06: Random Variables

Lisa Yan
April 17, 2020
<table>
<thead>
<tr>
<th></th>
<th>Quick slide reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Conditional Independence</td>
</tr>
<tr>
<td>15</td>
<td>Random Variables</td>
</tr>
<tr>
<td>22</td>
<td>PMF/CDF</td>
</tr>
<tr>
<td>30</td>
<td>Expectation</td>
</tr>
<tr>
<td>40</td>
<td>Exercises</td>
</tr>
</tbody>
</table>
Conditional Independence
Conditional Paradigm

For any events A, B, and E, you can condition consistently on E, and all formulas still hold:

Axiom 1

\[0 \leq P(A|E) \leq 1 \]

Corollary 1 (complement)

\[P(A|E) = 1 - P(A^C|E) \]

Transitivity

\[P(AB|E) = P(BA|E) \]

Chain Rule

\[P(AB|E) = P(B|E)P(A|BE) \]

Bayes’ Theorem

\[P(A|BE) = \frac{P(B|AE)P(A|E)}{P(B|E)} \]

Lisa Yan, CS109, 2020
Conditional Independence

Conditional Probability

Independence
Conditional Independence

Two events A and B are defined as **conditionally independent given** E if:

$$P(AB|E) = P(A|E)P(B|E)$$

An equivalent definition:

A. $P(A|B) = P(A)$
B. $P(A|BE) = P(A)$
C. $P(A|BE) = P(A|E)$
Conditional Independence

Two events A and B are defined as conditionally independent given E if:

$$P(AB|E) = P(A|E)P(B|E)$$

An equivalent definition:

A. $P(A|B) = P(A)$
B. $P(A|BE) = P(A)$
C. $P(A|BE) = P(A|E)$
Conditional Independence

Independence relations can change with conditioning.

⚠ A and B independent does NOT always mean A and B independent given E. (additional reading in lecture notes)

Conditional Probability Independence

Lisa Yan, CS109, 2020
Netflix and Condition

Let E = a user watches Life is Beautiful.
Let F = a user watches Amelie.
What is $P(E)$?

$$P(E) \approx \frac{\# \text{ people who have watched movie}}{\# \text{ people on Netflix}} = \frac{10,234,231}{50,923,123} \approx 0.20$$

What is the probability that a user watches Life is Beautiful, given they watched Amelie?

$$P(E|F) = \frac{P(EF)}{P(F)} = \frac{\# \text{ people who have watched both}}{\# \text{ people who have watched Amelie}} \approx 0.42$$
Let E be the event that a user watches the given movie.
Let F be the event that the same user watches Amelie.

$$P(E) = 0.19 \quad P(E) = 0.32 \quad P(E) = 0.20 \quad P(E) = 0.09 \quad P(E) = 0.20$$

$$P(E|F) = 0.14 \quad P(E|F) = 0.35 \quad P(E|F) = 0.20 \quad P(E|F) = 0.72 \quad P(E|F) = 0.42$$

Independent!
What if $E_1 E_2 E_3 E_4$ are not independent? (e.g., all international emotional comedies)

$$P(E_4 | E_1 E_2 E_3) = \frac{P(E_1 E_2 E_3 E_4)}{P(E_1 E_2 E_3)} = \frac{\# \text{ people who have watched all 4}}{\# \text{ people who have watched those 3}}$$

We need to keep track of an exponential number of movie-watching statistics.
Netflix and Condition (on many movies)

Assume:

\[E_1 E_2 E_3 E_4 \text{ are conditionally independent given } K \]

\[
P(E_4|E_1 E_2 E_3) = \frac{P(E_1 E_2 E_3 E_4)}{P(E_1 E_2 E_3)}
\]

An easier probability to store and compute!

\[
P(E_4|E_1 E_2 E_3 K) = P(E_4|K)
\]
Conditional independence is a Big Deal

Conditional independence is a practical, real-world way of decomposing hard probability questions.

“Exploiting conditional independence to generate fast probabilistic computations is one of the main contributions CS has made to probability theory.”

– Judea Pearl wins 2011 Turing Award, “For fundamental contributions to artificial intelligence through the development of a calculus for probabilistic and causal reasoning”
Dependent events can become conditionally independent.

And vice versa: Independent events can become conditionally dependent.

\[E_1, E_2, E_3, E_4 \text{ are dependent} \]

\[E_1, E_2, E_3, E_4 \text{ are conditionally independent given } K \]

Challenge: How do we determine \(K \)? Stay tuned in 6 weeks’ time!
Random Variables
Conditional independence review

\[P(X = k) \]

\[E[X] \]
Random variables are like typed variables

<table>
<thead>
<tr>
<th>Type</th>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>int</td>
<td>a</td>
<td>5</td>
</tr>
<tr>
<td>double</td>
<td>b</td>
<td>4.2</td>
</tr>
<tr>
<td>bit</td>
<td>c</td>
<td>1</td>
</tr>
</tbody>
</table>

\(A \) is the number of Pokemon we bring to our future battle. \(A \in \{1, 2, \ldots, 6\} \)

\(B \) is the amount of money we get after we win a battle. \(B \in \mathbb{R}^+ \)

\(C \) is 1 if we successfully beat the Elite Four. 0 otherwise. \(C \in \{0, 1\} \)
Random Variable

A random variable is a real-valued function defined on a sample space.

Example:

3 coins are flipped.
Let $X = \#$ of heads.
X is a random variable.

1. What is the value of X for the outcomes:
 - (T,T,T)?
 - (H,H,T)?

2. What is the event (set of outcomes) where $X = 2$?

3. What is $P(X = 2)$?
Random Variable

A random variable is a real-valued function defined on a sample space.

Example:

3 coins are flipped.
Let $X = \#$ of heads.
X is a random variable.

1. What is the value of X for the outcomes:
 - (T,T,T)?
 - (H,H,T)?

2. What is the event (set of outcomes) where $X = 2$?

3. What is $P(X = 2)$?
Random variables are **NOT** events!

It is confusing that random variables and events use the same notation.

- Random variables ≠ events.
- We can define an event to be a particular assignment of a random variable.

Example:

3 coins are flipped. Let $X =$ # of heads. X is a random variable. $X = 2$ event $P(X = 2)$ probability (number b/t 0 and 1)
Random variables are **NOT** events!

It is confusing that random variables and events use the same notation.

- **Random variables ≠ events.**
- We can define an event to be a particular assignment of a random variable.

Example:

3 coins are flipped. Let $X =$ # of heads. X is a **random variable**.

<table>
<thead>
<tr>
<th>$X = x$</th>
<th>Set of outcomes</th>
<th>$P(X = k)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X = 0$</td>
<td>${(T, T, T)}$</td>
<td>1/8</td>
</tr>
<tr>
<td>$X = 1$</td>
<td>${(H, T, T), (T, H, T), (T, T, H)}$</td>
<td>3/8</td>
</tr>
<tr>
<td>$X = 2$</td>
<td>${(H, H, T), (H, T, H), (T, H, H)}$</td>
<td>3/8</td>
</tr>
<tr>
<td>$X = 3$</td>
<td>${(H, H, H)}$</td>
<td>1/8</td>
</tr>
<tr>
<td>$X \geq 4$</td>
<td>\emptyset</td>
<td>0</td>
</tr>
</tbody>
</table>
PMF/CDF
So far

3 coins are flipped. Let $X =$ # of heads. X is a random variable.

<table>
<thead>
<tr>
<th>$X = x$</th>
<th>$P(X = k)$</th>
<th>Set of outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X = 0$</td>
<td>1/8</td>
<td>(T, T, T)</td>
</tr>
<tr>
<td>$X = 1$</td>
<td>3/8</td>
<td>$(H, T, T), (T, H, T), (T, T, H)$</td>
</tr>
<tr>
<td>$X = 2$</td>
<td>3/8</td>
<td>$(H, H, T), (H, T, H), (T, H, H)$</td>
</tr>
<tr>
<td>$X = 3$</td>
<td>1/8</td>
<td>(H, H, H)</td>
</tr>
<tr>
<td>$X \geq 4$</td>
<td>0</td>
<td>${}$</td>
</tr>
</tbody>
</table>

Can we get a “shorthand” for this last step? Seems like it might be useful!
Probability Mass Function

3 coins are flipped. Let $X = \#$ of heads. X is a random variable.

A function on k with range $[0,1]$:

$P(X = k)$

What would be a useful function to define?
The probability of the event that a random variable X takes on the value k!
For discrete random variables, this is a probability mass function.
Probability Mass Function

3 coins are flipped. Let $X = \#$ of heads. X is a random variable.

A function on k with range [0,1]

$$P(X = k)$$

parameter/input k: a value of X

return value/output: probability of the event $X = k$

N = 3
P = 0.5

```python
def prob_event_y_equals(k):
    n_ways = scipy.special.binom(N, k)
    p_way = np.power(P, k) * np.power(1 - P, N - k)
    return n_ways * p_way
```
Discrete RVs and Probability Mass Functions

A random variable X is **discrete** if it can take on countably many values.

- $X = x$, where $x \in \{x_1, x_2, x_3, \ldots \}$

The **probability mass function** (PMF) of a discrete random variable is

$$P(X = x) = p(x) = p_X(x)$$

- Probabilities must sum to 1:

$$\sum_{i=1}^{\infty} p(x_i) = 1$$

This last point is a good way to verify any PMF you create.
PMF for a single 6-sided die

Let X be a random variable that represents the result of a single dice roll.

- **Support of X**: \{1, 2, 3, 4, 5, 6\}
- Therefore X is a **discrete** random variable.
- PMF of X:

 \[
 p(x) = \begin{cases}
 1/6 & x \in \{1, \ldots, 6\} \\
 0 & \text{otherwise}
 \end{cases}
 \]
Cumulative Distribution Functions

For a random variable X, the cumulative distribution function (CDF) is defined as

$$F(a) = F_X(a) = P(X \leq a), \text{ where } -\infty < a < \infty$$

For a discrete RV X, the CDF is:

$$F(a) = P(X \leq a) = \sum_{\text{all } x \leq a} p(x)$$
CDFs as graphs

Let X be a random variable that represents the result of a single dice roll.

PMF of X

<table>
<thead>
<tr>
<th>$X = x$</th>
<th>$P(X = x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1/6</td>
</tr>
<tr>
<td>1</td>
<td>1/6</td>
</tr>
<tr>
<td>2</td>
<td>1/6</td>
</tr>
<tr>
<td>3</td>
<td>1/6</td>
</tr>
<tr>
<td>4</td>
<td>1/6</td>
</tr>
<tr>
<td>5</td>
<td>1/6</td>
</tr>
<tr>
<td>6</td>
<td>1/6</td>
</tr>
</tbody>
</table>

CDF of X

$P(X \leq 0) = 0$

$P(X \leq 6) = 1$

CDF (cumulative distribution function) $F(a) = P(X \leq a)$
Expectation
Discrete random variables

Definition

<table>
<thead>
<tr>
<th>Experiment outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support</td>
</tr>
</tbody>
</table>

Discrete Random Variable, X

- **PMF**
 \[
 P(X = x) = p(x)
 \]

- **CDF** $F(x)$

Without performing the experiment:

- The support gives us a ballpark of what values our RV will take on.
- Next up: How do we report the “average” value?
The **expectation** of a discrete random variable X is defined as:

$$E[X] = \sum_{x:p(x) > 0} p(x) \cdot x$$

- Note: sum over all values of $X = x$ that have non-zero probability.

- Other names: **mean**, expected value, **weighted average**, center of mass, first moment
Expectation of a die roll

What is the expected value of a 6-sided die roll?

1. Define random variables
 \(X = \text{RV for value of roll} \)
 \[
P(X = x) = \begin{cases}
1/6 & x \in \{1, \ldots, 6\} \\
0 & \text{otherwise}
\end{cases}
\]

2. Solve
 \[
E[X] = 1 \left(\frac{1}{6} \right) + 2 \left(\frac{1}{6} \right) + 3 \left(\frac{1}{6} \right) + 4 \left(\frac{1}{6} \right) + 5 \left(\frac{1}{6} \right) + 6 \left(\frac{1}{6} \right) = \frac{7}{2}
\]
Important properties of expectation

1. Linearity:
 \[E[aX + b] = aE[X] + b \]

2. Expectation of a sum = sum of expectation:
 \[E[X + Y] = E[X] + E[Y] \]

3. Unconscious statistician:
 \[E[g(X)] = \sum_x g(x)p(x) \]

- Let \(X \) = 6-sided dice roll, \(Y = 2X - 1 \).
 - \(E[X] = 3.5 \)
 - \(E[Y] = 6 \)

- Sum of two dice rolls:
 - Let \(X \) = roll of die 1
 \(Y = \) roll of die 2
 - \(E[X + Y] = 3.5 + 3.5 = 7 \)

These properties let you avoid defining difficult PMFs.
Proofs (OK to stop here)
Important properties of expectation

1. Linearity:
 \[E[aX + b] = aE[X] + b \]

2. Expectation of a sum = sum of expectation:
 \[E[X + Y] = E[X] + E[Y] \]

3. Unconscious statistician:
 \[E[g(X)] = \sum_{x} g(x)p(x) \]
Linearity of Expectation proof

\[E[aX + b] = aE[X] + b \]

Proof:

\[E[aX + b] = \sum_x (ax + b)p(x) = \sum_x axp(x) + bp(x) \]

\[= a \sum_x xp(x) + b \sum_x p(x) \]

\[= a E[X] + b \cdot 1 \]
Expectation of Sum intuition

\[
E[X + Y] = E[X] + E[Y]
\]

(we’ll prove this in two weeks)

<table>
<thead>
<tr>
<th>Intuition for now:</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(X)</td>
<td>(Y)</td>
<td>(X + Y)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td>-2</td>
<td>-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>16</td>
<td>24</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Average:

\[
\frac{1}{n} \sum_{i=1}^{n} x_i + \frac{1}{n} \sum_{i=1}^{n} y_i = \frac{1}{n} \sum_{i=1}^{n} (x_i + y_i)
\]

\[
\frac{1}{7} \cdot 28 + \frac{1}{7} \cdot 56 = \frac{1}{7} \cdot 84
\]
LOTUS proof

Let $Y = g(X)$, where g is a real-valued function.

\[
E[g(X)] = E[Y] = \sum_j y_j p(y_j) = \sum_j y_j \sum_{i: g(x_i) = y_j} p(x_i) = \sum_j \sum_{i: g(x_i) = y_j} y_j p(x_i) = \sum_j \sum_{i: g(x_i) = y_j} g(x_i) p(x_i) = \sum_i g(x_i) p(x_i)
\]

For you to review so that you can sleep at night
06: Random Variables

Lisa Yan
April 15, 2020
Reminders: Lecture with Zoom

• Turn on your camera if you are able, mute your mic in the big room
• Virtual backgrounds are encouraged (classroom-appropriate)

Breakout Rooms for meeting your classmates
 ◦ Just like sitting next to someone new
 ◦ This experience is optional: You should be comfortable leaving the room at any time.

We will use Ed instead of Zoom chat

Today’s discussion thread: https://us.edstem.org/courses/109/discussion/24491
Discrete random variables

Experiment outcomes

\[P(X = x) = p(x) \]

Definition

Properties

Discrete Random Variable, \(X \)

\[E[X] \]

Support

Note: Random Variables also called distributions
A Whole New World with Random Variables

Event-driven probability

• Relate only binary events
 ◦ Either happens (E)
 ◦ or doesn’t happen (E^c)

• Can only report probability

• Lots of combinatorics

Random Variables

• Link multiple similar events together ($X = 1, X = 2, ..., X = 6$)

• Can compute statistics: report the “average” outcome

• Once we have the PMF (discrete RVs), we can do regular math

Lisa Yan, CS109, 2020
PMF for the sum of two dice

Let Y be a random variable that represents the sum of two independent dice rolls.

Support of Y: $\{2, 3, \ldots, 11, 12\}$

$$p(y) = \begin{cases} \frac{y-1}{36} & y \in \mathbb{Z}, 2 \leq y \leq 6 \\ \frac{13-y}{36} & y \in \mathbb{Z}, 7 \leq y \leq 12 \\ 0 & \text{otherwise} \end{cases}$$

Sanity check: $\sum_{y=2}^{12} p(y) = 1$
Think, then Breakout Rooms

Think by yourself: 1 min

Breakout rooms: 5 min. Introduce yourself! (or leave)

Then check out the question on the next slide (Slide 46). Post any clarifications here!

https://us.edstem.org/courses/109/discussion/27280
Example random variable

Consider 5 flips of a coin which comes up heads with probability p. Each coin flip is an independent trial. Let $Y = \# \text{ of heads on 5 flips}$.

1. What is the support of Y? In other words, what are the values that Y can take on with non-zero probability?

2. Define the event $Y = 2$. What is $P(Y = 2)$?

3. What is the PMF of Y? In other words, what is $P(Y = k)$, for k in the support of Y?
Consider 5 flips of a coin which comes up heads with probability \(p \). Each coin flip is an independent trial. Let \(Y = \# \text{ of heads on 5 flips} \).

1. What is the support of \(Y \)? In other words, what are the values that \(Y \) can take on with non-zero probability? \(\{0, 1, 2, 3, 4, 5\} \)

2. Define the event \(Y = 2 \). What is \(P(Y = 2) \)? \[P(Y = k) = \binom{5}{2} p^2 (1 - p)^3 \]

3. What is the PMF of \(Y \)? In other words, what is \(P(Y = k) \), for \(k \) in the support of \(Y \)? \[P(Y = k) = \binom{5}{k} p^k (1 - p)^{5-k} \]
Expectation

Expectation: The **average value** of a random variable

$$E[X] = \sum_{x:p(x)>0} p(x) \cdot x$$

Remember that the expectation of a die roll is 3.5.

$$X = \text{RV for value of roll}$$

$$E[X] = 1 \left(\frac{1}{6} \right) + 2 \left(\frac{1}{6} \right) + 3 \left(\frac{1}{6} \right) + 4 \left(\frac{1}{6} \right) + 5 \left(\frac{1}{6} \right) + 6 \left(\frac{1}{6} \right) = \frac{7}{2}$$
Lying with statistics

“There are three kinds of lies: lies, damned lies, and statistics” – popularized by Mark Twain, 1906
Lying with statistics

A school has 3 classes with 5, 10, and 150 students. What is the average class size?

1. Interpretation #1
 - Randomly choose a class with equal probability.
 - \(X = \text{size of chosen class} \)
 \[
 E[X] = 5 \left(\frac{1}{3} \right) + 10 \left(\frac{1}{3} \right) + 150 \left(\frac{1}{3} \right)
 \]
 \[
 = \frac{165}{3} = 55
 \]

2. Interpretation #2
 - Randomly choose a student with equal probability.
 - \(Y = \text{size of chosen class} \)
 \[
 E[Y] = 5 \left(\frac{5}{165} \right) + 10 \left(\frac{10}{165} \right) + 150 \left(\frac{150}{165} \right)
 \]
 \[
 = \frac{22635}{165} \approx 137
 \]

What universities usually report: Average student perception of class size
Interlude for jokes/announcements
Your voices

Q3 Feedback
0 Points
How’s everything going?

- Overwhelming
- These psets are hitting different
- Decently!
- Everything is good. Just don't make the PSet's too long!
- Good! I really like this class.
- It's going okay. It is moving very quickly though
- Okay...!
- Stressed
- Things just went 0 to 100 very fast in these prerecorded videos
- Everything is going great! The class is moving pretty fast but I feel like I'm learning a lot!

- Every quarter, students report counting as the hardest topic in this class.
- We are making psets shorter to reflect the additional time you spend on lecture. PS2 has just 10 problems.
- More practice resources: Textbook’s Self-Test Problems
Announcements

Problem Set 1
Due: ~an hour ago
On-time grades: next Friday
Solutions: next Friday

Problem Set 2
Out: today
Due: Monday 4/27
Covers: through today

The pedagogy behind concept checks
• Spaced practice (vs. "practice makes perfect"): better memory retention
• Low-stakes testing: better concept retrieval, actively connect concepts

It is okay if you don’t understand material off-the-bat. In fact, learning research suggests that you will learn more in the long run.

Important properties of expectation

1. Linearity:

\[E[aX + b] = aE[X] + b \]

Roll a die, outcome is \(X \). You win \(2X - 1 \). What are your expected winnings?

Let \(X \) = 6-sided dice roll.

\[E[2X - 1] = 2(3.5) - 1 = 6 \]

2. Expectation of a sum = sum of expectation:

\[E[X + Y] = E[X] + E[Y] \]

3. Unconscious statistician:

\[E[g(X)] = \sum_x g(x)p(x) \]
Important properties of expectation

1. Linearity:
 \[E[aX + b] = aE[X] + b \]

2. Expectation of a sum = sum of expectation:
 \[E[X + Y] = E[X] + E[Y] \]

3. Unconscious statistician:
 \[E[g(X)] = \sum_{x} g(x)p(x) \]

Review

Roll a die, outcome is \(X \). You win \$2X - 1.
What are your expected winnings?
Let \(X = 6 \)-sided dice roll.
\[E[2X - 1] = 2(3.5) - 1 = 6 \]

What is the expectation of the sum of two dice rolls?
Let \(X = \) roll of die 1, \(Y = \) roll of die 2.
\[E[X + Y] = 3.5 + 3.5 = 7 \]
Important properties of expectation

1. Linearity:
\[E[aX + b] = aE[X] + b \]

Roll a die, outcome is \(X \). You win \(2X - 1 \). What are your expected winnings?

Let \(X = 6 \)-sided dice roll.
\[E[2X - 1] = 2(3.5) - 1 = 6 \]

2. Expectation of a sum = sum of expectation:
\[E[X + Y] = E[X] + E[Y] \]

What is the expectation of the sum of two dice rolls?

Let \(X = \) roll of die 1, \(Y = \) roll of die 2.
\[E[X + Y] = 3.5 + 3.5 = 7 \]

3. Unconscious statistician:
\[E[g(X)] = \sum_x g(x)p(x) \]

(next up)
Think, then Breakout Rooms

Then check out the question on the next slide (Slide 58). Post any clarifications here!

https://us.edstem.org/courses/109/discussion/27280

Think by yourself: 1 min

Breakout rooms: 5 min. Introduce yourself!
Being a statistician unconsciously

Let X be a discrete random variable.
- $P(X = x) = \frac{1}{3}$ for $x \in \{-1, 0, 1\}$

Let $Y = |X|$. What is $E[Y]$?

A. $\frac{1}{3} \cdot 1 + \frac{1}{3} \cdot 0 + \frac{1}{3} \cdot -1 = 0$

B. $E[Y] = E[0] = 0$

C. $\frac{1}{3} \cdot 0 + \frac{2}{3} \cdot 1 = \frac{2}{3}$

D. $\frac{1}{3} \cdot |-1| + \frac{1}{3} \cdot |0| + \frac{1}{3} \cdot |1| = \frac{2}{3}$

E. C and D
Being a statistician unconsciously

Let X be a discrete random variable.

- $P(X = x) = \frac{1}{3}$ for $x \in \{-1, 0, 1\}$

Let $Y = |X|$. What is $E[Y]$?

A. $\frac{1}{3} \cdot 1 + \frac{1}{3} \cdot 0 + \frac{1}{3} \cdot -1 = 0$ \(\times \) $E[X]$

B. $E[Y] = E[0] = 0$ $E[E[X]]$

C. $\frac{1}{3} \cdot 0 + \frac{2}{3} \cdot 1 = \frac{2}{3}$

D. $\frac{1}{3} \cdot |−1| + \frac{1}{3} \cdot |0| + \frac{1}{3} \cdot |1| = \frac{2}{3}$

E. C and D

1. Find PMF of Y: $p_Y(0) = \frac{1}{3}, p_Y(1) = \frac{2}{3}$
2. Compute $E[Y]$

Use LOTUS by using PMF of X:
1. $P(X = x) \cdot |x|$
2. Sum up
I want to play a game

$$E[g(x)] = \sum_x g(x)p(x)$$
Expectation of $g(X)$
Think

Then check out the question on the next slide (Slide 30). Post any clarifications here!

https://us.edstem.org/courses/109/discussion/27280

Think by yourself: 2 min
St. Petersburg Paradox

- A fair coin (comes up “heads” with $p = 0.5$)
- Define $Y =$ number of coin flips (“heads”) before first “tails”
- You win 2^Y

How much would you pay to play? (How much you expect to win?)

A. 10000
B. ∞
C. 1
D. 0.50
E. 0 but let me play
F. I will not play

(by yourself)
St. Petersburg Paradox

- A fair coin (comes up “heads” with $p = 0.5$)
- Define Y = number of coin flips (“heads”) before first “tails”
- You win 2^Y

How much would you pay to play? (How much you expect to win?)

1. Define random variables

 For $i \geq 0$: $P(Y = i) = \left(\frac{1}{2}\right)^{i+1}$

 Let W = your winnings, 2^Y.

2. Solve

 $$E[W] = E[2^Y] = \left(\frac{1}{2}\right)^1 2^0 + \left(\frac{1}{2}\right)^2 2^1 + \left(\frac{1}{2}\right)^3 2^2 + \cdots$$

 $$= \sum_{i=0}^{\infty} \left(\frac{1}{2}\right)^{i+1} 2^i = \sum_{i=0}^{\infty} \left(\frac{1}{2}\right) = \infty$$
St. Petersburg + Reality

What if Lisa has only $65,536?

- Same game
- Define $Y = \# \text{ heads before first tails}$
- You win $W = 2^Y$

- If you win over $65,536$, I leave the country

1. Define random variables

 For $i \geq 0$: $P(Y = i) = \left(\frac{1}{2}\right)^{i+1}$

 Let $W = \text{your winnings, } 2^Y$.

2. Solve

 $E[W] = \left(\frac{1}{2}\right)^1 2^0 + \left(\frac{1}{2}\right)^2 2^1 + \left(\frac{1}{2}\right)^3 2^2 + \cdots$

 $k = \log_2(65,536) = 16$

 $= \sum_{i=0}^{k} \left(\frac{1}{2}\right)^{i+1} 2^i = \sum_{i=0}^{16} \left(\frac{1}{2}\right) = 8.5$