
CS109: Probability for Computer Scientists

Lecture 10 — Probabilistic Models

January 28

Relative Probability of Continuous Variables

X is the time it takes for a student to complete a problem set. X ∼ N(µ = 10, σ2 = 2). How much
more likely is the student to complete the problem set in 10 hours than 5 hours?

We compare the relative likelihoods using the probability density function multiplied by
epsilon:

P (X = 10)

P (X = 5)
=

ϵX · fX(10)

ϵX · fX(5)

Then we can cancel the ϵX , leaving us with just the ratio of probability densities.

P (X = 10)

P (X = 5)
=

fX(10)

fX(5)

For a normal distribution,

fX(x) =
1√
2σ2π

e−
(x−µ)2

2σ2

Thus,

fX(10)

fX(5)
=

1√
4π
e−

(10−10)2

4

1√
4π
e−

(5−10)2

4

=
e0

e−25/4
= 518

So completing the problem set in 10 hours is 518 times more likely than completing it in 5
hours.

Dating Status

Problem 2: Dating Status

Let X be a student’s dating status and Y be their year in school. The joint distribution is given
below.

Year Single Relationship Complicated

Frosh 0.13 0.08 0.02
Soph 0.17 0.11 0.02
Junior 0.09 0.10 0.02
Senior 0.02 0.07 0.01
5+ 0.06 0.09 0.04

(a) What is the probability that a randomly selected student is in a relationship?

1



(b) What is the probability that a randomly selected student is a Frosh?

(a) We use the law of total probability:

P (X = Relationship) =
∑
y

P (X = Relationship, Y = y)

Summing the Relationship column:

P (X = Relationship) = 0.08 + 0.11 + 0.10 + 0.07 + 0.09 = 0.45

(b) We again use the law of total probability:

P (Y = Frosh) =
∑
x

P (X = x, Y = Frosh)

Summing the Frosh row:

P (Y = Frosh) = 0.13 + 0.08 + 0.02 = 0.23

I Heard That — Discrete

Let X be the change in gaze (measured in degrees) over 3 seconds after a sound is played. Let Y
be whether the baby can hear the sound:

Y =

{
1 baby can hear the sound

0 baby cannot hear the sound

Suppose P (Y = 1) = 3
4 You also have the following information:

Value of X P (X | Y = 1) P (X | Y = 0)

0 to 5 0.08 0.40
5 to 10 0.15 0.30
10 to 15 0.35 0.12
15 to 20 0.20 0.08
20 to 25 0.12 0.05
Above 25 0.10 0.05

You observe X = 0 (i.e., the gaze change falls in the 0 to 5 bin). What is the probability that
the baby can hear the sound?
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We apply Bayes’ rule:

P (Y = 1 | X = 0) =
P (X = 0 | Y = 1)P (Y = 1)

P (X = 0 | Y = 1)P (Y = 1) + P (X = 0 | Y = 0)P (Y = 0)

Plug in values from the table and priors:

P (Y = 1 | X = 0) =
0.08 · 0.75

0.08 · 0.75 + 0.40 · 0.25
=

0.06

0.06 + 0.10
=

3

8

I Heard That — Continuous

Normal Assumption: Let X be the change in gaze (in degrees) after a sound is played. Let Y = 1
indicate the baby can hear the sound and Y = 0 otherwise. Assume the same prior P (Y = 1) = 3

4 .

X | Y = 1 ∼ N (µ = 15, σ2 = 25)

X | Y = 0 ∼ N (µ = 8, σ2 = 25)

You observe a new baby with X = 14. What is your belief that the baby can hear the sound?
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We apply Bayes’ rule using probability densities:

P (Y = 1 | X = 14) =
f(X = 14|Y = 1)P (Y = 1)

f(X = 14|Y = 1)P (Y = 1) + f(X = 14|Y = 0)P (Y = 0)

The normal pdf is:

f(x) =
1√
2πσ2

exp

(
−(x− µ)2

2σ2

)
Here σ2 = 25, so σ = 5.

f(X = 14|Y = 1) =
1√

2π · 25
exp

(
−(14− 15)2

2 · 25

)

f(X = 14|Y = 0) =
1√

2π · 25
exp

(
−(14− 8)2

2 · 25

)
Plugging into Bayes’ rule (with P (Y = 1) = 0.75, P (Y = 0) = 0.25):

P (Y = 1 | X = 14) =

(
1√

2π·25 exp
(
− (14−15)2

50

))
· 0.75(

1√
2π·25 exp

(
− (14−15)2

50

))
· 0.75 +

(
1√

2π·25 exp
(
− (14−8)2

50

))
· 0.25

The 1√
2π·25 term appears in both numerator and denominator, so it cancels:

P (Y = 1 | X = 14) =
0.75 exp

(
− (14−15)2

50

)
0.75 exp

(
− (14−15)2

50

)
+ 0.25 exp

(
− (14−8)2

50

)
P (Y = 1 | X = 14) =

0.75 e−1/50

0.75 e−1/50 + 0.25 e−36/50
≈ 0.86

So under the normal assumption, we believe there is about an 86% chance the baby can hear
the sound.

Bayesian Carbon Dating

Let A be the age of a sample in years (e.g., A = 100 means 100 years old). Let M be the number
of C14 molecules remaining in the sample.

Assume there were originally 1000 C14 molecules, and you observe M = 900.
Assume a uniform prior on age over integers i ∈ {100, 101, . . . , 10000}:

P (A = i) =
1

9901
.

Each molecule decays independently. If the sample is age i, then each molecule remains with
probability

pi = P (T > i), where T ∼ Exp(λ = 1/8267).

(a) Write an expression for your updated belief in age taking on any value in range 100 to 1000
after observing 900 molecules of C14.
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(b) Now write an expression for the likelihood of observing exactly 900 molecules given you know
the age of the object.

(a) By Bayes’ rule, for any i ∈ {100, . . . , 10000},

P (A = i | M = 900) =
P (M = 900 | A = i)P (A = i)

P (M = 900)
.

P (M = 900) =
10000∑
j=100

P (M = 900 | A = j)P (A = j).

(b) Given age A = i, each of the 1000 molecules remains independently with probability pi,
so

M | A = i ∼ Bin(n = 1000, p = pi),

and

P (M = 900 | A = i) =

(
1000

900

)
(pi)

900(1− pi)
100.

Each molecule’s time to decay is exponential:

T ∼ Exp(λ = 1/8267),

so the probability a molecule survives past time i is

pi = P (T > i) = e−i/8267.

Substituting into the binomial likelihood:

P (M = 900 | A = i) =

(
1000

900

)(
e−i/8267

)900 (
1− e−i/8267

)100
.
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