

Probabilistic Models

CS109, Stanford University

Sign up for PEP!!!

Multiple Random Variables. Start of Digital Revolution

Multiple Random Variables. Start of Digital Revolution

Conditions that match your symptoms

UNDERSTANDING YOUR RESULTS

Migraine Headache (Adult)

STRONG match

Tension Headache

Moderate match

Benign Paroxysmal Positional Vertigo (BPPV)

Fair match

Gender Female

Age 26

[Edit](#)

My Symptoms

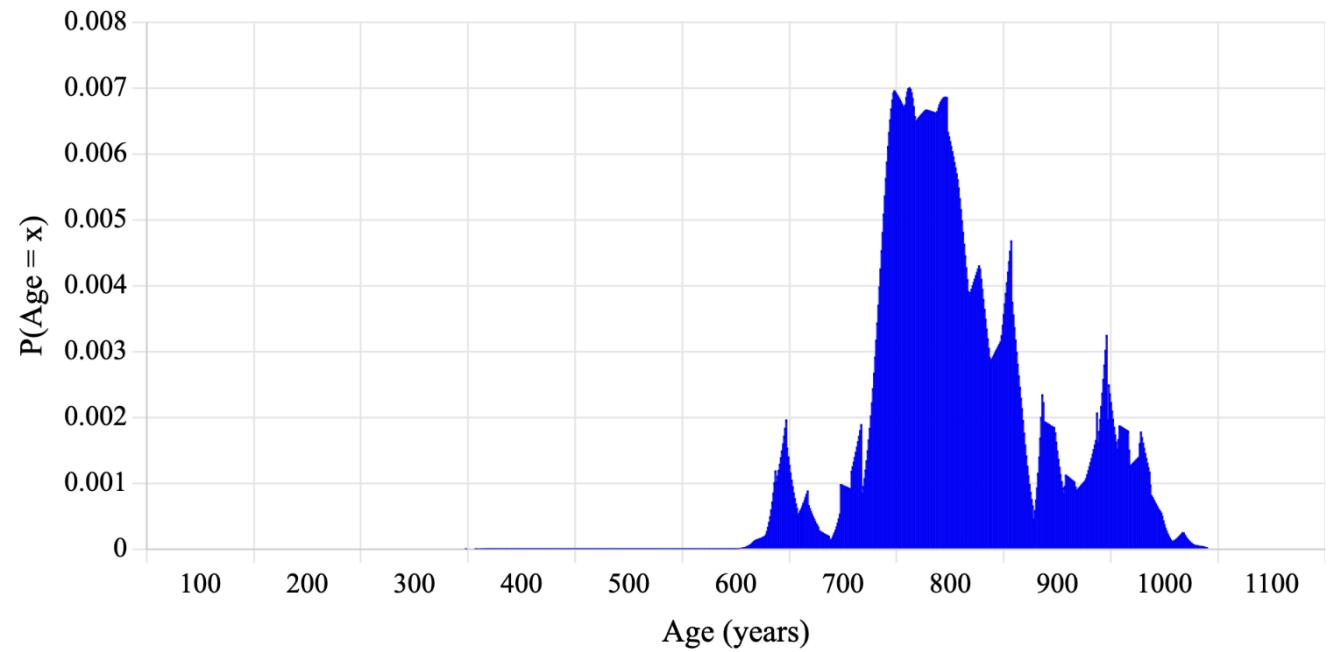
[Edit](#)

dizziness , one sided headache

[Start Over](#)

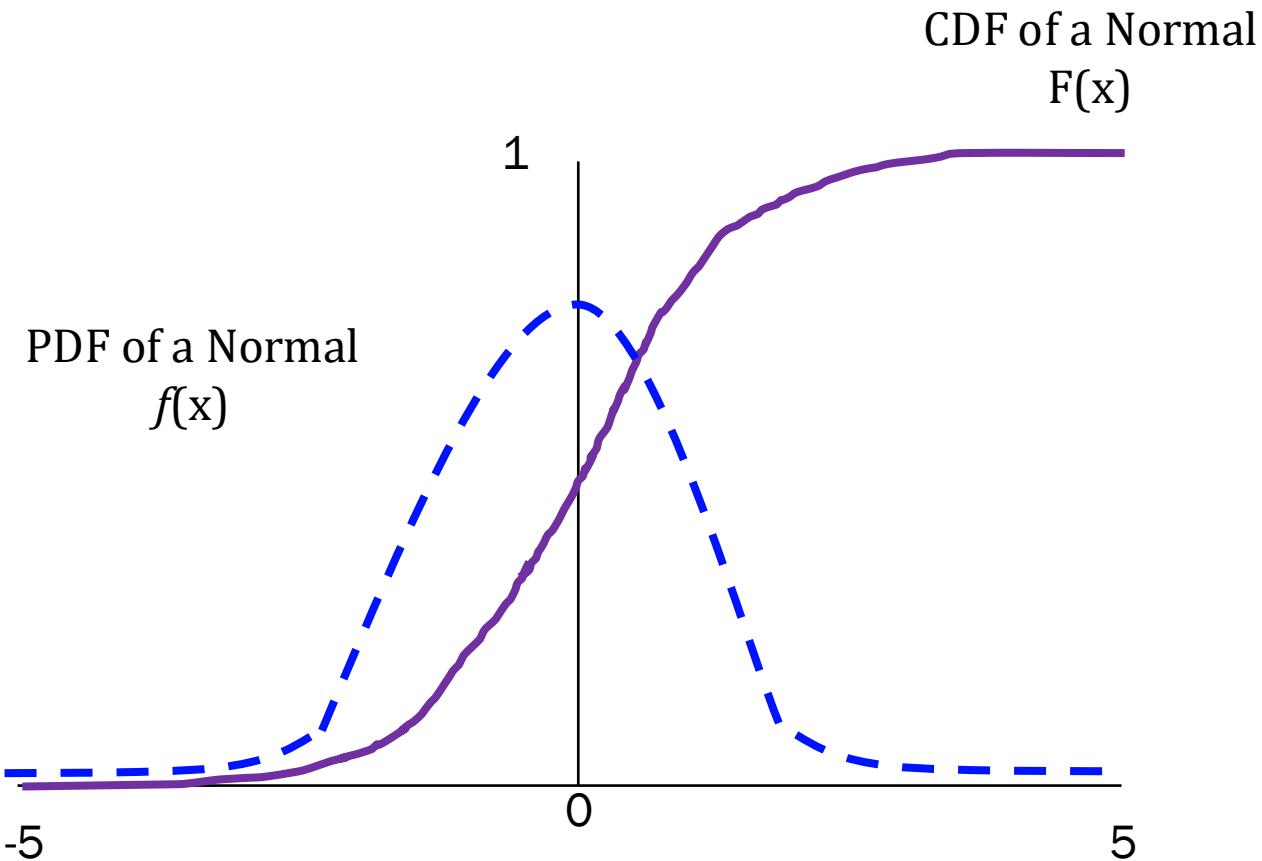
Bayesian Carbon Dating

Remaining C14: 900



First, some review

Normal Distribution



$f(x)$ = derivative of probability

$F(x) = P(X < x)$

Cumulative Distribution Function (CDF)

$$\mathcal{N}(\mu, \sigma^2)$$

CDF of Standard Normal: A function that has been solved for numerically

$$F(x) = \Phi\left(\frac{x - \mu}{\sigma}\right)$$

The cumulative density function (CDF) of any normal

Table of $\Phi(z)$ values are precomputed

Probability Density Function (PDF)

$$\mathcal{N}(\mu, \sigma^2)$$

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

probability density
at x

“exponential”

a constant

the distance to the mean

sigma shows up twice

How does python sample from a Gaussian?

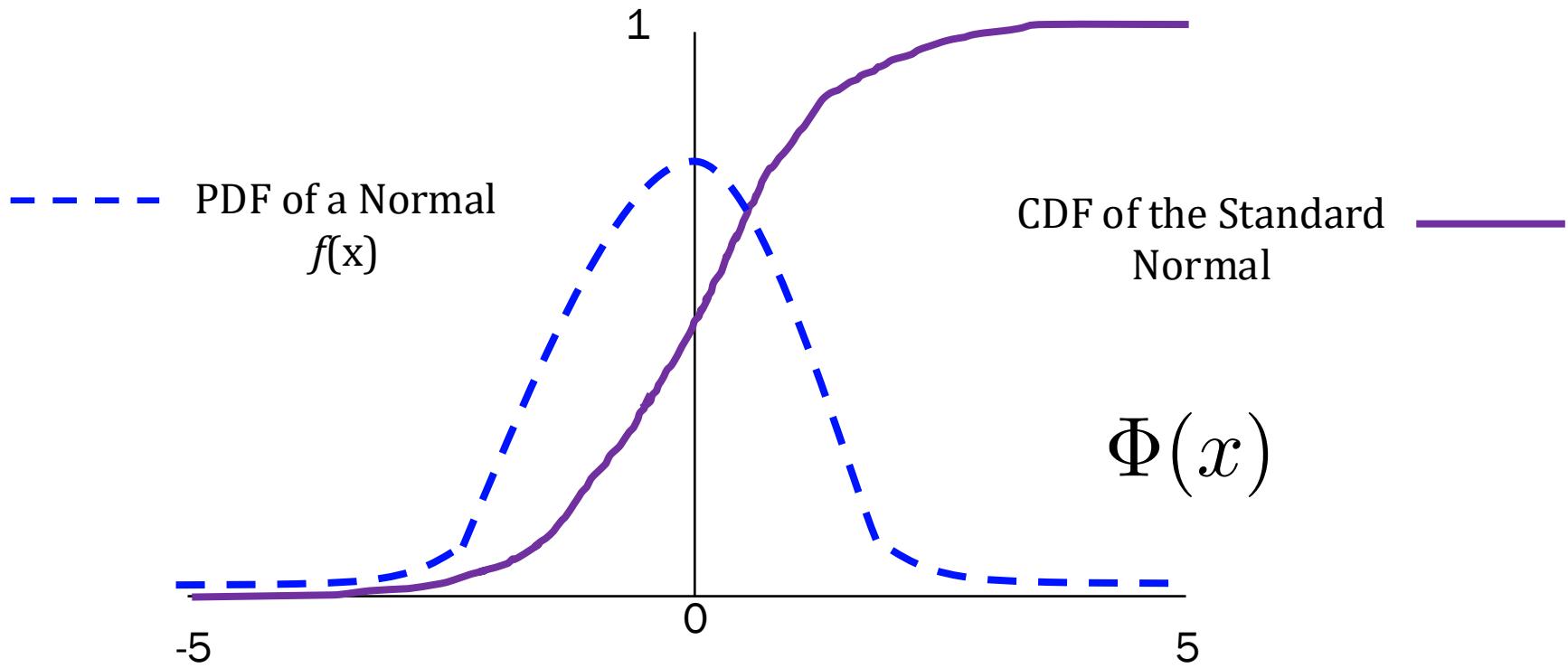
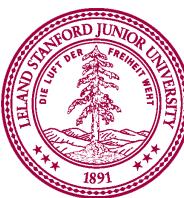
```
from random import *

for i in range(10):
    mean = 5
    std = 1
    sample = gauss(mean, std)
    print sample
```

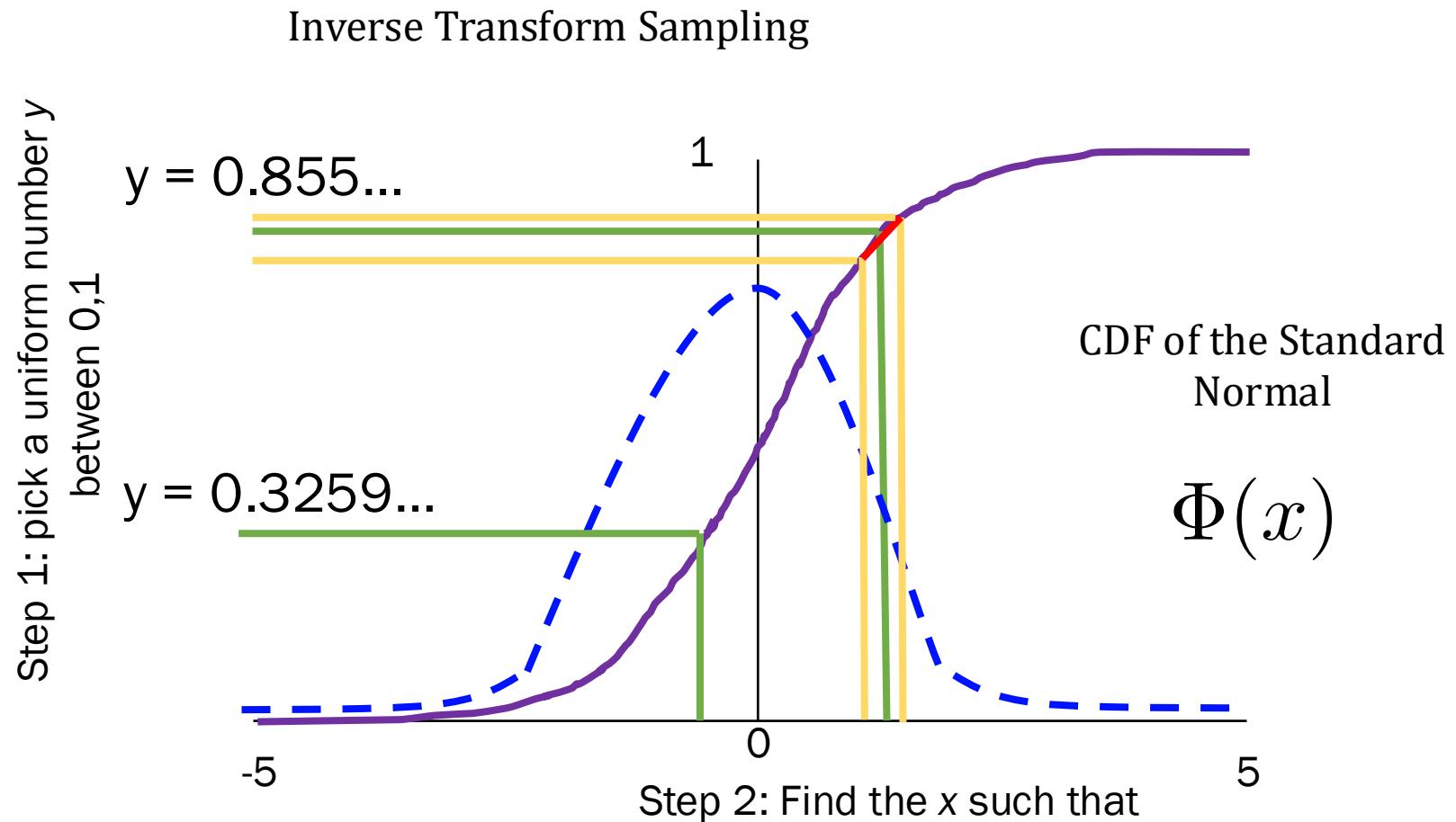
How does
this work?

```
3.79317794179
5.19104589315
4.209360629
5.39633891584
7.10044176511
6.72655475942
5.51485158841
4.94570606131
6.14724644482
4.73774184354
```

How Does a Computer Sample a Normal?

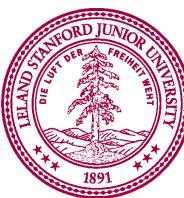


How Does a Computer Sample a Normal?



$$\begin{aligned}\Phi(x) &= y \\ x &= \Phi^{-1}(y)\end{aligned}$$

Further reading: Box–Muller transform

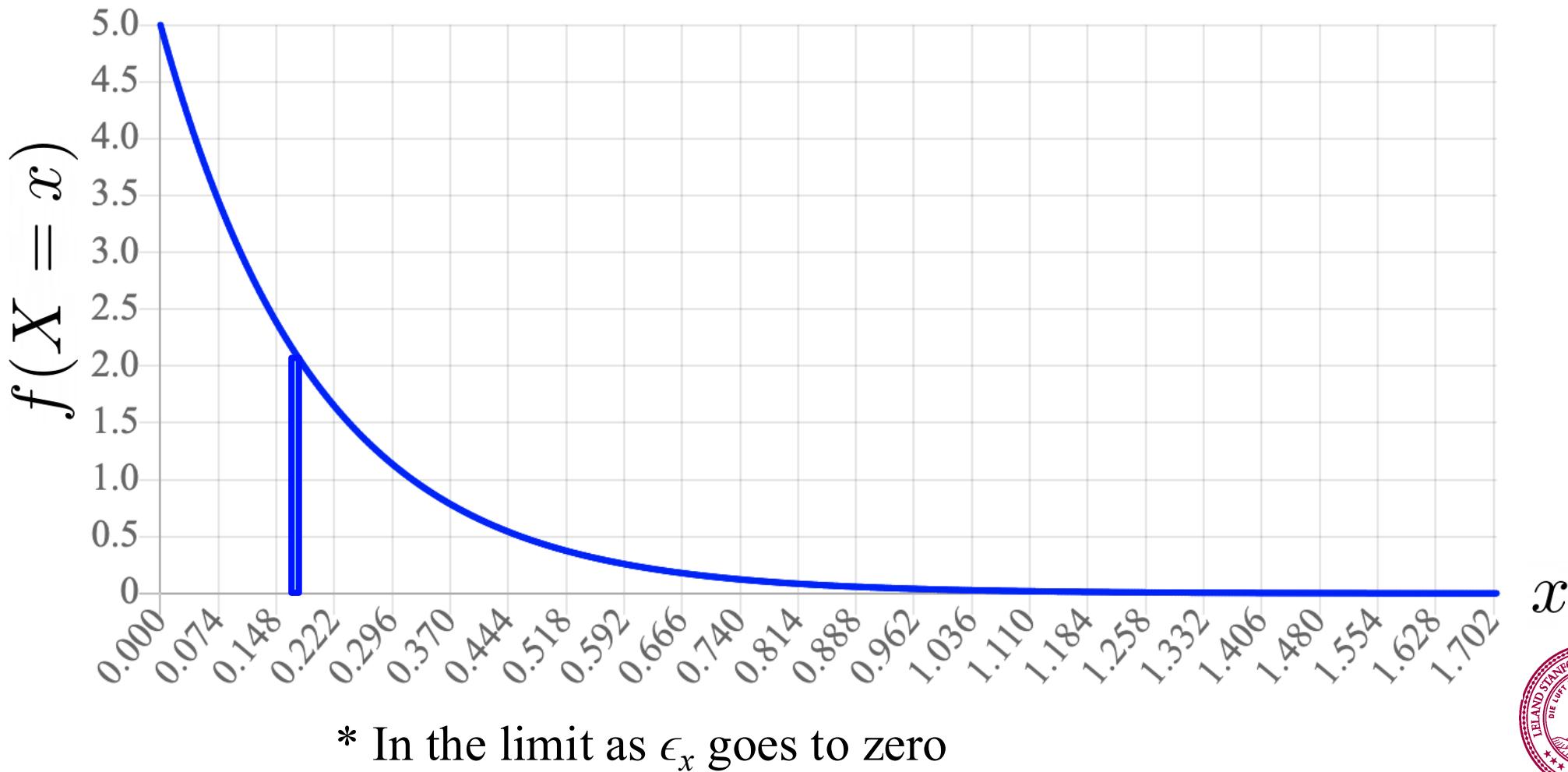


End of review

A New Perspective

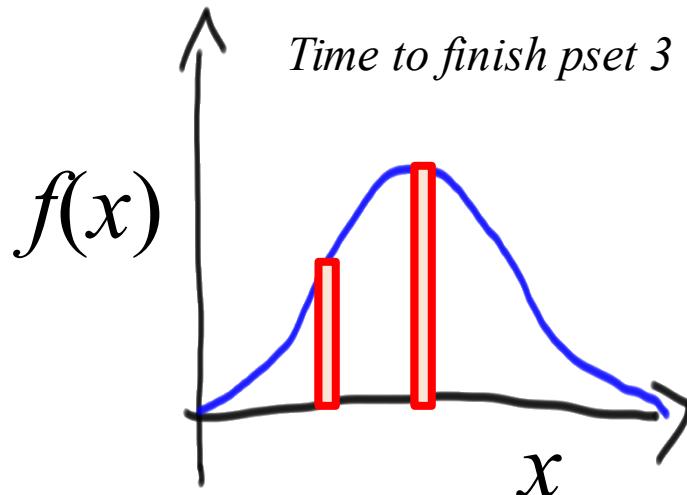
Epsilon: Useful perspective

$$P(X = x) = f(X = x) \cdot \epsilon_x$$



Relative Probability of Continuous Variables

X = time to finish pset 3
 $X \sim N(\mu = 10, \sigma^2 = 2)$



How much more likely
are you to complete pset 3
in 10 hours than in 5?

$$\begin{aligned}\frac{P(X = 10)}{P(X = 5)} &= \frac{\varepsilon f(X = 10)}{\varepsilon f(X = 5)} \\ &= \frac{f(X = 10)}{f(X = 5)} \\ &= \frac{\frac{1}{\sqrt{2\sigma^2\pi}}e^{-\frac{(10-\mu)^2}{2\sigma^2}}}{\frac{1}{\sqrt{2\sigma^2\pi}}e^{-\frac{(5-\mu)^2}{2\sigma^2}}} \\ &= \frac{\frac{1}{\sqrt{4\pi}}e^{-\frac{(10-10)^2}{4}}}{\frac{1}{\sqrt{4\pi}}e^{-\frac{(5-10)^2}{4}}} \\ &= \frac{e^0}{e^{-\frac{25}{4}}} = 518\end{aligned}$$

Where are we in CS109?

Core
Probability

Random
Variables

Probabilistic
Models

Uncertainty
Theory

Machine
Learning

CS109

Machine Learning

Uncertainty Theory

Single Random
Variables

Probabilistic Models

Probability Fundamentals

[suspense]

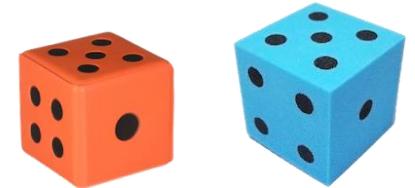
Discrete Probabilistic Models

The world is full of interesting probability problems

Have multiple random variables interacting with one another

Joint probability mass functions

Roll two 6-sided dice, yielding values X and Y .



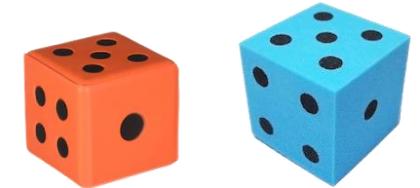
X
random variable

$P(X = 1)$
probability of
an event

$P(X = k)$
probability mass function

Joint probability mass functions

Roll two 6-sided dice, yielding values X and Y .



X
random variable

$P(X = 1)$
probability of
an event

$P(X = k)$
probability mass function

X, Y
random variables

$P(X = 1 \text{ and } Y = 6)$
 $P(X = 1, Y = 6)$

recall: the comma

probability of the intersection
of two events

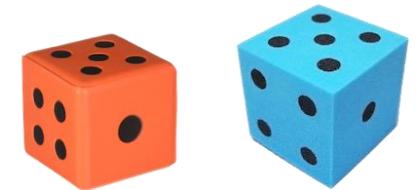
$P(X = a, Y = b)$

joint probability mass function

Two dice

Roll two 6-sided dice, yielding values X and Y .

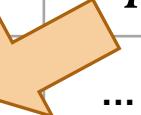
1. What is the joint PMF of X and Y ?



$$P(X = a, Y = b) = 1/36 \quad (a, b) \in \{(1,1), \dots, (6,6)\}$$

		X					
		1	2	3	4	5	6
Y	1	1/36	1/36
	2	
	3
	4
	5
	6	1/36	1/36

$$P(X = 4, Y = 3)$$



Probability table

- All possible outcomes for several discrete RVs
- Not parametric (e.g., parameter p in $\text{Ber}(p)$)

Dating at Stanford. Data from a few years ago

	Single	In a relationship	It's complicated
Freshman	0.13	0.08	0.02
Sophomore	0.17	0.11	0.02
Junior	0.09	0.10	0.02
Senior	0.02	0.07	0.01
5+	0.06	0.09	0.04

Joint is Complete Information!

	Single	Relationship	Complicated
Frosh	0.13	0.08	0.02
Soph	0.17	0.11	0.02
Junior	0.09	0.10	0.02
Senior	0.02	0.07	0.01
5+	0.06	0.09	0.04

A joint distribution is complete information. It can be used to answer any probability question.

Joint table: mutually exclusive and covers sample space.

	Single	Relationship	Complicated
Frosh	0.13	0.08	0.02
Soph	0.17	0.11	0.02
Junior	0.09	0.10	0.02
Senior	0.02	0.07	0.01
5+	0.06	0.09	0.04

Each combination is mutually exclusive, and they span the sample space

$$\sum_{x \in X} \sum_{y \in Y} P(x, y) = 1$$

X is dating status.
Y is year.

Joint table: mutually exclusive and covers sample space.

	Single	Relationship	Complicated
Frosh	0.13	0.08	0.02
Soph	0.17	0.11	0.02
Junior	0.09	?	0.02
Senior	0.02	0.07	0.01
5+	0.06	0.09	0.04

Each combination is mutually exclusive, and they span the sample space

$$\sum_{x \in X} \sum_{y \in Y} P(x, y) = 1$$

X is dating status.
Y is year.

Joint table: mutually exclusive and covers sample space.

	Single	Relationship	Complicated
Frosh	0.13	0.08	0.02
Soph	0.17	0.11	0.02
Junior	0.09	0.10	0.02
Senior	0.02	0.07	0.01
5+	0.06	0.09	0.04

Each combination is mutually exclusive, and they span the sample space

$$\sum_{x \in X} \sum_{y \in Y} P(x, y) = 1$$

X is dating status.
Y is year.

Joint table: mutually exclusive and covers sample space.

	Single	Relationship	Complicated
Frosh	$0.07 \cdot k$	$0.04 \cdot k$	$0.01 \cdot k$
Soph	$0.09 \cdot k$	$0.05 \cdot k$	$0.01 \cdot k$
Junior	$0.05 \cdot k$	$0.05 \cdot k$	$0.01 \cdot k$
Senior	$0.01 \cdot k$	$0.03 \cdot k$	$0.01 \cdot k$
5+	$0.03 \cdot k$	$0.03 \cdot k$	$0.02 \cdot k$

Each combination is mutually exclusive, and they span the sample space

$$\sum_{x \in X} \sum_{y \in Y} P(x, y) = 1$$

X is dating status.
Y is year.

$$\sum_{x \in \text{table}} k \cdot x = 1$$

$$k \cdot \sum_{x \in \text{table}} x = 1$$

$$k = \frac{1}{\sum_{x \in \text{table}} x}$$

Joint table: mutually exclusive and covers sample space.

	Single	Relationship	Complicated
Frosh	0.13	0.08	0.02
Soph	0.17	0.11	0.02
Junior	0.09	0.10	0.02
Senior	0.02	0.07	0.01
5+	0.06	0.09	0.04

Each combination is mutually exclusive, and they span the sample space

$$\sum_{x \in X} \sum_{y \in Y} P(x, y) = 1$$

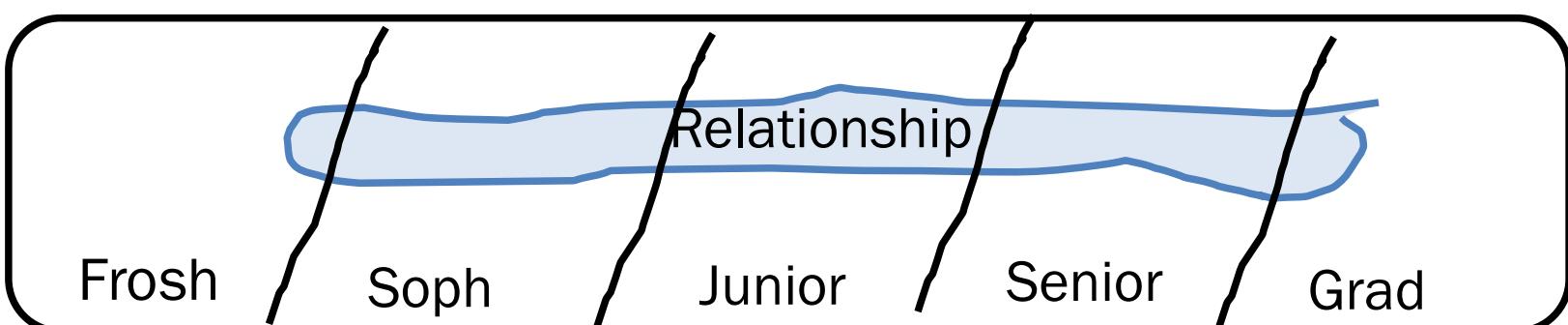
X is dating status.
Y is year.

What is the probability someone is in a relationship?

	Single	Relationship	Complicated
Frosh	0.13	0.08	0.02
Soph	0.17	0.11	0.02
Junior	0.09	0.10	0.02
Senior	0.02	0.07	0.01
5+	0.06	0.09	0.04

We can use the law of total probability!
X is dating status. Y is year.

$$P(X = \text{relation}) = \sum_{y \in Y} P(X = \text{relation}, Y = y)$$



What is the probability someone is in a relationship?

	Single	Relationship	Complicated
Frosh	0.13	0.08	0.02
Soph	0.17	0.11	0.02
Junior	0.09	0.10	0.02
Senior	0.02	0.07	0.01
5+	0.06	0.09	0.04

We can use the law of total probability!
X is dating status. Y is year.

$$P(X = \text{relation}) =$$

$$\sum_{y \in Y} P(X = \text{relation}, Y = y)$$

$$P(X = \text{single}) =$$

$$\sum_{y \in Y} P(X = \text{single}, Y = y)$$

$$P(Y = \text{frosh}) = \sum_{x \in X} P(X = x, Y = \text{frosh})$$

$$P(Y = \text{soph}) = \sum_{x \in X} P(X = x, Y = \text{soph})$$

Welcome the marginal

Marginal Distribution

For two discrete joint random variables X and Y ,
the **joint probability mass function** is defined as:

$$P(X = a, Y = b)$$

The **marginal distributions** of the joint PMF are defined as:

$$P(X = a) = \sum_y P(X = a, Y = y)$$

$$P(Y = b) = \sum_x P(X = x, Y = b)$$

Use marginal distributions to
get a 1-D RV from a joint PMF.

Why is that called the marginal?

Quick note on independence

If A and B are independent:

Joint

$$P(A = a, B = b) = P(A = a) \cdot P(B = b)$$

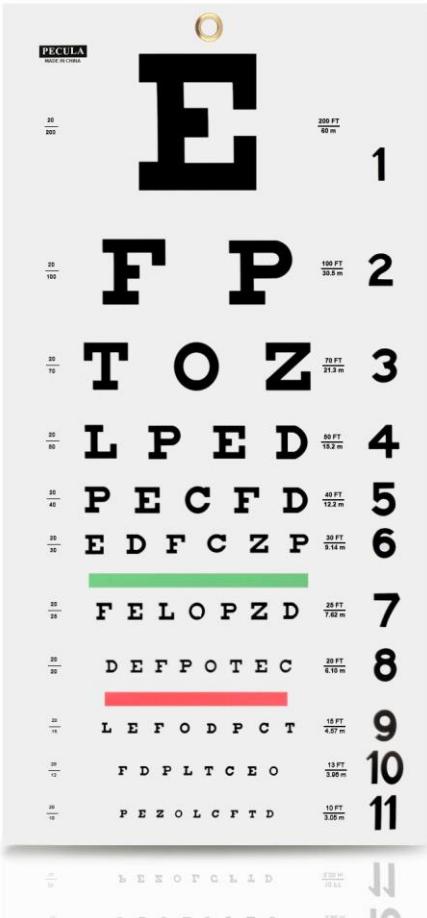
For all a, b

$$P(A < a, B < b) = P(A < a) \cdot P(B < b)$$

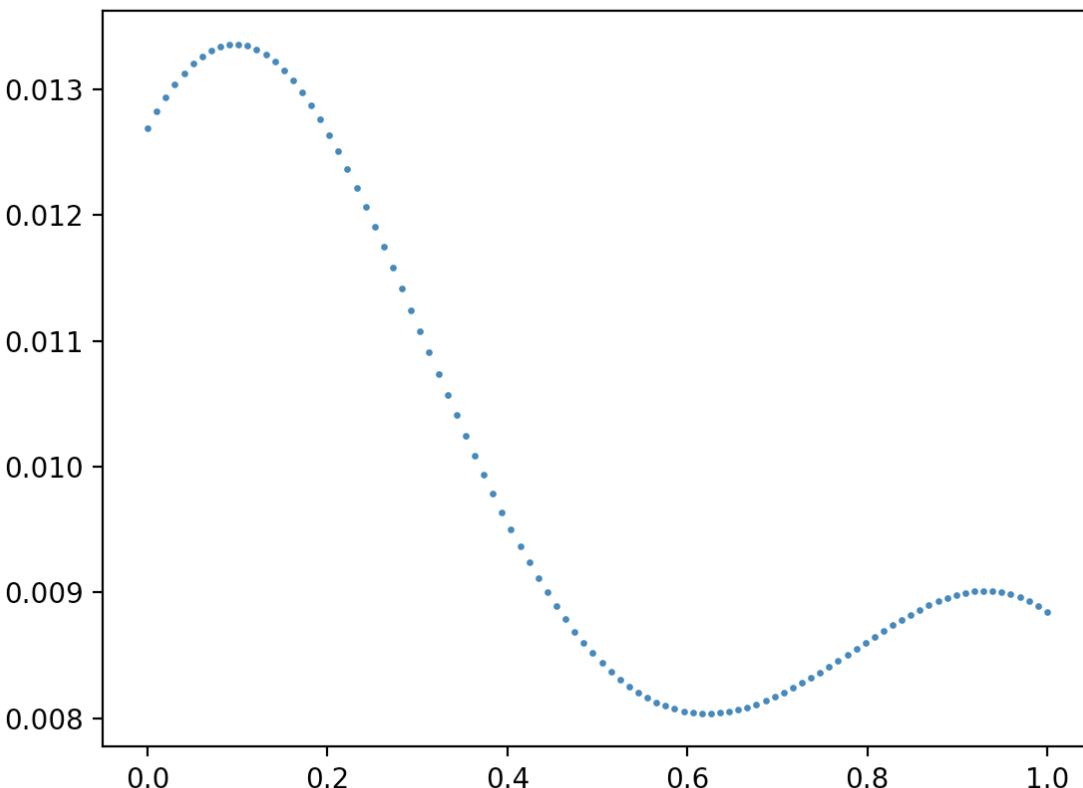
Get Pumped...

Biggest Game Changer this half of
CS109

Belief in Vision Given User Responses

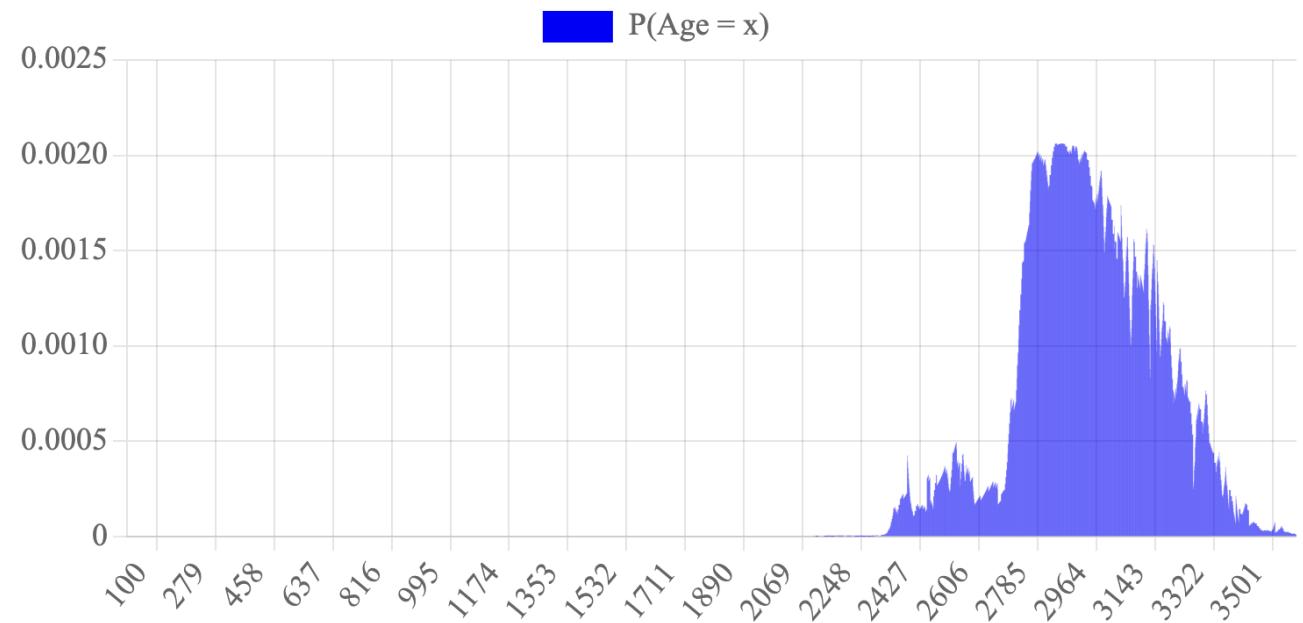


$P(\text{Ability to See} \mid \text{Observed Responses})$



Belief in **Age** Given **Observed C14**

$P(\text{Age} | \text{Observed C14})$



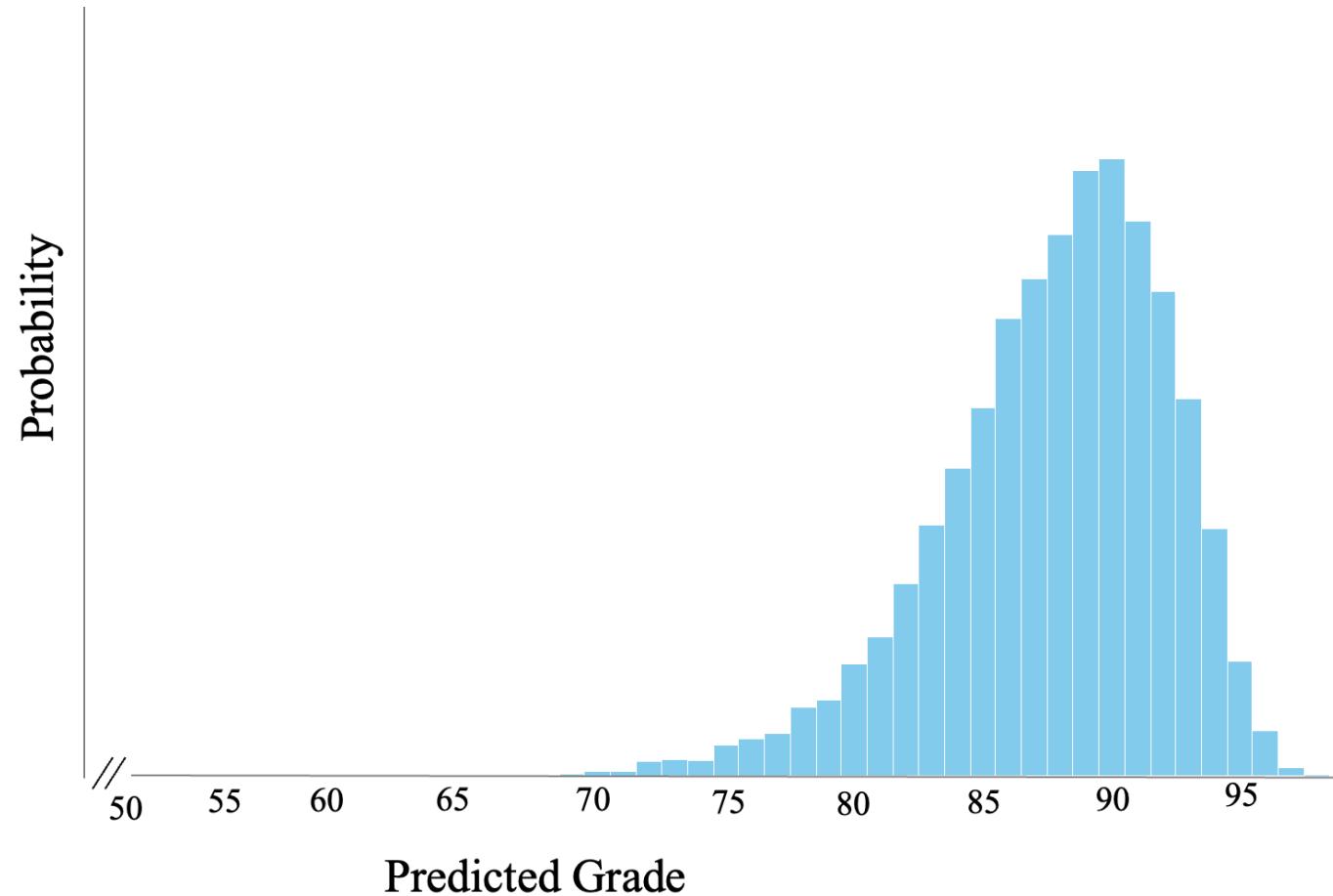
Belief in **Course Grade** Given Assignment Scores So Far

Assns Scores So Far

Score on Pset 1

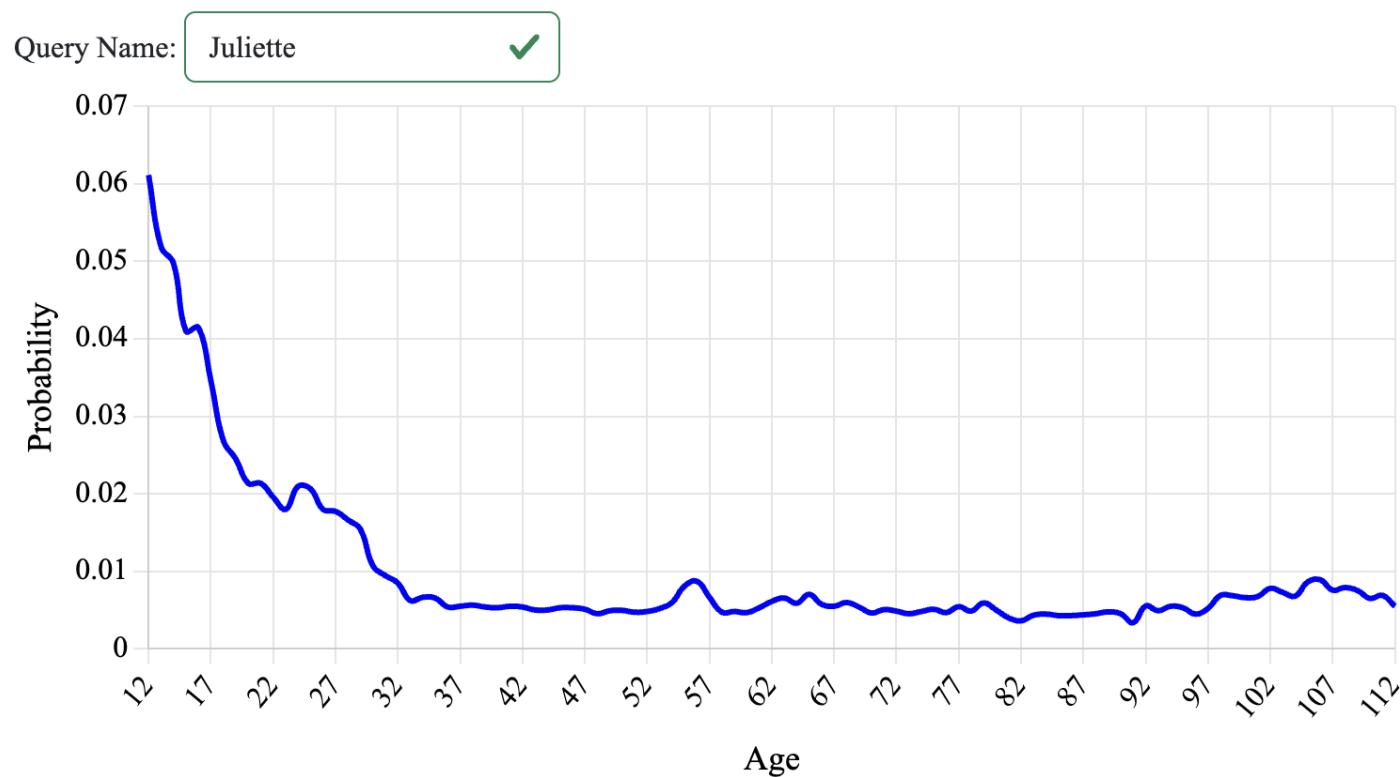
Score on Pset 2

$P(\text{Final Grade} \mid \text{Assns Scores So Far})$



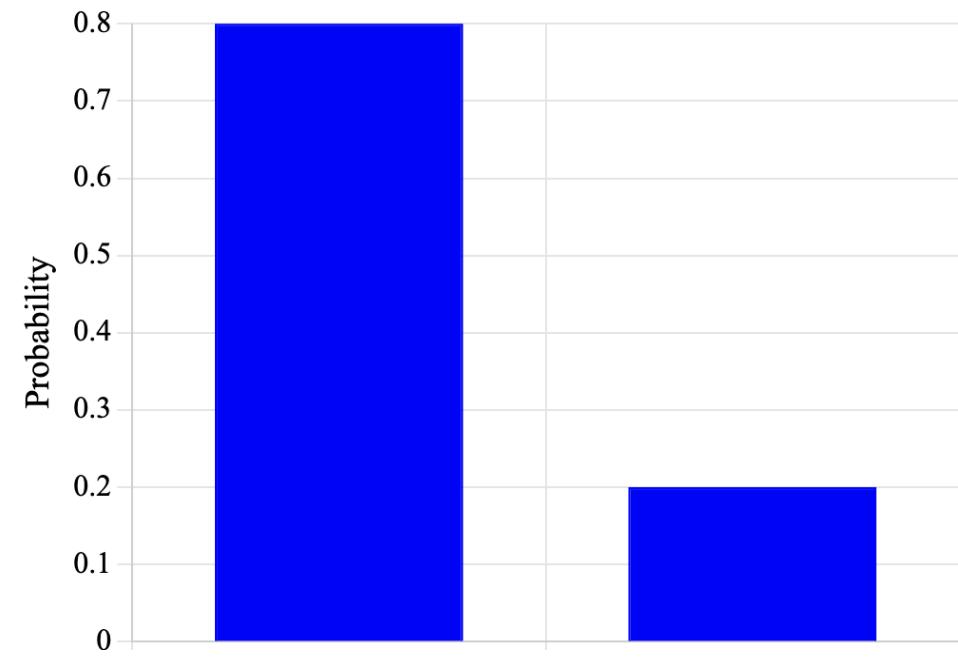
Belief in **Age** Given **Name**

$P(\text{Age} \mid \text{Name})$



Belief in **Author** Given **Text**

$P(\text{Author} \mid \text{Text})$



Author A

Author B

Today: Inference

Inference *noun*

Updating one's belief about a random variable (or multiple) based on conditional knowledge regarding another random variable (or multiple) in a probabilistic model.

TLDR: conditional probability with random variables.

Bayes Theorem

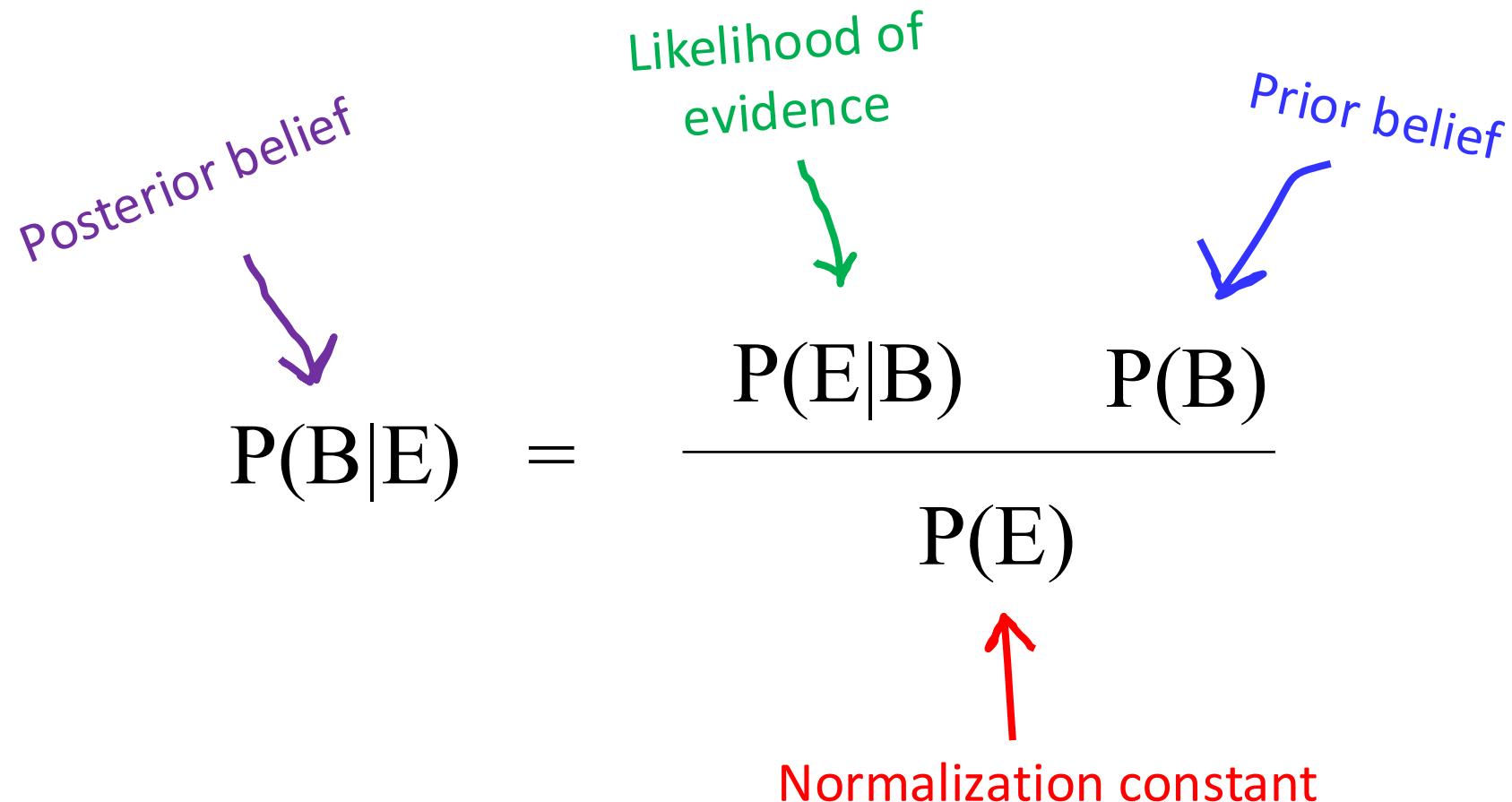
$$P(B|E) = \frac{P(E|B)P(B)}{P(E)}$$

Posterior belief

Likelihood of evidence

Prior belief

Normalization constant



Bayes with Discrete Random Variables

Let M be a **discrete** random variable

Let N be a **discrete** random variable

$$P(M = 2|N = 3) = \frac{P(N = 3|M = 2)P(M = 2)}{P(N = 3)}$$

$$P(M = m|N = n) = \frac{P(N = n|M = m)P(M = m)}{P(N = n)}$$

Shorthand
notation

$$P(m|n) = \frac{P(n|m)P(m)}{P(n)}$$

More
generally

I Heard That

Let X be the **change in gaze** (measured in degrees) over 3 seconds after a sound is played

Value of X	PMF of X given Baby can hear the sound	PMF of X given Baby can not hear the sound
0 to 5	0.08	0.40
5 to 10	0.15	0.30
10 to 15	0.35	0.12
15 to 20	0.20	0.08
20 to 25	0.12	0.05
Above 25	0.10	0.05

$$P(\text{can hear the sound}) = \frac{3}{4}$$

You observe $X = 0$. What is the probability the baby **can** hear the sound?

Question: Have I Been Given the Joint?

Let X be the **change in gaze** (measured in degrees) over 3 seconds after a sound is played

Value of X	PMF of X given Baby can hear the sound	PMF of X given Baby can not hear the sound
0 to 5	0.08	0.40
5 to 10	0.15	0.30
10 to 15	0.35	0.12
15 to 20	0.20	0.08
20 to 25	0.12	0.05
Above 25	0.10	0.05

$$P(\text{can hear the sound}) = \frac{3}{4}$$

You observe $X = 0$. What is the probability the baby **can** hear the sound?

I Heard That

Value of X	PMF of X given Baby can hear the sound	PMF of X given Baby can not hear the sound
0 to 5	0.08	0.40
5 to 10	0.15	0.30
10 to 15	0.35	0.12
15 to 20	0.20	0.08
20 to 25	0.12	0.05
Above 25	0.10	0.05

$$P(\text{can hear the sound}) = \frac{3}{4}$$

You observe $X = 0$. What is the probability the baby **can** hear the sound?
 $Y = 1$ means the child can hear the sound

$$P(Y = 1 | X = 0) = \frac{P(X = 0 | Y = 1) P(Y = 1)}{P(X = 0 | Y = 1) P(Y = 1) + P(X = 0 | Y = 0) P(Y = 0)}$$

$$P(Y = 1 | X = 0) = \frac{0.08 * 0.75}{0.08 * 0.75 + 0.40 * 0.25} = \frac{3}{8}$$

I Heard That with Continuous

Normal Assumption:

For babies who can hear sounds, we approximate their gaze movement after the sound is played as: $N(\mu = 15, \sigma^2 = 25)$.

For babies who can **not hear** sounds, we approximate gaze movement as $N(\mu = 8, \sigma^2 = 25)$.

For a new baby we observe a 14 degree movement after the sound is played. What is your belief that a baby can hear, under The Normal Assumption?

How do you handle observing a
continuous value?

Aside

All the Bayes Belong to Us

M,N are discrete. X, Y are continuous

OG Bayes

$$P(m|n) = \frac{P(n|m)P(m)}{P(n)}$$

Mix Bayes #1

$$f(x|n) = \frac{P(n|x)f(x)}{P(n)}$$

Mix Bayes #2

$$P(n|x) = \frac{f(x|n)P(n)}{f(x)}$$

$$f(x|y) = \frac{f(y|x)f(x)}{f(y)}$$

TLDR:

If random variable is discrete: use PMF

If random variable is continuous: use PDF

Mixing Discrete and Continuous

Let X be a **continuous** random variable

Let N be a **discrete** random variable

$$P(N = n|X = x) = \frac{P(X = x|N = n)P(N = n)}{P(X = x)}$$

$$P(N = n|X = x) = \frac{f(X = x|N = n) \cdot \epsilon \cdot P(N = n)}{f(X = x) \cdot \epsilon}$$

$$P(N = n|X = x) = \frac{f(X = x|N = n) \cdot P(N = n)}{f(X = x)}$$

Mixing Discrete and Continuous

Let X be a **continuous** random variable

Let N be a **discrete** random variable

$$P(X = x | N = n) = \frac{P(N = n | X = x)P(X = x)}{P(N = n)}$$

$$P(x | n) = \frac{P(n | x)P(x)}{P(n)}$$

$$f(x | n) \cdot \epsilon_x = \frac{P(n | x) f(x) \cdot \epsilon_x}{P(n)}$$

$$f(x | n) = \frac{P(n | x) f(x)}{P(n)}$$

All the Bayes Belong to Us

M,N are discrete. X, Y are continuous

OG Bayes

$$P(m|n) = \frac{P(n|m)P(m)}{P(n)}$$

Mix Bayes #1

$$f(x|n) = \frac{P(n|x)f(x)}{P(n)}$$

Mix Bayes #2

$$P(n|x) = \frac{f(x|n)P(n)}{f(x)}$$

$$f(x|y) = \frac{f(y|x)f(x)}{f(y)}$$

TLDR:

If random variable is discrete: use PMF

If random variable is continuous: use PDF

LOTP? Chain Rule? You can play too!

N is discrete. X is continuous

Chain Rule

$$f(N = n, X = x) = f(X = x | N = n)P(N = n)$$

Law of total probability

$$f(X = x) = \sum_n f(X = x | N = n)P(N = n)$$

End Aside

I Heard That with Continuous

Normal Assumption:

For babies who can hear sounds, we approximate their gaze movement after the sound is played as: $N(\mu = 15, \sigma^2 = 25)$.

For babies who can **not** hear sounds, we approximate gaze movement as $N(\mu = 8, \sigma^2 = 25)$.

For a new baby we observe a 14 degree movement after the sound is played. What is your belief that a baby can hear, under The Normal Assumption?

Equivalently

Normal Assumption: For babies who can hear sounds, we approximate their gaze movement after the sound is played as: $N(\mu = 15, \sigma^2 = 25)$.

For babies who **can not** hear sounds, we approximate gaze movement as $N(\mu = 8, \sigma^2 = 25)$.

For a new baby we observe a 14 degree movement after the sound is played. What is your belief that a baby can hear, under The Normal Assumption?

```
def sample ():  
    # bernoulli sample  
    can_hear = rand_bern(0.75)  
    if can_hear == 1:  
        # gaussian sample  
        return rand_gauss (mu = 15 , std = 5)  
    else:  
        # gaussian sample  
        return rand_gauss (mu = 8, std = 5)
```

The function sample returned the value 14. What is the probability that can_hear was 1?

All the Bayes Belong to Us

M,N are discrete. X, Y are continuous

OG Bayes

$$P(m|n) = \frac{P(n|m)P(m)}{P(n)}$$

Mix Bayes #1

$$f(x|n) = \frac{P(n|x)f(x)}{P(n)}$$

Mix Bayes #2

$$P(n|x) = \frac{f(x|n)P(n)}{f(x)}$$

$$f(x|y) = \frac{f(y|x)f(x)}{f(y)}$$

TLDR:

If random variable is discrete: use PMF

If random variable is continuous: use PDF

Pedagogical Pause

Goal: Inference

Change your belief
distribution
(Joint, PMF, or PDF)
of random variables,
based on
observations

*Note in the earlier examples, we were updating Bernoulli Random Variables

Lets Play Number of Function!

Number or Function?

$$P(X = 2 | Y = 5)$$

Number

Number or Function?

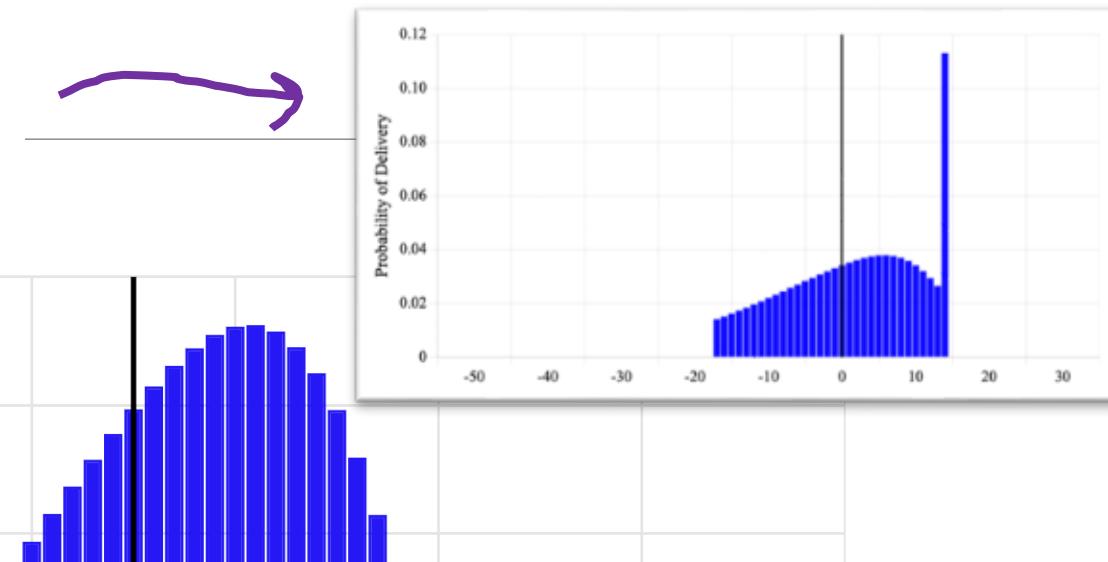
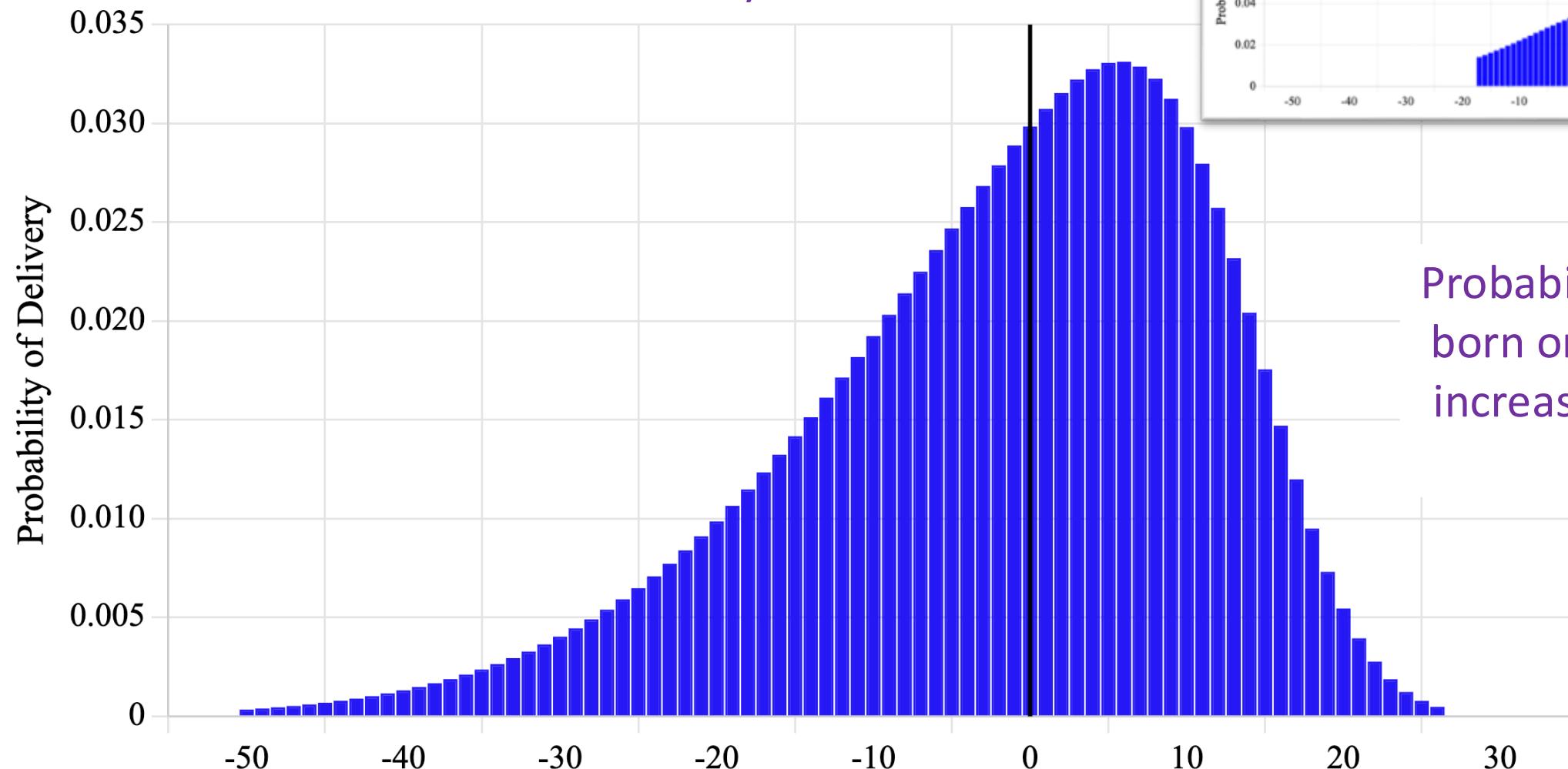
$$P(X = x | Y = 2)$$

Function
(a probability mass function
if discrete)

Baby Delivery Timing

Baby Delivery

Its 17 days before the
due date and still no
baby



Probability baby is
born on due date
increases by 13%

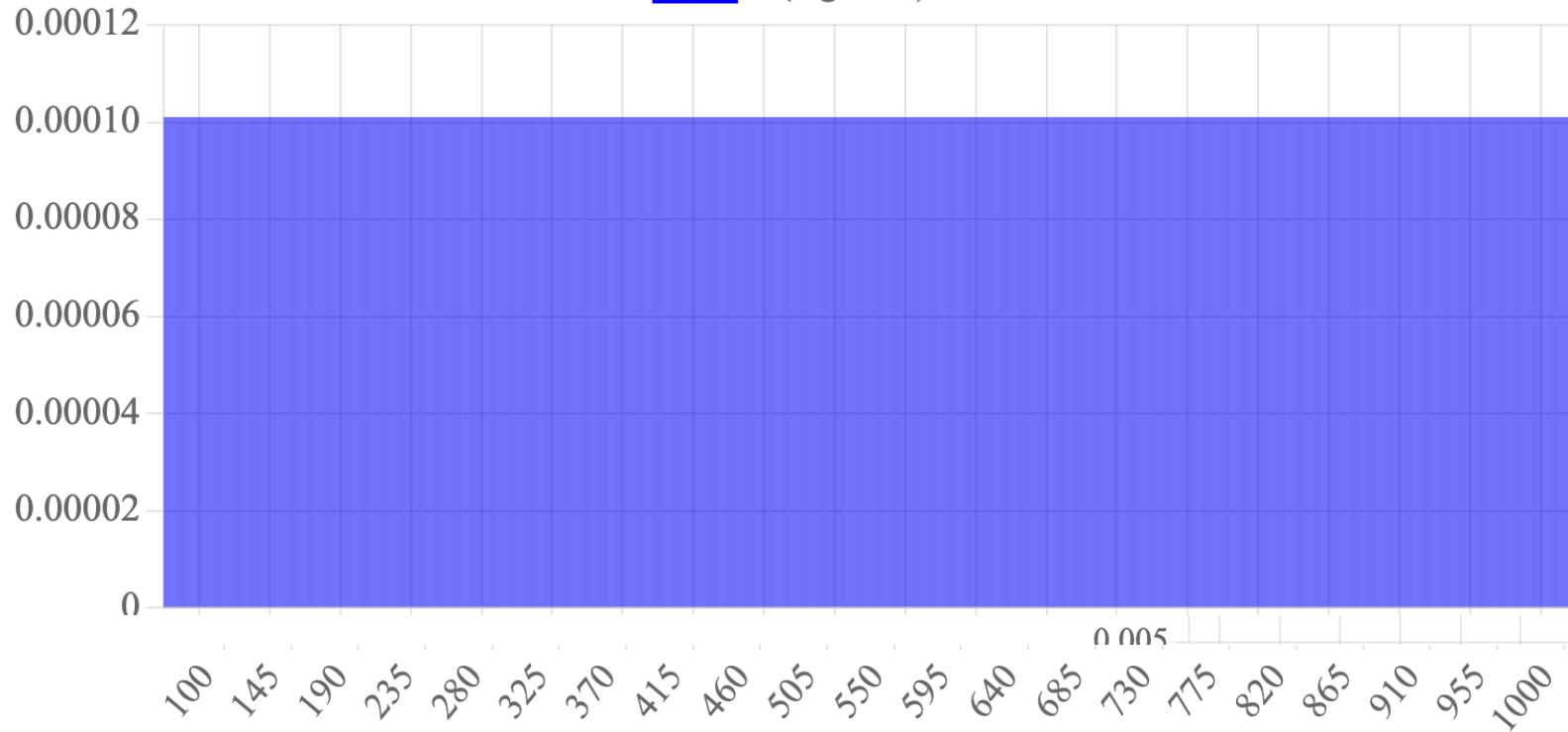
Bayesian Carbon Dating

- 1 Take a fixed size sample from a dead thing
- 2 Count C14 in Sample
- 3 Know the probability distribution for when it died
- 4 Profit

Bayesian Carbon Dating

Before observation

$P(\text{Age} = x)$



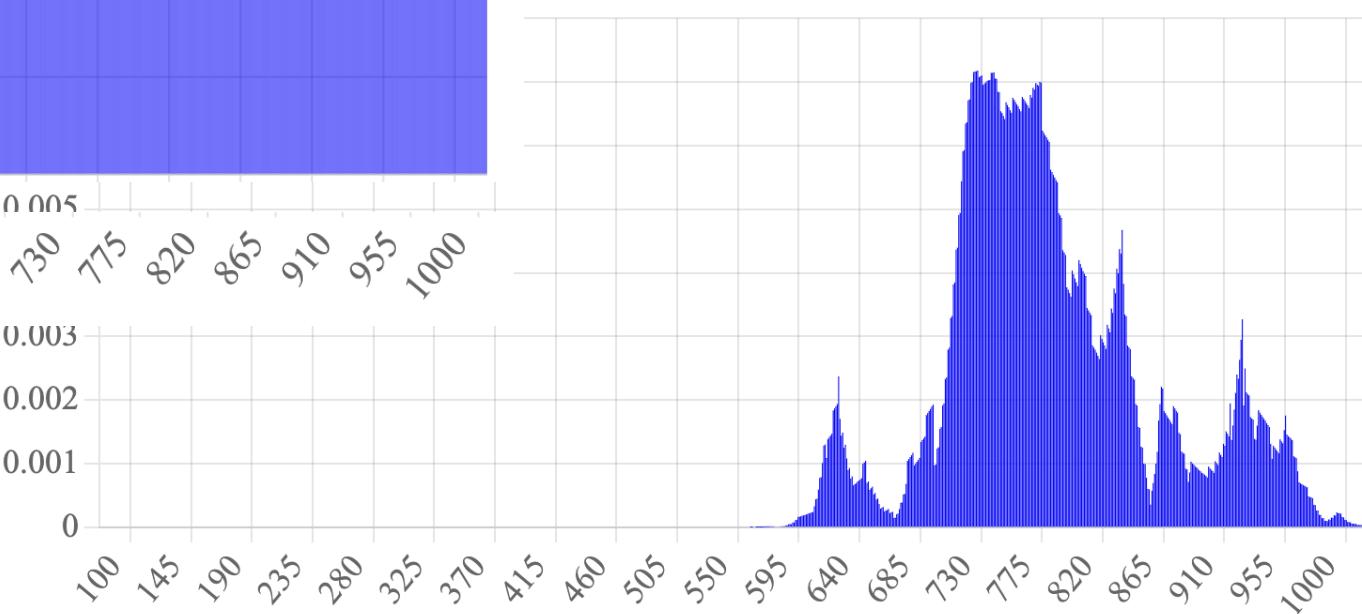
Observation

Remaining C14:

900

$P(\text{Age} = x)$

After



Warmup with Code

$$P(A = i|M = 900) = P(M = 900|A = i) \cdot P(A = i) \cdot K$$

```
def update_belief(m = 900):
    """
    Returns a dictionary A, where A[i] contains the
    corresponding probability, P(A = i | M = 900).
    m is the number of C14 molecules remaining and i
    is age in years. i is in the range 100 to 10000
    """
    pr_A = {}
    n_years = 9901
    for i in range(100,10000+1):
        prior = 1 / n_years # P(A = i)
        likelihood = calc_likelihood(m, i) # P(M=m | A=i)
        pr_A[i] = prior * likelihood
    # implicitly computes the normalization constant
    normalize(pr_A)
    return pr_A
```

Normalize in Python

```
# list normalization
def normalize_list(data_list):
    total_sum = np.sum(data_list)
    return np.array(data_list) / total_sum

>>> norm = normalize_list([10, 20, 30, 40])
>>> np.sum(norm) # 1.0, always (within floating point error)
```

```
# dictionary normalization
def normalize_dict(data_dict):
    total_sum = sum(data_dict.values())
    normalized = {}
    for key, value in data_dict.items():
        normalized[key] = value / total_sum
    return normalized

>>> norm = normalize_dict({'a': 100, 'b': 200, 'c': 300})
>>> np.sum(norm.values()) # 1.0, always (within floating point error)
```

Bayesian Carbon Dating: Inference Overview

Let A be how many years old the sample is ($A = 100$ means the sample is 100 years old)

Let M be the observed amount of C14 left in the sample

$$\begin{aligned} P(A = i|M = 900) &= \frac{P(M = 900|A = i)P(A = i)}{P(M = 900)} \\ &= P(M = 900|A = i) \cdot P(A = i) \cdot K \end{aligned}$$

Such that

$$K = \frac{1}{\sum_j P(M = 900|A = ij)P(A = j)}$$

Understanding why Denom. is a Constant

$A = \text{age}$
 $M = \text{measured C14}$

$$P(A = i|M = 900) = P(M = 900|A = i) \cdot P(A = i) \cdot \frac{1}{P(M = 900)}$$

Notice which term doesn't change as i changes (four example calculations).

$$P(A = 100|M = 900) = P(M = 900|A = 100) \cdot P(A = 100) \cdot \frac{1}{P(M = 900)}$$

← Doesn't change

$$P(A = 200|M = 900) = P(M = 900|A = 200) \cdot P(A = 200) \cdot \frac{1}{P(M = 900)}$$
$$P(A = 300|M = 900) = P(M = 900|A = 300) \cdot P(A = 300) \cdot \frac{1}{P(M = 900)}$$
$$P(A = 400|M = 900) = P(M = 900|A = 400) \cdot P(A = 400) \cdot \frac{1}{P(M = 900)}$$

Changes with i

Bayesian Carbon Dating: Inference Overview

Let A be how many years old the sample is ($A = 100$ means the sample is 100 years old)

Let M be the observed amount of C14 left in the sample

$$\begin{aligned} P(A = i|M = 900) &= \frac{P(M = 900|A = i)P(A = i)}{P(M = 900)} \\ &= P(M = 900|A = i) \cdot P(A = i) \cdot K \end{aligned}$$

Such that

$$K = \frac{1}{\sum_j P(M = 900|A = ij)P(A = j)}$$

Understanding Through Code

$$P(A = i | M = 900) = P(M = 900 | A = i) \cdot P(A = i) \cdot K$$

```
def update_belief(m = 900):
    """
    Returns a dictionary A, where A[i] contains the
    corresponding probability, P(A = i | M = 900).
    m is the number of C14 molecules remaining and i
    is age in years. i is in the range 100 to 10000
    """
    pr_A = {}
    n_years = 9901
    for i in range(100,10000+1):
        prior = 1 / n_years # P(A = i)
        likelihood = calc_likelihood(m, i) # P(M=m | A=i)
        pr_A[i] = prior * likelihood
    # implicitly computes the normalization constant
    normalize(pr_A)
    return pr_A
```

Carbon Dating Likelihood Math

Probability of Having 900 Remain

$$P(M = 900 | A = i)$$

There were originally 1000 C14 molecules.

Each molecule remains independently with equal probability p_i

What is the probability that 900 remain?

$$M \sim \text{Bin}(n = 1000, p = p_i)$$

$$P(M = 900 | A = i) = \binom{1000}{900} (p_i)^{900} \cdot (1 - p_i)^{100}$$

Each molecules' time to live is exponential with $\lambda = 1/8267$

Let T be the time to decay for any one molecule

$$T \sim \text{Exp}(\lambda = 1/8267) \quad p_i = P(T > i) = 1 - P(T < i) = e^{-\frac{i}{8267}}$$

Probability of Having 900 Remain

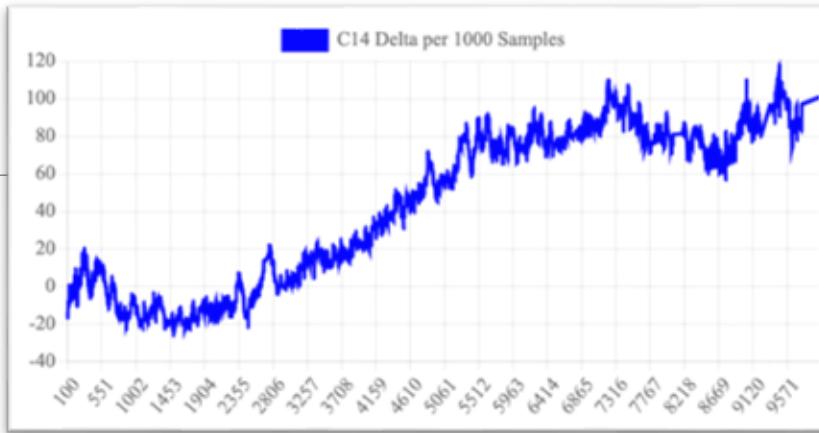
$$P(M = 900 | A = i)$$

$$\binom{1000}{900} (e^{\frac{-i}{8267}})^{900} \cdot (1 - (e^{\frac{-i}{8267}}))^{100}$$

```
def calc_likelihood(m = 900, age):  
    """  
    Computes P(M = m | A = age), the probability of  
    having m molecules left given the sample is age  
    years old. Uses the exponential decay of C14  
    """  
  
    n_original = 1000  
    p_remain = math.exp(-age/C14_MEAN_LIFE)  
    return stats.binom.pmf(m, n_original, p_remain)
```

Probability of Having 900 Remain

$$P(M = 900 | A = i)$$

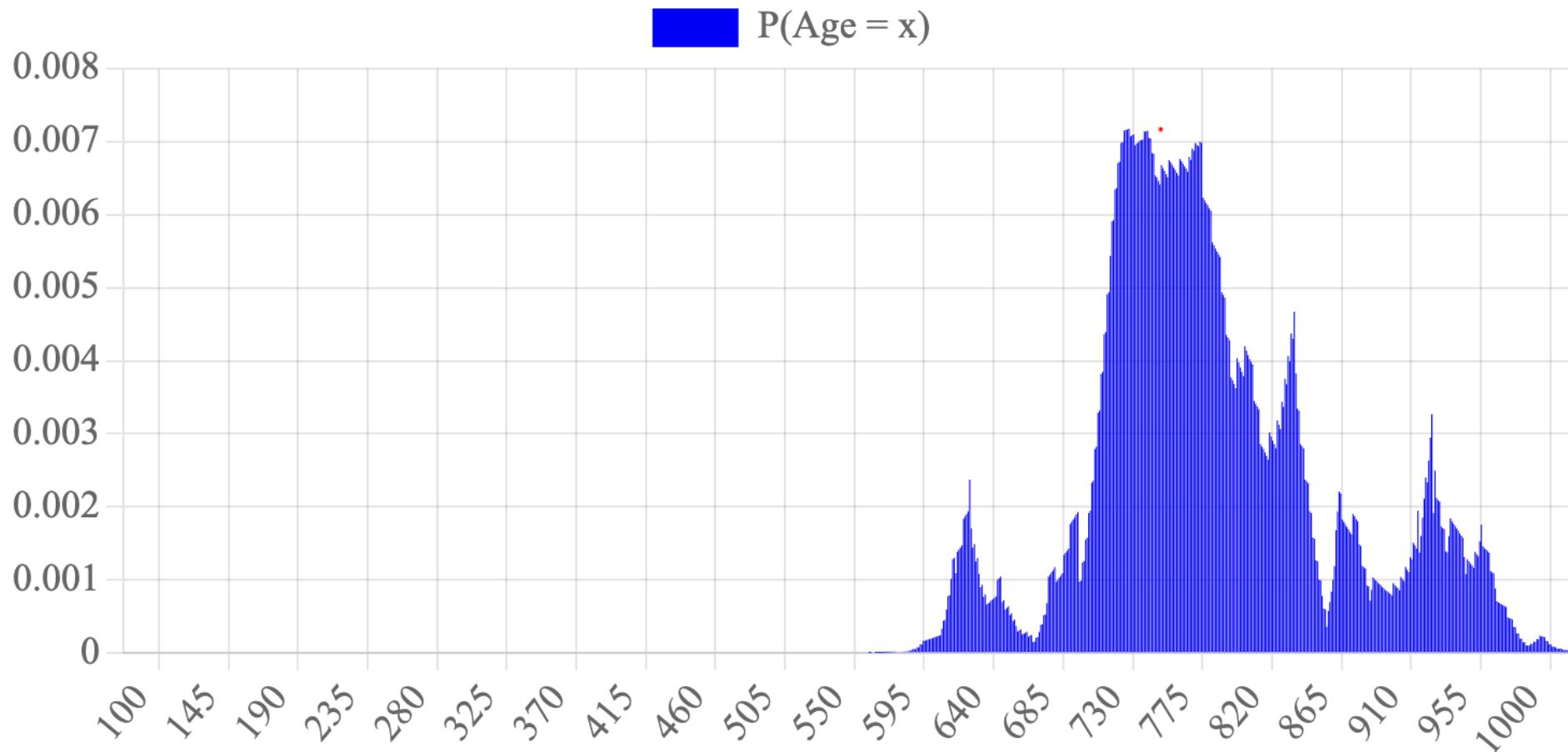


```
def calc_likelihood(m = 900, age):  
    """  
    Computes P(M = m | A = age), the probability of  
    having m molecules left given the sample is age  
    years old. Uses the exponential decay of C14  
    """  
  
    n_original = 1000 + delta_start(age)  
    p_remain = math.exp(-age/C14_MEAN_LIFE)  
    return stats.binom.pmf(m, n_original, p_remain)
```

Posterior Belief in Age

Remaining C14:

900



Come Back for More!