Naïve Bayes

Naïve Bayes is a type of machine learning algorithm called a classifier. It is used to predict the probability of a discrete “label” random variable Y based on the state of “feature” random variables X. We are going to learn all necessary parameters for the probabilistic relationship between X and Y from data. Naïve Bayes is a supervised, classification Machine Learning algorithm.

1 Machine Learning: Classification

In supervised machine learning, your job is to use training data with feature/label pairs (x, y) in order to estimate a label predicting function $\hat{y} = g(x)$. This function can then be used to make future predictions. A classification task is one where y takes on one of a discrete number of values. Often in classification $g(x) = \arg\max_y \hat{P}(Y = y | X = x)$.

To learn all parameters required to calculate $g(x)$ you are given N different (x, y) pairs as training data: $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \ldots, (x^{(N)}, y^{(N)})$. Where $x^{(i)}$ is a vector of m discrete features for the ith training example and $y^{(i)}$ is the discrete label for the ith training example. A “feature” is a technical term for an assignment to an input random variable. This symbolic description of classification hides the fact that prediction is applied to interesting real life problems:

1. Predicting heart disease Y, based on a set of m observations from a heart scan X.
2. Predicting ancestry Y, based on m DNA states X.
3. Predicting if a user will like a movie Y given whether or not they like a set of m movies X.

In this lecture we are going to assume that all random variables are binary. While this is not a necessary assumption (naïve bayes can work for non-binary data), it makes it much easier to learn the core concepts. Specifically we assume that all labels are binary $y \in \{0, 1\}$ and all features are binary $x_j \in \{0, 1\}$ $\forall j$.

2 Naïve Bayes Algorithm

Here is the Naïve Bayes algorithm. After presenting the algorithm I am going to show the theory behind it.

Prediction

For an set of input values $x = [x_1, x_2, \ldots, x_m]$, we can make a corresponding prediction for y. We use hats (eg \hat{P} or \hat{y}) to symbolize values which are estimated.

$$\hat{y} = g(x) = \arg\max_y \hat{P}(Y = y | X = x)$$

Our goal in classification

$$= \arg\max_y \hat{P}(Y = y) \prod_{i=1}^{m} \hat{P}(X_i = x_i | Y = y)$$

After a few assumptions (see theory)

$$= \arg\max_y \log \hat{P}(Y = y) + \sum_{i=1}^{m} \log \hat{P}(X_i = x_i | Y = y)$$

Log version for numerical stability

In order to calculate this expression we are going to need to learn the estimates $\hat{P}(Y = y)$ and $\hat{P}(X_i = x_i | Y = y)$ from data using a process called “training”.
Training

The objective in training is to estimate the probabilities $P(Y = y)$ and $P(X_i = x_i | Y = y)$ for all $1 \leq i \leq m$ features. Using an MLE estimate:

$$\hat{P}(X_i = x_i | Y = y) = \frac{\text{(# training examples where } X_i = x_i \text{ and } Y = y)}{\text{(# training examples where } Y = y)}$$

Using a Laplace MAP estimate:

$$\hat{P}(X_i = x_i | Y = y) = \frac{\text{(# training examples where } X_i = x_i \text{ and } Y = y) + 1}{\text{(# training examples where } Y = y) + 2}$$

Estimating $P(Y = y)$ is also straightforward. Using MLE estimation:

$$\hat{P}(Y = y) = \frac{\text{(# training examples where } Y = y)}{\text{(total number of training examples)}}$$

3 Theory

Now that you have the algorithm spelled out, let’s go over the theory of how we got there. To do so, we will first explore an algorithm which doesn’t work called “Brute Force Bayes”. Then we introduce the Naïve Bayes Assumption which will make our calculations possible.

Brute Force Bayes

In the world of classification, when we make a prediction, we want to chose the value of y based on x that maximizes: $P(Y = y | X = x)$.

$$\hat{y} = g(x) = \arg \max_{y \in \{0, 1\}} \hat{P}(Y = y | X = x)$$

Our objective

$$= \arg \max_{y \in \{0, 1\}} \frac{\hat{P}(X = x | Y = y)\hat{P}(Y = y)}{\hat{P}(X = x)}$$

By Bayes theorem

$$= \arg \max_{y \in \{0, 1\}} \hat{P}(X = x | Y = y)\hat{P}(Y = y)$$

Since $\hat{P}(X = x)$ is constant

Using our training data we could learn the conditional probability of X given Y as one giant conditional probability table with a different parameter for every combination of $X = x$ and $Y = y$. If for example, the input vectors are only length one (in other words $|x| = 1$) and the number of values that x and y can take on are binary, this is a totally reasonable approach. We could estimate the parameters using MLE or MAP estimators and then calculate $\arg \max$ with just a single lookup into our table.

The bad times hit when the number of features becomes large. Recall that we need to estimate a parameter for every unique combination of assignments to the vector x and the value y. If there are $|x| = m$ binary features then this strategy is going to take order $O(2^m)$ space. Moreover there will likely be many parameters that are estimated without any training data that matches the corresponding assignment to X.

Naïve Bayes Assumption

The Naïve Bayes Assumption is that each feature of x is independent of one another given y. That assumption is wrong, but useful. This assumption allows us to make predictions using space and data which is linear with respect to the size of the features: $O(m)$ if $|x| = m$. That allows us to train and make predictions for huge feature spaces such as one which has an indicator for every word on the internet. Using this assumption the
prediction theory can be simplified.

\[\hat{y} = g(x) = \arg\max_{y \in \{0, 1\}} \hat{P}(X = x | Y = y) \hat{P}(Y = y) \]

As we last left off

\[\hat{y} = \arg\max_y \left(\prod_{i=1}^{m} \hat{P}(X_i = x_i | Y = y) \right) \hat{P}(Y = y) \]

Using the naïve bayes assumption

\[\hat{y} = \arg\max_y \log \hat{P}(Y = y) + \sum_{i=1}^{m} \log \hat{P}(X_i = x_i | Y = y) \]

Log version for numerical stability

This algorithm is both fast and stable when training and making predictions. Let’s think about a particular feature: \(i \). How should we represent \(P(X_i = x_i | Y = y) \)? For a particular value of \(y \) that we are conditioning on, \(X_i \) can take on one of a few discrete values. Thus for each particular \(y \) we can model the likelihood of \(X_i \) taking on values as a multinomial. Then we can find MLE and MAP estimations for the parameters of those multinomial. Recall that MLE to estimate parameter \(p_i \) for a multinomial is just counting, and that MAP (with Laplace prior) to estimate parameter \(p_i \) imagines one extra example of each outcome:

\[\hat{p}_{i, \text{MLE}} = \frac{n_i}{n} \]

\[\hat{p}_{i, \text{MAP}} = \frac{n_i + 1}{n + k} \]

Where: \(n \) is the number of observations. \(n_i \) is the number of observations with outcome \(i \). \(k \) is the total number of outcome types.

Note that in the version of classification we are using in CS109, \(X_i \) is binary (technically binary is multinomial). Which means that \(k = 2 \). I used the multinomial derivation to help you understand how one would handle features (\(X_i \)s) that take on more values.

Naïve Bayes is a simple form of a Bayesian Network where the label \(Y \) is the only variable which directly influences the likelihood of each feature variable \(X_i \).

4 Example

Say we have a training dataset of thirty examples of people’s preferences (like or not) for Star Wars, Harry Potter and Lord of the Rings. Each training example has \(x_1, x_2 \) and \(y \) where \(x_1 \) is whether or not the user liked Star Wars, \(x_2 \) is whether or not the user liked Harry Potter and \(y \) is whether or not the user liked Lord of the Rings. For the 30 training examples the MLE estimates are as follows:

<table>
<thead>
<tr>
<th>(X_1)</th>
<th>0</th>
<th>1</th>
<th>MLE estimates</th>
<th>(X_2)</th>
<th>0</th>
<th>1</th>
<th>MLE estimates</th>
<th>(Y)</th>
<th>#</th>
<th>MLE est.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
<td>10</td>
<td>0.23 0.77</td>
<td>0</td>
<td>5</td>
<td>8</td>
<td>0.38 0.62</td>
<td>0</td>
<td>13</td>
<td>0.43</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>13</td>
<td>0.24 0.76</td>
<td>1</td>
<td>7</td>
<td>10</td>
<td>0.41 0.59</td>
<td>1</td>
<td>17</td>
<td>0.57</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(X_1)</th>
<th>0</th>
<th>1</th>
<th>MAP estimates</th>
<th>(X_2)</th>
<th>0</th>
<th>1</th>
<th>MAP estimates</th>
<th>(Y)</th>
<th>#</th>
<th>MAP est.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
<td>10</td>
<td>0.27 0.73</td>
<td>0</td>
<td>5</td>
<td>8</td>
<td>0.4 0.6</td>
<td>0</td>
<td>13</td>
<td>0.45</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>13</td>
<td>0.26 0.74</td>
<td>1</td>
<td>7</td>
<td>10</td>
<td>0.42 0.58</td>
<td>1</td>
<td>17</td>
<td>0.55</td>
</tr>
</tbody>
</table>

For a new user who likes Star Wars (\(X_1 = 1 \)) but not Harry Potter (\(X_2 = 0 \)) do you predict that they will like Lord of the Rings? Yes! \(Y = 1 \) lead to a larger value in the argmax term:

\[
\begin{align*}
&\text{if } Y = 0: & \hat{P}(X_1 = 1 | Y = 0) \hat{P}(X_2 = 0 | Y = 0) \hat{P}(Y = 0) &= (0.77)(0.38)(0.43) = 0.126 \\
&\text{if } Y = 1: & \hat{P}(X_1 = 1 | Y = 1) \hat{P}(X_2 = 0 | Y = 1) \hat{P}(Y = 1) &= (0.76)(0.41)(0.57) = 0.178
\end{align*}
\]