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First, some review
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CDF of a Normal
F(x)

PDF of a Normal
f(x)

f(x) = derivative of probability F(x) = P(X < x)

Normal Distribution 
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Table of (z) values are precomputed

CDF of Standard Normal: A function that has 
been solved for numerically

The cumulative density 
function (CDF) of any normal

Cumulative Distribution Function (CDF)
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probability density 
at x

the distance to the mean

a constant

“exponential”

sigma shows up twice

Probability Density Function (PDF)
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How does python sample from a 

Gaussian?



11

 from random import *

 for i in range(10):
mean = 5
std = 1

    sample = gauss(mean, std)
    print sample
 

3.79317794179
5.19104589315
4.209360629
5.39633891584
7.10044176511
6.72655475942
5.51485158841
4.94570606131
6.14724644482
4.73774184354

How does 
this work?
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CDF of the Standard 
Normal

How Does a Computer Sample a Normal?

PDF of a Normal
f(x)



Further reading: Box–Muller transform

Inverse Transform Sampling

5
0

-5

1

CDF of the Standard 
Normal

S
te

p
 1

: 
p

ic
k
 a

 u
n

if
o

rm
 n

u
m

b
e

r 
y 

b
e

tw
e

e
n

 0
,1

Step 2: Find the x such that 

How Does a Computer Sample a Normal?

Sample 1:

1.201234

Sample 2:

-0.45123

y = 0.855…

y = 0.3259…
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End of review
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A New Perspective



Epsilon: Useful perspective

* In the limit as ϵx goes to zero



x 

f(x)

Time to finish pset 3

How much more likely 

are you to complete pset 3 

in 10 hours than in 5?

X = time to finish pset 3

X ~ N(μ = 10, σ2 = 2)

Relative Probability of Continuous Variables
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Where are we in CS109?
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CS109

Probability Fundamentals

Single Random 
Variables

Probabilistic Models

Uncertainty Theory

Machine Learning
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Four Prototypical Trajectories

[suspense]



Discrete 
Probabilistic 
Models

21

11b_discrete_joint
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Have multiple random variables interacting with one another

The world is full of interesting probability problems
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Joint probability mass functions

23

Roll two 6-sided dice, yielding values 𝑋 and 𝑌.

𝑃 𝑋 = 1
probability of

an event

𝑃 𝑋 = 𝑘
probability mass function

𝑋 
random variable
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Joint probability mass functions

24

Roll two 6-sided dice, yielding values 𝑋 and 𝑌.

𝑋 
random variable

𝑃 𝑋 = 1
probability of

an event

𝑃 𝑋 = 𝑘
probability mass function

𝑃 𝑋 = 1 and 𝑌 = 6

probability of the intersection

of two events

𝑃 𝑋 = 1, 𝑌 = 6
recall: the comma

𝑋, 𝑌
random variables

𝑃 𝑋 = 𝑎, 𝑌 = 𝑏

joint probability mass function
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Two dice

Roll two 6-sided dice, yielding values 𝑋 and 𝑌.

1. What is the joint PMF of 𝑋 and 𝑌?

25

𝑎, 𝑏 ∈ 1,1 , … , 6,6

𝑋 

1 2 3 4 5 6

𝑌

1 1/36 ... ... ... ... 1/36 

2 ... ... ... ... ... ...

3 ... ... ... ... ... ...

4 ... ... ... ... ... ...

5 ... ... ... ... ... ...

6 1/36 ... ... ... ... 1/36 

Probability table
• All possible outcomes

for several discrete RVs

• Not parametric (e.g., 

parameter 𝑝 in Ber(𝑝))

𝑃 𝑋 = 4, 𝑌 = 3
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Dating at Stanford. Data from a few years ago

26

Single In a relationship It's complicated

Freshman 0.13 0.08 0.02

Sophomore 0.17 0.11 0.02

Junior 0.09 0.10 0.02

Senior 0.02 0.07 0.01

5+ 0.06 0.09 0.04
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Joint is Complete Information!

27

A joint distribution is complete 

information. It can be used to answer 

any probability question.

Single Relationship Complicated

Frosh 0.13 0.08 0.02

Soph 0.17 0.11 0.02

Junior 0.09 0.10 0.02

Senior 0.02 0.07 0.01

5+ 0.06 0.09 0.04
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Joint table: mutually exclusive and covers sample space.

28

Single Relationship Complicated

Frosh 0.13 0.08 0.02

Soph 0.17 0.11 0.02

Junior 0.09 0.10 0.02

Senior 0.02 0.07 0.01

5+ 0.06 0.09 0.04

X is dating status. 

Y is year. 

Each combination is mutually 

exclusive, and they span the sample 

space
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Joint table: mutually exclusive and covers sample space.

Single Relationship Complicated

Frosh 0.13 0.08 0.02

Soph 0.17 0.11 0.02

Junior 0.09 ? 0.02

Senior 0.02 0.07 0.01

5+ 0.06 0.09 0.04

X is dating status. 

Y is year. 

Each combination is mutually 

exclusive, and they span the sample 

space



Piech + Woodrow, CS109 30

Joint table: mutually exclusive and covers sample space.

Single Relationship Complicated

Frosh 0.13 0.08 0.02

Soph 0.17 0.11 0.02

Junior 0.09 0.10 0.02

Senior 0.02 0.07 0.01

5+ 0.06 0.09 0.04

X is dating status. 

Y is year. 

Each combination is mutually 

exclusive, and they span the sample 

space
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Joint table: mutually exclusive and covers sample space.

Single Relationship Complicated

Frosh 0.07 ⋅ k 0.04 ⋅ k 0.01 ⋅ k

Soph 0.09 ⋅ k 0.05 ⋅ k 0.01 ⋅ k

Junior 0.05 ⋅ k 0.05 ⋅ k 0.01 ⋅ k

Senior 0.01 ⋅ k 0.03 ⋅ k 0.01 ⋅ k

5+ 0.03 ⋅ k 0.03 ⋅ k 0.02 ⋅ k
X is dating status. 

Y is year. 

Each combination is mutually 

exclusive, and they span the sample 

space
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Joint table: mutually exclusive and covers sample space.

Single Relationship Complicated

Frosh 0.13 0.08 0.02

Soph 0.17 0.11 0.02

Junior 0.09 0.10 0.02

Senior 0.02 0.07 0.01

5+ 0.06 0.09 0.04

X is dating status. 

Y is year. 

Each combination is mutually 

exclusive, and they span the sample 

space
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Single Relationship Complicated

Frosh 0.13 0.08 0.02

Soph 0.17 0.11 0.02

Junior 0.09 0.10 0.02

Senior 0.02 0.07 0.01

5+ 0.06 0.09 0.04

We can use the law of total probability! 

What is the probability someone is in a relationship?

X is dating status. Y is year. 

Fresh Soph Junior Senior Grad

Relationship

Frosh
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Single Relationship Complicated

Frosh 0.13 0.08 0.02

Soph 0.17 0.11 0.02

Junior 0.09 0.10 0.02

Senior 0.02 0.07 0.01

5+ 0.06 0.09 0.04

We can use the law of total probability! 

What is the probability someone is in a relationship?

X is dating status. Y is year. 
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Four Prototypical Trajectories

Welcome the marginal
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Marginal Distribution

For two discrete joint random variables 𝑋 and 𝑌,
the joint probability mass function is defined as:

𝑃 𝑋 = 𝑎, 𝑌 = 𝑏

The marginal distributions of the joint PMF are defined as:

36

Use marginal distributions to 

get a 1-D RV from a joint PMF.
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Four Prototypical Trajectories

Why is that called the marginal?
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Quick note on independence
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If A and B are independent:

39

Joint

For all a, b



Piech + Woodrow, CS109

Four Prototypical Trajectories

Get Pumped…
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Four Prototypical Trajectories

Biggest Game Changer this half of 

CS109
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Belief in Vision Given User Responses

42

P(Ability to See | Observed Responses)
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Belief in Age Given Observed C14

43

P(Age| Observed C14)
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Belief in Course Grade Given Assignment Scores So Far

44

P(Final Grade| Assns Scores So Far)

Score on Pset 1

Score on Pset 2

Assns Scores So Far
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Belief in Age Given Name

45

P(Age| Name)
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Belief in Author Given Text

46

P(Author| Text)

Author A Author B
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Today: Inference

Inference noun

Updating one’s belief about a random variable (or 

multiple) based on conditional knowledge regarding 

another random variable (or multiple) in a probabilistic 

model. 

TLDR: conditional probability with random variables.
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P(B|E)   = 
P(E|B) P(B)

P(E)

Normalization constant

Bayes Theorem
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Let M be a discrete random variable

Let N be a discrete random variable

More 
generally

Shorthand
notation

Bayes with Discrete Random Variables
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I Heard That

51

Let X be the change in gaze (measured in degrees) over 3 seconds after a sound is played

You observe X = 0. What is the probability the 

baby can hear the sound?
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Question: Have I Been Given the Joint?

52

Let X be the change in gaze (measured in degrees) over 3 seconds after a sound is played

You observe X = 0. What is the probability the 

baby can hear the sound?
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You observe X = 0. What is the 

probability the baby can hear the sound?

I Heard That

Y = 1 means the child can hear the sound
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I Heard That with Continuous

54

Normal Assumption: 

For babies who can hear sounds, we approximate their gaze 

movement after the sound is played as: N(µ = 15, σ2 = 25). 

For babies who can not hear sounds, we approximate gaze 

movement as N(µ = 8, σ2 = 25). 

For a new baby we observe a 14 degree movement after the sound is 

played. What is your belief that a baby can hear, under The Normal 

Assumption? 
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Four Prototypical Trajectories

How do you handle observing a 

continuous value?
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Four Prototypical Trajectories

Aside
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All the Bayes Belong to Us
M,N are discrete. X, Y are continuous

TLDR:

If random variable is 
discrete: use PMF

If random variable is 
continuous: use PDF
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Mixing Discrete and Continuous

Let X be a continuous random variable

Let N be a discrete random variable



Piech + Woodrow, CS109

Mixing Discrete and Continuous

Change 
notation

Let X be a continuous random variable

Let N be a discrete random variable
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All the Bayes Belong to Us
M,N are discrete. X, Y are continuous

TLDR:

If random variable is 
discrete: use PMF

If random variable is 
continuous: use PDF
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N is discrete. X is continuous

LOTP? Chain Rule? You can play too!

Law of total probability

Chain Rule
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Four Prototypical Trajectories

End Aside
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I Heard That with Continuous

63

Normal Assumption: 

For babies who can hear sounds, we approximate their gaze 

movement after the sound is played as: N(µ = 15, σ2 = 25). 

For babies who can not hear sounds, we approximate gaze 

movement as N(µ = 8, σ2 = 25). 

For a new baby we observe a 14 degree movement after the sound is 

played. What is your belief that a baby can hear, under The Normal 

Assumption? 
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Equivalently

64

def sample (): 
   # bernoulli sample   
   can_hear = rand_bern(0.75)
   if can_hear == 1: 
       # gaussian sample 
       return rand_gauss (mu = 15 , std = 5) 
   else:
       # gaussian sample
       return rand_gauss (mu = 8, std = 5)

The function sample returned the value 14. 

What is the probability that can_hear was 1? 

Normal Assumption: For babies who 

can hear sounds, we approximate their 

gaze movement after the sound is 

played as: N(µ = 15, σ2 = 25). 

For babies who can not hear sounds, 

we approximate gaze movement as 

N(µ = 8, σ2 = 25). 

For a new baby we observe a 14 

degree movement after the sound is 

played. What is your belief that a baby 

can hear, under The Normal 

Assumption? 
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All the Bayes Belong to Us
M,N are discrete. X, Y are continuous

TLDR:

If random variable is 
discrete: use PMF

If random variable is 
continuous: use PDF
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Four Prototypical Trajectories

Pedagogical Pause
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Goal: Inference

67

Change your belief 

distribution 

(Joint, PMF, or PDF) 

of random variables, 

based on 

observations

*Note in the earlier examples, we were updating Bernoulli Random Variables
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Four Prototypical Trajectories

Lets Play Number of Function!
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Number

Number or Function?
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Function
(a probability mass function

if discrete)

Number or Function?
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Baby Delivery Timing
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Baby Delivery Its 17 days before the 
due date and still no 

baby

Probability baby is 
born on due date 
increases by 13%
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Bayesian Carbon Dating

73

Take a fixed size sample 
from a dead thing

Count C14 in Sample 

Know the probability 
distribution for when it died

1

2

3

4 Profit
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Bayesian Carbon Dating
Before observation

After

Observation
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Warmup with Code

75

def update_belief(m = 900):
   """
   Returns a dictionary A, where A[i] contains the 
   corresponding probability, P(A = i| M = 900).
   m is the number of C14 molecules remaining and i 
   is age in years. i is in the range 100 to 10000
   """
   pr_A = {}
   n_years = 9901
   for i in range(100,10000+1):
      prior = 1 / n_years # P(A = i)
      likelihood = calc_likelihood(m, i) # P(M=m | A=i)
      pr_A[i] = prior * likelihood
   # implicitly computes the normalization constant
   normalize(pr_A)
   return pr_A
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Normalize in Python

76

# list normalization
def normalize_list(data_list):
    total_sum = np.sum(data_list)
    return np.array(data_list) / total_sum 

>>> norm = normalize_list([10, 20, 30, 40])  
>>> np.sum(norm) # 1.0, always (within floating point error)

# dictionary normalization 
def normalize_dict(data_dict):
    total_sum = sum(data_dict.values())
    normalized = {}
    for key, value in data_dict.items():
        normalized[key] = value / total_sum 
    return normalized

>>> norm = normalize_dict({'a': 100, 'b': 200, 'c': 300})  
>>> np.sum(norm.values()) # 1.0, always (within floating point error)

return 
[0.1 0.2 0.3 0.4]

return 
{'a': 0.166, 'b': 0.333, 'c': 0.5}
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Bayesian Carbon Dating: Inference Overview

77

Let A be how many years old the sample is (A = 100 means the sample is 100 years old)

Let M be the observed amount of C14 left in the sample

Such that
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Understanding why Denom. is a Constant

Notice which term doesn’t change as i changes (four example calculations).

Changes with i

Doesn’t change

A = age
M = measured C14
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Bayesian Carbon Dating: Inference Overview

79

Let A be how many years old the sample is (A = 100 means the sample is 100 years old)

Let M be the observed amount of C14 left in the sample

Such that
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Understanding Through Code

80

def update_belief(m = 900):
   """
   Returns a dictionary A, where A[i] contains the 
   corresponding probability, P(A = i| M = 900).
   m is the number of C14 molecules remaining and i 
   is age in years. i is in the range 100 to 10000
   """
   pr_A = {}
   n_years = 9901
   for i in range(100,10000+1):
      prior = 1 / n_years # P(A = i)
      likelihood = calc_likelihood(m, i) # P(M=m | A=i)
      pr_A[i] = prior * likelihood
   # implicitly computes the normalization constant
   normalize(pr_A)
   return pr_A
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Four Prototypical Trajectories

Carbon Dating Likelihood Math
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Probability of Having 900 Remain

82

There were originally 1000 C14 molecules. 

Each molecule remains independently with equal probability pi

What is the probability that 900 remain?

Let T be the time to decay for any one molecule

Each molecules’ time to live is exponential with λ = 1/8267
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def calc_likelihood(m = 900, age):
   """
   Computes P(M = m | A = age), the probability of
   having m molecules left given the sample is age
   years old. Uses the exponential decay of C14
   """
   n_original = 1000 
   p_remain = math.exp(-age/C14_MEAN_LIFE)
   return stats.binom.pmf(m, n_original, p_remain)

Probability of Having 900 Remain
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def calc_likelihood(m = 900, age):
   """
   Computes P(M = m | A = age), the probability of
   having m molecules left given the sample is age
   years old. Uses the exponential decay of C14
   """
   n_original = 1000 + delta_start(age)
   p_remain = math.exp(-age/C14_MEAN_LIFE)
   return stats.binom.pmf(m, n_original, p_remain)

Probability of Having 900 Remain
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Posterior Belief in Age
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Four Prototypical Trajectories

Come Back for More!
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