Quick slide reference

3 Conditional Independence 06a_cond_indep

15 Random Variables 06b_random_variables

22 PMF/CDF 06c_pmf_cdf

30 Expectation 06d_expectation

40 Exercises LIVE
Conditional Independence
Conditional Paradigm

For any events A, B, and E, you can condition consistently on E, and all formulas still hold:

- **Axiom 1**
 \[0 \leq P(A|E) \leq 1 \]

- **Corollary 1 (complement)**
 \[P(A|E) = 1 - P(A^c|E) \]

- **Transitivity**
 \[P(AB|E) = P(BA|E) \]

- **Chain Rule**
 \[P(AB|E) = P(B|E)P(A|BE) \]

- **Bayes’ Theorem**
 \[P(A|BE) = \frac{P(B|AE)P(A|E)}{P(B|E)} \]

Lisa Yan and Jerry Cain, CS109, 2020
Conditional Independence

Conditional Probability

Independence
Conditional Independence

Two events A and B are defined as **conditionally independent given** E if:

$$P(AB|E) = P(A|E)P(B|E)$$

An equivalent definition:

A. $P(A|B) = P(A)$
B. $P(A|BE) = P(A)$
C. $P(A|BE) = P(A|E)$
Conditional Independence

Two events A and B are defined as conditionally independent given E if:

$$P(AB|E) = P(A|E)P(B|E)$$

An equivalent definition:

A. $P(A|B) = P(A)$
B. $P(A|BE) = P(A)$
C. $P(A|BE) = P(A|E)$
Independence relations can change with conditioning.

⚠️ A and B independent does NOT always mean A and B independent given E. ⚠️

(additional reading in lecture notes)

Conditional Probability Independence

Lisa Yan and Jerry Cain, CS109, 2020
Netflix and Condition

Let $E = \text{a user watches Life is Beautiful.}$
Let $F = \text{a user watches Amelie.}$

What is $P(E)$?

$$P(E) \approx \frac{\# \text{ people who have watched movie}}{\# \text{ people on Netflix}} = \frac{10,234,231}{50,923,123} \approx 0.20$$

What is the probability that a user watches Life is Beautiful, given they watched Amelie?

$$P(E | F) = \frac{P(EF)}{P(F)} = \frac{\# \text{ people who have watched both}}{\# \text{ people who have watched Amelie}} \approx 0.42$$
Netflix and Condition

Let E be the event that a user watches the given movie. Let F be the event that the same user watches Amelie.

$P(E) = 0.19 \quad P(E) = 0.32 \quad P(E) = 0.20 \quad P(E) = 0.09 \quad P(E) = 0.20$

$P(E|F) = 0.14 \quad P(E|F) = 0.35 \quad P(E|F) = 0.20 \quad P(E|F) = 0.72 \quad P(E|F) = 0.42$

Lisa Yu Independent!

Stanford University
What if $E_1E_2E_3E_4$ are not independent? (e.g., all international emotional comedies)

$$P(E_4|E_1E_2E_3) = \frac{P(E_1E_2E_3E_4)}{P(E_1E_2E_3)} = \frac{\text{# people who have watched all 4}}{\text{# people who have watched those 3}}$$

We need to keep track of an exponential number of movie-watching statistics.
Netflix and Condition (on many movies)

Assume: $E_1 E_2 E_3 E_4$ are conditionally independent given K

\[
P(E_4|E_1 E_2 E_3) = \frac{P(E_1 E_2 E_3 E_4)}{P(E_1 E_2 E_3)}
\]

An easier probability to store and compute!

K: likes international emotional comedies

Watched:

E_1

E_2

E_3

Will they watch?

E_4
Conditional independence is a Big Deal

Conditional independence is a practical, real-world way of decomposing hard probability questions.

“Exploiting conditional independence to generate fast probabilistic computations is one of the main contributions CS has made to probability theory.”

– Judea Pearl wins 2011 Turing Award, “For fundamental contributions to artificial intelligence through the development of a calculus for probabilistic and causal reasoning”
Dependent events can become conditionally independent. And vice versa: Independent events can become conditionally dependent.
Random Variables
Conditional independence review

\[P(X = k) \]

\[E[X] \]
Random variables are like typed variables

- **int** `a = 5;`
- **double** `b = 4.2;`
- **bit** `c = 1;`

Random variables are like typed variables (with uncertainty)

- `a` is an integer variable.
 - **Type:** int
 - **Name:** `a`
 - **Value:** 5
 - *Value range:* **{1, 2, ..., 6}**

- `b` is a floating-point variable.
 - **Type:** double
 - **Name:** `b`
 - **Value:** 4.2
 - *Value range:* **\(\mathbb{R}^+ \)**

- `c` is a bit variable.
 - **Type:** bit
 - **Name:** `c`
 - **Value:** 1
 - *Value range:* **{0, 1}**

Example Variables

- **`A`** is the number of Pokemon we bring to our future battle.
 - *Value range:* **{1, 2, ..., 6}**

- **`B`** is the amount of money we get after we win a battle.
 - *Value range:* **\(\mathbb{R}^+ \)**

- **`C`** is 1 if we successfully beat the Elite Four. 0 otherwise.
 - *Value range:* **{0, 1}**
Random Variable

A random variable is a real-valued function defined on a sample space.

Example:

3 coins are flipped. Let $X = \# \text{ of heads.}$ X is a random variable.

1. What is the value of X for the outcomes:
 • (T,T,T)?
 • (H,H,T)?

2. What is the event (set of outcomes) where $X = 2$?

3. What is $P(X = 2)$?
Random Variable

A random variable is a real-valued function defined on a sample space.

Example:

3 coins are flipped.
Let $X = \#$ of heads.
X is a random variable.

1. What is the value of X for the outcomes:
 - (T,T,T)?
 - (H,H,T)?

2. What is the event (set of outcomes) where $X = 2$?

3. What is $P(X = 2)$?
Random variables are NOT events!

It is confusing that random variables and events use the same notation.

- Random variables ≠ events.
- We can define an event to be a particular assignment of a random variable.

Example:

3 coins are flipped.
Let $X = \# \text{ of heads}.
X$ is a random variable.

\[
X = 2 \quad \text{event}
\]

\[
P(X = 2) \quad \text{probability (number b/t 0 and 1)}
\]
Random variables are **NOT** events!

It is confusing that random variables and events use the same notation.
- Random variables ≠ events.
- We can define an event to be a particular assignment of a random variable.

Example:
3 coins are flipped. Let $X = \#$ of heads. X is a random variable.

<table>
<thead>
<tr>
<th>$X = x$</th>
<th>Set of outcomes</th>
<th>$P(X = k)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X = 0$</td>
<td>${(T, T, T)}$</td>
<td>1/8</td>
</tr>
<tr>
<td>$X = 1$</td>
<td>${(H, T, T), (T, H, T), (T, T, H)}$</td>
<td>3/8</td>
</tr>
<tr>
<td>$X = 2$</td>
<td>${(H, H, T), (H, T, H), (T, H, H)}$</td>
<td>3/8</td>
</tr>
<tr>
<td>$X = 3$</td>
<td>${(H, H, H)}$</td>
<td>1/8</td>
</tr>
<tr>
<td>$X \geq 4$</td>
<td>${}$</td>
<td>0</td>
</tr>
</tbody>
</table>
PMF/CDF
So far

3 coins are flipped. Let $X = \# \text{ of heads}$. X is a random variable.

<table>
<thead>
<tr>
<th>$X = x$</th>
<th>$P(X = k)$</th>
<th>Set of outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X = 0$</td>
<td>$1/8$</td>
<td>{T, T, T}</td>
</tr>
<tr>
<td>$X = 1$</td>
<td>$3/8$</td>
<td>{H, T, T, T, H, T, T, T, H}</td>
</tr>
<tr>
<td>$X = 2$</td>
<td>$3/8$</td>
<td>{H, H, T, H, T, H, T, H, H}</td>
</tr>
<tr>
<td>$X = 3$</td>
<td>$1/8$</td>
<td>{H, H, H}</td>
</tr>
<tr>
<td>$X \geq 4$</td>
<td>0</td>
<td>{}</td>
</tr>
</tbody>
</table>

Can we get a “shorthand” for this last step? Seems like it might be useful!
Probability Mass Function

3 coins are flipped. Let $X = \#$ of heads. X is a random variable.

A function on k
with range $[0,1]$

\[P(X = k) \]

What would be a useful function to define?
The probability of the event that a random variable X takes on the value k!
For discrete random variables, this is a probability mass function.
Probability Mass Function

3 coins are flipped. Let $X = \#$ of heads. X is a random variable.

A function on k with range $[0,1]$:

$$P(X = k)$$

2 parameter/input k: a value of X

0.375 return value/output: probability of the event $X = k$

A function on k with range $[0,1]$

```
N = 3
P = 0.5

def prob_event_y_equals(k):
    n_ways = scipy.special.binom(N, k)
    p_way = np.power(P, k) * np.power(1 - P, N - k)
    return n_ways * p_way
```
Discrete RVs and Probability Mass Functions

A random variable X is **discrete** if it can take on countably many values.

- $X = x$, where $x \in \{x_1, x_2, x_3, \ldots\}$

The **probability mass function** (PMF) of a discrete random variable is

$$P(X = x) = p(x) = p_X(x)$$

This last point is a good way to verify any PMF you create.

- Probabilities must sum to 1:

$$\sum_{i=1}^{\infty} p(x_i) = 1$$
PMF for a single 6-sided die

Let X be a random variable that represents the result of a single dice roll.

- **Support** of $X : \{1, 2, 3, 4, 5, 6\}$
- Therefore X is a discrete random variable.
- PMF of X:
 \[
p(x) = \begin{cases}
1/6 & x \in \{1, \ldots, 6\} \\
0 & \text{otherwise}
\end{cases}
\]
Cumulative Distribution Functions

For a random variable X, the cumulative distribution function (CDF) is defined as

$$F(a) = F_X(a) = P(X \leq a), \text{ where } -\infty < a < \infty$$

For a discrete RV X, the CDF is:

$$F(a) = P(X \leq a) = \sum_{\text{all } x \leq a} p(x)$$
Let X be a random variable that represents the result of a single dice roll.

PMF of X

<table>
<thead>
<tr>
<th>X</th>
<th>$P(X = x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1/6</td>
</tr>
<tr>
<td>1</td>
<td>1/6</td>
</tr>
<tr>
<td>2</td>
<td>1/6</td>
</tr>
<tr>
<td>3</td>
<td>1/6</td>
</tr>
<tr>
<td>4</td>
<td>1/6</td>
</tr>
<tr>
<td>5</td>
<td>1/6</td>
</tr>
<tr>
<td>6</td>
<td>1/6</td>
</tr>
</tbody>
</table>

CDF of X

$P(X \leq 0) = 0$

$P(X \leq 6) = 1$
Expectation
Discrete random variables

Definition

PMF
\[P(X = x) = p(x) \]

Properties

CDF \(F(x) \)

Without performing the experiment:
- The support gives us a ballpark of what values our RV will take on
- Next up: How do we report the “average” value?
Expectation

The **expectation** of a discrete random variable X is defined as:

$$E[X] = \sum_{x:p(x)>0} p(x) \cdot x$$

- Note: sum over all values of $X = x$ that have non-zero probability.

- Other names: **mean**, expected value, **weighted average**, center of mass, first moment
What is the expected value of a 6-sided die roll?

1. Define random variables

 $X = \text{RV for value of roll}$

 $P(X = x) = \begin{cases}
 1/6 & x \in \{1, \ldots, 6\} \\
 0 & \text{otherwise}
 \end{cases}$

2. Solve

 $E[X] = 1 \left(\frac{1}{6}\right) + 2 \left(\frac{1}{6}\right) + 3 \left(\frac{1}{6}\right) + 4 \left(\frac{1}{6}\right) + 5 \left(\frac{1}{6}\right) + 6 \left(\frac{1}{6}\right) = \frac{7}{2}$
Important properties of expectation

1. Linearity:
 \[E[aX + b] = aE[X] + b \]

2. Expectation of a sum = sum of expectation:
 \[E[X + Y] = E[X] + E[Y] \]

3. Unconscious statistician:
 \[E[g(X)] = \sum_x g(x)p(x) \]

 These properties let you avoid defining difficult PMFs.

 - Let \(X = 6 \)-sided dice roll, \(Y = 2X - 1 \).
 - \(E[X] = 3.5 \)
 - \(E[Y] = 6 \)

 Sum of two dice rolls:
 - Let \(X = \) roll of die 1
 \(Y = \) roll of die 2
 - \(E[X + Y] = 3.5 + 3.5 = 7 \)
Proofs (OK to stop here)
Important properties of expectation

1. Linearity:

\[E[aX + b] = aE[X] + b \]

2. Expectation of a sum = sum of expectation:

\[E[X + Y] = E[X] + E[Y] \]

3. Unconscious statistician:

\[E[g(X)] = \sum_{x} g(x)p(x) \]
Linearity of Expectation proof

\[E[aX + b] = aE[X] + b \]

Proof:

\[
E[aX + b] = \sum_x (ax + b)p(x) = \sum_x axp(x) + bp(x) \\
= a \sum_x xp(x) + b \sum_x p(x) \\
= a E[X] + b \cdot 1
\]

\[E[X] = \sum_{x:p(x)>0} p(x) \cdot x \]
Expectation of Sum intuition

\[E[X + Y] = E[X] + E[Y] \]

(we’ll prove this in two weeks)

<table>
<thead>
<tr>
<th>Intuition for now:</th>
<th>(X)</th>
<th>(Y)</th>
<th>(X + Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>6</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td>-2</td>
<td>-3</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>16</td>
<td>24</td>
<td></td>
</tr>
</tbody>
</table>

Average:

\[
\frac{1}{n} \sum_{i=1}^{n} x_i + \frac{1}{n} \sum_{i=1}^{n} y_i = \frac{1}{n} \sum_{i=1}^{n} (x_i + y_i)
\]

\[
\frac{1}{7} (28) + \frac{1}{7} (56) = \frac{1}{7} (84)
\]
LOTUS proof

Let $Y = g(X)$, where g is a real-valued function.

$$E[g(X)] = E[Y] = \sum_j y_j p(y_j)$$

$$= \sum_j y_j \sum_{i: g(x_i) = y_j} p(x_i)$$

$$= \sum_j \sum_{i: g(x_i) = y_j} y_j p(x_i)$$

$$= \sum_j \sum_{i: g(x_i) = y_j} g(x_i) p(x_i)$$

$$= \sum_i g(x_i) p(x_i)$$

Expectation of $g(X)$

For you to review so that you can sleep at night
06: Random Variables

Lisa Yan and Jerry Cain
September 25, 2020
Discrete random variables

Definition

Properties

Experiment outcomes

Discrete Random Variable, X

$P(X = x) = p(x)$

Support

$E[X]$
A Whole New World with Random Variables

Event-driven probability
- Relate only binary events
 - Either happens (E)
 - or doesn’t happen (E^C)
- Can only report probability
- Lots of combinatorics

Random Variables
- Link multiple similar events together ($X = 1$, $X = 2$, ..., $X = 6$)
- Can compute statistics: report the “average” outcome
- Once we have the PMF (discrete RVs), we can do regular math
PMF for the sum of two dice

Let Y be a random variable that represents the sum of two independent dice rolls.

Support of Y: \{2, 3, ..., 11, 12\}

\[
p(y) = \begin{cases}
\frac{y-1}{36} & y \in \mathbb{Z}, 2 \leq y \leq 6 \\
\frac{13-y}{36} & y \in \mathbb{Z}, 7 \leq y \leq 12 \\
0 & \text{otherwise}
\end{cases}
\]

Sanity check: $\sum_{y=2}^{12} p(y) = 1$
Think, then Breakout Rooms

Then check out the question on the next slide (Slide 45). Post any clarifications here! https://us.edstem.org/courses/2678/discussion/128397

Think by yourself: 1 min

Breakout rooms: 3 min. Introduce yourself! (though feel free to leave at any time) 😐
Example random variable

Consider 5 flips of a coin which comes up heads with probability p. Each coin flip is an independent trial. Let $Y = \# \text{ of heads on 5 flips}.$

1. What is the support of Y? In other words, what are the values that Y can take on with non-zero probability?

2. Define the event $Y = 2$. What is $P(Y = 2)$?

3. What is the PMF of Y? In other words, what is $P(Y = k)$, for k in the support of Y?
Example random variable

Consider 5 flips of a coin which comes up heads with probability p. Each coin flip is an independent trial. Let $Y = \#$ of heads on 5 flips.

1. What is the **support** of Y? In other words, what are the values that Y can take on with non-zero probability?

 \[
 \{0, 1, 2, 3, 4, 5\}
 \]

2. Define the event $Y = 2$. What is $P(Y = 2)$?

 \[
 P(Y = k) = \binom{5}{2} p^2 (1 - p)^3
 \]

3. What is the PMF of Y? In other words, what is $P(Y = k)$, for k in the support of Y?

 \[
 P(Y = k) = \binom{5}{k} p^k (1 - p)^{5-k}
 \]
Expectation

Remember that the expectation of a die roll is 3.5.

\[E[X] = \sum_{x:p(x)>0} p(x) \cdot x \]

Expectation: The **average value** of a random variable

\[X = \text{RV for value of roll} \]

\[E[X] = 1 \left(\frac{1}{6} \right) + 2 \left(\frac{1}{6} \right) + 3 \left(\frac{1}{6} \right) + 4 \left(\frac{1}{6} \right) + 5 \left(\frac{1}{6} \right) + 6 \left(\frac{1}{6} \right) = \frac{7}{2} \]
Lying with statistics

“There are three kinds of lies: lies, damned lies, and statistics”
- popularized by Mark Twain, 1906
- generally attributed to Sir Charles Dilke, 1891
Lying with statistics

A school has 3 classes with 5, 10, and 150 students. What is the average class size?

1. Interpretation #1
 - Randomly choose a class with equal probability.
 - $X = \text{size of chosen class}$
 $$E[X] = 5 \left(\frac{1}{3} \right) + 10 \left(\frac{1}{3} \right) + 150 \left(\frac{1}{3} \right)$$
 $$= \frac{165}{3} = 55$$

2. Interpretation #2
 - Randomly choose a student with equal probability.
 - $Y = \text{size of chosen class}$
 $$E[Y] = 5 \left(\frac{5}{165} \right) + 10 \left(\frac{10}{165} \right) + 150 \left(\frac{150}{165} \right)$$
 $$= \frac{22635}{165} \approx 137$$

What universities usually report

Average student perception of class size
Interlude for announcements
Announcements

Problem Set #2
Out: today
Due: Monday 10/5, 1:00pm
Covers: through today

Python tutorial #2
When: Wed 9/30 3:30-4:30pm PT
Recorded?: Yes
Covers: PS2 content
Notes: to be posted online

Lisa Yan and Jerry Cain, CS109, 2020
Important properties of expectation

1. Linearity:
 \[E[aX + b] = aE[X] + b \]

2. Expectation of a sum = sum of expectation:
 \[E[X + Y] = E[X] + E[Y] \]

3. Unconscious statistician:
 \[E[g(X)] = \sum_{x} g(x)p(x) \]

Roll a die, outcome is \(X \). You win \(2X - 1 \).

What are your expected winnings?

Let \(X = 6 \)-sided dice roll.

\[E[2X - 1] = 2(3.5) - 1 = 6 \]
Important properties of expectation

1. Linearity:
 \[E[aX + b] = aE[X] + b \]

 Roll a die, outcome is \(X \). You win \(2X - 1 \).
 What are your expected winnings?
 Let \(X = 6 \)-sided dice roll.
 \[E[2X - 1] = 2(3.5) - 1 = 6 \]

2. Expectation of a sum = sum of expectation:
 \[E[X + Y] = E[X] + E[Y] \]

 What is the expectation of the sum of two dice rolls?
 Let \(X = \) roll of die 1, \(Y = \) roll of die 2.
 \[E[X + Y] = 3.5 + 3.5 = 7 \]

3. Unconscious statistician:
 \[E[g(X)] = \sum_x g(x)p(x) \]
Important properties of expectation

1. Linearity:
 \[E[aX + b] = aE[X] + b \]

Roll a die, outcome is \(X \). You win \(2X - 1 \).
What are your expected winnings?

Let \(X \) = 6-sided dice roll.
\[E[2X - 1] = 2(3.5) - 1 = 6 \]

2. Expectation of a sum = sum of expectation:
 \[E[X + Y] = E[X] + E[Y] \]

What is the expectation of the sum of two dice rolls?

Let \(X \) = roll of die 1, \(Y \) = roll of die 2.
\[E[X + Y] = 3.5 + 3.5 = 7 \]

3. Unconscious statistician:
 \[E[g(X)] = \sum_{x} g(x)p(x) \]

(next up)
Then check out the question on the next slide (Slide 56). Post any clarifications here!

https://us.edstem.org/courses/2678/discussion/128397

Think by yourself: 2 min
Being a statistician unconsciously

Let X be a discrete random variable.

- $P(X = x) = \frac{1}{3}$ for $x \in \{-1, 0, 1\}$

Let $Y = |X|$. What is $E[Y]$?

A. $\frac{1}{3} \cdot 1 + \frac{1}{3} \cdot 0 + \frac{1}{3} \cdot -1 = 0$

B. $E[Y] = E[0] = 0$

C. $\frac{1}{3} \cdot 0 + \frac{2}{3} \cdot 1 = \frac{2}{3}$

D. $\frac{1}{3} \cdot |-1| + \frac{1}{3} \cdot |0| + \frac{1}{3} |1| = \frac{2}{3}$

E. C and D
Being a statistician unconsciously

Let X be a discrete random variable.

- $P(X = x) = \frac{1}{3}$ for $x \in \{-1, 0, 1\}$

Let $Y = |X|$. What is $E[Y]$?

A. \[\frac{1}{3} \cdot 1 + \frac{1}{3} \cdot 0 + \frac{1}{3} \cdot -1 = 0 \] $E[X]$

B. \[E[Y] = E[0] = 0 \] $E[E[X]]$

C. \[\frac{1}{3} \cdot 0 + \frac{2}{3} \cdot 1 = \frac{2}{3} \]

1. Find PMF of Y: $p_Y(0) = \frac{1}{3}, p_Y(1) = \frac{2}{3}$
2. Compute $E[Y]$

D. \[\frac{1}{3} \cdot |-1| + \frac{1}{3} \cdot |0| + \frac{1}{3} |1| = \frac{2}{3} \]

1. Use LOTUS by using PMF of X:
 1. $P(X = x) \cdot |x|$
 2. Sum up

C and D

E. C and D
Think

Then check out the question on the next slide (Slide 59). Post any clarifications here!

https://us.edstem.org/courses/2678/discussion/128397

Think by yourself: 2 min
St. Petersburg Paradox

- A fair coin (comes up “heads” with $p = 0.5$)
- Define Y = number of coin flips (“heads”) before first “tails”
- Casino pays you 2^Y

How much would you bet to play? (How much can you expect to win?)

\[
E[g(x)] = \sum_x g(x)p(x)
\]

Expectation of $g(X)$

\[
E[g(x)] = \frac{1}{2} \cdot 2 + \frac{1}{4} \cdot 4 + \frac{1}{8} \cdot 8 + \cdots + \frac{1}{2^{100}} \cdot 2^{100}
\]

A. 0.50
B. 1
C. 2
D. 4
E. ∞
F. I wouldn’t play

(by yourself)
St. Petersburg Paradox

- A fair coin (comes up “heads” with \(p = 0.5 \))
- Define \(Y = \) number of coin flips (“heads”) before first “tails”
- Casino pays you \(2^Y \)

How much would you bet to play? (How much can you expect to win?)

1. Define random variables

 For \(i \geq 0 \): \(P(Y = i) = \left(\frac{1}{2} \right)^{i+1} \)

 Let \(W = \) your winnings, \(2^Y \).

2. Solve

 \[E[W] = E[2^Y] = \left(\frac{1}{2} \right)^1 2^0 + \left(\frac{1}{2} \right)^2 2^1 + \left(\frac{1}{2} \right)^3 2^2 + \ldots \]

 \[= \sum_{i=0}^{\infty} \left(\frac{1}{2} \right)^{i+1} 2^i = \sum_{i=0}^{\infty} \left(\frac{1}{2} \right) = \infty \]
St. Petersburg + Reality

What if the casino has only $65,536?
- Same game
- Define $Y = \#$ heads before first tails
- You win $W = 2^Y$

- If you win $65,536$, the casino stops the game and closes.

1. Define random variables

 For $i \geq 0$:
 \[P(Y = i) = \left(\frac{1}{2} \right)^{i+1} \]

 Let $W = \text{your winnings, } 2^Y$.

2. Solve

 \[E[W] = \left(\frac{1}{2} \right)^1 2^0 + \left(\frac{1}{2} \right)^2 2^1 + \left(\frac{1}{2} \right)^3 2^2 + \cdots \]

 \[k = \log_2(65,536) = 16 \]

 \[= \sum_{i=0}^{k} \left(\frac{1}{2} \right)^{i+1} 2^i = \sum_{i=0}^{16} \left(\frac{1}{2} \right) = 8.5 \]