a history of the evolution of C++ from the small language C
with Classes into the modern language we know and love today.
D&E was written before C++ had been ISO standardized and even
predates the STL, meaning that it can offer a new perspective on
some of the language features and libraries you may take for
granted. If you want an interesting glimpse into the mind of the
man behind C++, this is the book for you.

Modern C++ Design: Generic Programming and Design Patterns
Applied by Andrei Alexandrescu. Considered the seminal work in
modern C++ programming, this book is an excellent introduction
into an entirely new way of thinking in C++. Alexandrescu takes
many advanced language features like templates and multiple
inheritance, then shows how to harness them to achieve
synergistic effects that are far more powerful than any of the
individual features used. As an example, the first chapter shows
how to write a single smart pointer class that is capable of
storing any type of value, performing any sort of resource
management, and having any copy behavior that the client
desires. The book is very language-intensive and requires you to
have a grasp of C++ slightly beyond the scope of this reader, but is
a most wonderful text for all who are interested.

Chapter 15: Where to Go From Here - 445 -

Final Thoughts

It's been quite a trip since we first started with the streams library. You now know how to program with
the STL, write well-behaved C++ objects, and even how to use functional programming constructs. But
despite the immense amount of material we've covered, we have barely scratched the surface of C++.
There are volumes of articles and books out there that cover all sorts of amazing C++ tips and tricks, and
by taking the initiative and exploring what's out there you can hone your C++ skills until problem solving
in C++ transforms from “how do I solve this problem?” to “which of these many options is best for solving
this problem?”

C++ is an amazing language. It has some of the most expressive syntax of any modern programming
language, and affords an enormous latitude in programming styles. Of course, it has its flaws, as critics are
eager to point out, but despite the advent of more modern languages like Java and Python C++ still
occupies a prime position in the software world.

I hope that you've enjoyed reading this course reader as much as I enjoyed writing it. If you have any
comments, suggestions, or criticisms, feel free to email me at htiek@cs.stanford.edu. Like the C++
language, CS106L and this course reader are constantly evolving, and if there's anything I can do to make
the class more enjoyable, be sure to let me know!

Have fun with C++, and I wish you the best of luck wherever it takes you!

- Keith

mailto:htiek@cs.stanford.edu

Part Four
Object-Oriented Programming

Chapter 16: Introduction to Inheritance

It's impossible to learn C++ or any other object-oriented language without encountering inheritance, a
mechanism that lets different classes share implementation and interface design. However, inheritance
has evolved greatly since it was first introduced to C++, and consequently C++ supports several different
inheritance schemes. This chapter introduces and motivates inheritance, then discusses how inheritance
interacts with other language features.

Inheritance of Implementation and Interface

C++ started off as a language called “C with Classes,” so named because it was essentially the C
programming language with support for classes and object-oriented programming. C++ is the more
modern incarnation of C with Classes, so most (but not all) of the features of C with Classes also appear in
C++.

The inheritance introduced in C with Classes allows you to define new classes in terms of older ones. For
example, suppose you are using a third-party library that exports a Printer class, as shown below:

class Printer
{
public:
 /* Constructor, destructor, etc. */

 void setFont(const string& fontName, int size);
 void setColor(const string& color);
 void printDocument(const string& document);
private:
 /* Implementation details */
};

This Printer class exports several formatting functions, plus printDocument, which accepts a string of
the document to print. Let's assume that printDocument is implemented synchronously – that is,
printDocument will not return until the document has finished printing. In some cases this behavior is
fine, but in others it's simply not acceptable. For example, suppose you're writing database software for a
large library and want to give users the option to print out call numbers. Chances are that people using
your software will print call numbers for multiple books and will be irritated if they have to sit and wait
for their documents to finish printing before continuing their search. To address this problem, you decide
to add a new feature to the printer that lets the users enqueue several documents and print them in a
single batch job. That way, users searching for books can enqueue call numbers without long pauses, then
print them all in one operation. However, you don't want to force users to queue up documents and then
do a batch print job at the end – after all, maybe they're just looking for one book – so you want to retain
all of the original features of the Printer class. How can you elegantly solve this problem in software?

Let's consider the above problem from a programming perspective. The important points are:

• We are provided the Printer class from an external source, so we cannot modify the Printer
interface.

• We want to preserve all of the existing functionality from the Printer class.
• We want to extend the Printer class to include extra functionality.

- 450 - Chapter 16: Introduction to Inheritance

This is an ideal spot to use inheritance, a means for defining a new class in terms of an older one. We have
an existing class that contains most of our needed functionality, but we'd like to add some extra features.

Let's define a BatchPrinter class that supports two new functions, enqueueDocument and
printAllDocuments, on top of all of the regular Printer functionality. In C++, we write this as

class BatchPrinter: public Printer // Inherit from Printer
{
public:
 void enqueueDocument(const string& document);
 void printAllDocuments();
private:
 queue<string> documents; // Document queue
};

Here, the class declaration class BatchPrinter: public Printer indicates that the new class
BatchPrinter inherits the functionality of the Printer class. Although we haven't explicitly provided
the printDocument or setFont functions, since those functions are defined in Printer, they are also
part of BatchPrinter. For example:

BatchPrinter myPrinter;
myPrinter.setColor("Red"); // Inherited from Printer
myPrinter.printDocument("This is a document!"); // Same
myPrinter.enqueueDocument("Print this one later."); // Defined in BatchPrinter
myPrinter.printAllDocuments(); // Same

While the BatchPrinter can do everything that a Printer can do, the converse is not true – a Printer
cannot call enqueueDocument or printAllDocuments, since we did not modify the Printer class
interface.

In the above setup, Printer is called a base class of BatchPrinter, which is a derived class. In C++
jargon, the relationship between a derived class and its base class is the is-a relationship. That is, a
BatchPrinter is-a Printer because everything the Printer can do, the BatchPrinter can do as well.
The converse is not true, though, since a Printer is not necessarily a BatchPrinter.

Because BatchPrinter is-a Printer, anywhere that a Printer is expected we can instead provide a
BatchPrinter. For example, suppose we have a function that accepts a Printer object, perhaps to
configure its font rendering, as shown here:

void InitializePrinter(Printer& p);

Then the following code is perfectly legal:

BatchPrinter batch;
InitializePrinter(batch);

Although InitializePrinter expects an argument of type Printer&, we can instead provide it a
BatchPrinter. This operations is well-defined and perfectly safe because the BatchPrinter contains all
of the functionality of a regular Printer. If we temporarily forget about all of the extra functionality
provided by the BatchPrinter class, we still have a good old-fashioned Printer. When working with
inheritance, you can think of the types of arguments to functions as specifying the minimum requirements
for the parameter. A function accepting a Printer& or a const Printer& can take in a object of any type,
provided of course that it ultimately derives from Printer.

Chapter 16: Introduction to Inheritance - 451 -

- 452 - Chapter 16: Introduction to Inheritance

Note that it is completely legal to have several classes inherit from a single base class. Thus, if we wanted
to develop another printer that supported graphics printing in addition to text, we could write the
following class definition:

class GraphicsPrinter: public Printer
{
public:
 /* Constructor, destructor, etc. */
 void printPicture(const Picture& picture); // For some Picture class
private:
 /* Implementation details */
};

Now, GraphicsPrinter can do everything a regular Printer can do, but can also print Picture objects.
Again, GraphicsPrinter is-a Printer, but not vice-versa. Similarly, GraphicsPrinter is not a
BatchPrinter. Although they are both derived classes of Printer, they have nothing else in common.

It sometimes help to visualize the inheritance relations between classes as a tree. We adopt the
convention that if one class derives from another, the first class is represented as a child of the second. We
also label all edges in the tree with arrows pointing from derived classes to base classes. For example,
Printer, BatchPrinter, and GraphicsPrinter are all related as follows:

Runtime Costs of Basic Inheritance

The inheritance scheme outlined above incurs no runtime penalties. Programs using this type of
inheritance will be just as fast as programs not using inheritance.

In memory, a derived class is simply a base class object with its extra data members tacked on the end. For
example, suppose you have the following classes:

class BaseClass
{
private:
 int baseX, baseY;
};

class DerivedClass: public BaseClass
{
private:
 int derX, derY;
};

Then, in memory, a DerivedClass object looks like this:

Printer

BatchPrinter GraphicsPrinter

Chapter 16: Introduction to Inheritance - 453 -

Address 1000 baseX

1004 baseY
<- BaseClass members

1008 derX

1012 derY
<- DerivedClass-specific members

Notice that the first eight bytes of this object are precisely the data members of a BaseClass object. This
is in part the reason that you can treat instances of a derived class as instances of a base class. This in-
memory representation of inheritance is extremely efficient and is one of the reasons that C++ was so
popular in its infancy. Most competing object-oriented languages represented objects with considerably
more complicated structures that required complex pointer lookups, so inheritance in those languages
incurred a steep runtime penalty. C++, on the other hand, supported this simple form of inheritance with
zero overhead.

Inheritance of Interface

The inheritance pattern outlined above uses inheritance to add extensions to existing classes. This is
undoubtedly useful, but does not arise frequently in practice. A different version of inheritance, called
inheritance of interface, is extraordinarily useful in modern programming.

Let's return to the Printer class. Printer exports a printDocument member function that accepts a
string parameter, then sends the string to the printer. One of our other derived classes,
GraphicsPrinter, has a printPicture member function that accepts some sort of Picture object, then
sends the picture to the printer. What if we want to print a document containing a mix of text and pictures
– for example, this course reader? We'd then need to introduce yet another subclass of Printer, perhaps
a MixedTextPrinter, that supports a printMixedText member function that prints a combination of
text and images. While we could continue to use the style of inheritance introduced above, it will quickly
spiral out of control for several reasons. First, each printer can only print out one type of document. That
is, a MixedTextPrinter cannot print out pictures, nor a GraphicsPrinter a mixed-text document. We
could eliminate this problem by writing a single MixedTextAndGraphicsPrinter class, but this too has
its problems if we then introduce another type of object to print (say, a high-resolution photo) that
required its own special printing code. This leads to the second problem, a lack of extensibility. For any
new type of object we want to print, we need to introduce another member function or class capable of
handling that object. In our case this is inconvenient and does not scale well. We need to pick another
plan of attack.

The problem is that everything that might get sent to the printer requires slightly different logic to print
out. Text documents need to apply fonts and formatting transformations, graphics documents need to
convert from some application-specific format into something readable by the printer, and mixed-text
documents need to arrange their text and images into an appropriate layout before processing each piece
individually. But each type of document has one piece of functionality in common. Most printers are
programmed to accept as input a grid of dots representing the document to print. That is, whether you're printing
text or a three-dimensional pie chart, the input to the printer is a grid of pixels representing the dots making up
the image. A text document might end up producing different pixels than a high-resolution photo, but they both
end up as pixels at some point. Provided that we can transform an object in memory into a mess of pixels, we
can send it to the printer.

Consider the following class definition for a GenericBatchPrinter object:

- 454 - Chapter 16: Introduction to Inheritance

class GenericBatchPrinter
{
public:
 /* Constructor, destructor, etc. */

 void enqueueDocument(/* What goes here? */);
 void printAllDocuments();
private:
 /* Implementation details */
};

This GenericBatchPrinter object exports an enqueueDocument function that stores an arbitrary
document in a print queue that can then be printed by calling printAllDocuments. There is one major
question, though: what should the parameter type be? We can print any type of document we can think of,
provided that we can convert it into a grid of pixels. We might be tempted to accept a grid of pixels as a
parameter. This, however, has several drawbacks. First, pixel grids take up a huge amount of memory.
Color printers usually store color information as quadruples of the cyan, magenta, yellow, and black
(CYMK) color components, so a single pixel is usually a four-byte value. If you have a 200 DPI printer and
want to print to an 8.5 x 11" page, you'd need to store around 75kb. That's a lot of memory, and if you
wanted to enqueue a large number of documents this approach might strain or exhaust system resources.
Plus, we don't actually need the pixels until we begin printing, and even then we only need pixel
information for one document at a time. Second, what if later in design we realize that we need extra
information about the print job? For example, suppose we want to implement a printing priority system
where more urgent documents print before less important ones. In this case, we'd need to add an extra
parameter to enqueueDocument representing that priority and all existing code using enqueueDocument
would stop working. Finally, this approach exposes too much of the inner workings of
GenericBatchPrinter to the client. By treating documents as masses of pixels instead of documents, the
GenericBatchPrinter violates some of the fundamental rules of data abstraction.

Let's review these problems:

• The above approach is needlessly memory-intensive by catering to the lowest common
denominator of all possible printable documents.

• The approach limits later extensions by fixing the parameter as an inflexible pixel array.
• The GenericBatchPrinter should work on documents, not pixels.

Is there a language feature that would let us solve all of these problems? The answer is yes. What if we
simply create an object that looks like this:

class Document
{
public:
 /* Constructor, destructor, etc. */

 grid<pixelT> convertToPixelArray() const; // For some struct pixelT
 int getPriority() const;
private:
 /* Implementation details */
};

This Document class exports two functions – convertToPixelArray(), which converts the document
from its current format into a grid<pixelT> of the pixels in the image, and getPriority(), which
returns the relative priority of the document.

Chapter 16: Introduction to Inheritance - 455 -

- 456 - Chapter 16: Introduction to Inheritance

We can now have the enqueueDocument function from GenericBatchPrinter accept a Document as a
parameter. That way, when the GenericBatchPrinter needs to get an array of pixels, it can simply call
convertToPixelArray on any stored Document. Similarly, if the GenericBatchPrinter decides to
implement a priority system, it can use the information provided by the Document's getPriority()
function. Moreover, if later on during implementation we realize that GenericBatchPrinter needs
access to additional information, we can simply add extra member functions to the Document class. While
this still requires us to rewrite code to add these member functions, the actual calls to enqueueDocument
will still work correctly, and the only people who need to modify any code is the Document class
implementer, not the Document class clients.

While this solution might seem elegant, it still has a major problem – how can we write a Document class
that encompasses all of the possible documents we can try to print? The answer is simple: we can't. Using
the language features we've covered so far, it simply isn't possible to solve this problem.

Consider for a minute what form our problem looks like. We need to provide a Document object that
represents a printable document, but we cannot write a single umbrella class representing every
conceivable document. Instead of creating a single Document class, what if we could create several
different Document classes, each of which provided a working implementation of the
convertToPixelArray and getDocumentName functions? That is, we might have a TextDocument class
that stores a string and whose convertToPixelArray converts the string into a grid of pixels
representing that string. We could also have a GraphicsDocument object with member functions like
addCircle or addImage whose convertToPixelArray function generates a graphical representation of
the stored image. In other words, we want to make the Document class represent an interface rather than
an implementation. Document should simply outline what member functions are common to other classes
like GraphicsDocument or TextDocument without specifying how those functions should work. In C++
code, this means that we will rewrite the Document class to look like this:

 class Document
{
public:
 /* Constructor, destructor, etc. */

 virtual int* convertToPixelArray() const = 0;
 virtual string getDocumentName() const = 0;
private:
 /* Implementation details */
};

If you'll notice, we tagged both of the member functions with the virtual keyword, and put an = 0 after
each function declaration. What does this strange syntax mean? The = 0 syntax is an odd bit of C++
syntax that says “this function does not actually exist.” In other words, we've prototyped a function that
we have no intention of ever writing. Why would we ever want to do this? The reason is simple. Because
we've prototyped the function, other pieces of C++ code know what the parameter and return types are for
the convertToPixelArray and getDocumentName functions. However, since there is no meaningful
implementation for either of these functions, we add the = 0 to tell C++ not to expect one.

To understand the virtual keyword, consider this TextDocument class outlined below:

Chapter 16: Introduction to Inheritance - 457 -

class TextDocument: public Document // Inherit from Document
{
public:
 /* Constructor, destructor, etc. */
 virtual grid<pixelT> convertToPixelArray() const; // Has an implementation
 virtual int getPriority() const; // Has an actual implementation

 void setText(const string& text); // Text-specific formatting functions
 void setFont(const string& font);
 void setSize(int size);
private:
 /* Implementation details */
};

This TextDocument class inherits from Document, and although Document has a declaration of the
convertToPixelArray and getPriority functions, TextDocument has specified that it too contains
these functions. They are marked virtual, as in the Document class, but unlike Document's versions of
these functions the TextDocument functions do not have the = 0 notation after them. This indicates that
the functions actually exist and do have implementations. We won't cover how these functions are
implemented since it's irrelevant to our discussion, but because they have actual implementations code
like this is perfectly legal:

TextDocument myDocument;
grid<pixelT> array = myDocument.convertToPixelArray();

We've covered the = 0 notation, but what does the virtual keyword mean? To understand how virtual
works, consider the following code snippet:

TextDocument* myDocument = new TextDocument;
grid<pixelT> array = myDocument->convertToPixelArray();

This code should not be at all surprising – we've just rewritten the above code using a pointer to a
TextDocument rather than a stack-based TextDocument. However, consider this code snippet below:

Document* myDocument = new TextDocument; // Note: pointer is a Document *
grid<pixelT> array = myDocument->convertToPixelArray();

This code looks similar to the above code but represents a fundamentally different operation. In the first
line, we allocate a new TextDocument object, but store it in a pointer of type Document *. Initially, this
might seem nonsensical – pointers of type Document * should only be able to point to objects of type
Document. However, because TextDocument is a derived class of Document, TextDocument is-a
Document. The is-a relation applies literally here – since TextDocument is-a Document, we can point to
objects of type TextDocument using pointers of type Document *.

Even if we can point to objects of type TextDocument with objects of type Document *, why is the line
myDocument->convertToPixelArray() legal? As mentioned earlier, the Document class definition says
that Document does not have an implementation of convertToPixelArray, so it seems like this code
should not compile. This is where the virtual keyword comes in. Since we marked
convertToPixelArray virtual, when we call the convertToPixelArray function through a Document
* object, C++ will call the function named convertToPixelArray for the class that's actually being
pointed at, not the convertToPixelArray function defined for objects of the type of the pointer. In this
case, since our Document * is actually pointing at a TextDocument, the call to convertToPixelArray
will call the TextDocument's version of convertToPixelArray.

- 458 - Chapter 16: Introduction to Inheritance

Chapter 16: Introduction to Inheritance - 459 -

The above approach to the problem is known as polymorphism. We define a base class (in this case
Document) that exports several functions marked virtual. In our program, we pass around pointers to
objects of this base class, which may in fact be pointing to a base class object or to some derived class.
Whenever we make member function calls to the virtual functions of the base class, C++ figures out at
runtime what type of object is being pointed at and calls its implementation of the virtual function.

Let's return to our GenericBatchPrinter class, which now in its final form looks something like this:

class GenericBatchPrinter
{
public:
 /* Constructor, destructor, etc. */

 void enqueueDocument(Document* doc);
 void printAllDocuments();
private:
 queue<Document *> documents;
};

Our enqueueDocument function now accepts a Document *, and its private data members include an STL
queue of Document *s. We can now implement enqueueDocument and printAllDocuments using code
like this:

void GenericBatchPrinter::enqueueDocument(Document* doc)
{
 documents.push(doc); // Recall STL queue uses push instead of enqueue
}

void GenericBatchPrinter::printAllDocuments()
{
 /* Print all enqueued documents */
 while(!documents.empty())
 {
 Document* nextDocument = documents.front();
 documents.pop(); // Recall STL queue requires explicit pop operation

 sendToPrinter(nextDocument->convertToPixelArray());
 delete nextDocument; // Assume it was allocated with new
 }
}

The enqueueDocument function accepts a Document * and enqueues it in the document queue, and the
printAllDocuments function continuously dequeues documents, converts them to pixel arrays, then
sends them to the printer. But while this above code might seem simple, it's actually working some
wonders behind the scenes. Notice that when we call nextDocument->convertToPixelArray(), the
object pointed at by nextDocument could be of any type derived from Document. That is, the above code
will work whether we've enqueued TextDocuments, GraphicsDocuments, or even
MixedTextDocuments. Moreover, the GenericBatchPrinter class does not even need to know of the
existence of these types of documents; as long as GenericBatchPrinter knows the generic Document
interface, C++ can determine which functions to call. This is the main strength of inheritance – we can
write code that works with objects of arbitrary types by identifying the common functionality across those
types and writing code solely in terms of these operations.

- 460 - Chapter 16: Introduction to Inheritance

Virtual Functions, Pure Virtual Functions, and Abstract Classes

In the above example with the Document class, we defined Document as

class Document
{
public:
 /* Constructor, destructor, etc. */

 virtual grid<pixelT> convertToPixelArray() const = 0;
 virtual string getDocumentName() const = 0;
private:
 /* Implementation details */
};

Here, all of the Document member functions are marked virtual and have the = 0 syntax to indicate that
the functions are not actually defined. Functions marked virtual with = 0 are called pure virtual
functions and represent functions that exist solely to define how other pieces of C++ code should interact
with derived classes.*

Classes that contain pure virtual functions are called abstract classes. Because abstract classes contain
code for which there is no implementation, it is illegal to directly instantiate abstract classes. In the case of
our document example, this means that both of the following are illegal:

Document myDocument; // Error!
Document* myDocument = new Document; // Error!

Of course, it's still legal to declare Document * variables, since those are pointers to abstract classes
rather than abstract classes themselves.

A derived class whose base class is abstract may or may not implement all of the pure virtual functions
defined in the base class. If the derived class does implement each function, then the derived class is non-
abstract (unless, of course, it introduces its own pure virtual functions). Otherwise, if there is at least one
pure virtual function declared in the base class and not defined in the derived class, the derived class itself
will be an abstract class.

There is no requirement that functions marked virtual be pure virtual functions. That is, you can
provide virtual functions that have implementations. For example, consider the following class
representing a roller-blader:

class RollerBlader
{
public:
 /* Constructor, destructor, etc. */

 virtual void slowDown(); // Virtual, not pure virtual
private:
 /* Implementation details */
};

* Those of you familiar with inheritance in other languages like Java might wonder why C++ uses the awkward = 0
syntax instead of a clearer keyword like abstract or pure. The reason was mostly political. Bjarne Stroustrup
introduced pure virtual functions to the C++ language several weeks before the planned release of the next set of
revisions to C++. Adding a new keyword would have delayed the next language release, so to ensure that C++ had
support for pure virtual functions, he chose the = 0 syntax.

Chapter 16: Introduction to Inheritance - 461 -

void RollerBlader::slowDown() // Implementation doesn't have virtual keyword
{
 applyBrakes();
}

Here, slowDown is implemented as a virtual function that is not pure virtual. In the implementation of
slowDown, you do not repeat the virtual keyword, and for all intents and purposes treat slowDown as a
regular C++ function. Now, suppose we write a InexperiencedRollerBlader class, as shown here:

class InexperiencedRollerBlader: public RollerBlader
{
public:
 /* Constructor, destructor, etc. */

 virtual void slowDown();
private:
 /* Implementation details */
};

void InexperiencedRollerBlader::slowDown()
{
 fallDown();
}

This InexperiencedRollerBlader class provides its own implementation of slowDown that calls some
fallDown function.* Now, consider the following code snippet:

RollerBlader* blader = new RollerBlader;
blader->slowDown();

RollerBlader* blader2 = new InexperiencedRollerBlader;
blader2->slowDown();

In both cases, we call the slowDown function through a pointer of type RollerBlader *, so C++ will call
the version of slowDown for the class that's actually pointed at. In the first case, this will call the
RollerBlader's version of slowDown, which calls applyBrakes. In the second, since blader2 points to
an InexperiencedRollerBlader, the slowDown call will call InexperiencedRollerBlader's
slowDown function, which then calls fallDown. In general, when calling a virtual function, C++ will invoke
the version of the function that corresponds to the most derived implementation available in the object
being pointed at. Because the InexperiencedRollerBlader implementation of slowDown replaces the
base class version, InexperiencedRollerBlader's implementation slowDown is said to override
RollerBlader's.

When inheriting from non-abstract classes that contain virtual functions, there is no requirement to
provide your own implementation of the virtual functions. For example, a StuntRollerBlader might be
able to do tricks a regular RollerBlader can't, but still slows down the same way. In code we could write
this as

class StuntRollerBlader: public RollerBlader
{
public:
 /* Note: no mention of slowDown */
 void backflip();
 void tripleAxel();

* Of course, this is not based on personal experience.

- 462 - Chapter 16: Introduction to Inheritance

};

If we then were to write code that used StuntRollerBlader, calling slowDown would invoke
RollerBlader's version of slowDown since it is the most derived implementation of slowDown available
to StuntRollerBlader. For example:

RollerBlader* blader = new StuntRollerBlader;
blader->slowDown(); // Calls RollerBlader::slowDown

Similarly, if we were to create a class TerriblyInexperiencedRollerBlader that exports a panic
function but no slowDown function, as shown here:

class TerriblyInexperiencedRollerBlader: public InexperiencedRollerBlader
{
public:
 /* Note: no reference to slowDown */
 void panic();
};

Then the following code will invoke InexperiencedRollerBlader::slowDown, causing the roller blader
to fall down:

RollerBlader* blader = new TerriblyInexperiencedRollerBlader;
blader->slowDown();

In this last example we wrote a class that derived from a class which itself was a derived class. This is
perfectly legal and arises commonly in programming practice.

A Word of Warning

Consider the following two classes:

class NotVirtual
{
public:
 void notAVirtualFunction();
};

class NotVirtualDerived: public NotVirtual
{
public:
 void notAVirtualFunction();
};

Here, the base class NotVirtual exports a function called notAVirtualFunction and its derived class,
NotVirtualDerived, also provides a notAVirtualFunction function. Although these functions have
the same name, since notAVirtualFunction is not marked virtual, the derived class version does not
replace the base class version. Consider this code snippet:

NotVirtual* nv = new NotVirtualDerived;
nv->notAVirtualFunction();

Here, since NotVirtualDerived is-a NotVirtual, the above code will compile. However, since
notAVirtualFunction is (as its name suggests) not a virtual function, the above code will call the
NotVirtual version of notAVirtualFunction, not NotVirtualDerived's notAVirtualFunction.

Chapter 16: Introduction to Inheritance - 463 -

- 464 - Chapter 16: Introduction to Inheritance

If you want to let derived classes override functions in a base class, you must mark the base class's
function virtual. Otherwise, C++ won't treat the function call virtually and will always call the version of
the function associated with the type of the pointer. For example:

NotVirtual* nv = new NotVirtualDerived;
nv->notAVirtualFunction(); // Calls NotVirtual::notAVirtualFunction()

NotVirtualDerived *nv2 = new NotVirtualDerived;
nv2->notAVirtualFunction(); // Calls NotVirtualDerived::notAVirtualFunction();

In general, it is considered bad programming practice to have a derived class implement a member
function with the same name as a non-virtual function in its base class. Doing so leads to the sorts of odd
behavior shown above and is an easy source of errors.

The protected Access Specifier

Let's return to the Document class from earlier in the chapter. Suppose that while designing some of the
Document subclasses, we note that every single subclass ends up having a width and height field. To
minimize code duplication, we decide to move the width and height fields from the derived classes into
the Document base class. Since we don't want Document class clients directly accessing these fields, we
decide to mark them private, as shown here:

class Document
{
public:
 /* Constructor, destructor, etc. */

 virtual grid<pixelT> convertToPixelArray() const = 0;
 virtual string getDocumentName() const = 0;
private:
 int width, height; // Warning: slight problem here
};

However, by moving width and height into the Document base class, we've accidentally introduced a
problem into our code. Since width and height are private, even though TextDocument and the other
subclasses inherit from Document, the subclasses will not be able to access the width and height fields.
We want the width and height fields to be accessible only to the derived classes, but not to the outside
world. Using only the C++ we've covered up to this point, this is impossible. However, there is a third
access specifier beyond public and private called protected that does exactly what we want. Data
members and functions marked protected, like private data members, cannot be accessed by class
clients. However, unlike private variables, protected functions and data members are accessible by
derived classes.

protected is a useful access specifier that in certain circumstances can make your code quite elegant.
However, you should be very careful when granting derived classes protected access to data members.
Like public data members, using protected data members locks your classes into a single
implementation and can make code changes down the line difficult to impossible. Make sure that marking
a data member protected is truly the right choice before proceeding. However, marking member
functions protected is a common programming technique that lets you export member functions only
usable by derived classes. We will see an example of protected member functions later in this chapter.

Chapter 16: Introduction to Inheritance - 465 -

Virtual Destructors

An important topic we have ignored so far is virtual destructors. Consider the following two classes:

class BaseClass
{
public:
 BaseClass();
 ~BaseClass();
};

class DerivedClass: public BaseClass
{
public:
 DerivedClass();
 ~DerivedClass();
private:
 char* myString;
};

DerivedClass::DerivedClass()
{
 myString = new char[128]; // Allocate some memory
}

DerivedClass::~DerivedClass()
{
 delete [] myString; // Deallocate the memory
}

Here, we have a trivial constructor and destructor for BaseClass. DerivedClass, on the other hand, has
a constructor and destructor that allocate and deallocate a block of memory. What happens if we write the
following code?

BaseClass* myClass = new DerivedClass;
delete myClass;

Intuitively, you'd think that since myClass points to a DerivedClass object, the DerivedClass
destructor would invoke and clean up the dynamically-allocated memory. Unfortunately, this is not the
case. The myClass pointer is statically-typed as a BaseClass * but points to an object of type
DerivedClass, so delete myClass results in undefined behavior. The reason for this is that we didn't let
C++ know that it should check to see if the object pointed at by a BaseClass * is really a DerivedClass
when calling the destructor. Undefined behavior is never a good thing, so to fix this we mark the
BaseClass destructor virtual. Unlike the other virtual functions we've encountered, though, derived
class destructors do not replace the base class destructors. Instead, when invoking a destructor virtually,
C++ will first call the derived class destructor, then the base class destructor. We thus change the two class
declarations to look like this:

class BaseClass
{
public:
 BaseClass();
 virtual ~BaseClass();
};

- 466 - Chapter 16: Introduction to Inheritance

class DerivedClass: public BaseClass
{
public:
 DerivedClass();
 ~DerivedClass();
private:
 char *myString;
};

There is one more point to address here, the pure virtual destructor. Because virtual destructors do not act
like regular virtual functions, even if you mark a destructor pure virtual, you must still provide an
implementation. Thus, if we rewrote BaseClass to look like

class BaseClass
{
public:
 BaseClass();
 virtual ~BaseClass() = 0;
};

We'd then need to write a trivial implementation for the BaseClass destructor, as shown here:

BaseClass::~BaseClass()
{
 // Do nothing
}

This is an unfortunate language quirk, but you should be aware of it since this will almost certainly come
up in the future.

Runtime Costs of Virtual Functions

Virtual functions are incredibly useful and syntactically concise, but exactly how efficient are they? After
all, a virtual function call invokes one of many possible functions, and somehow the compiler has to
determine which version of the function to call. There could be an arbitrarily large number of derived
classes overriding the particular virtual function, so a naïve switch statement that checks the type of the
object would be prohibitively expensive. Fortunately, most C++ compilers use a particularly clever
implementation of virtual functions that, while slower than regular function calls, are much faster than
what you may have initially expected. Consider the following classes:

class BaseClass
{
public:
 virtual ~BaseClass() {} // Polymorphic classes need virtual destructors
 virtual void doSomething();
private:
 int baseX, baseY;
};

class DerivedClass: public BaseClass
{
public:
 virtual void doSomething(); // Override BaseClass version
private:
 int derX, derY;
};

Chapter 16: Introduction to Inheritance - 467 -

Then the in-memory representation of a DerivedClass object looks like this:

Address 1000 vtable*

1004 baseX

1008 baseY

<- BaseClass members

1012 derX

1016 derY
<- DerivedClass-specific members

As before, we see the BaseClass members followed by the DerivedClass members, but there is now
another piece of data in this object: the vtable*, or vtable-pointer. This vtable-pointer is a pointer to the
virtual function table. Whenever you create a class containing one or more virtual functions, C++ will
create a table containing information about that class that includes metadata about the class along with a
list of function pointers for each of the virtual functions in that class. For example, here's a diagram of a
BaseClass object, a DerivedClass object, and their respective virtual function tables:

The virtual function table for BaseClass begins with metadata about the BaseClass type, then has two
function pointers – one for the BaseClass destructor and one for BaseClass's implementation of
doSomething. The DerivedClass virtual function table similarly contains information about
DerivedClass, as well as function pointers for the destructor and doSomething member functions. If
you'll notice, the virtual function tables for BaseClass and DerivedClass have the member functions
listed in the same order, with the destructor first and then doSomething. This allows C++ to invoke
virtual functions quickly and efficiently. Suppose that we have the following code:

BaseClass* myPtr = RandomChance(0.5)? new BaseClass : new DerivedClass;
myPtr->doSomething();
delete myPtr;

vtable*

baseX

baseY

BaseClass
Metadata

destructor Code for
BaseClass destructor

Code for
BaseClass::doSomething

doSomething

BaseClass
Object

vtable*

baseX

baseY

DerivedClass
Metadata

destructor Code for
DerivedClass destructor

Code for
DerivedClass::doSomething

doSomething

DerivedClass
Object

derX

derY

- 468 - Chapter 16: Introduction to Inheritance

We assign a random object to myPtr that is either a BaseClass or a DerivedClass using the
RandomChance function we wrote in the chapter on Snake. We then invoke the doSomething member
function on the object and then delete it. To implement this functionality, the C++ compiler compiles the
second two lines into machine code that performs the following operations:

// myPtr->doSomething();
1. Look at the first four bytes of the object pointed at by myPtr; this is the vtable* for the object.
2. Follow the vtable* and retrieve the second function pointer from the table; this corresponds to

doSomething.
3. Call this function.

// delete myPtr;
1. Look at the first four bytes of the object pointed at by myPtr.
2. Follow the vtable* and retrieve the first function pointer from the table; this corresponds to the

destructor.
3. Call this function.
4. Deallocate the memory pointed at by myPtr.

This sequence of commands can be executed quickly and is efficient no matter how many subclasses of
BaseClass exist. If there are millions of derived classes, this code still only has to make a single lookup
through the virtual function table to call the proper function.

Although this above implementation of virtual function calls is considerably more efficient than a naïve
approach, it is still noticeably slower than a regular function call because of the necessary virtual function
table lookups. This extra overhead is the reason that C++ requires you to explicitly mark member
functions you want to treat polymorphically virtual – if all functions were called this way, you would pay
a performance hit irrespective of whether you actually used inheritance, a violation of the zero-overhead
principle.

Invoking Virtual Member Functions Non-Virtually

From time to time, you will need to be able to explicitly invoke a base class's version of a virtual function.
For example, suppose that you're designing a HybridCar that's a specialization of Car, both of which are
defined below:

class Car
{
public:
 virtual ~Car(); // Polymorphic classes need virtual destructors
 virtual void applyBrakes();
 virtual void accelerate();
};

class HybridCar: public Car
{
public:
 virtual void applyBrakes();
 virtual void accelerate();
private:
 void chargeBattery();
 void dischargeBattery();
};

Chapter 16: Introduction to Inheritance - 469 -

The HybridCar is exactly the same as a regular car, except that whenever a HybridCar slows down or
speeds up, the HybridCar charges and discharges its electric motor to conserve fuel. We want to
implement the applyBrakes and accelerate functions inside HybridCar such that they perform exactly
the same tasks as the Car's version of these functions, but in addition perform the extra motor
management.

Initially, we might consider implementing these functions like this:

void HybridCar::applyBrakes()
{
 applyBrakes(); // Uh oh...
 chargeBattery();
}

void HybridCar::accelerate()
{
 accelerate(); // Uh oh...
 dischargeBattery();
}

The above code is well-intentioned but incorrect. At a high level, we want to have the hybrid car accelerate
or apply its brakes by doing whatever a regular car does, then managing the motor. As written, though,
these functions will cause a stack overflow, since the calls to applyBrakes() and accelerate()
recursively invoke the HybridCar's versions of these functions over and over. Since this doesn't work,
what other approaches might we try? First, we could simply copy and paste the code from the Car class
into the HybridCar class. This should cause you to cringe – a good solution to a problem should never
involve copying and pasting code! More concretely, though, this approach has several problems. First, if
we change the implementation of accelerate() or applyBrakes() in the Car class, we have to
remember to make the same changes inside HybridCar. If we forget to do so, the code will compile but
will be incorrect. Moreover, if the implementation of accelerate() or applyBrakes() in the Car class
reference private data members or member functions of Car, the resulting code will be illegal. This clearly
isn't the right way to solve this problem. What other options are available?

A second idea is to factor out the code for applyBrakes and accelerate into protected, non-virtual
functions of the Car class. For example:

class Car
{
public:
 virtual ~Car();
 virtual void applyBrakes() { doApplyBrakes(); }
 virtual void accelerate() { doAccelerate(); }
protected:
 void doApplyBrakes(); // Non-virtual function that actually slows down.
 void doAccelerate(); // Non-virtual function that actually accelerates.
};

class HybridCar: public Car
{
public:
 virtual void applyBrakes() { doApplyBrakes(); chargeBattery(); }
 virtual void accelerate() { doAccelerate(); dischargeBattery(); }
private:
 void chargeBattery();
 void dischargeBattery();
};

- 470 - Chapter 16: Introduction to Inheritance

Here, the virtual functions applyBrakes and accelerate are wrapped calls to non-virtual, protected
functions written in the base class. To implement the derived versions of applyBrakes and accelerate,
we can simply call these functions.

This approach is stylistically pleasing. The code that's common to applyBrakes and accelerate is
factored out into helper member functions, so changes to one function appear in the other. But there's one
minor problem with this approach: this solution only works if we can modify the Car class. In small
projects this shouldn't be a problem, but if these classes are pieces in a much larger system the code may
be off-limits – maybe it's being developed by another team, or perhaps it's been compiled into a program
that expects the class definition to precisely match a specific pattern. This idea is clearly on the right track,
but in some cases cannot work.

The optimal solution to this conundrum, however, is to simply have the HybridCar's implementations of
these functions directly call the versions of these functions defined in Car. When calling a virtual function
through a pointer or reference, C++ ensures that the function call will “fall down” to the most derived
class's implementation of that function. However, we can force C++ to call a specific version of a virtual
function by calling it using the function's fully-qualified name. For example, consider this version of the
HybridCar's version of applyBrakes:

void HybridCar::applyBrakes()
{
 Car::applyBrakes(); // Call Car's version of applyBrakes, no polymorphism
 chargeBattery();
}

The syntax Car::applyBrakes instructs C++ to call the Car class's version of applyBrakes. Even though
applyBrakes is virtual, since we've used the fully-qualified name, C++ will not resolve the call at runtime
and we are guaranteed to invoke Car's version of the function. We can write an accelerate function for
HybridCar similarly.

When using the fully-qualified-name syntax, you're allowed to access any superclass's version of the
function, not just the direct ancestor. For example, if Car were derived from the even more generic class
FourWheeledVehicle that itself provides an applyBrakes method, we could invoke that version from
HybridCar by writing FourWheeledVehicle::applyBrakes(). You can also use the fully-qualified
name syntax as a class client, though it is rare to see this in practice.

Object Initialization in Derived Classes

Recall from several chapters ago that class construction proceeds in three steps – allocating space to hold
the object, calling the constructors of all data members, and invoking the object constructor. While this
picture is mostly correct, it omits an important step – initialization of base classes. Let's suppose we have
the following classes:

Chapter 16: Introduction to Inheritance - 471 -

class Base
{
public:
 Base() : myInt(137), myString("Base string") {}
 virtual ~Base();
private:
 int myInt;
 string myString;
};

class Derived: public Base
{
private:
 vector<int> myVector;
};

Because we have not defined a constructor for Derived, C++ will automatically supply it with a default,
zero-argument constructor that invokes the default constructor of the Base object. To see what this
means, let's trace through the construction of a new Derived object. First, C++ gives the object a block of
uninitialized memory with enough space to hold all of the parts of the Derived. This memory looks
something like this:

At this point, C++ will initialize the Base class using its default constructor. Similarly, if Base has any
parent classes, those parent classes would also be initialized. After this step, the object now looks like this:

int myInt 137

string myString
Length: 11
Text: "Base String"

vector<int> myVector Size: ???
Elements: ???

Base Data Members

From this point forward, construction will proceed as normal.

- 472 - Chapter 16: Introduction to Inheritance

By default, derived class constructors invoke the default constructor for their base classes, or a zero-
argument constructor if one has explicitly been defined. This is often, but not always, the desired behavior
for a class. But what if you want to invoke a different constructor? For example, let's return to the Car
example from earlier in this chapter. Suppose that Car exports a single constructor that accepts a string
encoding the license number. For example:

class Car
{
public:
 explicit Car(const string& licenseNum) : license(licenseNum) {}
 virtual ~Car() {}

 virtual void accelerate();
 virtual void applyBrakes();
private:
 const string license;
};

Because Car no longer has a default constructor, the previous definition of HybridCar will cause a
compile-time error because the HybridCar constructor cannot call the nonexistent default constructor for
Car. How can we tell HybridCar to invoke the Car constructor with the proper arguments? The answer
is similar to how we would construct a data member with a certain value – we use the initializer list. Here
is a modified version of the HybridCar class that correctly initializes its Car base class:

class HybridCar: public Car
{
public:
 explicit HybridCar(const string& license) : Car(license) {}
 virtual void applyBrakes();
 virtual void accelerate();
private:
 void chargeBattery();
 void dischargeBattery();
};

Note that when using initializer lists to initialize base classes, you are only allowed to specify the names of
direct base classes. As an example, suppose that we want to create a class called
ExperimentalHybridCar that is similar to a HybridCar except that it contains extra instrumentation to
monitor the state of the motor. Because ExperimentalHybridCar represents a prototype car, the car
does not have a license plate, and so we want to communicate the string “None” up to Car to represent this
information. Then if we define the ExperimentalHybridCar class as follows:

class ExperimentalHybridCar: public HybridCar
{
public:
 ExperimentalHybridCar();
 virtual void applyBrakes();
 virtual void accelerate();
};

It would be illegal to define the constructor as follows:

/* Note: This is not legal C++! */
ExperimentalHybridCar::ExperimentalHybridCar() : Car("None")
{
}

Chapter 16: Introduction to Inheritance - 473 -

The problem with this code is that Car is an indirect base class of ExperimentalHybridCar and thus
cannot be initialized from the ExperimentalHybridCar initializer list. The reason for this is simple.
ExperimentalHybridCar inherits from HybridCar, which itself inherits from Car. What would happen
if both HybridCar and ExperimentalHybridCar each tried to initialize Car in their initializer lists?
Which constructor should take precedence? If it's HybridCar, then the initializer list for
ExperimentalHybridCar would be ignored, leading to misleading code. If it's
ExperimentalHybridCar, then if HybridCar needs to call the Car constructor with particular
arguments, those arguments would be ignored and HybridCar might not be initialized correctly. To avoid
this sort of confusion, C++ only lets you initialize direct base classes. Thus the proper version of the
ExperimentalHybridCar constructor is as follows:

/* Tell HybridCar to initialize itself with the string "None" */
ExperimentalHybridCar::ExperimentalHybridCar() : HybridCar("None")
{
}

Since HybridCar forwards its constructor argument up to Car, this ends up producing the correct
behavior.

Virtual Functions in Constructors

Let's take a quick look back at class construction for derived classes. If you'll recall, base classes are
initialized before any of the derived class data members are set up. This means that there is a small
window when the base class constructor executes where the base class is fully set up, but nothing in the
derived class has yet been initialized. If the base class constructor could somehow access the data
members of the derived class, it would read uninitialized memory and almost certainly crash the program.
But this seems impossible – after all, the base class has no idea what's deriving from it, so how could it
access any of the derived class's data members? Unfortunately, there is one way – virtual functions.
Suppose the base class contains a virtual function and that one of the derived classes overrides that
function to read a data member of the derived class. If the base class calls the virtual function in its
constructor, it would be able to read the uninitialized value, causing a potential program crash.

The designers of C++ were well-aware of this edge case, and to prevent this error from occurring they
added a restriction on the behavior of virtual function calls inside constructors. If you invoke a virtual
function inside a class constructor, the function is not invoked polymorphically. That is, the virtual
function call will always call the version of the function appropriate for the type of the base class rather
than the type of the derived class. To see this in action, consider the following code:

class Base
{
public:
 Base()
 {
 fn();
 }
 virtual void fn()
 {
 cout << "Base" << endl;
 }
};

- 474 - Chapter 16: Introduction to Inheritance

class Derived: public Base
{
public:
 virtual void fn()
 {
 cout << "Derived" << endl;
 }
};

Here, the Base constructor invokes its virtual function fn. While normally you would expect that this
would invoke Derived's version of fn, since we're inside the body of the Base constructor, the code will
execute Base's version of fn, which prints out “Base” instead of the expected “Derived.” Cases where you
would invoke a virtual function in a constructor are rare, but if you plan on doing so remember that it will
not behave as you might expect.

Everything we've discussed in this section has focused on class constructors, but these same restrictions
apply to class destructors as well. C++ destructs classes from the outside inward, cleaning up derived
classes before base classes, and if virtual functions were treated polymorphically inside destructors it
would be possible to access data members of a derived class after they'd already been cleaned up.

Copy Constructors and Assignment Operators for Derived Classes

Copy constructors and assignment operators are complicated beasts that are even more perilous when
mixed with inheritance. In particular, you must make sure to invoke the copy constructor and assignment
operator for any base classes in addition to any other behavior. As an example, consider the following
base class, which has a well-defined copy constructor and assignment operator:

class Base
{
public:
 Base();
 Base(const Base& other);
 Base& operator= (const Base& other);
 virtual ~Base();
private:
 /* ... implementation specific ... */
};

Now, consider the following derived class:

class Derived: public Base
{
public:
 Derived();
 Derived(const Derived& other);
 Derived& operator= (const Derived& other);
 virtual ~Derived();
private:
 char* theString; // Store a C string
 void copyOther(const Derived& other);
 void clear();
};

Using the template outlined in the chapter on copy functions, we might write the following code for the
Derived assignment operator and copy constructor:

Chapter 16: Introduction to Inheritance - 475 -

/* Generic "copy other" member function. */
void Derived::copyOther(const Derived& other)
{
 theString = new char[strlen(other.theString) + 1];
 strcpy(theString, other.theString);
}

/* Clear-out member function. */
void Derived::clear()
{
 delete [] theString;
 theString = NULL;
}

/* Copy constructor. */
Derived::Derived(const Derived& other) // Wrong!
{
 copyOther(other);
}

/* Assignment operator. */
Derived& Derived::operator= (const Derived& other) // Wrong!
{
 if(this != &other)
 {
 clear();
 copyOther(other);
 }
 return *this;
}

Initially, it seems like this code should work, but, alas, it is seriously flawed. During this copy operation,
we never instructed C++ to copy over the data from other's base class into the receiver object's base class.
As a result, we'll end up with half-copied data, where the data specific to Derived is correctly cloned but
Base's data hasn't changed. To see this visually, if we have two objects of type Derived that look like this:

After invoking the copy functions implemented above, the objects would end up in this state:

We now have a partially-copied object, which will almost certainly crash at some point down the line.

one's Base

two's
Derived

two's Base

two's
Derived

one's Base

one's
Derived

two's Base

two's
Derived

- 476 - Chapter 16: Introduction to Inheritance

When writing assignment operators and copy constructors for derived classes, you must make sure to
manually invoke the assignment operators and copy constructors for base classes to guarantee that the
object is fully-copied. Fortunately, this is not particularly difficult. Let's first focus on the copy constructor.
Somehow, we need to tell the receiver's base object that it should initialize itself as a copy of the
parameter's base object. Because Derived is-a Base, so we can pass the parameter to the Derived copy
constructor as a parameter to Base's copy constructor inside the initializer list. The updated version of
the Derived copy constructor looks like this:

/* Copy constructor. */
Derived::Derived(const Derived &other) : Base(other) // Correct
{
 copyOther(other);
}

The code we have so far for the assignment operator correctly clears out the Derived part of the Derived
class, but leaves the Base portion untouched. How should we go about assigning the Base part of the
receiver object the Derived part of the parameter? Simple – we'll invoke the Base's assignment operator
and have Base do its own copying work. The code for this is a bit odd and is shown below:

/* Assignment operator. */
Derived& Derived::operator= (const Derived &other)
{
 if(this != &other)
 {
 clear();
 Base::operator= (other); // Invoke the assignment operator from Base.
 copyOther(other);
 }
 return *this;
}

Here we've inserted a call to Base's assignment operator using the full name of the operator = function.
This is one of the rare situations where you will need to use the full name of an overloaded operator. In
case you're curious why just writing *this = other won't work, remember that this calls Derived's
version of operator =, causing infinite recursion.

All of the above discussion has assumed that your classes require their own assignment operator and copy
constructor. However, if your derived class does not contain any data members that require manual
copying and assignment (for example, a derived class that simply holds an int), none of the above code
will be necessary. C++'s default assignment operator and copy constructor automatically invoke the
assignment operator and copy constructor of any base classes, which is exactly what you'd want it to do.

Disallowing Copying

Using inheritance, it's possible to elegantly and concisely disallow copying for objects of a certain type. As
mentioned above, a class's default copy constructor and assignment operator automatically invoke the
copy constructor and assignment operator for any base classes. But what if for some reason the derived
class can't call those functions? For example, suppose that we have the following class:

Chapter 16: Introduction to Inheritance - 477 -

class Uncopyable
{
public:
 /* ... */
private:
 Uncopyable(const Uncopyable&);
 Uncopyable& operator= (const Uncopyable&);
};

As mentioned in the chapter on copy constructors and assignment operators, this class cannot be copied
because the copy constructor and assignment operator are marked private. What will happen if we then
create a class that inherits from Uncopyable, as shown here:

class MyClass: public Uncopyable
{
 /* ... */
};

Let's assume that MyClass does not explicitly declare a copy constructor or assignment operator. This
will cause C++ to try to create a default implementation for these functions. In the process of doing so, the
compiler will realize that it needs to call the copy constructor and assignment operator of Uncopyable.
But these functions are private, meaning that the derived class MyClass can't access them. Rather than
reporting this as an error, instead the compiler doesn't create default implementations of these functions.
This means that MyClass has no copy constructor or assignment operator, not even default
implementations, and thus can't be copied or assigned. We've successfully disallowed copying!

However, by inheriting from Uncopyable, we've introduced some undesirable behavior. It is now legal for
clients of MyClass to treat MyClass as though it were an Uncopyable, as shown here:

MyClass* mc = new MyClass;
Uncopyable* uPtr = mc;

This is unfortunate, since Uncopyable is an implementation detail of MyClass, not a supertype.

We are now in a rather interesting situation. We want to absorb the functionality provided by another
class, but don't want to make our type a subtype of that class in the process. In other words, we want to
absorb an implementation without its corresponding interface. Fortunately, using a technique called
private inheritance, we can express this notion precisely.

So far, the inheritance you have seen has been public inheritance. When a class publicly inherits from a
base class, it absorbs the public interface of the base class along with any implementations of the functions
in that interface. In private inheritance, a derived class inherits from a base class solely to acquire its
implementation. While the derived class retains the implementation of all public member functions from
the base class, those functions become private in the derived class. For example, given these two classes:

class Base
{
public:
 void doSomething();
};

class Derived: private Base
{
 /* ... */
};

- 478 - Chapter 16: Introduction to Inheritance

Chapter 16: Introduction to Inheritance - 479 -

The following code is illegal:

Derived d;
d.doSomething(); // Error

Even though doSomething was declared public in Base, because Derived inherits privately from Base
the doSomething member function is private.

Additionally, private inheritance does not define a subtyping relationship. That is, the following code is
illegal:

Base* ptr = new Derived; // Error

While public inheritance models the is-a relationship, private inheritance represents the is-implemented-
in-terms-of relationship. For example, we might use private inheritance to implement a stack in terms of
a deque, since a stack's entire functionality can be expressed through proper calls to push_front,
front, and pop_front. This is shown here for a stack of integers:

class stack: private deque<int>
{
public:
 void push(int val)
 {
 push_front(val); // Calls deque<int>::push_front.
 }
 int pop()
 {
 const int result = front();
 pop_front();
 return result;
 }
 /* ... etc. ... */
};

Notice that push is implemented as a call to the deque's push_front function, while pop is implemented
through a series of calls to front and pop_front. Because we privately inherited from deque<int>, our
class contains an implementation of all of the deque's member functions, and it is as if we have our own
private copy of a deque that we can work with.

Public and private inheritance are designed for entirely different purposes. We use public inheritance to
design a collection of classes logically related to each other by some common behaviors. Private
inheritance, on the other hand, is an implementation technique used to define one class's behaviors in
terms of another's. One way to remember the difference between public and private inheritance is to
recognize that they play entirely different roles in class design. Public inheritance is used during the
design of a class interface (determining what behaviors the class should provide), while private
inheritance is used during design of a class implementation (how those behaviors should be performed).
This parallels the difference between a function prototype and a function definition – public inheritance
defines a set of prototypes, while private inheritance provides implementations.

Private inheritance is not frequently encountered in practice because the is-implemented-in-terms-of
relationship can be modeled more clearly through composition. If we wanted to implement a stack in
terms of a deque, instead of using private inheritance, we could just have the stack contain a deque as a
data member, as shown here:

- 480 - Chapter 16: Introduction to Inheritance

Chapter 16: Introduction to Inheritance - 481 -

class stack
{
public:
 void push(int val)
 {
 implementation.push_front(val);
 }
 int pop()
 {
 const int result = implementation.front();
 implementation.pop_front();
 return result;
 }
 /* ... etc. ... */
private:
 deque<int> implementation;
};

In practice it is recommended that you shy away from private inheritance in favor of this more explicit
form of composition. However, there are several cases where private inheritance is precisely the tool for
the job. Let's return to our discussion of the Uncopyable class. Recall that to make a class uncopyable, we
had it publically inherit from a class Uncopyable that has its copy functions marked private. This led to
problems where we could convert an object that inherited from Uncopyable into an Uncopyable.
However, we can remedy this by having the derived class inherit privately from Uncopyable. That way, it
is not considered a subtype of Uncopyable and instances of MyClass cannot be converted into instances
of Uncopyable. For example:

class MyClass: private Uncopyable
{
 /* ... */
};

Now, MyClass cannot be copied, nor can it be treated as though it were an object of type Uncopyable.
This is precisely the idea we want to express.

In C++, all inheritance is considered private inheritance unless explicitly mentioned otherwise; this is why
you must write public Base to publicly inherit from Base. Thus we can rewrite the above class
definition omitting the private keyword, as shown here:

class MyClass: Uncopyable
{
 /* ... */
};

This method of disallowing copying is particularly elegant – syntactically, we communicate that MyClass
cannot be copied at the same time that we actually make it uncopyable through private inheritance.

Before concluding this section, let's make a quick change to the Uncopyable class by marking its
constructor and destructor protected. This means that classes that inherit from Uncopyable can still
access the constructor and destructor, but otherwise these functions are off-limits. This prevents us from
accidentally instantiating Uncopyable directly and only lets us use it as a base class. The code for this is
shown here:

- 482 - Chapter 16: Introduction to Inheritance

class Uncopyable
{
protected:
 Uncopyable() {}
 ~Uncopyable() {}
private:
 Uncopyable(const Uncopyable&);
 Uncopyable& operator= (const Uncopyable&);
};

Classes like Uncopyable are sometimes referred to as mixin classes since they are designed to be “mixed”
into other classes to provide a particular functionality.

Slicing

In our discussion of copy constructor and assignment operators for derived classes, we encountered
problems when we copied over the the data of the Derived class but not the Base class. However, there's
a far more serious problem we can run into called slicing where we copy only the base class of an object
while leaving its derived classes unmodified.

Suppose we have two Base * pointers called one and two that point to objects either of type Base or of
type Derived. What happens if we write code like *one = *two? Here, we're copying the value of the
object pointed at by two into the variable pointed at by one. While at first glance this might seem
harmless, the above statement is one of the most potentially dangerous mistakes you can make when
working with C++ inheritance. The problem is that this line expands into a call to

one->operator =(*two);

Note that the version of operator = we're calling here is the one defined in Base, not Derived, so this
line will only copy over the Base portion of two into the Base portion of one, resulting in half-formed
objects that are almost certainly not in the correct state and may be entirely corrupted.

Slicing can be even more insidious in scenarios like this one:

void DoSomething(Base baseObject)
{
 // Do something
}

Derived myDerived
DoSomething(myDerived);

Recall that the parameter baseObject will be initialized using the Base copy constructor, not the
Derived copy constructor, so the object in DoSomething will not be a correct copy myDerived. Instead, it
will only hold a copy of the Base part of the myDerived object.

You should almost never assign a base class object the value of a derived class. The second you do, you
will open the door to runtime errors as your code tries to use incompletely-formed objects. While it may
sound simple to follow this rule, at many times it might not be clear that you're slicing an object. For
example, consider this code snippet:

vector<Base> myBaseVector;
Base* myBasePtr = SomeFunction();
myBaseVector.push_back(*myBasePtr);

Chapter 16: Introduction to Inheritance - 483 -

Here, the object pointed at by myBasePtr could be of type Base or any type inheriting from Base. When
we call myBaseVector.push_back(*myBasePtr), there is a good chance that we will slice the object
pointed at by myBasePtr, storing only its Base component in the vector and dropping the rest. You'll
need to be extra vigilant when working with derived classes, since it's easy to generate dangerous,
difficult-to-track bugs.

The C++ Casting Operators

One of the most useful features of C++ inheritance is the ability to use an object of one type in place of
another. For example, a pointer of type Derived * can be used whenever a Base * would be expected,
and the conversion is automatic. However, in many circumstances, we may want to perform this
conversion in reverse. Suppose that we have a pointer that's statically typed as a Base *, but we know
that the object it points to is actually of typed Derived *. How can we use the Derived features of the
pointee? Because the pointer to the object is a Base *, not a Derived *, we will have to use a typecast to
convert the pointer from the base type to the derived type. Using the typecasts most familiar to us in C++,
the code to perform this conversion looks as follows:

Base* myBasePtr; // Assume we know that this points to a Derived object.
Derived* myDerivedPtr = (Derived *)myBasePtr;

There is nothing wrong with the above code as written, but it is risky because of the typecast
(Derived *)myBasePtr. In C++, using a typecast of the form (Type) is extremely dangerous because
there are only minimal compile-time checks to ensure that the typecast makes any sense. For example,
consider the following C++ code:

Base* myBasePtr; // Assume we know that this points to a Derived object.
vector<double>* myVectorPtr = (vector<double> *)myBasePtr; // Uh oh!

This code is completely nonsensical, since there is no reasonable way that a pointer of type Base * can
end up pointing to an object of type vector<double>. However, because of the explicit pointer-to-pointer
typecast, this code is entirely legal. In the above case, it's clear that the conversion we're performing is
incorrect, but in others it might be more subtle. Consider the following code:

const Base* myBasePtr; // Assume we know that this points to a Derived object.
Derived* myDerivedPtr = (Derived *)myBasePtr;

This code again is totally legal and at first glance might seem correct, but unfortunately it contains a
serious error. In this example, our initial pointer was a pointer to a const Base object, but in the second
line we removed that constness with a typecast and the resulting pointer is free to modify the object it
points at. We've just subverted const, which could lead to a whole host of problems down the line.

The problem with the above style of C++ typecast is that it's just too powerful. If C++ can figure out a way
to convert the source object to an object of the target type, it will, even if it's clear from the code that the
conversion is an error. To resolve this issue, C++ has four special operators called casting operators that
you can use to perform safer typecasts. When working with inheritance, two of these casting operators
are particularly useful, the first of which is static_cast. The static_cast operator performs a
typecast in the same way that the more familiar C++ typecast does, except that it checks at compile time
that the cast “makes sense.” More specifically, static_cast can be used to perform the following
conversions:*

* There are several other conversions that you can perform with static_cast, especially when working with void *
pointers, but we will not discuss them here.

- 484 - Chapter 16: Introduction to Inheritance

1. Converting between primitive types (e.g. int to float or char to double).
2. Converting between pointers or references of a derived type to pointers or references of a base

type (e.g. Derived * to Base *) where the target is at least as const as the source.
3. Converting between pointers or references of a base type to pointers or references of a derived

type (e.g. Base * to Derived *) where the target is at least as const as the source.

If you'll notice, neither of the errors we made in the previous code snippets are possible with a
static_cast. We can't convert a Base * to a vector<double> *, since Base and vector<double> are
not related to each other via inheritance. Similarly, we cannot convert from a const Base * to a Derived
*, since Derived * is less const than const Base *.

The syntax for the static_cast operator looks resembles that of templates and is illustrated below:

Base* myBasePtr; // Assume we know this points to a Derived object.
Derived* myDerivedPtr = static_cast<MyDerived *>(myBasePtr);

That is, static_cast, followed by the type to convert the pointer to, and finally the expression to convert
enclosed in parentheses.

Throughout this discussion of typecasts, when converting between pointers of type Base * and
Derived *, we have implicitly assumed that the Base * pointer we wanted to convert was pointing to an
object of type Derived. If this isn't the case, however, the typecast can succeed but lead to a Derived *
pointer pointing to a Base object, which can cause all sorts of problems at runtime when we try to invoke
nonexistent member functions or access data members of the Derived class that aren't present in Base.
The problem is that the static_cast operator doesn't check to see that the typecast it's performing
makes any sense at runtime. To provide this functionality, you can use another of the C++ casting
operators, dynamic_cast, which acts like static_cast but which performs additional checks before
performing the cast. dynamic_cast, like static_cast, can be used to convert between pointer types
related by inheritance (but not to convert between primitive types). However, if the typecast requested of
dynamic_cast is invalid at runtime (e.g. attempting to convert a Base object to a Derived object),
dynamic_cast will return a NULL pointer instead of a pointer to the derived type. For example, consider
the following code:

Base* myBasePtr = new Base;
Derived* myDerivedPtr1 = (Derived *)myBasePtr;
Derived* myDerivedPtr2 = static_cast<Derived *>(myBasePtr);
Derived* myDerivedPtr3 = dynamic_cast<Derived *>(myBasePtr);

In this example, we use three different typecasts to convert a pointer that points to an object of type Base
to a pointer to a Derived. In the above example, the first two casts will perform the type conversion,
resulting in pointers of type Derived * that actually point to a Base object, which can be dangerous.
However, the final typecast, which uses dynamic_cast, will return a NULL pointer because the cast cannot
succeed.

When performing downcasts (casts from a base type to a derived type), unless you are absolutely sure that
the cast will succeed, you should consider using dynamic_cast over a static_cast or raw C++ typecast.
Because of the extra check at runtime, dynamic_cast is slower than the other two casts, but the extra
safety is well worth the cost.

There are two more interesting points to take note of when working with dynamic_cast. First, you can
only use dynamic_cast to convert between types if the base class type contains at least one virtual
member function. This may seem like a strange requirement, but greatly improves the efficiency of the

Chapter 16: Introduction to Inheritance - 485 -

language as a whole and makes sense when you consider that it's rare to hold a pointer to a Derived in a
pointer of type Base when Base isn't polymorphic. The other important note is that if you use
dynamic_cast to convert between references rather than pointers, dynamic_cast will throw an object of
type bad_cast rather than returning a “NULL reference” if the cast fails. Consult a reference for more
information on bad_cast.

Implicit Interfaces and Explicit Interfaces

In the chapter on templates we discussed the concept of an implicit interface, behaviors required of a
template argument. For example, consider a function that returns the average of the values in an STL
container of doubles, as shown here:

template <typename ContainerType> double GetAverage(const ContainerType& c)
{
 return accumulate(c.begin(), c.end(), 0.0) / c.size();
}

The function GetAverage may be parameterized over an arbitrary type, but will only compile if the type
ContainerType exports functions begin and end that return iterators over doubles (or objects implicitly
convertible to doubles) and a size function that returns some integer type.

Contrast this with a similar function that uses inheritance:

class Container
{
public:
 typedef something-dereferencable-to-a-double const_iterator;
 virtual const_iterator begin() const = 0;
 virtual const_iterator end() const = 0;
};

double GetAverage(const Container& c)
{
 return accumulate(c.begin(), c.end(), 0.0) / c.size();
}

This function is no longer a template an instead accepts as an argument an object that derives from
Container.

In many aspects these functions are similar. Both of the implementations have a set of constraints
enforced on their parameter, which can be of any type satisfying these constraints. But these similarities
obscure a fundamental difference between how the two functions work – at what point the function calls
are resolved. In the inheritance-based version of GetAverage, the calls to begin, end, and size are
virtual function calls which are resolved at runtime using the system described earlier in this chapter.
With the template-based version of GetAverage, the version of the begin, end, and size functions to call
are resolved at compile-time.

When you call a template function, C++ instantiates the template by replacing all instances of the template
argument with a concrete type. Thus if we call the template function GetAverage on a vector<int>, the
compiler will instantiate GetAverage on vector<int> to yield the following code:

double GetAverage<vector<int> >(const vector<int>& c)
{
 return accumulate(c.begin(), c.end(), 0.0) / c.size();
}

- 486 - Chapter 16: Introduction to Inheritance

Now that the template has been instantiated, it's clear what functions c.begin() and the like correspond
to – they're the vector<int>'s versions of those functions. Since those functions aren't virtual, the
compiler can hardcode which function is being called and can optimize appropriately.

The template version of this function is desirable from a performance perspective but is not always the
best option. In particular, while we can pass as a parameter to GetAverage any object that conforms to
the implicit interface, we cannot treat those classes polymorphically. For example, in the above case it's
perfectly legal to call GetAverage on a vector<double> or a set<double>, but we cannot write code
like this:

Container* ptr = RandomChance(0.5) ? new vector<double> : new set<double>;

Templates and inheritance are designed to solve fundamentally different problems. If you want to write
code that operates over any type that meets some minimum requirements, the template system can help
you do so efficiently and concisely provided that you know what types are being used at compile-time. If
the types cannot be determined at compile-time, you can use inheritance to describe what behaviors are
expected of function arguments.

More to Explore

1. Multiple Inheritance: Unlike other object-oriented languages like Java, C++ lets classes inherit
from multiple base classes. You can use this build classes that act like objects of multiple types, or
in conjunction with mixin classes to build highly-customizable classes. In most cases multiple
inheritance is straightforward and simple, but there are many situations where it acts
counterintuitively. If you plan on pursuing C++ more seriously, be sure to read up on multiple
inheritance.

2. const_cast and reinterpret_cast: C++ has two other conversion operators, const_cast,
which can add or remove const from a pointer, and reinterpret_cast, which performs
fundamentally unsafe typecasts (such as converting an int * to a string *). While the use
\cases of these operators are far beyond the scope of this class, they do arise in practice and you
should be aware of their existences. Consult a reference for more information.

3. The Curiously Recurring Template Pattern (CRTP): Virtual functions make your programs run
slightly slower than programs with non-virtual functions because of the extra overhead of the
dynamic lookup. In certain situations where you want the benefits of inheritance without the cost
of virtual functions, you can use an advanced C++ trick called the curiously recurring template
pattern, or CRTP. The CRTP is also known as “static interfacing” and lets you get some of the
benefits of inheritance without any runtime cost.

4. Policy Classes: A nascent but popular C++ technique called policy classes combines multiple
inheritance and templates to design classes that are simultaneously customizable and efficient. A
full treatment of policy classes is far beyond the scope of this reader, but if you are interested in
seeing exactly how customizable C++ can be I strongly encourage you to read more about them.

Practice Problems

1. In the GenericBatchPrinter example from earlier in this chapter, recall that the Document base
class had several methods defined purely virtually, meaning that they don't actually have any code
for those member functions. Inside GenericBatchPrinter, why don't we need to worry that the
Document * pointer from the queue points to an object of type Document and thus might cause
problems if we tried invoking those purely virtual functions? ♦

2. In the next exercises, we'll explore a set of classes that let you build and modify functions at
runtime using tools similar to those in the STL <functional> programming library.

Chapter 16: Introduction to Inheritance - 487 -

Consider the following abstract class:

class Function
{
public:
 virtual ~Function() = 0;
 virtual double evaluateAt(double value) = 0;
};
This class exports a single function, evaluateAt, that accepts a double as a parameter and
returns the value of some function evaluated at that point. Write a derived class of Function,
SimpleFunction, whose constructor accepts a regular C++ function that accepts and returns a
double and whose evaluateAt function returns the value of the stored function evaluated at the
parameter.

3. The composition of two functions F and G is defined as F(G(x)) – that is, the function F applied to
the value of G applied to x. Write a class CompositionFunction whose constructor accepts two
Function * pointers and whose evaluateAt returns the composition of the two functions
evaluated at a point.

4. The derivative of a function is the slope of the tangent line to that function at a point. The
derivative of a function F can be approximated as F'(x) ≈ (F(x + Δx) – F(x - Δx)) / 2Δx for small
values of Δx. Write a class DerivativeFunction whose constructor accepts a Function *
pointer and a double representing Δx and whose evaluateAt approximates the derivative of the
stored function using the initial value of Δx. ♦

5. For the above classes, why did we make a function named evaluateAt instead of providing an
implementation of operator()? (Hint: Will we be using actual Function objects, or pointers to
them?)

6. A common mistake is to try to avoid problems with slicing by declaring operator = as a virtual
function in a base class. Why won't this solve the slicing problem? (Hint: what is the parameter
type to operator =?)

7. Suppose you have three classes, Base, Derived, and VeryDerived where Derived inherits from
Base and VeryDerived inherits from Derived. Assume all three have copy constructors and
assignment operators. Inside the body of VeryDerived's assignment operator, why shouldn't it
invoke Base::operator = on the other object? What does this tell you about long inheritance
chains, copying, and assignment?

8. The C++ casting operators were deliberately designed to take up space to discourage programmers
from using typecasts. Explain why the language designers frown upon the use of typecasts.

9. The unary_function and binary_function classes from <functional> do not define
operator() as a virtual member function. Considering that every adaptable function must be a
subclass of one of these two classes, it seems logical for the two classes to do so. Why don't they?
(Hint: the STL is designed for maximum possible efficiency. What would happen if operator()
was virtual?)

Appendices

Appendix 0: Moving from C to C++

C++ owes a great debt to the C programming language. Had it not been rooted in C syntax, C++ would have
attracted fewer earlier adopters and almost certainly would have vanished into the mists of history. Had it
not kept C's emphasis on runtime efficiency, C++ would have lost relevance over time and would have gone
extinct. But despite C++'s history in C, C and C++ are very different languages with their own idioms and
patterns. It is a common mistake to think that knowledge of C entails a knowledge of C++ or vice-versa,
and experience with one language often leads to suboptimal coding skills in the other. In particular,
programmers with a background in pure C often use C constructs in C++ code where there is a safer or
more elegant alternative. This is not to say that C programmers are somehow worse coders than C++
programmers, but rather that some patterns engrained into the C mentality are often incompatible with
the language design goals of C++.

This appendix lists ten idiomatic C patterns that are either deprecated or unsafe in C++ and suggests
replacements. There is no new C++ content here that isn't already covered in the main body of the course
reader, but I highly recommend reading through it anyway if you have significant background in C. This by
no means an exhaustive list of differences between C and C++, but should nonetheless help you transition
between the languages.

Tip 0: Prefer streams to stdio.h

C++ contains the C runtime library in its standard library, so all of the I/O functions you've seen in
<stdio.h> (printf, scanf, fopen) are available in C++ through the <cstdio> header file. While you're
free to use printf and scanf for input and output in C++, I strongly advise you against doing so because
the functions are inherently unsafe. For example, consider the following C code:

char myString[1024] = {'\0'};
int myInt;

printf("Enter an integer and a string: ");
scanf("%d %1023s", &myInt, myString);
printf("You entered %d and %s\n", myInt, myString);

Here, we prompt the user for an integer and a string, then print them back out if the user entered them
correctly. As written there is nothing wrong with this code. However, consider the portions of the code
I've highlighted here:

char myString[1024] = {'\0'};
int myInt;

printf("Enter an integer and a string: ");
scanf("%d %1023s", &myInt, myString);
printf("You entered %d and %s\n", myInt, myString);

Consider the size of the buffer, 1024. When reading input from the user, if we don't explicitly specify that
we want to read at most 1023 characters of input, we risk a buffer overrun that can trash the stack and
allow an attacker to fully compromise the system. What's worse, if there is a mismatch between the
declared size of the buffer (1024) and the number of characters specified for reading (1023), the compiler
will not provide any warnings. In fact, the only way we would discover the problem is if we were very
careful to read over the code checking for this sort of mistake, or to run an advanced tool to double-check
the code for consistency.

- 492 - Appendix 0: Moving from C to C++

Similarly, consider the highlighted bits here:

Appendix 0: Moving from C to C++ - 493 -

char myString[1024] = {'\0'};
int myInt;

printf("Enter an integer and a string: ");
scanf("%d %1023s", &myInt, myString);
printf("You entered %d and %s\n", myInt, myString);

Notice that when reading values from the user or writing values to the console, we have to explicitly
mention what types of variables we are reading and writing. The fact that myInt is an int and myString
is a char* is insufficient for printf and scanf; we have to mention to read in an int with %d and a string
with %s. If we get these backwards or omit one, the program contains a bug but will compile with no
errors.* Another vexing point along these lines is the parameter list in scanf – we must pass in a pointer
to myInt, but can just specify myString by itself. Confusing these or getting them backwards will cause a
crash or a compiler warning, which is quite a price to pay for use input.

The problem with the C I/O libraries is that they completely bypass the type system. Recall that the
signatures of printf and scanf are

int printf(const char* formatting, ...);
int scanf (const char* formatting, ...);

The ... here means that the caller can pass in any number of arguments of any type, and in particular this
means that the C/C++ compiler cannot do any type analysis to confirm that you're using the arguments
correctly. Don't get the impression that C or C++ are type-safe – they're not – but the static type systems they
have are designed to prevent runtime errors from occuring and subverting this system opens the door for
particularly nasty errors.

In pure C, code like the above is the norm. In C++, however, we can write the following code instead:

int myInt;
string myString;

cout << "Enter an int and a string: ";
cin >> myInt >> myString;
cout << "You entered " << myInt << " and " << myString << endl;

If you'll notice, the only time that the types of myInt and myString are mentioned is at the point of declaration.
When reading and writing myInt and myString, the C++ can automatically infer which version of
operator >> and operator << to call to perform I/O and thus there is no chance that we can accidentally
read a string value into an int or vice-versa. Moreover, since we're using a C++-style string, there is no
chance that we'll encounter a buffer overflow. In short, the C++ streams library is just plain safer than the
routines in <stdio.h>.

When working in pure C++, be wary of the <stdio.h> functions. You are missing out on the chance to use the
streams library and are exposing yourself and your code to all sorts of potential security vulnerabilities.

Tip 1: Use C++ strings instead of C-style strings

Life is short, nasty, and brutish, and with C strings it will be even worse. C strings are notoriously tricky to
get right, have a cryptic API, and are the cause of all sorts of security bugs. C++ strings, on the other
hand, are elegant, pretty, and difficult to use incorrectly. If you try truncating a C++ string at an invalid
index with erase, the string will throw an exception rather than clobbering memory. If you append data

* Many compilers will report errors if you make this sort of mistake, but they are not required to do so.

- 494 - Appendix 0: Moving from C to C++

to a C++ string, you don't need to worry about reallocating any memory – the object does that for you. In
short, C strings are tricky to get right, and C++ strings are tricky to get wrong. “But wait!,” you might
exclaim, “Because C strings are so low-level, I can sometimes outperform the heavyweight C++ string.”
This is absolutely true – because C strings are so exposed, you have a great deal of flexibility and control
over how the memory is managed and what operations go on behind the scenes. But is it really worth it?
Here's a small sampling of what can go wrong if you're not careful with C strings:

1. You might write off the end of a buffer, clobbering other data in memory and paving the way for a
massive security breach.

2. You might forget to deallocate the memory, causing a memory leak.
3. You might overwrite the terminating null character, leading to a runtime error or

incomprehensible program outputs.

Are C strings faster than their C++ counterparts? Of course. But should you nonetheless sacrifice a little
speed for the peace of mind that your program isn't going to let hackers take down your system?
Absolutely.

Tip 2: Use C++ typecasts instead of C typecasts

Both C and C++ have static type systems – that is, if you try to use a variable of one type where a variable
of another type is expected, the compiler will report an error. Both C and C++ let you use typecasts to
convert between types when needed, sometimes safely and sometimes unsafely.

C has only one style of typecast, which is conveniently dubbed a “C-style typecast.” As mentioned in the
chapter on inheritance, C-style typecasts are powerful almost to a fault. Converting between a double and
an int uses the same syntax for unsafe operations like converting pointers to integers, integers to
pointers, const variables to non-const variables, and pointers of one type to pointers of another type. As
a result, it is easy to accidentally perform a typecast other than the one you wanted. For example, suppose
we want to convert a char* pointer to an int* pointer, perhaps because we're manually walking over a
block of memory. We write the following code:

const char* myPtr = /* ... */
int* myIntPtr = (int *)myPtr;

Notice that in this typecast we've converted a const char* to an int*, subverting constness. Is this
deliberate? Is this a mistake? Given the above code there's no way to know because the typecast does not
communicate what sort of cast is intended. Did we mean to strip off constness, convert from a char* to
an int*, or both?

C++ provides three casting operators (const_cast, static_cast, reinterpret_cast) that are
designed to clarify the sorts of typecasts performed in your code. Each performs exactly one function and
causes a compile-time error if used incorrectly. For example, if in the above code we only meant to convert
from a const char* to a const int* without stripping constness, we could write it like this:

const char* myPtr = /* ... */
const int* myIntPtr = reinterpret_cast<const int*>(myPtr);

Now, if we leave off the const in the typecast, we'll get a compile-time error because reinterpret_cast
can't strip off constness. If, on the other hand, we want to convert the pointer from a const char* to a
regular int*, we could write it as follows:

const char* myPtr = /* ... */
int* myIntPtr = const_cast<int*>(reinterpret_cast<const int*>(myPtr));

Appendix 0: Moving from C to C++ - 495 -

This is admittedly much longer and bulkier than the original C version, but it is also more explicit about
exactly what it's doing. It also is safer, since the compiler can check that the casts are being used correctly.

- 496 - Appendix 0: Moving from C to C++

When writing C++ code that uses typecasts, make sure that you use the C++-style casting operators. Are
they lengthy and verbose? Absolutely. But the safety and clarity guarantees they provide will more than
make up for it.

Tip 3: Prefer new and delete to malloc and free

In C++, you can allocate and deallocate memory either using new and delete or using malloc and free.
If you're used to C programming, you may be tempted to use malloc and free as you have in the past.
This can lead to very subtle errors because new and delete do not act the same as malloc and free. For
example, consider the following code:

string* one = new string;
string* two = static_cast<string*>(malloc(sizeof string));

Here, we create two string objects on the heap – one using new and one using malloc. Unfortunately, the
string allocated with malloc is a ticking timebomb waiting to explode. Why is this? The answer has to do
with a subtle but critical difference between the two allocation routines.

When you write new string, C++ performs two steps. First, it conjures up memory from the heap so that
the new string object has a place to go. Second, it calls the string constructor on the new memory
location to initialize the string data members. On the other hand, if you write malloc(sizeof
string), you only perform the memory allocation. In the above example, this means that the string
object pointed at by two has the right size for a string object, but isn't actually a string because none of
its data members have been set appropriately. If you then try using the string pointed at by two, you'll
get a nasty crash since the object is in a garbage state. To avoid problems like this, make sure that you
always allocate objects using new rather than malloc.

If you do end up using both new and malloc in a C++ program (perhaps because you're working with
legacy code), make sure that you are careful to deallocate memory with the appropriate deallocator
function. That is, don't free an object allocated with new, and don't delete an object allocated with
malloc. malloc and new are not the same thing, and memory allocated with one is not necessarily safe to
clean up with the other. In fact, doing so leads to undefined behavior, which can really ruin your day.

Tip 4: Avoid void* Pointers

Code in pure C abounds with void* pointers, particularly in situations where a function needs to work
with data of any type. For example, the C library function qsort is prototyped as

void qsort(void* elems, size_t numElems, size_t elemSize,
 int (*cmpFn)(const void*, const void*));

That's quite a mouthful and uses void* three times – once for the input array and twice in the comparison
function. The reason for the void* here is that C lacks language-level support for generic programming
and consequently algorithms that need to operate on arbitrary data have to cater to the lowest common
denominator – raw bits and bytes.

When using C's qsort, you have to be extremely careful to pass in all of the arguments correctly. When
sorting an array of ints, you must take care to specify that elemSize is sizeof(int) and that your
comparison function knows to interpret its arguments as pointers to ints. Passing in a comparison
function which tries to treat its arguments as being of some other type (perhaps char**s or double*s)
will cause runtime errors, and specifying the size of the elements in the array incorrectly will probably
cause incorrect behavior or a bus error.

Appendix 0: Moving from C to C++ - 497 -

Contrast this with C++'s sort algorithm:

- 498 - Appendix 0: Moving from C to C++

template <typename RandomAccessIterator, typename Comparator>
void sort(RandomAccessIterator begin, RandomAccessIterator end, Comparator c);

With C++'s sort, the compiler can determine what types of elements are stored in the range [begin, end)
by looking at the type of the iterator passed as a parameter. The compiler can thus automatically figure
out the size of the elements in the range. Moreover, if there is a type mismatch between what values the
Comparator parameter accepts and what values are actually stored in the range, you'll get a compile-time
error directing you to the particular template instantiation instead of a difficult-to-diagnose runtime error.

This example highlights the key weakness of void* – it completely subverts the C/C++ type system. When
using a void* pointer, you are telling the compiler to forget all type information about what's being
pointed at and therefore have to explicitly keep track of all of the relevant type information yourself. If you
make a mistake, the compiler won't recognize your error and you'll have to diagnose the problem at
runtime. Contrast this with C++'s template system. C++ templates are strongly-typed and the compiler
will ensure that everything type-checks. If the program has a type error, it won't compile, and you can
diagnose and fix the problem without having to run the program.

Whenever you're thinking about using a void* in C++ programming, make sure that it's really what you
want to do. There's almost always a way to replace the void* with a template. Then again, if you want to
directly manipulate raw bits and bytes, void* is still your best option.

One point worth noting: In pure C, you can implicitly convert between a void* pointer and a pointer of
any type. In C++, you can implicitly convert any pointer into a void*, but you'll have to use an explicit
typecast to convert the other way. For example, the C code

int* myArray = malloc(numElems * sizeof(int));

Does not compile in C++ since malloc returns a void*. Instead, you'll need to write

int* myArray = (int *)malloc(numElems * sizeof(int));

Or, even better, as

int* myArray = static_cast<int *>(malloc(numElems * sizeof(int)));

Using the C++ static_cast operator.

Tip 5: Prefer vector to raw arrays

Arrays live in a sort of nether universe. They aren't quite variables, since you can't assign them to one
another, and they're not quite pointers, since you can't reassign where they're pointing. Arrays can't
remember how big they are, but when given a static array you can use sizeof to get the total space it
occupies. Functions that operate on arrays have to either guess the correct size or rely on the caller to
supply it. In short, arrays are a bit of a mess in C and C++.

Contrast this with the C++ vector. vectors know exactly how large they are, and can tell you if you ask.
They are first-class variables that you can assign to one another, and aren't implicitly convertible to
pointers. On top of that, they clean up their own messes, so you don't need to worry about doing your own
memory management. In short, the vector is everything that the array isn't.

In addition to being safer than regular arrays, vectors can also be much cleaner and easier to read. For
example, consider the following C code:

Appendix 0: Moving from C to C++ - 499 -

void MyFunction(int size)
{
 int* arr = malloc(size * sizeof(int));
 memset(arr, 0, size * sizeof(int));

 /* ... */

 free(arr);
};

Compare this to the equivalent C++ code:

void MyFunction(int size)
{
 vector<int> vec(size);

 /* ... */
};

No ugly computations about the size of each element, no messy cleanup code at the end, and no memsets.
Just a single line and you get the same effect. Moreover, since the vector always cleans up its memory
after it goes out of scope, the compiler will ensure that no memory is leaked. Isn't that nicer?

Of course, there are times that you might want to use a fixed-size array, such as if you know the size in
advance and can fit the array into a struct. But in general, when given the choice between using arrays and
using vectors, the vector is the more natural choice in C++.

Tip 6: Avoid goto

For a number of years I have been familiar with the observation that the quality of
programmers is a decreasing function of the density of go to statements in the programs they
produce. More recently I discovered why the use of the go to statement has such disastrous
effects, and I became convinced that the go to statement should be abolished from all "higher
level" programming languages (i.e. everything except, perhaps, plain machine code)

– Edsger Dijkstra [Dij68]

The goto keyword been widely criticised since Dijkstra published “Go To Statement Considered Harmful”
in 1968, yet still managed to make its way into C and consequently C++. Despite its apparent simplicity,
goto can cause all sorts of programming nightmares because it is inherently unstructured. goto can jump
pretty much anywhere and consequently can lead to unintuitive or even counterintuitive code. For
example, here's some code using goto:

int x = 0;
start:
 if (x == 10) goto out;
 printf("%d\n", x);
 ++x;
 goto start;
out:
 printf("Done!\n");

This is completely equivalent to the much more readable

for(int x = 0; x < 10; ++x)

- 500 - Appendix 0: Moving from C to C++

 printf("%d\n", x);

Appendix 0: Moving from C to C++ - 501 -

Despite goto's bad reputation, modern C programming still has several places in which goto can still be
useful. First, goto can be used as a sort of “super break” to break out of multiple levels of loop nesting.
This use is still legitimate in C++, but is frowned upon stylistically. Second, goto can be used as a way of
performing necessary cleanup in an error condition. For example:

/* Returns a string of the first numChars characters from a file or NULL in an
 * error case.
 */
char* ReadFromFile(const char* filename, size_t numChars)
{
 FILE* f;
 char* buffer;

 /* Allocate some space. */
 buffer = malloc(numChars + 1);
 if(buffer == NULL) return NULL;

 /* Open the file, abort on error. */
 f = fopen(filename, "rb");
 if(f == NULL)
 goto error;

 /* Read the first numChars characters, failing if we don't read enough. */
 if(fread(buffer, numChars, 1, f) != numChars)
 goto error;

 /* Close the file, null-terminate the string, and return. */
 fclose(f);
 buffer[numChars] = '\0';
 return buffer;

 /* On error, clean up the resources we opened. */
error:
 free(buffer);
 if(f != NULL)
 fclose(f);

 return NULL;
}

Here, there are several error conditions in which we need to clean up the temporary buffer and potentially
close an open file. When this happens, rather than duplicating the cleanup code, we use goto to jump to
the error-handling subroutine.

In pure C this is perfectly fine, but in C++ would be considered a gross error because there are much better
alternatives. As mentioned in the chapter on exception handling, we could instead use a catch-and-
rethrow
strategy to get the exact same effect without goto, as shown here:

- 502 - Appendix 0: Moving from C to C++

/* Returns a string of the first numChars characters from a file.
 * Throws a runtime_error on error.
 */
char* ReadFromFile(const char* filename, size_t numChars)
{
 FILE* f;
 char* buffer = NULL;

 try
 {
 /* Allocate some space. This will throw on error rather than returning
 * NULL.
 */
 buffer = new char[numChars + 1];

 /* Open the file, abort on error. */
 f = fopen(filename, "rb");
 if(f == NULL)
 throw runtime_error("Can't open file!");

 /* Read the first numChars characters, failing if we don't read enough. */
 if(fread(buffer, numChars, 1, f) != numChars)
 throw runtime_error("Can't read enough characters!");

 /* Close the file, null-terminate the string, and return. */
 fclose(f);
 buffer[numChars] = '\0';
 return buffer;
 }
 catch(...)
 {
 /* On error, clean up the resources we opened. */
 delete [] buffer;
 if(f != NULL)
 fclose(f);

 throw;
 }
}

Now that we're using exception-handling instead of goto, the code is easier to read and allows the caller
to get additional error information out of the function.

An even better alternative here would be to use an ifstream and a string to accomplish the same result.
Since the ifstream and string classes have their own destructors, we don't need to explicitly clean up
any memory. This is shown here:

Appendix 0: Moving from C to C++ - 503 -

/* Returns a string of the first numChars characters from a file.
 * Throws a runtime_error on error.
 */
string ReadFromFile(const char* filename, size_t numChars)
{
 string buffer(numChars);

 /* Open the file, abort on error. */
 ifstream input(filename);
 if(input.fail())
 throw runtime_error("Can't open the file!");

 /* Read the first numChars characters, failing if we don't read enough. */
 input.read(&buffer[0], numChars);
 if(input.fail())
 throw runtime_error("Couldn't read enough data");

 return buffer;
}

This version is very clean and concise and doesn't require any goto-like structure at all. Since the object
destructors take care of all of the cleanup, we don't need to worry about doing that ourselves.

My advice against goto also applies to setjmp and longjmp. These functions are best replaced with C++'s
exception-handling system, which is far safer and easier to use.

Tip 7: Use C++'s bool type when applicable

Prior to C99, the C programming language lacked a standard bool type and it was common to find idioms
such as

enum bool {true, false};

Or

#define bool int
#define true 1
#define false 0

Similarly, to loop indefinitely, it was common to write

while(1)
{
 /* ... */
}

Or

for(;;)
{
 /* ... */
}

Defining your own custom bool type is risky in C++ because a custom type will not interact with language
features like templates and overloading correctly. Similarly, while both of the “loop forever” loop
constructs listed above are legal C++ code, they are both less readable than the simpler

- 504 - Appendix 0: Moving from C to C++

Appendix 0: Moving from C to C++ - 505 -

while(true)
{
 /* ... */
}

If you aren't already used to working with bools, I suggest that you begin doing so when working in C++.
Sure, you can emulate the functionality of a bool using an int, but doing so obscures your intentions and
leads to all sorts of other messes. For example, if you try to emulate bools using ints, you can get into
nasty scrapes where two ints each representing true don't compare equal because they hold different
nonzero values. This isn't possible with the bool type. To avoid subtle sources of error and to make your
code more readable, try to use bool whenever applicable.

Tip 8: Avoid “typedef struct”

In pure C, if you define a struct like this:

struct pointT
{
 int x, y;
};

Then to create an instance of the struct you would declare a variable as follows:

struct pointT myPoint;

In C++, this use of struct is unnecessary. It is also bad practice, since veteran C++ programmers will
almost certainly have to pause and think about exactly what the code means. Of course, most C
programmers are also not particularly fond of this syntax, and to avoid having to spell out struct each
time would write

typedef struct pointT_
{
 int x, y;
} pointT;

This syntax is still valid C++, but is entirely unnecessary and makes the code significantly trickier to read.
Moreover, if you want to add constructors or destructors to the struct you would have to use the name
pointT_ even though externally the object would be called pointT without the underscore. This makes
the code more difficult to read and may confuse class clients. In the interests of clarity, avoid this use of
typedef when writing C++ code.

Tip 9: Avoid memcpy and memset

In pure C, code like the following is perfectly normal:

struct pointT
{
 int x, y;
};
struct pointT myPoint;
memset(&myPoint, 0, sizeof(pointT));

- 506 - Appendix 0: Moving from C to C++

Here, the call to memset is used to initialize all the variables in the pointT to zero. Since C lacks
constructors and destructors, this code is a reasonably good way to ensure that the pointT is initialized
before use.

Appendix 0: Moving from C to C++ - 507 -

Because C++ absorbed C's standard library, the functions memset, memcpy, and the like are all available in
C++. However, using these functions can lead to subtle but dangerous errors that can cause all sorts of
runtime woes. For example, consider the following code:

string one = "This is a string!";
string two = "I like this string more.";
memcpy(&one, &two, sizeof(string)); // Set one equal to two – does this work?

Here, we use memcpy to set one equal to two. Initially, it might seem like this code works, but
unfortunately this memcpy results in undefined behavior and will almost certainly cause a runtime crash.
The reason is that the string object contains pointers to dynamically-allocated memory, and when
memcpying the data from two into one we've made both of the string objects point to the same memory.
After each pointer goes out of scope, both will try to reclaim the memory, causing problems when the
underlying string buffer is doubly-deleted. Moreover, if this doesn't immediately crash the program,
we've also leaked the memory one was originally using since all of its data members were overwritten
without first being cleaned up.

If we wanted to set one equal to two, we could have just written this instead:

string one = "This is a string!";
string two = "I like this string more.";
two = one;

This uses the string's assignment operator, which is designed to safely perform a deep copy.

In general, mixing memcpy with C++ classes is just asking for trouble. Most classes maintain some complex
invariants about their data members and what memory they reference, and if you memcpy a block of data
over those data members you might destroy those invariants. memcpy doesn't respect public and
private, and thus completely subverts the encapsulation safeguards C++ tries to enforce.

But the problem runs deeper than this. Suppose that we have a polymorphic class representing a binary
tree node:

class BinaryTreeNode
{
public:
 BinaryTreeNode();
 virtual ~BinaryTreeNode(); // Polymorphic classes need virtual destructors

 /* ... etc. ... */
private:
 BinaryTreeNode* left, *right;
};

We want to implement the constructor so that it sets left and right to NULL, indicating that the node has
no children. Initially, you might think that the following code is safe:

BinaryTreeNode::BinaryTreeNode()
{
 /* Zero out this object. Is this safe? */
 memset(this, 0, sizeof(BinaryTreeNode));
}

Since the null pointer has value zero, it seems like this should work – after all, if we overwrite the entire
object with zeros, we've effectively nulled out all of its pointer data members. But this code is a recipe for

- 508 - Appendix 0: Moving from C to C++

disaster because the class contains more than just a left and right pointer. In the chapter on
inheritance, we outlined how virtual functions are implemented using a virtual function table pointer that
sits at the beginning of the class. If we use memset to clear out the object, we'll overwrite this virtual
function table pointer with NULL, meaning that any attempt to call a virtual function on this object will
result in a null pointer dereference and a program crash.*

The key problem with memset and memcpy is that they completely subvert the abstractions C++ provides
to increase program safety. Encapsulation is supposed to prevent clients from clobbering critical class
components and object layout is done automatically specifically to prevent programmers from having to
explicitly manipulate low-level machinery. memset and memcpy remove these barriers and expose you to
dangerous you could otherwise do without.

This is not to say, of course, that memset and memcpy have no place in C++ code – they certainly do – but
their role is considerably less prominent than in pure C. Before you use low-level manipulation routines,
make sure that there isn't a better way to accomplish the same goal through more “legitimate” C++
channels.

With that said, welcome to C++! Enjoy your stay!

* This example is based on a conversation I had with Edward Luong, who encountered this very problem when
writing a large program in C++.

Appendix 1: Solutions to Practice Problems

Streams

Problem 2. There are two steps necessary to get HasHexLetters working. First, we transform the input
number into a string representation of its hexadecimal value. Next, using techniques similar to that for
GetInteger, we check to see if this string can be interpreted as an int when read in base 10. If so, the
hexadecimal representation of the number must not contain any letters (since letters can't be interpreted as a
decimal value), otherwise the representation has at least one letter in it.

One possible implementation is given here:

bool HasHexLetters(int value)
{
 /* Funnel the data into a stringstream, using the hex manipulator to represent
 * it in hexadecimal.
 */
 stringstream converter;
 converter << hex << value;

 /* Now, try extracting the string as an int, using the dec manipulator to read
 * it in decimal.
 */
 int dummy;
 converter >> dec >> dummy;

 /* If the stream failed, we couldn't read an int and we're done. */
 if(converter.fail()) return true;

 /* Otherwise, try reading something else from the stream. If we succeed, it
 * must have been a letter and we know that the integer has letters in its hex
 * representation.
 */
 char leftover;
 converter >> leftover;

 return !converter.fail();
}

STL Containers, Part I

Problem 5a. If we want to cycle the elements of a container, then our best options are the deque and the queue.
Both of these choices let us quickly move the front element of the container to the back; the deque with
pop_front and push_back and the queue with push and pop.

Cycling the elements of a stack is impossible without having some external structure that can store the stack's
data, so this is not a good choice. While it's possible to cycle the elements of a vector using push_back and
erase, doing so is very inefficient because the vector will have to shuffle all of its elements down to fill in the
gap at the beginning of the container. Remember, if you ever want to add and remove elements at the beginning
or end of a vector, the deque is a better choice.

- 510 - Appendix 1: Solutions to Practice Problems

Problem 5b. For this solution we'll use an STL queue, since we don't need access to any element of the key list
except the first. Then one solution is as follows:

string VigenereCipher(string toEncode, queue<int> values)
{
 for(int k = 0; k < toEncode.length(); ++k)
 {
 toEncode[k] += values.front(); // Encrypt the current character
 values.push(values.front()); // Add the current key to the back.
 values.pop(); // Remove the current key from the front.
 }
}

STL Iterators

Problem 5. One possible implementation of the function is as follows:

vector<string> LoadAllTokens(string filename)
{
 vector<string> result;

 /* Open the file, if we can't, just return the empty vector. */
 ifstream input(filename.c_str());
 if(input.fail()) return result;

 /* Using the istream_iterator iterator adapter, read everything out of the
 * file. Since by default the streams library uses whitespace as a separator
 * character, this reads in all of the tokens.
 */
 result.insert(result.begin(),
 istream_iterator<string>(input), istream_iterator<string>());

 return result;
}

STL Containers, Part II

Problem 2. We can solve this problem by loading all of the values in the map into a map<string, int>
associating a value in the initial map with its frequency. We then can get the number of duplicates by adding up
all of the entries in the second map whose value is not one (i.e. at least two elements have the same value). This
can be implemented as follows:

Appendix 1: Solutions to Practice Problems - 511 -

int NumDuplicateValues(map<string, string>& input)
{
 map<string, int> counter;

 /* Iterate over the map updating the frequency count. Notice that we are
 * checking for the number of duplicate values, so we'll index into the map by
 * looking at itr->second. Also note that we don't check for the case where
 * the map doesn't already contain this key. Since STL containers initialize
 * all stored integers to zero, if the key doesn't exist a fresh pair will be
 * created with value zero.
 */
 for(map<string, string>::iterator itr = input.begin();
 itr != input.end(); ++itr)
 ++counter[itr->second];

 int result = 0;
 /* Now iterate over the entries and accumulate those that have at least value
 * two.
 */
 for(map<string, string>::iterator itr = input.begin();
 itr != input.end(); ++itr)
 if(itr->second > 1) result += itr->second;

 return result;
}

Problem 5. There are many good solutions to this problem. My personal favorite is this one:

void CountLetters(ifstream& input, map<char, int>& freqMap)
{
 char ch;
 while(input.get(ch)) ++freqMap[ch];
}

This code is dense and relies on several properties of the stream library and the STL. First, the member
function get accepts as input a char by reference, then reads in a single character from the stream. On
success, the function fills the char with the read value. On failure, the value is unchanged and the stream
goes into a fail state. The get function then returns a reference to the stream object that did the reading,
meaning that while(input.get(ch)) is equivalent to

while(true)
{
 input.get(ch);
 if(!input) break;

 /* ... body of loop ... */
}

And since !input is equivalent to input.fail(), this one-liner will read in a character from the file, then
break out of the loop if the read failed.

Once we've read in the character, we can simply write ++freqMap[ch], since if the key already exists we're
incrementing the older value and if not a new key/value pair will be created with value 0, which is then
incremented up to one.

- 512 - Appendix 1: Solutions to Practice Problems

Problem 6. As mentioned in the hint, the trick is to use the structure of lexicographic comparisons to construct a
pair of strings lower- and upper-bounding all strings with the given prefix. For example, suppose that we want
to find all words beginning with the prefix anti. Now, any word beginning with anti must compare
lexicographically greater than or equal to anti, since the first four characters will match but the word beginning
with anti must also be longer than anti. For example, antigen and antidisestablishmentarianism
both compare greater than anti since they have the same prefix as anti but are longer.

The next observation is that any word that doesn't start with anti falls into one of two categories – those that
compare lexicographically less than anti and those that compare lexicographically greater than anti. The first
of these sets can be ignored, but how can we filter out words with non-anti prefixes that compare
lexicographically greater than anti? The trick is to note that if the word doesn't have anti as a prefix, then
somewhere in its first four letters it must disagree with anti. If we take the next lexicographically-higher prefix
than anti (which is formed by incrementing the last letter), we get antj. This is the smallest possible prefix
any word not starting by anti can have. Moreover, every word that starts with anti compares
lexicographically less than antj, and so if we only look at words that compare lexicographically greater than or
equal to anti and lexicographically less than antj, we have all of the words that start with anti. Using the
set's lower_bound function, we can find which words in the set match these criteria efficiently (in O(lg n)
time) using the following code:

void PrintMatchingPrefixes(set<string>& lexicon, string prefix)
{
 /* We'll assume the prefix is nonempty in this next step. */
 string nextPrefix = prefix;
 ++nextPrefix[nextPrefix.size() - 1];

 /* Compute the range to iterate over. We store these iterators outside of the
 * loop so that we don't have to recompute them every time.
 */
 set<string>::iterator end = lexicon.lower_bound(nextPrefix);
 for(set<string>::iterator itr = lexicon.lower_bound(prefix); itr != end; ++itr)
 cout << *itr << endl;
}

STL Algorithms

Problem 1. Printing out a vector is easy thanks to ostream_iterator and copy. Recall that an
ostream_iterator is an iterator which prints out the values stored in it to cout, and that the copy algorithm
accepts three inputs – two iterators defining a range to copy and one iterator representing the destination – then
copies the input range to the output source. Thus we can print out a vector as follows:

void PrintVector(vector<int>& v)
{
 copy(v.begin(), v.end(), ostream_iterator<int>(cout, " "));
}

Problem 4. By default, if you compare two strings to one another using <, the result is whether the first string
lexicographically precedes the second string. Thus if we have a vector<string> called v, calling
sort(v.begin(), v.end()) will sort the input lexicographically. In our case, though, we want to “hack”
the sort function so that it always puts “Me First!” at the front of the sorted ordering. To do this, we'll write a
custom callback function that performs a default string comparison if neither string is “Me First!” but which
skews the result otherwise. Here's one implementation:

Appendix 1: Solutions to Practice Problems - 513 -

const string kWinnerString = "Me First!";
bool BiasedSortHelper(string one, string two)
{
 /* Case one: Neither string is the winner string. Just do a default
 * comparison.
 */
 if(one != kWinnerString && two != kWinnerString)
 return one < two;

 /* Case two: Both strings are the winner string. Then return false because the
 * string isn't less than itself.
 */
 if(one == kWinnerString && two == kWinnerString)
 return false;

 /* Case three: one is the winner string, two isn't. Return true to bias
 * the sort so that the winner string comes first.
 */
 if(one == kWinnerString)
 return true;

 /* Otherwise, two is the winner string and one isn't */
 return false;
}

The implementation of BiasedSort is then

void BiasedSort(vector<string>& v)
{
 sort(v.begin(), v.end(), BiasedSortHelper)
}

Problem 6: One implementation is as follows:

int count(vector<int>::iterator start, vector<int>::iterator end, int value)
{
 int result = 0;
 for(; start != end; ++start)
 if(*start == value) ++result;

 return result;
}

In the chapter on templates, you'll see how to generalize this function to operate over any type of iterators.

Pointers and References

Problem 5. If we allocate memory by writing int* myIntPtr = new int, C++ will only give us space to
hold a single integer. However, the code myIntPtr[0] = 42 is perfectly safe. Recall that myIntPtr[0]
means to go to the address pointed at by myIntPtr, move forward zero elements, then return the value there.
But this is equivalent to just looking up the object directly pointed at by myIntPtr, and in fact
myIntPtr[0] = 42 is completely equivalent to *myIntPtr = 42.

However, myIntPtr[1] = 42 instructs C++ to access the element one after the element pointed at by
myIntPtr. We don't own the memory after our single int, so this line writes 42 into a memory location. It
probably will result in some sort of crash, either immediately or later on when the memory allocator gets
confused.

- 514 - Appendix 1: Solutions to Practice Problems

C Strings

Problem 1. The code myString = "String" + '!' just looks right, doesn't it? It seems like we're
concatenating an exclamation point on to the end of a string and then assigning the new string to
myString. Had we been working with C++ string objects, this would be true, but remember that
"String" is a C string and that + means pointer arithmetic rather than concatenation. In fact, what this
code does is obtain a pointer to the string "String" somewhere in memory, then advance that pointer by
the numerical value of the exclamation point character (thirty-three) and store the resulting pointer in
myString. This results in a string that's pointing into random memory we don't own, resulting in
(surprise!) undefined behavior.

The Preprocessor

Problem 5. This restriction exists because the preprocessor is a compile-time construct whereas functions
are a runtime construct. That is, the code that you write for a function is executed only when the program
already runs, and preprocessor directives execute before the program begins running (or has even
finished compiling, for that matter). If a preprocessor directive were to execute a C++ function, the
compiler would need to compile and run that function during preprocessing, which might cause
dependency issues if the function referenced code that hadn't yet been preprocessed, or would have to
defer preprocessing to runtime, defeating the entire purpose of the preprocessor.

Problem 9. The code for a not-reached macro is actually simpler than that for an assert macro because we don't
need to verify any conditions and instead can immediately abort. We can begin by writing the code that actually
performs the action associated with the not-reached statement:

void DoCS106LNotReached(string message, int line, string filename)
{
 cerr << "CS106LNotReached failed: " << message << endl;
 cerr << "Line number: " << line << endl;
 cerr << "Filename: " << filename << endl;
 abort();
}

#define CS106LNotReached(msg) DoCS106LNotReached(msg, __LINE__, __FILE__)

Next, we need to disable the macro in case NO_CS106L_NOTREACHED is defined. This can be done as follows:

#ifndef NO_CS106L_NOTREACHED

void DoCS106LNotReached(string message, int line, string filename)
{
 cerr << "CS106LNotReached failed: " << message << endl;
 cerr << "Line number: " << line << endl;
 cerr << "Filename: " << filename << endl;
 abort();
}

#define CS106LNotReached(msg) DoCS106LNotReached(msg, __LINE__, __FILENAME__)

#else

#define CS106LNotReached(msg) /* Nothing */

#endif

Appendix 1: Solutions to Practice Problems - 515 -

- 516 - Appendix 1: Solutions to Practice Problems

Problem 11. Adding a NOT_A_COLOR sentinel to the Color enumeration is much easier than it sounds. The X
Macro code we have for generating the Color enumeration is currently

enum Color {
 #define DEFINE_COLOR(color, opposite) color, // Name followed by comma
 #include "color.h"
 #undef DEFINE_COLOR
};

These preprocessor directives expand out to the full list of colors with a comma following the name of the last
color. Thus all we need to do is change the code to look like this:

enum Color {
 #define DEFINE_COLOR(color, opposite) color, // Name followed by comma
 #include "color.h"
 #undef DEFINE_COLOR
 NOT_A_COLOR
};

Now, the enum contains a constant called NOT_A_COLOR that follows all other colors.

Problem 13. We want to change the definition of the Color enumeration so that the names of the colors are
prefaced with eColor_. Thus the code we want to generate should look like this:

enum Color {
 eColor_Red,
 eColor_Green,
 /* ... */
 eColor_White
};

Recall that the original X Macro code we had for automatically generating the Color enumeration was

enum Color {
 #define DEFINE_COLOR(color, opposite) color, // Name followed by comma
 #include "color.h"
 #undef DEFINE_COLOR
};

We can modify this to generate the above code by using the token-pasting operator ## to concatenate eColor_
before the name of each of the colors. The resulting code is

enum Color {
 #define DEFINE_COLOR(color, opposite) eColor_##color,
 #include "color.h"
 #undef DEFINE_COLOR
};

Introduction to Templates

Problem 1. copy_if accepts four parameters – two iterators defining an input range, one iterator defining the
output range, and a predicate function determining whether we should copy a particular element. Since we can
provide any sort of input iterator, any sort of output iterator, and a predicate that could theoretically accept any
type, we'll templatize copy_if over the types of the arguments, as shown here:

Appendix 1: Solutions to Practice Problems - 517 -

template <typename InputIterator, typename OutputIterator, typename Predicate>
inline OutputIterator copy_if(InputIterator start,
 InputIterator end,
 OutputIterator where,
 Predicate fn)
{
 /* ... */
}

Note that although the type of the predicate function depends on the type of iterators (that is, if we're iterating
over strings we can't give a function accepting an int), we've templatized the function with respect to the
predicate. This gives the client more leeway in what predicates they can provide. For example, if the iterators
iterate over a vector<int>, they could provide a predicate function accepting a double. Later when we cover
functors you'll see a more general reason to templatize the predicate parameter.

Now all that's left to do is write the function body. Fortunately this isn't too tricky – we just keep advancing the
start iterator forward, checking if the element iterated over passes the predicate and copying the element if
necessary. The final code looks like this:

template <typename InputIterator, typename OutputIterator, typename Predicate>
inline OutputIterator copy_if(InputIterator start,
 InputIterator end,
 OutputIterator where,
 Predicate fn)
{
 for(; start != end; ++start)
 {
 if(fn(*start))
 {
 *where = *start;
 ++where;
 }
 }
 return where;
}

As an FYI, you will sometimes see the code

*where = *start;
++where;

Written as

*where++ = *start;

This is a trick that relies on the fact that the ++ operator binds more tightly than the * operator. Thus the code is
interpreted as *(where++) = *start, meaning that we advance the where iterator by one step, then store in
the location it use to point at the value of *start. I personally find this syntax more attractive than the
longhand version, but it is admittedly more confusing.

- 518 - Appendix 1: Solutions to Practice Problems

Problem 6. Recall that the code for GetInteger is as follows:

int GetInteger()
{
 while(true)
 {
 stringstream converter(GetLine());
 int result;

 converter >> result;
 if(!converter.fail())
 {
 char leftover;
 converter >> leftover;

 if(converter.fail()) return result;
 cout << "Unexpected character: " << leftover << endl;
 }
 else cout << "Please enter an integer." << endl;

 cout << "Retry: ";
 }
}

To templatize this function over an arbitrary type, we need to change the return type, the type of result, and
the error message about entering an integer. The modified code is shown here:

template <typename ValueType> ValueType GetValue(string type)
{
 while(true)
 {
 stringstream converter(GetLine());
 ValueType result;

 converter >> result;
 if(!converter.fail())
 {
 char leftover;
 converter >> leftover;

 if(converter.fail()) return result;
 cout << "Unexpected character: " << leftover << endl;
 }
 else cout << "Please enter " << type << endl;

 cout << "Retry: ";
 }
}

const

Problem 5. At first it seems like it should be safe to convert an int ** into a const int **. After all, we're
just adding more consts to the pointer, which restricts what we should be able to do with the pointer. How
could we possibly use this to subvert the type system? The answer is the following chain of assignments that
allow us to overwrite a const int:

Appendix 1: Solutions to Practice Problems - 519 -

const int myConstant = 137; // Legal
int * evilPtr; // Legal, uninitialized

/* This next line is not legal C++ because &evilPtr is an int** and badPtr is a
 * const int **. Watch what happens if we allow this.
 */
const int** badPtr = &evilPtr;

/* Dereference badPtr and assign it the address of myConstant. &myConstant is a
 * const int * and badPtr is a const int*, so the assignment is legal. However,
 * since badPtr points to evilPtr, this assigns evilPtr the address of the
 * myConstant variable, which is const!
 */
*badPtr = &myConstant;

/* This would overwrite a const variable. */
*evilPtr = 42;

This is a subtle edge case, but because it's possible C++ explicitly disallows it.

Problem 6. The initial interface for the CS106B/X Vector class is reprinted here:

template <typename ElemType> class Vector
{
public:
 Vector(int sizeHint = 0);

 int size();
 bool isEmpty();

 ElemType getAt(int index);
 void setAt(int index, ElemType value);

 ElemType & operator[](int index);

 void add(ElemType elem);
 void insertAt(int index, ElemType elem);
 void removeAt(int index);

 void clear();

 void mapAll(void (*fn)(ElemType elem));
 template <typename ClientDataType>
 void mapAll(void (*fn)(ElemType elem, ClientDataType & data),
 ClientDataType & data);

 Iterator iterator();
};

The first task in const-correcting this is marking non-mutating operations const. This is reasonably
straightforward for most of the functions. The interesting case is the operator[] function, which returns a
reference to the element at a given position. This function needs to be const-overloaded since if the Vector is
const we want to hand back a const reference and if the Vector is non-const we want to hand back a non-
const reference. The updated interface is shown here:

- 520 - Appendix 1: Solutions to Practice Problems

template <typename ElemType> class Vector
{
public:
 Vector(int sizeHint = 0);

 int size() const;
 bool isEmpty() const;

 ElemType getAt(int index) const;
 void setAt(int index, ElemType value);

 ElemType & operator[](int index);
 const ElemType & operator[](int index) const;

 void add(ElemType elem);
 void insertAt(int index, ElemType elem);
 void removeAt(int index);

 void clear();

 void mapAll(void (*fn)(ElemType elem)) const;
 template <typename ClientDataType>
 void mapAll(void (*fn)(ElemType elem, ClientDataType & data),
 ClientDataType & data) const;

 Iterator iterator() const;
};

Next, we'll update the class by passing all appropriate parameters by reference-to-const rather than by value.
This results in the following interface:

template <typename ElemType> class Vector
{
public:
 Vector(int sizeHint = 0);

 int size() const;
 bool isEmpty() const;

 ElemType getAt(int index) const;
 void setAt(int index, const ElemType& value);

 ElemType & operator[](int index);
 const ElemType & operator[](int index) const;

 void add(const ElemType& elem);
 void insertAt(int index, const ElemType& elem);
 void removeAt(int index);

 void clear();

 void mapAll(void (*fn)(const ElemType& elem)) const;
 template <typename ClientDataType>
 void mapAll(void (*fn)(const ElemType& elem, ClientDataType & data),
 ClientDataType & data) const;

 Iterator iterator() const;
};

Appendix 1: Solutions to Practice Problems - 521 -

Finally, we'll change the return type of getAt to return a const reference to the element in the Vector rather
than a full copy, since this reduces the cost of the function. The final version of the Vector is shown below:

template <typename ElemType> class Vector
{
public:
 Vector(int sizeHint = 0);

 int size() const;
 bool isEmpty() const;

 const ElemType& getAt(int index) const;
 void setAt(int index, const ElemType& value);

 ElemType & operator[](int index);
 const ElemType & operator[](int index) const;

 void add(const ElemType& elem);
 void insertAt(int index, const ElemType& elem);
 void removeAt(int index);

 void clear();

 void mapAll(void (*fn)(const ElemType& elem)) const;
 template <typename ClientDataType>
 void mapAll(void (*fn)(const ElemType& elem, ClientDataType & data),
 ClientDataType & data) const;

 Iterator iterator() const;
};

static

Problem 2. The UniquelyIdentified class can be implemented by having a static variable inside the class
that tracks the most recently used ID, as well as a non-static variable for each instance that tracks the particular
class's unique ID. This can be implemented as follows:

class UniquelyIdentified
{
public:
 UniquelyIdentified();

 int getUniqueID() const;
private:
 static int lastUsedID;
 const int currentID;
};

/* Remember, this must go outside the class! */
int UniquelyIdentified::lastUsedID = 1;

UniquelyIdentified::UniquelyIdentified() : currentID(lastUsedID)
{
 ++lastUsedID;
}

- 522 - Appendix 1: Solutions to Practice Problems

int UniquelyIdentified::getUniqueID() const
{
 return currentID;
}

Conversion Constructors

Problem 5. C++ will only apply at most one conversion constructor at a time to avoid getting into ambiguous
situations. For example, suppose that we start off with types A, B, and C such that A is convertible to B and B is
convertible to C. Then we can think of this graphically as follows:

Now, suppose we introduce another conversion into this mix, this time directly from A to C, as shown here:

If we try to implicitly convert from an A to a C, which sequence of conversions is correct? Do we first convert
the A to a B and then convert that to a C, or just directly convert the A to a C? There's no clear right answer here,
and to avoid confusions like this C++ sidesteps the issue by only applying one implicit conversion at a time.

Copy Constructors and Assignment Operators

Problem 1. The reason that this code is problematic is that at some point in the assignment operator, all of the
resources that were allocated by the current class instance need to be cleaned up. However, we never allocated
any resources, and none of the class's data members have been initialized. Trying to clean up garbage almost
always results in a program crash. In general, you should not implement copy constructors in terms of
assignment operators

Problem 2. It is illegal to write a copy constructor that accepts its parameter by value because this causes a
circular dependency. Recall that the copy constructor is invoked whenever a function is passed by value into a
function, so if the copy constructor itself took its parameter by value it would need to call itself to initialize the
parameter by value, but then it would have to initialize the parameter in that function call by invoking itself, etc.
This causes a compile-time error rather than a runtime error, by the way.

A CB

A CB

Appendix 1: Solutions to Practice Problems - 523 -

The assignment operator doesn't have this problem because if the assignment operator were to accept its
parameter by value, the copy is made by the copy constructor, which is an entirely different function.

Operator Overloading

Problem 3. The other operators can be defined as follows:

A < B ⇔ A < B

A <= B ⇔ !(B < A)

A == B ⇔ !(A < B || B < A)

A != B ⇔ A < B || B < A

A >= B ⇔ !(A < B)

A > B ⇔ B < A

Problem 7. For reference, here's the broken interface of the iterator class:

class iterator
{
public:
 bool operator== (const iterator& other);
 bool operator!= (const iterator& other);

 iterator operator++ ();

 ElemType* operator* () const;
 ElemType* operator-> () const;
};

There are five problems in this implementation. The first two have to do with the declarations of the == and !=
operators. Since these functions don't modify the state of the iterator (or at least, no sensible implementation
should), they should both be marked const, as shown here:

class iterator
{
public:
 bool operator== (const iterator& other) const;
 bool operator!= (const iterator& other) const;

 iterator operator++ ();

 ElemType* operator* () const;
 ElemType* operator-> () const;
};

Next, take a look at the return type of operator*. Remember that operator* is called whenever the iterator
is dereferenced. Thus if the iterator is pretending to point to an element of type ElemType, this function should
return an ElemType& (a reference to the value) rather than an ElemType* (a pointer to the value). Otherwise
code like this:

*myItr = 137;

Wouldn't compile. The updated interface now looks like this:

- 524 - Appendix 1: Solutions to Practice Problems

class iterator
{
public:
 bool operator== (const iterator& other) const;
 bool operator!= (const iterator& other) const;

 iterator operator++ ();

 ElemType& operator* () const;
 ElemType* operator-> () const;
};

Next, look at the return type of operator++. Recall that operator++ is the prefix ++ operator, meaning that
we should be able to write code like this:

++(++itr)

To increment the iterator twice. Unfortunately, with the above interface this code compiles but does something
totally different. Since the return type is iterator, the returned object is a copy of the receiver object rather
than the receiver object itself. Thus the code ++(++itr) means to increment itr by one step, then to
increment the temporary iterator object by one step. This isn't at all what we want to do, so we'll fix this by
having operator++ return a reference to an iterator, as shown here:

class iterator
{
public:
 bool operator== (const iterator& other) const;
 bool operator!= (const iterator& other) const;

 iterator& operator++ ();

 ElemType& operator* () const;
 ElemType* operator-> () const;
};

We've now fixed four of the five errors, so what's left? The answer's a bit subtle – there's nothing technically
wrong with this interface any more, but we've left out an important function that makes the interface unintuitive.
In particular, we've only defined a prefix operator++ function, meaning that code like ++itr is legal but not
code like itr++. We should thus add support for a postfix operator++ function. The final version of the
iterator class thus looks like this:

class iterator
{
public:
 bool operator== (const iterator& other) const;
 bool operator!= (const iterator& other) const;

 iterator& operator++ ();
 const iterator operator++ (int);

 ElemType& operator* () const;
 ElemType* operator-> () const;
};

Appendix 1: Solutions to Practice Problems - 525 -

Functors

Problem 1. for_each returns the function passed in as a final parameter so that you can pass in a functor that
updates internal state during the loop and then retrieve the updated functor at the end of the loop. For example,
suppose that we want to compute the minimum, maximum, and average of a range of data in a single pass. Then
we could write the following functor class:

class DataSample
{
public:
 /* Constructor initializes minVal and maxVal so that they're always updated,
 * sets the total to zero, and the number of elements to zero.
 */
 DataSample() : minVal(INT_MAX), maxVal(INT_MIN), total(0.0), count(0) {}

 /* Accessor methods. */
 int getMin() const
 {
 return minVal;
 }
 int getMax() const
 {
 return maxVal;
 }
 double getAverage() const
 {
 return total / count;
 }
 int getNumElems() const
 {
 return count;
 }

 /* operator() accepts a piece of input and updates state appropriately. */
 void operator() (int val)
 {
 minVal = min(minVal, val);
 maxVal = max(maxVal, val);
 total += val;
 ++count;
 }
private:
 int minVal, maxVal;
 double total;
 int count;
};

Then we can write a function which accepts a range of iterators (presumed to be iterating over int values) and
then returns a DataSample object which contains a summary of that data:

- 526 - Appendix 1: Solutions to Practice Problems

template <typename InputIterator>
DataSample AnalyzeSample(InputIterator begin, InputIterator end)
{
 /* Create a temporary DataSample object and pass it through for_each. This
 * then invokes operator() once for each element in the range, resulting in a
 * DataSample with its values set appropriately. We then return the result of
 * for_each, which is the updated DataSample. Isn't that nifty?
 */
 return for_each(begin, end, DataSample());
}

Problem 3. AdvancedBiasedSort is similar to the BiasedSort example from the chapter on STL
algorithms. If you'll recall, if we assume that the string that should be the winner is stored in a constant
kWinnerString, the following comparison function can be used to bias the sort so that kWinnerString
always comes in front:

bool BiasedSortHelper(const string& one, const string& two)
{
 /* Case one: Neither string is the winner string. Just do a default
 * comparison.
 */
 if(one != kWinnerString && two != kWinnerString)
 return one < two;

 /* Case two: Both strings are the winner string. Then return false because the
 * string isn't less than itself.
 */
 if(one == kWinnerString && two == kWinnerString)
 return false;

 /* Case three: one is the winner string, two isn't. Then return true to bias
 * the sort.
 */
 if(one == kWinnerString)
 return true;

 /* Otherwise, two is the winner string and one isn't, so return false to bias
 * the sort.
 */
 return false;
}

To update this code so that any string can be set as the winner string, we'll need to convert this function into a
functor that stores the string as a data member. This can be done as follows:

class BiasedSortHelper
{
public:
 explicit BiasedSortHelper(const string& winner) : winnerString(winner) {}
 bool operator() (const string& one, const string& two) const;
private:
 string winnerString;
};

Appendix 1: Solutions to Practice Problems - 527 -

bool BiasedSortHelper::operator()(const string& one, const string& two) const
{
 /* Case one: Neither string is the winner string. Just do a default
 * comparison.
 */
 if(one != winnerString && two != winnerString)
 return one < two;

 /* Case two: Both strings are the winner string. Then return false because the
 * string isn't less than itself.
 */
 if(one == winnerString && two == winnerString)
 return false;

 /* Case three: one is the winner string, two isn't. Then return true to bias
 * the sort.
 */
 if(one == winnerString)
 return true;

 /* Otherwise, two is the winner string and one isn't, so return false to bias
 * the sort.
 */
 return false;
}

We can then implement AdvancedBiasedSort as follows:

void AdvancedBiasedSort(vector<string>& v, const string& winner)
{
 sort(v.begin(), v.end(), BiasedSortHelper(winner));
}

Problem 7. We want to compute the value of 1
n∑i=1

n

x i−x
2

 as applied to a range of data. This breaks down
into four smaller tasks:

1. Compute the average of the data set.
2. Compute the value of the inner sum.
3. Divide the total by the number of elements.
4. Return the square root of this value.

We can use the sqrt function exported by <cmath> to perform the square root and accumulate for the rest of
the work. We'll begin by computing the average of the data, as shown here:

template <typename ForwardIterator>
double StandardDeviation(ForwardIterator begin, ForwardIterator end)
{
 const ptrdiff_t numElems = distance(begin, end);
 const double average = accumulate(begin, end, 0.0) / numElems;
 /* ... */
}

Note that we've computed the size of the range using the distance function, which efficiently returns the
number of elements between two iterators. We've stored the number of elements in a variable of type
ptrdiff_t, which, as the name suggests, is a type designed to hold the distance between two pointers.

- 528 - Appendix 1: Solutions to Practice Problems

Technically speaking we should query the iterator for the type of value returned when computing the distance
between the iterators, but doing so is beyond the scope of this text.

Now, let's see how we can use accumulate to evaluate the sum. Recall that the four-parameter version of
accumulate allows us to specify what operation to apply pairwise to the current accumulator and any element
of the range. In our case, we'll want to add up the sum of the values of (xi – x)2 for each element, so we'll
construct a functor that stores the value of the average and whose operator() function takes the accumulator
and the current element, computes (xi – x)2, then adds it to the current accumulator. This is shown here:

class StandardDeviationHelper
{
public:
 explicit StandardDeviationHelper(double average) : mean(average) {}
 double operator() (double accumulator, double currentValue) const
 {
 const double expr = currentValue – mean; // xi - x
 return accumulator + expr * expr; // (xi – x)2

 }
private:
 const double mean;
};

Given this helper functor, we can now write the following:

template <typename ForwardIterator>
double StandardDeviation(ForwardIterator begin, ForwardIterator end)
{
 const ptrdiff_t numElems = distance(begin, end);
 const double average = accumulate(begin, end, 0.0) / numElems;
 const double sum =
 accumulate(begin, end, 0.0, StandardDeviationHelper(average));
 return sqrt(sum / numElems);
}

Problem 8. If we were given an arbitrary C string and told to set it to the empty string, we could do so by calling
strcpy(myStr, ""), where myStr is the string variable. To do this to every string in a range, we can use
for_each to apply the function everywhere and bind2nd to lock the second parameter of strcpy in place.
This is shown here:

template <typename ForwardItr>
void ClearAllStrings(ForwardItr begin, ForwardItr end)
{
 for_each(begin, end, bind2nd(ptr_fun(strcpy), ""));
}

This works because bind2nd(ptr_fun(strcpy), "") is a one-parameter function that passes the argument
as the first parameter into strcpy with the second parameter locked as the empty string.

Problem 9. Now that we're dealing with regular C++ strings, we can clear the strings by calling the
.clear() member function on each of them. Recalling that the mem_fun_ref function transforms a member
function into a one-parameter function that calls the specified function on the argument, we can write
ClearAllStrings as follows:

Appendix 1: Solutions to Practice Problems - 529 -

template <typename ForwardItr>
void ClearAllStrings(ForwardItr begin, ForwardItr end)
{
 for_each(begin, end, mem_fun_ref(&string::clear));
}

Problem 11. The replace_if algorithm takes four parameters – two iterators defining a range of elements, a
predicate function, and a value – then replaces all elements in the range for which the predicate returns true with
the specified value. In our case, we're given a value as a parameter to the CapAtValue function and want to
replace elements in the range that compare greater than the parameter with the parameter. Using bind2nd and
the greater operator function, we have the following:

template <typename ForwardItr, typename ValueType>
void CapAtValue(ForwardItr begin, ForwardItr end, ValueType maxValue)
{
 replace_if(begin, end, bind2nd(greater<ValueType>(), maxValue), maxValue);
}

Introduction to Exception Handling

Problem 1. If you put a catch(...) clause at the top of a catch cascade, then none of the other catch
handlers will ever catch exceptions thrown by the try block. C++ evaluates each catch clause in sequence
until it discovers a match, and if the first is a catch(...) it will always choose that one first.

Problem 4. We want to modify the code

void ManipulateStack(stack<string>& myStack)
{
 if(myStack.empty())
 throw invalid_argument("Empty stack!");

 string topElem = myStack.top();
 myStack.pop();

 /* This might throw an exception! */
 DoSomething(myStack);

 myStack.push(topElem);
}

So that if the DoSomething function throws an exception we're sure to put the element topElem back on the
stack before propagating the exception. This can be done as follows:

- 530 - Appendix 1: Solutions to Practice Problems

void ManipulateStack(stack<string>& myStack)
{
 if(myStack.empty())
 throw invalid_argument("Empty stack!");

 string topElem = myStack.top();
 myStack.pop();

 try
 {
 /* This might throw an exception! */
 DoSomething(myStack);
 myStack.push(topElem);
 }
 catch(...)
 {
 myStack.push(topElem);
 throw;
 }

 myStack.push(topElem);
}

Problem 5. We want to solve the same problem as in the above case, but by using RAII to manage the resource
instead of manually catching and rethrowing any exceptions. We'll begin by defining an
AutomaticStackManager class that takes in a reference to a stack, then pops the top and stores the result
internally. When the destructor executes, we'll push the element back on. This looks like this:

template <typename ElemType> class AutomaticStackManager
{
public:
 explicit AutomaticStackManager(stack<ElemType>& s) :
 toManage(s), topElem(s.top())
 {
 toManage.pop();
 }

 ~AutomaticStackManager()
 {
 toManage.push(topElem);
 }
private:
 stack<ElemType>& toManage;
 const ElemType topElem;
};

Notice that we've templatized this class with respect to the type of element stored in the stack, since there's
nothing special about string. This is in general a good design philosophy – if you don't need to specialize your
code over a single type, make it a template.

We can then rewrite the function as follows:

Appendix 1: Solutions to Practice Problems - 531 -

void ManipulateStack(stack<string>& myStack)
{
 if(myStack.empty())
 throw invalid_argument("Empty stack!");

 AutomaticStackManager<string> autoCleanup(myStack);
 DoSomething(myStack);
}

Notice how much cleaner and shorter this code is than before – by having objects manage our resources we're
sure that we won't leak any resources here. True, we had to write a bit of code for AutomaticStackManager,
but provided that we use it in more than one circumstance the savings in code simplicity over the manual catch-
and-rethrow approach are impressive.

Introduction to Inheritance

Problem 1. We don't have to worry that a pointer of type Document* points to an object of concrete type
Document because Document is an abstract class and thus can't be instantiated. You do not need to worry about
a pure virtual function call realizing that there's no actual code to execute since C++ will raise a compile-time
error if you try to instantiate an abstract class.

Problem 4. One possible implementation for DerivativeFunction is shown here:

class DerivativeFunction: public Function
{
public:
 explicit DerivativeFunction(Function* toCall) : function(toCall) {}

 virtual double evaluateAt(double where) const
 {
 const double kEpsilon = 0.00001; // Small Δx
 return (function->evaluateAt(where + kEpsilon) –
 function->evaluateAt(where - kEpsilon)) / (2 * kEpsilon);
 }
private:
 Function *const function;
}

Here, the constructor accepts and stores a pointer to an arbitary Function, and the evaluateAt function
invokes the virtual evaluateAt function of the stored function at the proper points to approximate the
derivative.

Bibliography

[Str94]: Bjarne Stroustrup, The Design and Evolution of C++. Addison-Wesley: 1994.
[Str09]: Bjarne Stroustrup. "Stroustrup: FAQ" URL:
http://www.research.att.com/~bs/bs_faq.html#decline. Accessed 7 Jul 2009.
[Ste07]: Alexander Stepanov. "Short History of STL" URL: http://www.stepanovpapers.com/history
%20of%20STL.pdf. Accessed 2 Jul 2009.
[Intel]: Intel Corporation. "965_diagram.gif" URL:
http://www.intel.com/assets/image/diagram/965_diagram.gif. Accessed 7 Jul 2009.
[Pic96]: NeilFred Picciotto. "Neil/Fred's Gigantic List of Palindromes" URL:
http://www.derf.net/palindromes/old.palindrome.html. Accessed 10 Jul 2009.
[Str09.2]: Bjarne Stroustrup. "Stroustrup: C++" URL: http://www.research.att.com/~bs/C++.html.
Accessed 24 Jun 2009.
[Spo08]: Joel Spolsky, Joel on Software: And on Diverse and Occasionally Related Matters That Will Prove of
Interest to Software Developers, Designers, and Managers, and to Those Who, Whether by Good Fortune or Ill
Luck, Work with Them in Some Capacity. Apress: 2008.
[GNU]: GNU Project. "strfry" URL: http://www.gnu.org/s/libc/manual/html_node/strfry.html#strfry.
Accessed 4 Aug 2009.
[Sut98]: Herb Sutter. "Advice from the C++ Experts: Be Const-Correct" URL:
http://www.gotw.ca/publications/advice98.htm. Accessed 10 Jun 2009.
[MCO]: Mars Climate Orbiter Mishap Investigation Board Phase I Report. November 10, 1999. URL:
ftp://ftp.hq.nasa.gov/pub/pao/reports/1999/MCO_report.pdf
[Mey05]: Scott Meyers, Effective C++: 55 Specific Ways to Improve Your Programs and Designs, Third Edition.
Addison-Wesley: 2005.
[Str09.3]: Bjarne Stroustrup. "C++0x FAQ" URL: http://www.research.att.com/~bs/C+
+0xFAQ.html#think. Accessed 10 Jul 2009.
[Dij68]: Edsger Dijkstra. "Go To Statement Considered Harmful." Communications of the ACM, Vol. 11, No. 3,
Mar 1968, pg. 147-148

Index

A
abort, 172, 278
adaptable functions, 375, 381

operator functions, 380
address-of operator, 138
assert, 170, 229
assignment operators, 263

copy-and-swap, 277
disabling, 275
for derived classes, 452
implementation of, 268
return value of, 272
self-assignment, 270

auto_ptr, 398
and exception-safety, 401

B
BCPL, 5
binary_function, 377
bind1st, 378

implementation, 385
bind2nd, 378, 416
bitwise equivalence, 273
Bjarne Stroustrup, 5

and pure virtual functions, 437
and the preprocessor, 167

Boost C++ libraries, 23
busy loop, 63

C
C strings,

in-memory layout, 148
strcat, 150
strchr, 153
strcmp, 151
strcpy, 150
strlen, 149
strncpy, 153
strstr, 152
terminating null, 148

c_str(), 26
C++0x, 481

lambda expressions, 489
rvalue references, 485
sizeof..., 494
static_assert, 494
type inference, 481

unique_ptr, 488
variadic templates, 490

Caesar cipher, 52
casting operators, 457

const_cast, 505
dynamic_cast, 458
reinterpret_cast, 505
static_cast, 64, 66, 457, 507

catch, 393
catch(...), 397

cerr, 26
cin, 25
clock, 63
clock_t, 64
CLOCKS_PER_SEC, 63
complex, 426
const, 205

bitwise constness, 211
const and pointers, 206
const and static, 252
const member functions, 207, 217
const references, 209, 216
const-correctness, 215, 282
semantic constness, 211

conversion constructors, 255, 285
copy constructors, 263

disabling, 275
for derived classes, 452
implementation of, 265

copy semantics, 399, 485
cout, 25
ctime, 266

D
default arguments, 241
defined (preprocessor predicate), 162
delete, 142
delete[], 144
deterministic finite automaton, 100
dimensional analysis, 331
distance, 532
dumb pointer, 315

- 536 - Index

E
exception handling, 393

and resource leaks, 395
catch-and-rethrow, 396
resource acquisition is initialization, 400

explicit, 258, 285
external polymorphism, 474

F
free, 506
friend, 305
functors, 366

as comparison objects, 371
as parameters to functions, 369

fundamental theorem of software engineering, 465

G
getline, 34, 61, 214
goto, 508

Go To Statement Considered Harmful, 508
grid, 345

H
higher-order programming, 373

I
ifstream, 26, 58, 203, 213
implicit conversions, 255
include guard, 163
inheritance, 429

abstract classes, 437
base classes, 430
copy functions for derived classes, 452
derived classes, 430
disallowing copying with, 452
function overrides, 438
is-a relationship, 430
polymorphism, 436
private inheritance,, 453
pure virtual functions, 437
slicing, 456

inline functions, 166
invalid_argument, 394, 423
isalpha, 128
ispunct, 118
isspace, 39, 129

L
lexicographical ordering, 357
lvalue, 137, 294

M
macros, 164

dangers of, 165
make_pair, 94, 105, 233
malloc, 506
mem_fun, 377
mem_fun_ref, 377
member initializer list, 237
memory segments, 148
mixin classes, 456
monoalphabetic substitution cipher, 125
move semantics, 399, 485
mutable, 212

N
namespace, 18
new, 142
new[], 144
nondeterministic finite automaton, 107
not1, 379

implementation, 381
not2, 379
NULL, 141
numeric_limits, 373

O
object construction, 237

in derived classes, 446
ofstream, 26
operator overloading, 291

as free functions, 302
compound assignment operators, 297
element selection operator, 296, 352
function call operator, 366, 469
general principles, 293
increment and decrement operators, 304
mathematical operators, 300, 339
member selection operator, 310, 320
pointer dereference operator, 309, 320
relational operators, 305, 356
stream insertion operator, 307
unary minus operator, 299

P
pair, 94, 104, 232
palindromes, 127
pointers, 137

pointer arithmetic, 151
pointer assignment, 139
pointer dereference, 139
void*, 506

principle of least astonishment, 292

Index - 537 -

printf, 504
protected, 440
proxy objects, 353
ptr_fun, 377

implementation, 384
ptrdiff_t, 532

Q
qsort, 506

R
rand, 66, 254
RAND_MAX, 66
reference counting, 315
references, 136
row-major order, 346
rule of three, 265, 286
rvalue, 294

S
scanf, 504
segmentation fault, 149
semantic equivalence, 273
sibling access, 267
Simula, 5
singleton class, 278
smart pointer, 315
sqrt, 532
srand, 66, 254
standard deviation, 389
static, 247

static data members, 247
static member functions, 251

STL algorithms, 113
accumulate, 113, 372
binary_search, 116
copy, 118, 267, 288, 423
count, 156
count_if, 365
equal, 117, 128, 202
fill, 123
find, 116
find_if, 313, 419
for_each, 119, 389
generate, 389
includes, 117
lexicographical_compare, 358
lower_bound, 117, 372
random_shuffle, 116
remove, 118
remove_copy, 118

remove_copy_if, 118, 389
remove_if, 118, 128
replace_if, 390
reverse, 128
rotate, 116
set_difference, 117
set_intersection, 117
set_symmetric_difference, 117
set_union, 117
sort, 115, 389
swap, 277
swap_ranges, 420
transform, 119, 129, 202, 373, 416, 418

STL containers, 43
deque, 49, 56
map, 95, 104, 227
multimap, 96, 109
multiset, 96
queue, 44, 430, 436
set, 91, 104
stack, 44
vector, 45, 54, 213, 346, 507

STL iterators, 81
begin(), 82
const_iterator, 210
defining ranges with, 82
end(), 83
iterator adapters, 86

back_insert_iterator, 86
back_inserter, 87
front_insert_iterator, 88
front_inserter, 88
insert_iterator, 88
inserter, 88, 117
istream_iterator, 88, 130, 213
istreambuf_iterator, 88, 203
ostream_iterator, 86, 288
ostreambuf_iterator, 88

iterator categories, 84
iterator, 81
reverse_iterator, 84, 128

stream extraction operator, 25
stream failure, 32
stream insertion operator, 25

- 538 - Index

stream manipulators, 27
boolalpha, 31
dec, 32
endl, 27
hex, 32
left, 29
noboolalpha, 31
oct, 32
right, 29
setfill, 30
setw, 29, 31

stringstream, 35, 130
syntax sugar, 293
system, 64

T
templates, 183

implicit interface, 198
integer template arguments, 338
template classes, 183

member functions of, 185
template functions, 195
template member functions, 199

of template classes, 200
type inference, 195, 384, 472
typename, 183, 200

temporary object syntax, 288, 348, 369
this, 249

and assignment operators, 271
and static member functions, 251
as an invisible parameter, 250

throw, 393
lone throw statement, 397

time, 66, 254
time_t, 266
tolower, 119
try, 393
typedef, 91

typedef struct, 512

U
unary_function, 376
undefined behavior, 143
union-find data structure, 225
using namespace std, 17

V
valarray, 313
Vigenère cipher, 52
virtual, 434

in constructors and destructors, 449
virtual destructors, 441

= 0, 434
virtual function table, 443, 474

X
X Macro trick, 173

Z
zero-overhead principle, 133

__DATE__, 169
__FILE__, 169
__LINE__, 169
__TIME__, 169
?: operator, 70, 166
(stringizing operator), 169
(token-pasting operator), 170
#define, 158

dangers of, 159
#elif, 162
#else, 162
#endif, 162
#if, 162
#ifdef, 163
#ifndef, 163
#include, 157
#undef, 173
<algorithm>, 113
<cassert>, 170
<cctype>, 118, 123
<cmath>, 123, 532
<complex>, 426
<cstddef>, 142
<cstdio>, 503
<cstdlib>, 64, 66, 172, 254
<cstring>, 149
<ctime>, 63, 254, 266
<fstream>, 26
<functional>, 375

implementation of, 381
<iomanip>, 29
<iostream>, 17
<iterator>, 86
<limits>, 373
<memory>, 398
<numeric>, 113
<sstream>, 36
<stdexcept>, 394
<string>, 19
<utility>, 94
<valarray>, 313

	Acknowledgements
	Table of Contents
	Introduction
	Chapter 0: What is C++?
	Chapter 1: Getting Started
	Chapter 2: C++ Without genlib.h
	Part One
	A Better C
	Chapter 3: Streams
	Chapter 4: Multi-File Programs, Abstraction, and the Preprocessor
	Chapter 5: STL Sequence Containers
	Chapter 6: STL Associative Containers and Iterators
	Chapter 7: STL Algorithms
	Data Abstraction
	Chapter 8: Abstraction and Classes
	Chapter 9: Refining Abstractions
	Chapter 10: Operator Overloading
	Chapter 11: Resource Management
	Chapter 12: Error Handling
	Part Three
	Generic Programming
	Chapter 13: Functors
	Part Three
	More to Explore
	Chapter 14: C++0x
	Chapter 15: Where to Go From Here
	Part Four
	Object-Oriented Programming
	Chapter 16: Introduction to Inheritance
	Appendices
	Appendix 0: Moving from C to C++
	Appendix 1: Solutions to Practice Problems

