Continuous Joint Distributions

Of course joint variables don’t have to be discrete only, they can also be continuous. As an example: consider throwing darts at a dart board. Because a dart board is two dimensional, it is natural to think about the X location of the dart and the Y location of the dart as two random variables that are varying together (aka they are joint). However since x and y positions are continuous we are going to need new language to think about the likelihood of different places a dart could land. Just like in the non-joint case continuous is a little tricky because it isn’t easy to think about the probability that a dart lands at a location defined to infinite precision. What is the probability that a dart lands at exactly $(X = 456.234231234122355, Y = 532.12344123456)$?

Let’s build some intuition by first starting with discretized grids. On the left of the image above you could imagine where your dart lands is one of 25 different cells in a grid. We could reason about the probabilities now! But we have lost all nuance about how likelihood is changing within a given cell. If we make our cells smaller and smaller we eventually will get a second derivative of probability: once again a probability density function. If we integrate under this joint-density function in both the x and y dimension we will get the probability that x takes on the values in the integrated range and y takes on the values in the integrated range!

Random variables X and Y are Jointly Continuous if there exists a Probability Density Function (PDF) $f_{X,Y}$ such that:

$$P(a_1 < X \leq a_2, b_1 < Y \leq b_2) = \int_{a_1}^{a_2} \int_{b_1}^{b_2} f_{X,Y}(x, y) dy \ dx$$

Using the PDF we can compute marginal probability densities:

$$f_X(a) = \int_{-\infty}^{\infty} f_{X,Y}(a, y) dy$$

$$f_Y(b) = \int_{-\infty}^{\infty} f_{X,Y}(x, b) dx$$
Independence with Multiple RVs (Continuous Case)

Two continuous random variables \(X \) and \(Y \) are called \textbf{independent} if:

\[
P(X \leq a, Y \leq b) = P(X \leq a)P(Y \leq b) \quad \text{for all } a, b
\]

This can be stated equivalently as:

\[
F_{X,Y}(a, b) = F_X(a)F_Y(b) \quad \text{for all } a, b
\]

\[
f_{X,Y}(a, b) = f_X(a)f_Y(b) \quad \text{for all } a, b
\]

More generally, if you can factor the joint density function, then your continuous random variables are independent:

\[
f_{X,Y}(x, y) = h(x)g(y) \quad \text{where } -\infty < x, y < \infty
\]

Bivariate Normal Distribution

Many times, we talk about multiple Normal (Gaussian) random variables, otherwise known as Multivariate Normal (Gaussian) distributions. Here, we talk about the two-dimensional case, called a Bivariate Normal Distribution. \(X_1 \) and \(X_2 \) follow a bivariate normal distribution if their joint PDF is

\[
f_{X_1,X_2}(x_1, x_2) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} e^{-\frac{1}{2(1-\rho^2)}\left(\frac{(x_1 - \mu_1)^2}{\sigma_1^2} - \frac{2\rho(x_1 - \mu_1)(x_2 - \mu_2)}{\sigma_1\sigma_2} + \frac{(x_2 - \mu_2)^2}{\sigma_2^2}\right)}
\]

We often write the distribution of the vector \(\mathbf{X} = (X_1, X_2) \) as \(\mathbf{X} \sim \mathcal{N}(\mu, \Sigma) \), where \(\mu = (\mu_1, \mu_2) \) is a mean vector and \(\Sigma = \begin{bmatrix} \sigma_1^2 & \rho\sigma_1\sigma_2 \\ \rho\sigma_1\sigma_2 & \sigma_2^2 \end{bmatrix} \) is a covariance matrix.

Note that \(\rho \) is the correlation between \(X_1 \) and \(X_2 \), and \(\sigma_1, \sigma_2 > 0 \). We defer to Ross Chapter 6, Example 5d, for the full proof, but it can be shown that the marginal distributions of \(X_1 \) and \(X_2 \) are \(X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2) \) and \(X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2) \), respectively.

\textbf{Example 1}

Let \(\mathbf{X} = (X_1, X_2) \sim \mathcal{N}(\mu, \Sigma) \), where \(\mu = (\mu_1, \mu_2) \) and \(\Sigma = \begin{bmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{bmatrix} \), a diagonal covariance matrix.

Noting that the correlation between \(X_1 \) and \(X_2 \) is \(\rho = 0 \):

\[
f_{X_1,X_2}(x_1, x_2) = \frac{1}{2\pi\sigma_1\sigma_2} e^{-\frac{1}{2}\left(\frac{(x_1 - \mu_1)^2}{\sigma_1^2} + \frac{(x_2 - \mu_2)^2}{\sigma_2^2}\right)} = \frac{1}{\sigma_1\sqrt{2\pi}} e^{-(x_1-\mu_1)^2/(2\sigma_1^2)} \cdot \frac{1}{\sigma_2\sqrt{2\pi}} e^{-(x_2-\mu_2)^2/(2\sigma_2^2)}
\]

In other words, for Bivariate Normal RVs, if Cov\((X_1, X_2) = 0\), then \(X_1 \) and \(X_2 \) are independent. Wild!
Joint CDFs
For two random variables X and Y that are jointly distributed, the joint cumulative distribution function $F_{X,Y}$ can be defined as

$$F_{X,Y}(a, b) = P(X \leq a, Y \leq b)$$

$$F_{X,Y}(a, b) = \sum_{x \leq a} \sum_{y \leq b} p_{X,Y}(x, y) \quad X, Y \text{ discrete}$$

$$F_{X,Y}(a, b) = \int_{-\infty}^{a} \int_{-\infty}^{b} f_{X,Y}(x, y) dy dx \quad X, Y \text{ continuous}$$

$$f_{X,Y}(a, b) = \frac{\partial^2}{\partial a \partial b} F_{X,Y}(a, b) \quad X, Y \text{ continuous}$$

It can be shown via geometry that to calculate probabilities of joint distributions, we can use the CDF as follows, for both jointly discrete and jointly continuous RVs:

$$P(a_1 < X \leq a_2, b_1 < Y \leq b_2) = F_{X,Y}(a_2, b_2) - F_{X,Y}(a_2, b_1) - F_{X,Y}(a_1, b_2) + F_{X,Y}(a_1, b_1)$$

Example 2
Let’s make a weight matrix used for Gaussian blur. In the weight matrix, each location in the weight matrix will be given a weight based on the probability density of the area covered by that grid square in a Bivariate Normal of independent X and Y, each zero mean with variance σ^2. For this example lets blur using $\sigma = 3$.

In image processing, a Gaussian blur is the result of blurring an image by a Gaussian function. It is a widely used effect in graphics software, typically to reduce image noise.

Gaussian blurring with StDev = 3, is based on a joint probability distribution:

Joint PDF

$$f_{X,Y}(x, y) = \frac{1}{2\pi \cdot 3^2} e^{-\frac{x^2+y^2}{2 \cdot 3^2}}$$

Joint CDF

$$F_{X,Y}(x, y) = \Phi\left(\frac{x}{3}\right) \cdot \Phi\left(\frac{y}{3}\right)$$

Each pixel is given a weight equal to the probability that X and Y are both within the pixel bounds. The center pixel covers the area where $-0.5 \leq x \leq 0.5$ and $-0.5 \leq y \leq 0.5$ What is the weight of the center pixel?
\[P(-0.5 < X < 0.5, -0.5 < Y < 0.5) \]
\[= P(X < 0.5, Y < 0.5) - P(X < 0.5, Y < -0.5) \]
\[- P(X < -0.5, Y < 0.5) + P(X < -0.5, Y < -0.5) \]
\[= \phi \left(\frac{0.5}{3} \right) \cdot \phi \left(\frac{0.5}{3} \right) - 2 \phi \left(\frac{0.5}{3} \right) \cdot \phi \left(\frac{-0.5}{3} \right) \]
\[+ \phi \left(\frac{-0.5}{3} \right) \cdot \phi \left(\frac{-0.5}{3} \right) \]
\[= 0.5662^2 - 2 \cdot 0.5662 \cdot 0.4338 + 0.4338^2 = 0.206 \]