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Announcements

(1) PEP is Monday-Wednesday !!! Have you signed up? This is required part of the
course.
Signup Link

(2) We will release midterm study materials early next week. Midterm exam is Tuesday,
Feb 10t 7-9pm. Midterm covers content through Weds (2/4) lecture.

(3) Pset 4 has been released. Get started ASAP. This one is longer than others and is
one of the best ways to study for the midterm.

Chris Piech, CS109 Stanford University


https://psetapp.stanford.edu/win26/pep/midterm/signup

PSET #4

Chess.com Puzzles
DNA

M utatlon CIOCk Chess.com is a website for playing chess. They are trying to estimate how well a
= . player can solve chess puzzles (puzzle ability) as a random variable, A, which can

take on integer values in the range 0 to 100 inclusive. Higher abilities mean the
player is better at chess puzzles. Note that ability is discrete.

Risk Factors

Lo g

Symptoms m
Head-
ache
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Today: Stanford Eye Test

Chris Piech, CS109 Stanford University




Learning Goals

1. Combine Bayes Theorem and Random Variables




Review




Probabilistic Models

Shared
Roommates 2RoomDbl Partner Single
'\(\\, Frosh 0.30 0.07 0.00 0.00 0.37
\O Soph 0.12 0.18 0.00 0.03 0.32
‘\% Junior 0.04 0.01 0.00 0.10 0.15
Senior 0.01 0.02 0.02 0.01 0.05
5+ 0.02 0.00 0.05 0.04 0.11
0.49 0.27 0.07 0.18 1.00
N\a(%.\(\a\s :Asarginal Room type Marginal Year

o
-

o

Roommates 2RoomDbl Shared Partner Single Frosh Soph Junior Senior 5+
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Today: Inference

Inference noun

Updating one’s belief about a random variable (or
multiple) based on conditional knowledge regarding
another random variable (or multiple) 1n a probabilistic

model.

TLDR: conditional probability with random variables.

Chris Piech, CS109 Stanford University




Update Belief PMF

Before observation g rage=x)
0.00012

Observation

Remaining C14: 900

0.00010

0.00008

0.00006

0.00004

0.00002
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Bayesian Carbon Dating: Inference Overview

Let A be how many years old the sample is (A = 100 means the sample is 100 years old)
Let M be the observed amount of C14 left in the sample

P(M = 900|A = i)P(A = i)

P(A = i|M = 900) =

P(M = 900)
= P(M =900|A=14)-P(A=1i)-K
Such that
1

K =

>.. P(M =900|A =1)P(A =1)

- J

Chris Piech, CS109 Stanford University 11




Probability of Having goo Remain

P(M = 900|A4 = i)

There were originally 1000 C14 molecules.
Each molecule remains independently with equal probability p;
What is the probability that 900 remain?

" M ~ Bin(n = 1000, p = p;)

. 1000
P(M =900|A =1) = ( 000 ) ()29 - (1 — p;)L00

. J

é )
Each molecules’ time to live is exponential with A = 1/8267

Let T be the time to decay for any one molecule |
T ~Exp(A=1/8267) p;=P(T >i)=1—P(T <i)=e =67

\ A University




Inference as Code

P(A = i|M = 900) = P(M = 900|A = i) - P(A = i) @

def update_belief(m = 900):
Returns a dictionary A, where A[i] contains the
corresponding probability, P(A=i] M =900).
m is the number of C14 molecules remaining and i
is age in years. i isin the range 100 to 10000
pr_A={}
n_years = 9901
for i in r@(loo,loooml):
prior=1/n_years # P(A =)
likelihood = calc_likelihood(m, i) # P(M=m | A=i)
pr_A[i] = prior * likelihood

# ormalization constant
rmalize(pr_A)
retarm pr——7=

Chris Piech, CS109 Stanford University 13




Probability of Having goo Remain

P(M = 900|A4 = i)

(

def calc_likelihood(m =900, age):
Computes P(M =m | A =age), the probability of
having m molecules left given the sample is age
years old. Uses the exponential decay of C14
n_original = 1000
p_remain = math.exp(-age/C14_MEAN_LIFE)
return stats.binom.pmf(m, n_original, p_remain)

Chris Piech, CS109
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Probability of Having goo Remain
P(M = 900|A = 1)

4 )

def calc_likelihood(m =900, age):
Computes P(M =m | A =age), the probability of
having m molecules left given the sample is age
years old. Uses the exponential decay of C14
n_original = 1000 + delta_start(age)
p_remain = math.exp(-age/C14_MEAN_LIFE)
return stats.binom.pmf(m, n_original, p_remain)

Chris Piech, CS109 Stanford University 15




Bayes with ‘Can mix
variables discrete and

continuous

Why is inference hard?

Normalization Likelihood

term is trippy term can be
at first complex



Bayes + Continuous Random Variables

Let X be a continuous random variable

Let N be a discrete random variable

P(X = z|N = n)P(N = n)

P(N=n|lX=xzx) = PX = 1)

P(N:n\X:x):f(X:x‘N:’n)-e-P(N:n)

FX=1)
P(N =n|X = z) = f(Xx”}[(Xn);E)P(Nn)

Chris Piech, CS109 Stanford University




End Review




Today: Compare and Contrast Many Examples
Age from Name

Age from C14 Updated Delivery Prob

Query Name:| Katherine v

0.0
0
0
0.
Z o
g 0.
£ o

& ips:iryeyes.al/messurs

Left Eye

rrrrrrrr : 4%
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Name 2. Age Number of
people with this

name born this

a data which contains counts of how many US residents were born with a given name in a given year, based off yea r

Because of shifting patterns in name popularity, a person's name is a hint as to their age. The United States publishes

Social Security applications. We can use inference to compute the reverse probability distribution: an updated belief
in a person's age, given their name. As a reminder, if I know the year someone was born, I can calculate their age

within one year.

QueryName:{ Michael \/] P(B — b’ N — n) ~ COHII‘;ﬂ(b, ‘ﬂ;)

0.020 X
0.015 Name 1‘
0.010

. ' D
Birth year Size of Dataset

Probability

0.005
0 —
S O A N N A B P\ IR R AR VI S
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Name 2 Age

Because of shifting patterns in name popularity, a person's name is a hint as to their age. The United States publishes
a data which contains counts of how many US residents were born with a given name in a given year, based off
Social Security applications. We can use inference to compute the reverse probability distribution: an updated belief
in a person's age, given their name. As a reminder, if I know the year someone was born, I can calculate their age

within one year.

Query Name: | Michael v

0.025

0.020

0.015

Probability

0.010

0.005

count(b, n)
k

P(B=b,N =n)~

Birth year Name Size of Dataset

P(B = 1964|N = Michael)

How can you use the joint to compute
this?

Chris Piech, CS109 Stanford University 21



Name 2 Age

Because of shifting patterns in name popularity, a person's name is a hint as to their age. The United States publishes
a data which contains counts of how many US residents were born with a given name in a given year, based off
Social Security applications. We can use inference to compute the reverse probability distribution: an updated belief
in a person's age, given their name. As a reminder, if I know the year someone was born, I can calculate their age
within one year.

Query Name:| Michael v

0.025

0.020

e
(=)
_
»

Probability
o
[«
S

0.005

Chris Piech, CS109

count(b, n)
k

P(B=b,N =n)~

Size of Dataset

Birth year Name

P(B = 1964|N = Michael)

How can you use the joint to compute
this?

P(B = 1964, N = Michael)

> P(B =b, N = Michael)
b

Stanford University 22



Name 2 Age

count(b, n)

Because of shifting patterns in name popularity, a person's name is a hint as to their age. The United States publishes P ( B — b? N — n) ﬁ
a data which contains counts of how many US residents were born with a given name in a given year, based off k
Social Security applications. We can use inference to compute the reverse probability distribution: an updated belief
in a person's age, given their name. As a reminder, if I know the year someone was born, I can calculate their age

within one year.

Birth year Name Size of Dataset

Query Name: | Michael v

0.025

P(B = b|N = Michael)

0.015

Probability

0.010

0003 Describe how you would compute the
0 entire PMF using code.

Chris Piech, CS109 Stanford University 23



Name 2 Age P(B = b|N = Michael)

Describe how you would compute the
entire PMF using code.

def update belief name to age(name = 'Michael'):
# pr_ageli] is P(Age =i| name).
# prob_name_and_age is just a counting from the US
# Social Security database.
pr_age = {}
foriinrange(10,110):
pr _ageli] = calc_prob_name_and_age(name, i)
# implicitly computes the normalization constant
normalize(pr_age)
return pr_age

Chris Piech, CS109 Stanford University 24




Compare and Contrast Code: (1) Bayesian Carbon Dating

Bl P(Age=x) Observation
0.00012
Remaining C14: 900
0.00010

\

.\/

B P(Age=x) Afte r

0.00008

0.00006

0.00004

0.00002

ﬂ 0.005

0.004

P(A = a|M = 900) = 0.003
P(M = 9{][}|A — ﬂ,)P(A — ﬂ) 0.002

0.001

> P(M =900|A=i)P(A=i)"

Chris Piech, CS109 Stanford University 25



Compare and Contrast Code: (2) Baby Delivery

o lts 19 days until the
0,035 Il Probability of delivery due date and o ba by
v

0.030

0.025
0.020
0.015
0.010 II
0.005 ||““| B Probability of delivery
P —— nllll““"““l“
AT I

A AR >N DN 5 9 0 010
For each value d: 0.08
0.06

P(D = d|no child so far)
0.04

~ P(no child so far|D = d)P(D = d)
T Pwashg ||||||||IIIII““|“ “l\l
0

SRR D P D PN NI T

LIris riecri, Lo 1uy JLaliiviu ulilvel DIL)’




Compare and Contrast Code: (3) Name To Age

Because of shifting patterns in name popularity, a person's name is a hint as to their age. The United States publishes
a data which contains counts of how many US residents were born with a given name in a given year, based off
Social Security applications. We can use inference to compute the reverse probability distribution: an updated belief
in a person's age, given their name. As a reminder, if I know the year someone was born, I can calculate their age

within one year.

P(N = Michael, B = 1964
P (B = 1964 | N = Michael) = ( P(NIC: a]jh’chael) ) Querzl::;ne:[ Michael v J

( count(1964,Michael) )

k 0.020
Z count(y,Michael)
yEyears k 2 0015
=
count (1964, Michael) 3 bord
~ . £ o
> yeyears count(y, Michael)
0.005
. .
R T A A S A R
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def update_belief _carbon_dating(m = 900):

# pr_A[i] is P(Age =i| m =900).

pr_A={}

foriin range(100,10000+1):
prior=1/n_years#P(A = i)
likelihood = calc_likelihood(m, i) #P(M=m | A=i)
pr_A[i] = likelihood * prior

# implicitly computes the normalization constant

normalize(pr_A)

return pr_A

def update belief_name_to age(name = 'Michael):
# pr_ageli] is P(Age = i| name).
# prob_name_and_age is just a counting from the US
# Social Security database.
pr_age = {}
foriinrange(10,110):
pr_ageli] = calc_prob_name_and_age(name, i)
# implicitly computes the normalization constant
normalize(pr_age)
return pr_age

def update belief baby(prior, today = 10):
# pr_D[i] is P(D =i| No Baby Yet).
pr_D={}
foriin range(-50,25):

# P(NoBaby | D =)
likelihood = 0 if i < today else 1
pr_DJi] = likelihood * prior]i]
# implicitly computes the LOTP
normalize(pr_D)
return pr_D

-

What do you notice
is the same. What is
different?

\_

~

/

28



Normalize in Python

# list normalization
def normalize_list(data_list):
total_sum = np.sum(data_list)
return np.array(data_list) / total_sum

>>> norm = normalize_list([10, 20, 30, 40])
>>> np.sum(norm) # 1.0, always (within floating point error)

return
[0.10.2 0.3 0.4]

# dictionary normalization
def normalize dict(data_dict):
total_sum = sum(data_dict.values())
normalized = {}
for key, value in data_dict.items():
normalized[key] = value / total_sum
return normalized

>>> norm = normalize_dict({'a": 100, 'b": 200, 'c": 300})
>>> np.sum(norm.values()) # 1.0, always (within floating point error)
Chris Piech, CS109

return
{'a': 0.166, 'b": 0.333, 'c": 0.5}

Stanford University 29



® 0@ bookapp — Python — 83x24

...R/coterm/src — -zsh ... ...R/coterm/src — -zsh ... ...esearch/LLM — -zsh ... ...app/bookapp — -zsh ...p/bookapp — Python

>>> def normalize _dict(data_dict):

total sum = sum(data_dict.values())

normalized = {}

for key, value in data_dict.items():
normalized[key] = value / total_sum

. return normalized

|5 s

>>> before = {"a":5, "b":0.1}

>>> after = normalize_dict(before)

>>> after

{'a': 0.9803921568627452, 'b': 0.019607843137254905}

>>> before

{'a': 5, 'b': 9.1}

>>> before = {"cats":2, "dogs":100, "snakes":1}

>>> normalize_dict(before)

{'cats': 0.019417475728155338, 'dogs': 0.970873786407767,

77669}

[

[>>>

[>>>

>>>

[>>>

[>>>

>>> |

'snakes':

...pp/bookapp — -zsh ...| +

0.0097087378640

|
|
|
|
|
|

onris riecn, Lo 1uy
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Are you ready
For Hidden Chambers???




Hldden Pyram1d Chambers with P01sson + Bayes

B & @ O I

Chris Piech, CS109 swanford University




Basics of Muography

Beer Lambert Law

A, = 100 - ¢—%/40

space. As they pass
through limestone,

s
Muons come from u

s

|
some are absorbed “

Rate of muons depends on x,
amount of limestone

SISO 00

Muon detector

Chris Piech, CS109 Stanford University




a. (6 points) Imagine the entire 100 meter path is limestone. In that case, the rate of muons arriving per

month on the detection plate is 100-¢~190/40 = 8 2. What is the probability that in one month you would
observe 12 muons?

Beer Lambert Law

M, = 100 - ¢~ %/40

space. As they pass
through limestone,

s
Muons come from m
s
|
some are absorbed H

Rate of muons depends on X,
amount of limestone

SISO 00

Muon detector

34



b. (14 points) Let X be your belief in the meters of limestone above the detection plate. Your prior belief
is that any number of meters from 0 to 100 is equally likely: X ~ Uni(0, 100). After one month, your
detection plate has been hit by 12 muons. What is your updated belief in X?

Recall: You may leave your answer with integrals or sums. You don’t need to simplify for full credit.

Muons come from
space. As they pass
through limestone,
some are absorbed

M, = 100 - ¢~ %/40

o
|
|
|

Rate of muons depends on X,
amount of limestone

SISO 00

Muon detector

35



Here is what that PDF equation looks like:

Number of muons (m): =@

0.040
0.035

0.030

L

(@

e

E 0.020
>

0.025

I
s 0.015
g

0.010

0.005

12

R AR RN SR

S AN N HYE S WD
TR TR PP QTG AT A

Amount of Limestone (x)
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Are you ready
For Stanford Acuity Test???




A Better Eye Test

https://www.thelancet.com/journals/lancet/article/PIlIS0140-6736(21)02149-8/fulltext

https://www.science.org/content/article/eye-robot-artificial-intelligence-dramatically-
improves-accuracy-classic-eye-exam

https://ojs.aaai.org/index.php/AAAl/article/view/5384/5240

a) | | b)
N R =6 E 030 Normal Extra letters per line
DOVHR LT = 0.25 ®
CZRHS FPH - g
ONHRC OLCF (5 --Snellen
DKSNV DHJBS 2 0.20 ©-ETDRS
e : ey S 015 -t
C) eve m s +StAT
p L e p— B L
Left Eye StAT Algorithm ?!P O l 0
0.00
- 10 20 30 40 50 60 70 80 90 100

Exam Length (n letters)
Figure 1: a) ETDRS, b) Snellen and c) StAT eye exams. Chris Piech, CS109 Stanford University 39




Prior Belief in Ability to See (Random Var A4)

0.0200 A

0.0175 A

0.0150 A

0.0125 A

0.0100 A

Probability Mass

0.0075 A

0.0050 A

0.0025 A

010 012 014 016 018 liO
Can’t see Standard
vision

Chris Piech, CS109 Stanford University 40




PMF is Actually Stored as a Dictionary

def main():
belief = get _prior_belief()

a P(A=a) a P(A=a) a P(A=a)
0.00 0.00198 0.20 0.00372 0.80 0.01684
0.01 0.00205 0.21 0.00384 0.81 0.01708
0.02 0.00211 0.22 0.00396 0.82 0.01731
0.03 0.00218 0.23 0.00408 0.83 0.01753
0.04 0.00225 0.24 0.00421 0.84 0.01774
0.05 0.00233 0.25 0.00434 0.85 0.01795
0.06 0.0024 0.26 0.00447 0.86 0.01814
0.07 0.00248 0.27 0.00461 0.87 0.01832
0.08 0.00256 0.28 0.00475 0.88 0.01848
0.09 0.00264 0.29 0.00489 HEE 0.89 0.01864
0.10 0.00273 0.30 0.00504 0.90 0.01877
0.11 0.00281 0.31 0.00519 0.91 0.0189
0.12 0.0029 0.32 0.00535 0.92 0.019
0.13 0.00299 0.33 0.00551 0.93 0.01909
0.14 0.00309 0.34 0.00567 0.94 0.01916
0.15 0.00319 0.35 0.00584 0.95 0.01921
0.16 0.00329 0.36 0.00601 0.96 0.01924
0.17 0.00339 0.37 0.00619 0.97 0.01925

0.18 0.0035 0.38 0.00637 0.98 0.01924 iversity 41
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Prior Belief in Ability to See (Random Var A4)

As a graph

belief = get prior_belief()

As a dictionary

0.0200 A

0.0175 A

0.0150 A

0.0125 A

0.0100 A

0.0075 A

Probability Mass

0.0050 A

0.0025 A

B

.
oo’

o

Can't see

0.6

a P(A=a)
R 0.00 0.00198
'S 0.01 0.00205
0.02 0.00211
0.03 0.00218
0.04 0.00225
0.05 0.00233
0.06 0.0024
0.07 0.00248
0.08 0.00256
0.09 0.00264
0.10 0.00273
0.11 0.00281
0.12 0.0029
0.13 0.00299
0.14 0.00309
0.15 0.00319
0.16 0.00329
0.17 0.00339
0:8 1:0 0.18 0.0035
S’randard 0.19 0.00361
vision

Chris Piech, CS109

a P(A=a)
0.20 0.00372
0.21 0.00384
0.22 0.00396
0.23 0.00408
0.24 0.00421
0.25 0.00434
0.26 0.00447
0.27 0.00461
0.28 0.00475
0.29 0.00489
0.30 0.00504
0.31 0.00519
0.32 0.00535
0.33 0.00551
0.34 0.00567
0.35 0.00584
0.36 0.00601
0.37 0.00619
0.38 0.00637
0.39 0.00655

a
0.80
0.81
0.82
0.83
0.84
0.85
0.86
0.87
0.88
0.89
0.90
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99

Stanford University 42

P(A=a)
0.01684
0.01708
0.01731
0.01753
0.01774
0.01795
0.01814
0.01832
0.01848
0.01864
0.01877

0.0189

0.019
0.01909
0.01916
0.01921
0.01924
0.01925
0.01924
0.01921



The Patient is Shown One Letter and They Get it Wrong

® © ® [ vision Test x  +
< C Y @& myeyes.ai/measure h o B © B OSN & ;
Font size 0.7

User: wrong

Progress: 5%

O bse rvatl on KY — O ' Stanford University 43




Number or Dictionary?

belief

P(Aza\Y:o):P(Y=0|A=a)P(A:a)

P(Y = 0)

belief[a] = 0.001

Chris Piech, CS109 Stanford University 44



Today: I am going to simplify the units of vision

Normally doctors measure ability to see in
logarithmic units. To make today’s demo
easier to understand

| have translated both onto a

[0, 1] scale.

Where O means can’t see and 1.0 is
standard vision

Chris Piech, CS109 Stanford University 45




Posterior Belief in Ability to See (Random Var 4)

—
P(A =aly =0)
0.0150 - 3

0.0125 +

0.0100 -

0.0075 -

Probability Mass

0.0050 A

0.0025 A

010 012 014 016 0:8 110
Standard
vision

Chris Piech, CS109 Stanford University 46
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Bayes with Random Variables

808 [ vacms x + v osse,
€ 2 C 0 & mysyessimesue Gk *BECRONP ! e
1 0.013{ .
Left Eye - .
0.012 4 .

0.0125 0.011 4 :
0.0100 3
0.0075

User: wrong e

P(A = a) Observation Y=0  P(A=alY =0)
(At font size s))

P(Y =0|A =a)P(A = a)

P(A=alY =0) = PY = 0)

Stanford University 47



Inference on a non-bernoulli random variable

In plain English: run bayes for each value of a

soee
o* ®e

0.0134 .7

0.012 ~

0.011 -

0.010 A

0.009 ~

0.008 A

P(A = CL‘Y = O) # RV bayes as code
def update(belief, obs):
for a in support:
prior_a = belief[a]
likelihood = calc_likelihood(a, obs)
belief[a] = prior_a * likelihood
normalize(belief)

...........
. .
o .
.
0
)
0
o
. .
. *
.
o*
ccccc
.....
.......

likelihood

0.0

O\A =a)\P(A =

a)

= 0)

Chris Piech, CS109
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Normalize???

# RV bayes as code
def update(belief, obs):
for a in support: In plain English: this is
prior_a = belief[a] the numerator, summed

likelihood = calc_likelihood(a, obs)
belief[a] = prior_a * likelihood
normalize(belief)

over all values of A

P(Y =0|A = a)P(A = a) \
P(Y =0)
 P(Y =0/A=a)P(A =
T Y A PY=04=12
P(Y=0[A=a)P(A=a

:Yz%Amyznm:wﬁmm?a)

ChrisRieet =100 Stanford University 49
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Inference

In general Bayes theorem
with a random variable is like
the cellphone problem:
multiple possible
assignments to keep track of

’

Still true when some variables are continuous

Chris Piech, CS109 Stanford University 50




Random Variables

Not all beliefs can be
represented as a function.
Dictionary / table is a great
way to represent a random

variable belief.

’

This is formally called non-parametric

Chris Piech, CS109 Stanford University 51



Representing Continuous Variables

Dictionary can also be used
to represent a discretization
of a continuous random var

’

| do it all the time! Yay compute!

Chris Piech, CS109 Stanford University 52




Multiple observations??




Multiple Observations
\ —e Yrrn °'°2°°: ........

Qbsi )

P(A : a) ) Observation Y =0 . P(A _ afY - )
(At font size 0.7)

0.0075 1

User: wrong

o % + 0 i LI I

0.0225 A
08 [gusnten x4
C O & myeyesaiimessure 0.0200 4
Left
0.0175 A
0.0150 -
0.0125 4
0.0100 -
0.0075 A
0.0050 -

User: correct

- Observation Y =10 P( A :‘ a Y : 1)
P (A — CL) (%Esgg{lgm%glze 0. 8) Stanford University




Multiple Observations

Single Observation:

P(A=a|R1)=P(Ri|A=a)-P(A=qa) - K

Multiple Observations:
P(A — CL|R1,R2) — P(Rl,RQ‘A — CL) y P(A — CL) y K2
= P(R2|A=a) - P(R1|A=a) - P(A=a)- K,

Chris Piech, CS109 Stanford University 63




Multiple Observations

Single Observation:

P(A=a|R,y)=|P(Ri|A=a)-P(A=a) - K

Multiple Observations:

P(A: CL|R1,R2) — P(Rl,RQ‘A: CL) P(A: CL) -K2

= P(R2|A=a){P(Ri|A=a) - P(A=a)- K,

Stanford University 64




Posterior becomes new prior
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Beyond Inference:
How do you select the next size to
show?




Today: Five New Real + Exciting Problems

Age from C14

Updated Delivery Prob

Stanford Eye Test

& ips:iryeyes.al/messurs

Left Eye

Progress: 40%

Chris Piech, CS109

Age from Name
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Today: Compare and Contrast Many Examples
Age from Name

Age from C14 Updated Delivery Prob

Query Name:| Katherine v

0.0
0
0
0.
Z o
g 0.
£ o

& ips:iryeyes.al/messurs

Left Eye

rrrrrrrr : 4%
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Practice!

¢ & psetapp.stanford.edu @
Chess.com Puzzles # Answer Editor @ Solution
Python: o

1 import math
Chess.com is a website for playing chess. They are trying to estimate how well a >
player can solve chess puzzles (puzzle ability) as a random variable, A, which can 3
take on integer values in the range 0 to 100 inclusive. Higher abilities mean the 4
5
6
7
8
9

player is better at chess puzzles. Note that ability is discrete.

def update_belief(prior, observation):
# TODO: your code here
return prior

# Helper Functions!

def p_correct_given_ability(ability, difficulty):
Wi
This uses item response theory to model the chance that a
patient with a given ability will correctly solve a chess
puzzle
p_guess = 0.05
p_slip = 0.08
scaling = 0.25

Write a function update_belief which takes in a prior belief in a player's puzzle L
1.0
ability and an observation of them solving a puzzle. Your function should infer the
posterior belief in the player's ability, based on the observation using Bayes' 0.9
Theorem (with random variables).
0.8
Representation of Belief 07
Both the prior and the posterior you return should be probability mass functions 06
for ability. These probability mass functions are represented as a dictionary where
the keys are all the values that ability can take on [0, 100]. The value corresponding 05
to key i represents P(A = 7). The posterior that you return should be a dictionary 04
with the exact same keys, where the value corresponding to key i represents
P(A =i|Y = y).Y is a Bernoulli random variable which is 1 if the player answered 038
the puzzle correct. 02
Previous Question Next Question 0.1

Chris Piech, CS109 Stanford University s2




See you Monday!
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