1 Useful identities related to summations

Since it may have been a while since some folks have worked with summations, I just wanted to provide a reference on them that you may find useful in your future work. Here are some useful identities and rules related to working with summations. In the rules below, f and g are arbitrary real-valued functions.

Pulling a constant out of a summation:

$$\sum_{n=s}^{t} C \cdot f(n) = C \cdot \sum_{n=s}^{t} f(n),$$

where C is a constant.

Eliminating the summation by summing over the elements:

$$\sum_{i=1}^{n} x = nx$$
$$\sum_{i=m}^{n} x = (n - m + 1)x$$
$$\sum_{i=s}^{n} f(C) = (n - s + 1)f(C),$$

where C is a constant.

Combining related summations:

$$\sum_{n=s}^{j} f(n) + \sum_{n=j+1}^{t} f(n) = \sum_{n=s}^{t} f(n)$$
$$\sum_{n=s}^{t} f(n) + \sum_{n=s}^{t} g(n) = \sum_{n=s}^{t} [f(n) + g(n)]$$

Changing the bounds on the summation:

$$\sum_{n=s}^{t} f(n) = \sum_{n=s+p}^{t+p} f(n - p)$$
"Reversing" the order of the summation:

\[\sum_{n=a}^{b} f(n) = \sum_{n=b}^{a} f(n) \]

Arithmetic series:

\[\sum_{i=0}^{n} i = \sum_{i=1}^{n} i = \frac{n(n+1)}{2} \quad \text{(with a moment of silence for C. F. Gauss.)} \]

\[\sum_{i=m}^{n} i = \frac{(n-m+1)(n+m)}{2} \]

Arithmetic series involving higher order polynomials:

\[\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} = \frac{n^3}{3} + \frac{n^2}{2} + \frac{n}{6} \]

\[\sum_{i=1}^{n} i^3 = \left(\frac{n(n+1)}{2} \right)^2 = \frac{n^4}{4} + \frac{n^3}{2} + \frac{n^2}{4} = \left[\sum_{i=1}^{n} i \right]^2 \]

Geometric series:

\[\sum_{i=0}^{n} x^i = \frac{1-x^{n+1}}{1-x} \]

\[\sum_{i=m}^{n} x^i = \frac{x^{n+1} - x^m}{x-1} \]

\[\sum_{i=0}^{\infty} x^i = \frac{1}{1-x} \text{ if } |x| < 1 \]

More exotic geometric series:

\[\sum_{i=0}^{n} i 2^i = 2 + 2^{n+1}(n - 1) \]

\[\sum_{i=0}^{n} \frac{i}{2^i} = \frac{2^{n+1} - n - 2}{2^n} \]

Taylor expansion of exponential function:

\[e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots \]

Binomial coefficient:

\[\sum_{i=0}^{n} \binom{n}{i} = 2^n \]

Much more information on binomial coefficients is available in the Ross textbook.
2 Growth rates of summations

Besides solving a summation explicitly, it is also worthwhile to know some general growth rates on sums, so you can (tightly) bound a sum if you are trying to prove something in the big-Oh/Theta world. If you’re not familiar with big-Theta (Θ) notation, you can think of it like big-Oh notation, but it actually provides a “tight” bound. Namely, big-Theta means that the function grows no more quickly and no more slowly than the function specified, up to constant factors, so it’s actually more informative than big-Oh.

Here are some useful bounds:

\[\sum_{i=1}^{n} i^c = \Theta(n^{c+1}), \text{ for } c \geq 0. \]
\[\sum_{i=1}^{n} \frac{1}{i} = \Theta(\log n) \]
\[\sum_{i=1}^{n} c^i = \Theta(c^n), \text{ for } c \geq 2. \]

3 A few identities related to products

Recall that the mathematical symbol \(\prod \) represents a product of terms (analogous to \(\Sigma \) representing a sum of terms). Below, we give some useful identities related to products.

Definition of factorial:

\[\prod_{i=1}^{n} i = n! \]

Note that 0! = 1 by definition.

Stirling’s approximation for \(n! \) is given below. This approximation is useful when computing \(n! \) for large values of \(n \) (particularly when \(n > 30 \)).

\[n! \approx \sqrt{2\pi n} \left(\frac{n}{e} \right)^n, \text{ or equivalently } n! \approx \sqrt{2\pi n}^{(n+\frac{1}{2})} e^{-n} \]
Eliminating the product by multiplying over the elements:
\[\prod_{i=1}^{n} C = C^n, \] where \(C \) is a constant.

Combining products:
\[\prod_{i=1}^{n} f(i) \prod_{i=1}^{n} g(i) = \prod_{i=1}^{n} f(i) \cdot g(i) \]

Turning products into summations (by taking logarithms, assuming \(f(i) > 0 \) for all \(i \)):\[
\log \left(\prod_{i=1}^{n} f(i) \right) = \sum_{i=1}^{n} \log f(i)
\]

4 Suggestions for computing permutations and combinations

For your problem set solutions it is fine for your answers to include factorials, exponentials, or combinations; you don’t need to calculate those all out to get a single numeric answer. However, if you’d like to work with those in Python, R, or Microsoft Excel, here are a few functions you may find useful.

In Python:

```python
math.factorial(n)  # computes n!
scipy.special.binom(n, m)  # computes \( \binom{n}{m} \) (as a float)
math.exp(n)  # computes \( e^n \)
```

Names to the left of the dots (.) are modules that need to be imported before being used: `import math, scipy.special`.
In R:

\[\text{factorial}(n) \] computes \(n! \)
\[\text{choose}(n, m) \] computes \(\binom{n}{m} \)
\[\text{exp}(n) \] computes \(e^n \)
\[n^m \] computes \(n^m \)

In Microsoft Excel:

\[\text{FACT}(n) \] computes \(n! \)
\[\text{COMBIN}(n, m) \] computes \(\binom{n}{m} \)
\[\text{EXP}(n) \] computes \(e^n \)
\[\text{POWER}(n, m) \] computes \(n^m \)

To use functions in Excel, you need to set a cell to equal a function value. For example, to compute \(3! \cdot \binom{5}{2} \), you would put the following in a cell:

\[= \text{FACT}(3) \times \text{COMBIN}(5, 2) \]

Note the equals sign (=) at the beginning of the expression.
5 A little review of calculus

Since it may have been a while since you did calculus, here are a few rules that you might find useful.

Product Rule for derivatives:
\[d(u \cdot v) = du \cdot v + u \cdot dv \]

Derivative of exponential function:
\[\frac{d}{dx} e^u = e^u \frac{du}{dx} \]

Integral of exponential function:
\[\int e^u du = e^u \]

Derivative of natural logarithm:
\[\frac{d}{dx} \ln(x) = \frac{1}{x} \]

Integral of 1/x:
\[\int \frac{1}{x} dx = \ln(x) \]

Integration by parts (everyone’s favorite!):

Choose a suitable u and dv to decompose the integral of interest:
\[\int u \cdot dv = u \cdot v - \int v \cdot du \]

Here’s the underlying rule that integration by parts is derived from:
\[\int d(u \cdot v) = u \cdot v = \int du \cdot v + \int u \cdot dv \]

6 Bibliography

Additional information on sums and products can generally be found in a good calculus or discrete mathematics book. The discussion of summations above is based on Wikipedia (http://en.wikipedia.org/wiki/Summation).