Joint Distributions

Often you will work on problems where there are several random variables (often interacting with one another). We are going to start to formally look at how those interactions play out.

For now we will think of joint probabilities with two events $X = a$ and $Y = b$. For this week, we will assume both X and Y are discrete random variables, and we will tackle the continuous case next week.

Discrete Case

In the discrete case, a joint probability mass function tells you the probability of any combination of events $X = a$ and $Y = b$:

$$p_{X,Y}(a,b) = P(X = a, Y = b)$$

This function tells you the probability of all combinations of events (the “,” means “and”). If you want to back calculate the probability of an event only for one variable you can calculate a “marginal” from the joint probability mass function:

$$p_X(a) = P(X = a) = \sum_y p_{X,Y}(a,y)$$

$$p_Y(b) = P(Y = b) = \sum_x p_{X,Y}(x,b)$$

In the continuous case a joint probability density function tells you the relative probability of any combination of events $X = a$ and $Y = y$.

In the discrete case, we can define the function $p_{X,Y}$ non-parametrically. Instead of using a formula for p we simply state the probability of each possible outcome.

Multinomial Distribution

Say you perform n independent trials of an experiment where each trial results in one of m outcomes, with respective probabilities: p_1, p_2, \ldots, p_m (constrained so that $\sum_i p_i = 1$). Define X_i to be the number of trials with outcome i. A multinomial distribution is a closed form function that answers the question: What is the probability that there are c_i trials with outcome i. Mathematically:

$$P(X_1 = c_1, X_2 = c_2, \ldots, X_m = c_m) = \binom{n}{c_1, c_2, \ldots, c_m} p_1^{c_1} p_2^{c_2} \cdots p_m^{c_m}$$
Example 1
A 6-sided die is rolled 7 times. What is the probability that you roll: 1 one, 1 two, 0 threes, 2 fours, 0 fives, 3 sixes (disregarding order).

\[P(X_1 = 1, X_2 = 1, X_3 = 0, X_4 = 2, X_5 = 0, X_6 = 3) = \frac{7!}{2!3!} \left(\frac{1}{6} \right)^1 \left(\frac{1}{6} \right)^1 \left(\frac{1}{6} \right)^0 \left(\frac{1}{6} \right)^2 \left(\frac{1}{6} \right)^0 \left(\frac{1}{6} \right)^3 = 420 \left(\frac{1}{6} \right)^7 \]

Federalist Papers
In class we wrote a program to decide whether or not James Madison or Alexander Hamilton wrote Federalist Paper 49. Both men have claimed to be have written it, and hence the authorship is in dispute. First we used historical essays to estimate \(p_i \), the probability that Hamilton generates the word \(i \) (independent of all previous and future choices or words). Similarly we estimated \(q_i \), the probability that Madison generates the word \(i \). For each word \(i \) we observe the number of times that word occurs in Federalist Paper 49 (we call that count \(c_i \)). We assume that, given no evidence, the paper is equally likely to be written by Madison or Hamilton.

Define three events: \(H \) is the event that Hamilton wrote the paper, \(M \) is the event that Madison wrote the paper, and \(D \) is the event that a paper has the collection of words observed in Federalist Paper 49. We would like to know whether \(P(H|D) \) is larger than \(P(M|D) \). This is equivalent to trying to decide if \(P(H|D)/P(M|D) \) is larger than 1.

The event \(D|H \) is a multinomial parameterized by the values \(p \). The event \(D|M \) is also a multinomial, this time parameterized by the values \(q \).

Using Bayes Rule we can simplify the desired probability.

\[\frac{P(H|D)}{P(M|D)} = \frac{\frac{P(D|H)P(H)}{P(D)}}{\frac{P(D|M)P(M)}{P(D)}} = \frac{P(D|H)P(H)}{P(D|M)P(M)} = \frac{P(D|H)}{P(D|M)} \\
= \left(\frac{n}{c_1, c_2, \ldots, c_m} \right) \prod_i p_i^{c_i} = \prod_i p_i^{c_i} = \prod_i q_i^{c_i} \]

This seems great! We have our desired probability statement expressed in terms of a product of values we have already estimated. However, when we plug this into a computer, both the numerator and denominator come out to be zero. The product of many numbers close to zero is too hard for a computer to represent. To fix this problem, we use a standard trick in computational probability:
we apply a log to both sides and apply some basic rules of logs.

\[
\log\left(\frac{P(H|D)}{P(M|D)}\right) = \log\left(\frac{\prod_i p_{i}^{c_{i}}}{\prod_i q_{i}^{c_{i}}}\right)
\]

\[
= \log(\prod_i p_{i}^{c_{i}}) - \log(\prod_i q_{i}^{c_{i}})
\]

\[
= \sum_i \log(p_{i}^{c_{i}}) - \sum_i \log(q_{i}^{c_{i}})
\]

\[
= \sum_i c_{i}\log(p_{i}) - \sum_i c_{i}\log(q_{i})
\]

This expression is “numerically stable" and my computer returned that the answer was a negative number. We can use exponentiation to solve for \(P(H|D)/P(M|D)\). Since the exponent of a negative number is a number smaller than 1, this implies that \(P(H|D)/P(M|D)\) is smaller than 1. As a result, we conclude that Madison was more likely to have written Federalist Paper 49.