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Multiple Random Variables. Start of Digital Revolution
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Multiple Random Variables. Start of Digital Revolution

Conditions that match your symptoms
UNDERSTANDING YOUR RESULTS €D

Migraine Headache (Adult)

— S Gender Female Age 26 Edit
STRONG match

My Symptoms Edit
Tension Headache > dizziness , one sided headache

Moderate match

Benign Paroxysmal Positional Vertigo (BPPV)
— > C Start Over

Fair match




Bayesian Carbon Dating

Remaining C14: 900
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First, some review



Normal Distribution

CDF of a Normal
F(x)

PDF of a Normal

f(x) = derivative of probability F(x) = P(X < X)
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Cumulative Distribution Function (CDF)

N ) CDF of Standard Normal: A function that has
(/,L, O ) been solved for numerically
The cumulative density
function (CDF) of any normal

Table of ®(z) values are precomputed
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Probability Density Function (PDF)

2
N(,LL, o) ) the distance to the mean

“exponential”

\ /
1 —(z—p)?

T) = € 202
N

probability density
at x a constant
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How does python sample from a
Gaussian?



from random import *

foriinrange(10):

mean = 5 How does
- ?

std = 1 this work?

sample = gauss([nean, std) ]

print sample &

3.79317794179
5.19104589315
4.209360629

5.39633891584
7.10044176511
6.72655475942
5.51485158841
4.94570606131
6.14724644482



How Does a Computer Sample a Normal?

1
s
— — — = PDF of a Normal / CDF of the Standard
fx) \ Normal
\
\
\
\ ()




How Does a Computer Sample a Normal?

Inverse Transform Sampling

qi; | Sample 1:

e y= 0.855... 1.201234

% g CDF of the Standard Sample 2:
f-lé § Normal '0.45123
< 2 ‘

§%y=03259.. O (z)

= |

5

n -

Step 2: Find the x such that

O(x) =y
x =3 (y)

Further reading: Box—Muller transform




End of review



A New Perspective



Epsilon: Useful perspective

0
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* In the limit as €, goes to zero




Relative Probability of Continuous Variables

X = time to finish pset 3
X ~N@u=10,0°=2)

/\ Time to finish pset 3

J(x)

X 7

How much more likely
are you to complete pset 3
in 10 hours than in 5?

P(X =10) ef(X =10)

P(X=5) ef(X =5)

f(X =10)
f(X =5)
) ao—w?
20
_ \/2027r6
1 _(5_“2‘)2
20
\/202776
1 _ (10—10)2
— 1
L \/47‘(‘6
o 1 _ (5—10)2
— 1
\/471'6
0
(&
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Where are we in CS109?

N X R-= 7 o
T 2 = Q
Core Random Probabilistic Uncertainty Machine
Probability Variables Models Theory Learning
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[suspense]



11b_discrete_joint

Discrete
Probabilistic
Models




The world is full of interesting probability problems

Have multiple random variables interacting with one another
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Joint probability mass functions

Roll two 6-sided dice, yielding values X and Y.

X

random variable

P(X =1)

probability of
an event

Piech + Woodrow, CS109

P(X = k)

probability mass function

Stanford University 23



Joint probability mass functions

Roll two 6-sided dice, yielding values X and Y. .
X PLX=1) P(X = k)
random variable probability of probability mass function
an event
X, Y P(X=1andY = 6)

P(X =a,Y =b)

random variables PX=1Y =6)
recall: the comma

probability of the intersection  joint probability mass function
of two events

Piech + Woodrow, CS109 Stanford University 24




Two dice

Roll two 6-sided dice, yielding values X and Y.
1. What is the joint PMF of X and Y?

P(X=a,Y =b)=1/36 (a,b) € {(1,1), ...,(6,6)}
b'¢
1 2 3 4 5 6
1|1/36 .. | 1/36
i pAPE=SY =3 b obability table
y 3 L/ * All possible outcomes
4 . for several discrete RVs
5 * Not parametric (e.g.,
6|1/36 .. .. | 1/36 parameter p in Ber(p))

Piech + Woodrow, CS109 Stanford University 25




Dating at Stanford. Data from a few years ago

Freshman
Sophomore
Junior
Senior

5+

Single

0.13

0.17

0.09

0.02

0.06

In a relationship

0.08

0.11

0.10

0.07

0.09

Piech + Woodrow, CS109

It's complicated

0.02

0.02

0.02

0.01

0.04

Stanford University 26



Joint is Complete Information!

Single Relationship Complicated

Frosh 0.13 0.08 0.02
Soph 0.17 0.11 0.02
Junior 0.09 0.10 0.02
Senior 0.02 0.07 0.01

A joint distribution is complete
5t 0.06 0.09 0.04 information. It can be used to answer
any probability question.

Piech + Woodrow, CS109 Stanford University 27




Joint table: mutually exclusive and covers sample space.

Each combination is mutually

Single Relationship Complicated _
exclusive, and they span the sample

Frosh 0.13 0.08 0.02 Space
Soph 0.17 0.11 0.02
> Y P(z,y) =1
Junior 0.09 0.10 0.02
reX yey
Senior 0.02 0.07 0.01

X is dating status.
5+ 0.06 0.09 0.04 Y is year.

Piech + Woodrow, CS109 Stanford University 28




Joint table: mutually exclusive and covers sample space.

Each combination is mutually

Single Relationship Complicated _
exclusive, and they span the sample

Frosh 0.13 0.08 0.02 space
Soph 0.17 0.11 0.02
> Y P(z,y) =1
Junior 0.09 ? 0.02
reX yey
Senior 0.02 0.07 0.01

X is dating status.
5+ 0.06 0.09 0.04 Y is year.
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Joint table: mutually exclusive and covers sample space.

Each combination is mutually

Single Relationship Complicated _
exclusive, and they span the sample

Frosh 0.13 0.08 0.02 Space
Soph 0.17 0.11 0.02
> Y P(z,y) =1
Junior 0.09 0.10 0.02
reX yey
Senior 0.02 0.07 0.01

X is dating status.
5+ 0.06 0.09 0.04 Y is year.
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Joint table: mutually exclusive and covers sample space.

Each combination is mutually

Single Relationship Complicated _
exclusive, and they span the sample

Frosh 0.07 - k 0.04 - k 0.01-k space
Soph 0.09 - k 0.05 - k 0.01 -k Y Y
Plz,y) =1
Junior  0.05 -k 0.05 - k 0.01-k -~ ( ’ )
reX yey
Senior  0.01-k 0.03 - k 0.01 -k
X is dating status.
5+ 0.03 - k 0.03 - k 0.02 - k Y is year.
1
xEtable xEtable xctable
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Joint table: mutually exclusive and covers sample space.

Each combination is mutually

Single Relationship Complicated _
exclusive, and they span the sample

Frosh 0.13 0.08 0.02 Space
Soph 0.17 0.11 0.02
> Y P(z,y) =1
Junior 0.09 0.10 0.02
reX yey
Senior 0.02 0.07 0.01

X is dating status.
5+ 0.06 0.09 0.04 Y is year.
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What is the probability someone is in a relationship?

We can use the law of total probability!
X is dating status. Y is year.

Single Relationship Complicated

Frosh 0.13 0.08 0.02
P(X = relation) =
Soph 0.17 0.11 0.02
Z P(X = relation, Y = y)

Junior 0.09 0.10 0.02 yey
Senior 0.02 0.07 0.01

5+ 0.06 0.09 0.04

(
elatlonshlp/ -

Soph /Jumor /Semor Grad

Piech + Woodrow, CS109 Stanford University 33
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What is the probability someone is in a relationship?

We can use the law of total probability!
X is dating status. Y is year.

Single Relationship Complicated

Srach @3 008 002

P(X = relation) =

Soph 0.17 0.11 0.02 .
Z P(X = relation, Y = y)
Junior 0.09 0.10 0.02 yey
Senior 0.02 0.07 0.01 )
P(X = single) =
5+ 0.06 0.09 0.04
Z P(X = single,Y = y)

yey

P(Y = frosh) Z P(X =z,Y =frosh) P(Y =soph) = Z P(X = x,Y = soph)
reX reX

Piech + Woodrow, CS109 Stanford University 34




Welcome the marginal



Marginal Distribution

For two discrete joint random variables X and Y,
the joint probability mass function is defined as:

P(X =a,Y = b)

The marginal distributions of the joint PMF are defined as:

P(X=a)=)» P(X=aY =y)

Y
P(Y — b) — E P(X =x,Y = b) Use marginal distributions to
T geta 1-D RV from a joint PMF.

Piech + Woodrow, CS109 Stanford University 36




Why is that called the marginal?



Quick note on independence

-
20N

T‘"\na



If 4 and B are independent:

Joint 4
P(A=a,B=b)=P(A=a)-P(B=b)

P(A<a,B<b)=P(A<a) P(B<b)

Foralla, b

Piech + Woodrow, CS109 Stanford University 39



Get Pumped...



Biggest Game Changer this half of
C3109



Belief in Vision Given User Responses

P(Ability to See | Observed Responses)

0.013 -
F P-2
0.012 A
‘T O Z-3
:LPED= 4 0.011 -
:PECFD= 5
: EDFCZP= B
il e 0.010 A
: FELOPZD # /
= DEFPOTEC &
N 8 0.0094 e e
LEProODODPC b 9 .......
=~ FDPLTCEDO 7;%10 ..........
rrrrrrrrr e 11 0.008 - *%eenseses®’

0.0 0.2 0.4 0.6 0.8 1.0
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Belief in Age Given Observed Ci4

P(Age| Observed C14)

Bl P(Age=x)

0.0025

0.0020

0.0015

0.0010

0.0005

Piech + Woodrow, CS109 Stanford UIliVEI'Sity 43




Belief in Course Grade Given Assignment Scores So Far

Assns Scores So Far P(Final Grade| Assns Scores So Far)

ts

+

e

Score on Pset 1

Probability

Score on Pset 2

/ éo 55 60 65 70 75 80 85 90 95

Predicted Grade

Piech + Woodrow, CS109 Stanford University 44




Belief in Age Given Name

P(Age| Name)

Query Name: | Juliette v

0.07

0.06

0.05

0.04

0.03

Probability

0.02

0.01

Piech + Woodrow, CS109 Stanford University 45



Belief in Author Given Text

Piech + Woodrow, CS109

0.8

0.7

0.6

0.5

0.4

Probability

0.3

0.2

0.1

P(Author| Text)

Author A

Author B

Stanford University 46



Today: Inference

Inference noun

Updating one’s belief about a random variable (or
multiple) based on conditional knowledge regarding
another random variable (or multiple) 1n a probabilistic

model.

TLDR: conditional probability with random variables.

Piech + Woodrow, CS109 Stanford University




Bayes Theorem

Likelihood of
evidence Prior belief

v/

P(E[B)  P(B)

P(E)

|

Normalization constant

Piech + Woodrow, CS109
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Bayes with Discrete Random Variables

Let M be a discrete random variable

Let N be a discrete random variable

P(N = 3|M = 2)P(M = 2)

P(N =3) More
generally

P(M =2|N =3) =

P(N =n|M =m)P(M = m)
P(N =n)

P(M =m|N =n) =

Shorthand
notation

P(n|m)P(m)

P(m|n) = P(n)

Piech + Woodrow, CS109 Stanford University







I Heard That

Let X be the change in gaze (measured in degrees) over 3 seconds after a sound 1s played

Value of PMF of X given PMF of X given
X Baby can hear the sound Baby can not hear the sound

0toS 0.08 0.40
S5to 10 0.15 0.30
10to 15 0.35 0.12
15to0 20 0.20 0.08
20 to 25 0.12 0.05
Above 25 0.10 0.05

You observe X = 0. What 1s the probability the
baby can hear the sound?

Piech + Woodrow, CS109 Stanford University 51

3
P(can hear the sound) = Z




Question: Have I Been Given the Joint?

Let X be the change in gaze (measured in degrees) over 3 seconds after a sound 1s played

Value of PMF of X given PMF of X given
X Baby can hear the sound Baby can not hear the sound

0toS 0.08 0.40
S5to 10 0.15 0.30
10to 15 0.35 0.12
15to0 20 0.20 0.08
20 to 25 0.12 0.05
Above 25 0.10 0.05

You observe X = 0. What is the probability the
baby can hear the sound?

Piech + Woodrow, CS109 Stanford University 52

3
P(can hear the sound) = Z




I Heard That

Value of PMF of X given PMF of X given
X Baby can hear the sound Baby can not hear the sound

0to 5 0.08 0.40 P(can hear the sound) = 1

5to 10 0.15 0.30

10to 15 0.35 0.12 .

15 to 20 020 0.08 You observe X = 0. What 1s the

20to 25 0.12 0.05 14

robability the baby can hear the sound?

Above 25 0.10 0.05 P obab y the b by ¢

P(Y =1|X =0) =

PY =1|X =0) =

Y = 1 means the child can hear the sound

0.08 % 0.75 3

0.08%0.75 + 0.40 « 0.25 8

Piech + Woodrow, CS109 Stanford University 53



I Heard That with Continuous

Normal Assumption:

For babies who can hear sounds, we approximate their gaze
movement after the sound is played as: N(u = 15, 6> = 25).

For babies who can not hear sounds, we approximate gaze
movement as N(u = 8, o = 25).

For a new baby we observe a 14 degree movement after the sound 1s

played. What is your belief that a baby can hear, under The Normal
Assumption?

Piech + Woodrow, CS109 Stanford University 54




How do you handle observing a
continuous value?



Aside



All the Bayes Belong to Us

M,N are discrete. X, Y are continuous

> TLDR:
6%’6\\6 Plmln) = P(n|m)P(m)
’ o P(n) If random variable is
discrete: use PMF
\\eS“N’ f(zn) = P(@x)f(ﬁ)
N\‘\*%a (n) If random variable is
f(x|n)P(n) continuous: use PDF
i _ rn n
N\_\*%a\\ec’“ P(n|x) f(fl?)
~ Slylz) f (=)
f(zly) = )

Piech + Woodrow, CS109 Stanford University



Mixing Discrete and Continuous

Let X be a continuous random variable

Let N be a discrete random variable

P(X = z|N = n)P(N = n)

P(N=n|lX=xzx) = PX = 1)

P(N:n\X:x):f(X:x‘N:’n)-e-P(N:n)

FX=1)
P(N =n|X = z) = f(Xx”}[(Xn);E)P(Nn)

Piech + Woodrow, CS109 Stanford University




Mixing Discrete and Continuous

Let X be a continuous random variable

Let N be a discrete random variable

P(X = 2|N = n) = LWV =nlX =)P(X =2)

- P(N =n) Change
P(n\x)P(x) notation
P(z|n) =

P(n)
f(z|n) - € (n|37)(n(;7) .
, _ Pl)f(@)
f (Qj’ﬂ) :h+w rfw)(?ll) Stanford University




All the Bayes Belong to Us

M,N are discrete. X, Y are continuous

> TLDR:
6%’6\\6 Plmln) = P(n|m)P(m)
’ o P(n) If random variable is
discrete: use PMF
\\eS“N’ f(zn) = P(@x)f(ﬁ)
N\‘\*%a (n) If random variable is
f(x|n)P(n) continuous: use PDF
i _ rn n
N\_\*%a\\ec’“ P(n|x) f(fl?)
~ Slylz) f (=)
f(zly) = )

Piech + Woodrow, CS109 Stanford University



LOTP? Chain Rule? You can play too!

N is discrete. X is continuous

Chain Rule
f(IN=n,X=2)=f(X =2|N =n)P(N =n)

Law of total probability

f( X =2)= Zf(X = x|N =n)P(N =n)

Piech + Woodrow, CS109 Stanford University




End Aside




I Heard That with Continuous

Normal Assumption:

For babies who can hear sounds, we approximate their gaze
movement after the sound is played as: N(u = 15, 62 = 25).

For babies who can not hear sounds, we approximate gaze
movement as N(u = 8, 6% =25).

For a new baby we observe a 14 degree movement after the sound 1s

played. What is your belief that a baby can hear, under The Normal
Assumption?

Piech + Woodrow, CS109 Stanford University &3




Equivalently

Normal Assumption: For babies who
can hear sounds, we approximate their
gaze movement after the sound 1s

played as: N(u = 15, o2 = 25).

For babies who can not hear sounds,

we approximate gaze movement as
N(u =8, o2 =25).

For a new baby we observe a 14
degree movement after the sound is
played. What is your belief that a baby
can hear, under The Normal
Assumption?

[

def sample ():
# bernoulli sample
can_hear =rand _bern(0.75)
if can_hear == 1:
# gaussian sample
return rand _gauss (mu =15, std = 5)
else:
# gaussian sample
return rand_gauss (mu = 8, std = 5)

Piech + Woodrow, CS109

The function sample returned the value 14.
What is the probability that can_hear was 17?

Stanford University 64




All the Bayes Belong to Us

M,N are discrete. X, Y are continuous

> TLDR:
6%’6\\6 Plmln) = P(n|m)P(m)
’ o P(n) If random variable is
discrete: use PMF
\\eS“N’ f(zn) = P(@x)f(ﬁ)
N\‘\*%a (n) If random variable is
f(x|n)P(n) continuous: use PDF
i _ rn n
N\_\*%a\\ec’“ P(n|x) f(fl?)
~ Slylz) f (=)
f(zly) = )

Piech + Woodrow, CS109 Stanford University



Pedagogical Pause



Goal: Inference

Change your belief
distribution
(Joint, PMF, or PDF)
of random variables,
based on
observations

*Note in the earlier examples, we were updating Bernoulli Random Variables

Piech + Woodrow, CS109 Stanford University 67




Lets Play Number of Function!




Number or Function?

P(X =2|Y = 5)

Number

Stanford University




Number or Function?

P(X =z|Y = 2)

Function

(a probability mass function
if discrete)

Piech + Woodrow, CS109 Stanford University




Baby Delivery Timing

SETH MEYERS
LOBBY BABY

.~ ford University 71
-




Baby Delivery Its 17 days before the —— -

due date and still no Fo
baby %:
0.035
0.030 -50 A0 -0 20 10 o 0 20 0
QE; 0.025
= Probability baby is
A 0.020
S born on due date
£ o015 increases by 13%
S
o]
E 0.010
- II|||||| ||I
RE— b
250 _40 230 20 -10 0 10 20 30
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Bayesian Carbon Dating

Take a fixed size sample
from a dead thing

Count C14 in Sample

Know the probability
distribution for when it died

Profit

® 0 O

Piech + Woodrow, CS109 Stanford University 73




Bayesian Carbon Dating

Before observation g rage=x) Observation
0.00012

Remaining C14: 900

0.00010

0.00008

0.00006

0.00004

0.00002

Piech + Woodrow, CS109 Stanford UIliVEI'Sity




Warmup with Code

P(A = i|M = 900) = P(M = 900|A = i) - P(A = i) @

def update_belief(m = 900):
Returns a dictionary A, where A[i] contains the
corresponding probability, P(A=i] M =900).
m is the number of C14 molecules remaining and i
is age in years. i isin the range 100 to 10000
pr_A={}
n_years = 9901
for i in r@(loo,loooml):
prior=1/n_years # P(A =)
likelihood = calc_likelihood(m, i) # P(M=m | A=i)
pr_A[i] = prior * likelihood

# ormalization constant
rmalize(pr_A)
retarm pr——7=

Piech + Woodrow, CS109 Stanford University 75




Normalize in Python

# list normalization return
def normalize_list(data_list): [0.1 0.20.3 0.4]

total_sum = np.sum(data_list)
return np.array(data_list) / total_sum

>>> norm = normalize_list([10, 20, 30, 40])
>>> np.sum(norm) # 1.0, always (within floating point error)

# dictionary normalization
def normalize dict(data_dict): return
total_sum = sum(data_dict.values()) {|a|_ 0166.'b" 0.333 'c" 0O 5}
normalized = {} S T oo
for key, value in data_dict.items():
normalized[key] = value / total_sum
return normalized

>>> norm = normalize_dict({'a': 100, 'b": 200, 'c': 300})

>>> np.sum(norm.values()) # 1.0, always (within floating point error)
Piech + Woodrow, CS109 Stanford University 76




Bayesian Carbon Dating: Inference Overview

Let A be how many years old the sample is (A = 100 means the sample is 100 years old)
Let M be the observed amount of C14 left in the sample

P(M = 900|A = i)P(A = i)

P(A = i|M = 900) =

P(M = 900)
= P(M =900|A=14)-P(A=1i)-K
Such that
1

K =
>, P(M = 900|A = ij)P(A = j)

- J

Piech + Woodrow, CS109 Stanford University 77




: : A4 =age
Understanding why Denom. is a Constant M = measured C14

1
P(M = 900)

P(A = i|M = 900) = P(M = 900|A = i) - P(A =) -

Notice which term doesn’t change as i changes (four example calculations).

L

P(A = 100|M = 900) ={(M = 900|A = 100) - P(A = 1®' P(M =900) Doesn’tchange

1
P(A = 200|M = 900) H P(M = 900|A = 200) - P(A = 200)|- P(M = 900)
1
P(A = 300|M = 900) ={ P(M = 900|A = 300) - P(A = 300)| P(M = 900)
1
P(A = 400| M = 900) =QM = 900|A = 400) - P(A = 4@
P(M = 900)

Changes with i

Piech + Woodrow, CS109 Stanford University




Bayesian Carbon Dating: Inference Overview

Let A be how many years old the sample is (A = 100 means the sample is 100 years old)
Let M be the observed amount of C14 left in the sample

P(M = 900|A = i)P(A = i)

P(A = i|M = 900) =

P(M = 900)
= P(M =900|A=14)-P(A=1i)-K
Such that
1

K =
>, P(M = 900|A = ij)P(A = j)

- J

Piech + Woodrow, CS109 Stanford University 79




Understanding Through Code

P(A :‘ﬂw — 900) = P(M = 900|A = i) - P(A = i) @

def update_belief(m = 900):
Returns a dictionary A, where A[i] contains the
corresponding probability, P(A=i] M =900).
m is the number of C14 molecules remaining and i
is age in years. i isin the range 100 to 10000
pr_A ={}
n_years = 9901
for i in r@e(loo,loooml):
prior=1/n_years # P(A =)
likelihood = calc_likelihood(m, i) # P(M=m | A=i)
pr_A[i] = prior * likelihood

# ormalization constant
rmalize(pr_A)
retdrm pro=

Piech + Woodrow, CS109 Stanford University 8o




Carbon Dating Likelihood Math




Probability of Having goo Remain

P(M = 900|A4 = i)

There were originally 1000 C14 molecules.
Each molecule remains independently with equal probability p;
What is the probability that 900 remain?

" M ~ Bin(n = 1000, p = p;)

. 1000
P(M =900|A =1) = ( 000 ) ()29 - (1 — p;)L00

. J

é )
Each molecules’ time to live is exponential with A = 1/8267

Let T be the time to decay for any one molecule |
T ~Exp(A=1/8267) p;=P(T >i)=1—P(T <i)=e =67

\ A University




Probability of Having goo Remain

P(M = 900|A4 = i)
1000
900

(68267 )900 (1 . ( ))100

4 )
def calc_likelihood(m =900, age):

Computes P(M = m | A =age), the probability of
having m molecules left given the sample is age
years old. Uses the exponential decay of C14
n_original = 1000

p_remain = math.exp(-age/C14_MEAN_LIFE)
return stats.binom.pmf(m, n_original, p_remain)

Piech + Woodrow, CS109 Stanford University 83




Probability of Having 9goo Remain
P(M = 900|A = 1)

4 )

def calc_likelihood(m =900, age):
Computes P(M =m | A =age), the probability of
having m molecules left given the sample is age
years old. Uses the exponential decay of C14
n_original = 1000 + delta_start(age)
p_remain = math.exp(-age/C14_MEAN_LIFE)
return stats.binom.pmf(m, n_original, p_remain)

Piech + Woodrow, CS109 Stanford University 84




Posterior Belief in Age

Remaining C14: 900

B P(Age=x)
0.008
0.007
0.006
0.005
0.004
0.003
0.002
0.001
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