03: Intro to Probability

Lisa Yan
April 10, 2020
Quick slide reference

3 Defining Probability 03a_definitions
13 Axioms of Probability 03b_axioms
20 Equally likely outcomes 03c_elo
30 Corollaries 03d_corollaries
37 Exercises LIVE

Today’s discussion thread: https://us.edstem.org/courses/109/discussion/24492
Defining Probability

Gradescope quiz, blank slide deck, etc.
http://cs109.stanford.edu/
Key definitions

An experiment in probability:

Sample Space, S: The set of all possible outcomes of an experiment

Event, E: Some subset of S ($E \subseteq S$).
Key definitions

Sample Space, S

- Coin flip
 $S = \{\text{Heads, Tails}\}$

- Flipping two coins
 $S = \{(H,H), (H,T), (T,H), (T,T)\}$

- Roll of 6-sided die
 $S = \{1, 2, 3, 4, 5, 6\}$

- # emails in a day
 $S = \{x \mid x \in \mathbb{Z}, \ x \geq 0\}$

- TikTok hours in a day
 $S = \{x \mid x \in \mathbb{R}, \ 0 \leq x \leq 24\}$

Event, E

- Flip lands heads
 $E = \{\text{Heads}\}$

- ≥ 1 head on 2 coin flips
 $E = \{(H,H), (H,T), (T,H)\}$

- Roll is 3 or less:
 $E = \{1, 2, 3\}$

- Low email day (≤ 20 emails)
 $E = \{x \mid x \in \mathbb{Z}, \ 0 \leq x \leq 20\}$

- Wasted day (≥ 5 TT hours):
 $E = \{x \mid x \in \mathbb{R}, \ 5 \leq x \leq 24\}$
What is a probability?

A number between 0 and 1 to which we ascribe meaning.*

*our belief that an event E occurs.
What is a probability?

Let E = the set of outcomes where you hit the target.

$$P(E) = \lim_{n \to \infty} \frac{n(E)}{n}$$

$n = \# \text{ of total trials}$

$n(E) = \# \text{ trials where } E \text{ occurs}$
What is a probability?

\[P(E) = \lim_{n \to \infty} \frac{n(E)}{n} \]

- \(n = \# \) of total trials
- \(n(E) = \# \) trials where \(E \) occurs

Let \(E \) = the set of outcomes where you hit the target.

\[P(E) \approx 0.00 \]
What is a probability?

\[P(E) = \lim_{n \to \infty} \frac{n(E)}{n} \]

- \(n \) = # of total trials
- \(n(E) \) = # trials where \(E \) occurs

Let \(E \) = the set of outcomes where you hit the target.

\[P(E) \approx 0.500 \]
What is a probability?

\[P(E) = \lim_{n \to \infty} \frac{n(E)}{n} \]

- \(n = \# \text{ of total trials} \)
- \(n(E) = \# \text{ trials where } E \text{ occurs} \)

Let \(E \) = the set of outcomes where you hit the target.

\[P(E) \approx 0.667 \]
What is a probability?

$$P(E) = \lim_{{n \to \infty}} \frac{n(E)}{n}$$

$n = \# \text{ of total trials}$

$n(E) = \# \text{ trials where } E \text{ occurs}$

Let $E = \text{ the set of outcomes where you hit the target.}$

$P(E) \approx 0.458$
Not just yet...
Axioms of Probability
Quick review of sets

E and F are events in S.

Experiment:

Die roll

$S = \{1, 2, 3, 4, 5, 6\}$

Let $E = \{1, 2\}$, and $F = \{2, 3\}$
Quick review of sets

E and F are events in S.

Experiment:

Die roll

$S = \{1, 2, 3, 4, 5, 6\}$

Let $E = \{1, 2\}$, and $F = \{2, 3\}$

def Union of events, $E \cup F$

The event containing all outcomes in E *or* F.

$E \cup F = \{1, 2, 3\}$
Quick review of sets

Review of Sets

E and F are events in S.

Experiment:
- Die roll
- $S = \{1, 2, 3, 4, 5, 6\}$
- Let $E = \{1, 2\}$, and $F = \{2, 3\}$

def Intersection of events, $E \cap F$
- The event containing all outcomes in E and F.

def Mutually exclusive events F
- and G means that $F \cap G = \emptyset$

$$E \cap F = EF = \{2\}$$
Quick review of sets

E and F are events in S.

Experiment:

Die roll

$S = \{1, 2, 3, 4, 5, 6\}$

Let $E = \{1, 2\}$, and $F = \{2, 3\}$

def Complement of event E, E^C

The event containing all outcomes in that are *not* in E.

$E^C = \{3, 4, 5, 6\}$
3 Axioms of Probability

Definition of probability:
\[P(E) = \lim_{n \to \infty} \frac{n(E)}{n} \]

Axiom 1:
\[0 \leq P(E) \leq 1 \]

Axiom 2:
\[P(S) = 1 \]

Axiom 3:
If \(E \) and \(F \) are mutually exclusive (\(E \cap F = \emptyset \)), then
\[P(E \cup F) = P(E) + P(F) \]
Axiom 3 is the (analytically) useful Axiom

Axiom 3: If E and F are mutually exclusive ($E \cap F = \emptyset$), then $P(E \cup F) = P(E) + P(F)$

More generally, for any sequence of mutually exclusive events $E_1, E_2, ...$:

$$P \left(\bigcup_{i=1}^{\infty} E_i \right) = \sum_{i=1}^{\infty} P(E_i)$$

(like the Sum Rule of Counting, but for probabilities)
Equally Likely Outcomes
Equally Likely Outcomes

Some sample spaces have **equally likely outcomes**.

- **Coin flip:** $S = \{\text{Head, Tails}\}$

 $P(\text{Heads}) = \frac{1}{2}$

- **Flipping two coins:** $S = \{(H, H), (H, T), (T, H), (T, T)\}$

 $P(\text{Both Heads}) = \frac{1}{4}$

- **Roll of 6-sided die:** $S = \{1, 2, 3, 4, 5, 6\}$

 $P(3) = \frac{1}{6}$

If we have equally likely outcomes, then $P(\text{Each outcome}) = \frac{1}{|S|}$

Therefore

$$P(E) = \frac{\# \text{ outcomes in } E}{\# \text{ outcomes in } S} = \frac{|E|}{|S|}$$

(by Axiom 3)

$E = \{3 \text{ or lower}\}$

$E = \{1, 2, 3\}$

$E_1 = \{1, 2, 3\}$

$E_2 = \{2, 3\}$

$E_3 = \{3\}$

$P(E) = P(E_1 \cup E_2 \cup E_3) = P(E_1) + P(E_2) + P(E_3)$

$= 3 \cdot \frac{1}{|S|} = \frac{|E|}{|S|}$

$E \cap E_1 = \{1\}$

$E \cap E_2 = \{2, 3\}$

$E \cap E_3 = \{3\}$
Roll two dice

Roll two 6-sided fair dice. What is $P(\text{sum} = 7)$?

$S = \{(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6),
(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6),
(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6),
(4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6),
(5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6),
(6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)\}$

$E = \{(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)\}$

$|S| = 36$

$|E| = 6$

$P(E) = \frac{|E|}{|S|} = \frac{6}{36} = \frac{1}{6}$
Target revisited
Target revisited

Let $E =$ the set of outcomes where you hit the target.

Screen size = 800×800

Radius of target: 200

The dart is equally likely to land anywhere on the screen. What is $P(E)$, the probability of hitting the target?

$$P(E) = \frac{|E|}{|S|} \approx \frac{\pi \cdot 200^2}{800^2} \approx 0.1963$$

Let $E =$ the set of outcomes where you hit the target.

$$\frac{59}{309} = 0.191$$
Target revisited

Let E = the set of outcomes where you hit the target.

Screen size = 800×800

Radius of target: 200

The dart is equally likely to land anywhere on the screen. What is $P(E)$, the probability of hitting the target?

$$|S| = 800^2 \quad |E| \approx \pi \cdot 200^2$$

$$P(E) = \frac{|E|}{|S|} \approx \frac{\pi \cdot 200^2}{800^2} \approx 0.1963$$
Not equally likely outcomes

Play the lottery.
What is $P(\text{win})$?

$S = \{\text{Lose, Win}\}$
$E = \{\text{Win}\}$

$$P(E) = \frac{|E|}{|S|} = \frac{1}{2} = 50\%?$$

41,416,355 tickets sold
1 winning

The hard part: defining outcomes consistently across sample space and events
Cats and sharks

4 cats and 3 sharks in a bag. 3 drawn. What is P(1 cat and 2 sharks drawn)?

Note: Do indistinct objects give you an equally likely sample space?

A. \(\frac{\binom{3}{1} \cdot \binom{3}{2}}{\binom{6}{3}} = \frac{3}{7} \)
B. \(\frac{1}{4} \cdot \frac{2}{3} = \frac{1}{6} \)
C. \(\frac{4}{7} + 2 \cdot \frac{3}{6} = \frac{12}{35} \)
D. \(\frac{3}{5} \)
E. Zero/other

Make indistinct items distinct to get equally likely outcomes.

\[P(E) = \frac{|E|}{|S|} \] Equally likely outcomes
Cats and sharks (ordered solution)

4 cats and 3 sharks in a bag. 3 drawn. What is $P(1\ \text{cat and } 2\ \text{sharks drawn})$?

Define

- $S = \text{Pick 3 distinct items}$
- $E = 1\ \text{distinct cat, 2 distinct sharks}$

$$P(E) = \frac{|E|}{|S|}$$

Similarly to get equally likely outcomes.

$$|S| = \frac{7 \cdot 6 \cdot 5}{3!} = 210$$

$|E| = \frac{\binom{4}{1}\binom{3}{2}}{3!} = \frac{4 \cdot 3 \cdot 2}{3 \cdot 2 \cdot 1} = \frac{12}{6} = 2$.

$$P(E) = \frac{12}{210} = \frac{2}{35}$$
Cats and sharks (unordered solution)

4 cats and 3 sharks in a bag. 3 drawn. What is P(1 cat and 2 sharks drawn)?

Define

- S = Pick 3 distinct items
- E = 1 distinct cat, 2 distinct sharks

\[|S| = \binom{7}{3} = \frac{7!}{3!4!} = 35 \]

\[|E| = \binom{4}{1}\binom{3}{2} = 4 \cdot 3 = 12 \]

\[P(E) = \frac{|E|}{|S|} = \frac{12}{35} \]

Make indistinct items distinct to get equally likely outcomes.

\[P(E) = \frac{|E|}{|S|} \quad \text{Equally likely outcomes} \]
Corollaries of Probability
Axioms of Probability

Definition of probability: \(P(E) = \lim_{n \to \infty} \frac{n(E)}{n} \)

Axiom 1: \(0 \leq P(E) \leq 1 \)

Axiom 2: \(P(S) = 1 \)

Axiom 3: If \(E \) and \(F \) are mutually exclusive (\(E \cap F = \emptyset \)), then \(P(E \cup F) = P(E) + P(F) \)
3 Corollaries of Axioms of Probability

Corollary 1: $$P(E^C) = 1 - P(E)$$
Proof of Corollary 1

Corollary 1: \(P(E^C) = 1 - P(E) \)

Proof:

- \(E, E^C \) are mutually exclusive
- \(P(E \cup E^C) = P(E) + P(E^C) \)
- \(S = E \cup E^C \)
- \(1 = P(S) = P(E) + P(E^C) \)
- \(P(E^C) = 1 - P(E) \)

Definition of \(E^C \)

Axiom 3

Everything must either be in \(E \) or \(E^C \), by definition

Axiom 2

Rearrange
3 Corollaries of Axioms of Probability

Corollary 1: \[P(E^C) = 1 - P(E) \]

Corollary 2: If \(E \subseteq F \), then \(P(E) \leq P(F) \)

Corollary 3: \[P(E \cup F) = P(E) + P(F) - P(EF) \] (Inclusion-Exclusion Principle for Probability)
Selecting Programmers

- $P($student programs in Java$) = 0.28 = P(E)$
- $P($student programs in Python$) = 0.07 = P(F)$
- $P($student programs in Java and Python$) = 0.05. = P(E \cap F) = P(EE)$

What is $P($student does not program in (Java or Python$))?

1. Define events & state goal
 - E: Java
 - F: Python
 - $P((E \cup F)^c)$

2. Identify known probabilities
 - Corollary 1: $P((E \cup F)^c) = 1 - P(E \cup F)$
 - Corollary 3: $P(E \cup F) = P(E) + P(F) - P(E \cap F) = 0.28 + 0.07 - 0.05 = 0.3$

3. Solve
 - $P((E \cup F)^c) = 0.7$
Inclusion-Exclusion Principle (Corollary 3)

Corollary 3: \(P(E \cup F) = P(E) + P(F) - P(EF) \)
(Inclusion-Exclusion Principle for Probability)

General form:
\[P\left(\bigcup_{i=1}^{n} E_i \right) = \sum_{i=1}^{n} (-1)^{r+1} \sum_{i_1 < \ldots < i_r} P\left(\bigcap_{j=1}^{r} E_{i_j} \right) \]

\(P(E \cup F \cup G) = \)

- \(r = 1: \) \(P(E) + P(F) + P(G) \)
- \(r = 2: \) \(-P(E \cap F) - P(E \cap G) - P(F \cap G) \)
- \(r = 3: \) \(+P(E \cap F \cap G) \)
03: Intro to Probability

Lisa Yan
April 10, 2020
Reminders: Lecture with Zoom

• Turn on your camera if you are able, mute your mic in the big room
• Virtual backgrounds are encouraged (classroom-appropriate)

Breakout Rooms for meeting your classmates
 • Just like sitting next to someone new, our best approximation to sitting next to someone new

We will use Ed instead of Zoom chat
• Lots of activity and questions, thank you all!

Today’s discussion thread: https://us.edstem.org/courses/109/discussion/24492
Holy crap, are all of the pre-lecture videos going to be this long??

(1) This course is packed to the brim with content, and the early half is definitely definition-heavy.
(2) Our videos will get closer and closer to the cumulative estimated 30 minutes as we get better at recording 😊

dang these breakout rooms are awkward

We know this cannot compare to an in-person discussion! Hopefully these will become smoother once we all adjust to the online format.
The Count

Chance The Rapper
Summary so far

Counting tasks on \(n \) objects

- **Ordered**
 - Sort objects (permutations)
 - Distinct (distinguishable)
 - \(n! \)
 - Some distinct
 - \(\frac{n!}{n_1! n_2! \cdots n_r!} \)
 - Distinct
 - \(\binom{n}{k} \)
 - Unordered
 - Choose \(k \) objects (combinations)
 - \(\frac{n!}{n_1! n_2! \cdots n_r!} \)
 - Some distinct
 - \(\binom{n}{n_1, n_2, \cdots, n_r} \)

- **Unordered**
 - Put objects in \(r \) buckets
 - Distinct
 - \(r^n \)
 - Indistinct
 - \(\frac{(n + r - 1)!}{n! (r - 1)!} \)

\[P(E) = \frac{|E|}{|S|} \quad \text{Equally likely outcomes} \]
We choose 3 books from a set of 4 distinct (distinguishable) and 2 indistinct (indistinguishable) books.

Let event $E = \text{our choice does not include both indistinct books}$.

1. What is $|E|$?

2. What is $P(E)$?
Think, then Breakout Rooms

Then check out the question on the next slide (Slide 44). Post any clarifications here!

https://us.edstem.org/courses/109/discussion/24492

Think by yourself: 2 min

Breakout rooms: 5 min. Introduce yourself!
Poker Straights and Computer Chips

1. Consider 5-card poker hands.
 • “straight” is 5 consecutive rank cards of any suit
 What is P(Poker straight)?
 • What is an example of an outcome?
 • Is each outcome equally likely?
 • Should objects be ordered or unordered?

2. Consider the “official” definition of a Poker Straight:
 • “straight” is 5 consecutive rank cards of any suit
 • straight flush” is 5 consecutive rank cards of same suit
 What is P(Poker straight, but not straight flush)?

3. Computer chips: n chips are manufactured, 1 of which is defective.
 k chips are randomly selected from n for testing.
 What is P(defective chip is in k selected chips?)

Lisa Yan, CS109, 2020
Any Poker Straight

1. Consider 5-card poker hands.
 • “straight” is 5 consecutive rank cards of any suit
 What is $P(\text{Poker straight})$?

Define
• S (unordered)

• E (unordered, consistent with S)

Compute $P(\text{Poker straight}) =$
Consider 5-card poker hands.

- “straight” is 5 consecutive rank cards of any suit
- “straight flush” is 5 consecutive rank cards of same suit

What is $P(\text{Poker straight, but not straight flush})$?

Define

- S (unordered)
- E (unordered, consistent with S)

Compute $P(\text{Official Poker straight}) =$
Chip defect detection

n chips are manufactured, 1 of which is defective. k chips are randomly selected from n for testing.

What is $P($defective chip is in k selected chips$)?$

Define

- S (unordered)
- E (unordered, consistent with S)

Compute $P(E) =$
Chip defect detection, solution #2

n chips are manufactured, 1 of which is defective. k chips are randomly selected from n for testing. What is $P(\text{defective chip is in } k \text{ selected chips?})$

Redefine experiment
1. Choose k indistinct chips (1 way)
2. Throw a dart and make one defective

Define
- S (unordered)
- E (unordered, consistent with S)
Interlude for jokes/announcements
Announcements

Section sign-ups

Preference form: later today
Due: Saturday 4/11
Results: latest Monday
Please fill this out even if you don’t plan to attend section this quarter.

Handout: Calculation Reference
http://web.stanford.edu/class/cs109/handouts/H02_calculation_ref.pdf

Joke

Geometric series:
\[\sum_{i=0}^{n} x^i = \frac{1-x^{n+1}}{1-x} \]
\[\sum_{i=m}^{n} x^i = \frac{x^{n+1}-x^m}{x-1} \]
\[\sum_{i=0}^{\infty} x^i = \frac{1}{1-x} \text{ if } |x| < 1 \]

Integration by parts (everyone’s favorite!):
Choose a suitable u and dv to decompose the integral of interest:
\[\int u \cdot dv = u \cdot v - \int v \cdot du \]
“The study finds that very few chords govern most of the music, a phenomenon that is also known in linguistics, where very few words dominate language corpora.... It characterizes Beethoven's specific composition style for the String Quartets, through a distribution of all the chords he used, how often they occur, and how they commonly transition from one to the other.”

3 Corollaries of Axioms of Probability

Corollary 1: \[P(E^C) = 1 - P(E) \]

Corollary 2: If \(E \subseteq F \), then \(P(E) \leq P(F) \)

Corollary 3: \[P(E \cup F) = P(E) + P(F) - P(EF) \]
(Inclusion-Exclusion Principle for Probability)
Takeaway: Mutually exclusive events

Axiom 3, Mutually exclusive events

Mutually exclusive events

\[E_1 \cap E_2 = \emptyset, \quad E_1 \cap E_3 = \emptyset, \quad E_2 \cap E_3 = \emptyset \]

Inclusion-Exclusion Principle

\[P \left(\bigcup_{i=1}^{\infty} E_i \right) = \]

The challenge of probability is in defining events. Some event probabilities are easier to compute than others.
Serendipity

Let it find you.

SERENDIPITY
the effect by which one accidentally stumbles upon something truly wonderful, especially while looking for something entirely unrelated.

WHEN YOU MEET YOUR BEST FRIEND

Somewhere you didn't expect to.
Serendipity

• The population of Stanford is \(n = 17,000 \) people.
• You are friends with \(r = \) people.
• Walk into a room, see \(k = 360 \) random people.
• Assume you are equally likely to see each person at Stanford.

What is the probability that you see someone you know in the room?

http://web.stanford.edu/class/cs109/demos/serendipity.html
Breakout Rooms

Check out the question on the next slide (Slide 57). Post any clarifications here!

https://us.edstem.org/courses/109/discussion/24492

Breakout rooms: 5 min. Introduce yourself if you haven’t yet!
Serendipity

- The population of Stanford is $n = 17,000$ people.
- You are friends with $r = 100$ people.
- Walk into a room, see $k = 360$ random people.
- Assume you are equally likely to see each person at Stanford.

What is the probability that you see someone you know in the room?

Define

- S (unordered)
- $E: \geq 1$ friend in the room

What strategy should you use?

A. $P(\text{exactly 1}) + P(\text{exactly 2}) + P(\text{exactly 3}) + \cdots$

B. $1 - P(\text{see no friends})$
Serendipity

• The population of Stanford is $n = 17,000$ people.
• You are friends with $r = 100$ people.
• Walk into a room, see $k = 360$ random people.
• Assume you are equally likely to see each person at Stanford.

What is the probability that you see someone you know in the room?

Define

• S (unordered)
• $E: \geq 1$ friend in the room

It is often much easier to compute $P(E^C)$.
The Birthday Paradox Problem

What is the probability that in a set of \(n \) people, at least one pair of them will share the same birthday?

For you to think about (and discuss in section!)
Card Flipping

In a 52 card deck, cards are flipped one at a time. After the first ace (of any suit) appears, consider the next card.

Is \(P(\text{next card} = \text{Ace Spades}) < P(\text{next card} = 2 \text{ Clubs})? \)

Once you think you have an answer, you can vote on pollEverywhere:

http://www.pollev.com/cs109

https://us.edstem.org/courses/109/discussion/24492
In a 52 card deck, cards are flipped one at a time. After the first ace (of any suit) appears, consider the next card.

\[P(\text{next card} = \text{Ace Spaces}) < P(\text{next card} = 2 \text{ Clubs}) \]

\[P(\text{next card} = \text{Ace Spaces}) > P(\text{next card} = 2 \text{ Clubs}) \]

\[P(\text{next card} = \text{Ace Spaces}) = P(\text{next card} = 2 \text{ Clubs}) \]