
CS109: Probability for Computer Scientists

Lecture 12 — General Inference

Feb 2

Problem 1: Groundhog Day

Did you know today is Groundhog’s Day?

Sees shadow = 6 more weeks of winter.

Doesn’t see shadow = early spring.

Based on historical data:

• When the groundhog sees shadow, 70% chance of 6 more weeks of winter.

• When the groundhog doesn’t see shadow, 40% chance of 6 more weeks of winter.

• Before we observe the groundhog, we think it is equally likely to be an early spring or 6 more
weeks of winter.

a) Compute the probability of 6 more weeks of winter given that the groundhog sees his shadow.

Solution

Let W = “6 more weeks of winter” and S = “sees shadow”. From the text:

P (W ) = 0.5, P (W c) = 0.5, P (W | S) = 0.7, P (W | Sc) = 0.4.

Convert to likelihoods:
P (S | W ) = 0.7, P (S | W c) = 0.6

(since P (Sc | W c) = 0.4 from the second bullet).
Then Bayes:

P (W | S) = P (S | W )P (W )

P (S | W )P (W ) + P (S | W c)P (W c)
=

0.7 · 0.5
0.7 · 0.5 + 0.6 · 0.5

=
0.35

0.65
≈ 0.54.

So the PMF is:
P (W | S) ≈ 0.54, P (W c | S) ≈ 0.46.
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Problem 2: Lidar in 1D

Let T be the true distance. Your prior belief is: T ∼ N(µ = 1, σ2 = 3). Your sensor has
uncertainty:

X | (T = t) ∼ N (µ = t, σ2 = 1.5).

You observe: X = 4.

a) Write Bayes’ rule for the posterior density in the form

f(T = t | X = 4) ∝ f(X = 4 | T = t) · f(T = t).

(No need to simplify.)

b) (Optional) Compute the posterior distribution for T given X = 4. Specifically, give the mean
and variance of the posterior distribution. Will require some algebra and completing the
square.

c) (Optional — Super challenge: 2D Tracking)

Now the object is at an unknown location (X,Y ).

Prior: you believe (X,Y ) is centered around (3, 3) with joint density

f(X = x, Y = y) =
1

8π
exp

(
−(x− 3)2 + (y − 3)2

8

)
.

Likelihood: you observe a noisy distance reading D from a sensor at (0, 0). The sensor
model is

D | (X = x, Y = y) ∼ N
(
µ =

√
x2 + y2, σ2 = 1

)
,

and you observe D = 4. Write the unnormalized posterior density using ∝:

f(X = x, Y = y | D = 4) ∝ f(D = 4 | X = x, Y = y) · f(X = x, Y = y).
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Solution

a)
f(T = t | X = 4) ∝ f(X = 4 | T = t) f(T = t).

b) Normal-normal update with prior variance σ2
0 = 3 and sensor variance σ2

x = 1.5:

σ2
post =

(
1

σ2
0

+
1

σ2
x

)−1

=

(
1

3
+

1

1.5

)−1

=

(
1

3
+

2

3

)−1

= 1.

µpost = σ2
post

(
µ0

σ2
0

+
x

σ2
x

)
= 1

(
1

3
+

4

1.5

)
=

1

3
+

8

3
= 3.

Therefore,
T | (X = 4) ∼ N (3, 1).

Problem 3: Size of a Joint Distribution

Suppose you have N binary random variables.

a) If N = 9, how many entries are in the full joint probability table?

b) For general N , how many entries are in the full joint probability table?

Solution

Joint table size = 2N .

So for N = 9, 29 = 512 entries.
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Problem 4: Bayes Net with Probabilities

Consider the Bayes net with binary variables:

Flu → Fever, (Flu, U) → Tired,

where U stands for “Undergrad”.

Given probabilities:
P (Flu = 1) = 0.1, P (U = 1) = 0.8,

P (Fever = 1 | Flu = 1) = 0.9, P (Fever = 1 | Flu = 0) = 0.05,

P (Tired = 1 | Flu = 0, U = 0) = 0.1

P (Tired = 1 | Flu = 0, U = 1) = 0.8

P (Tired = 1 | Flu = 1, U = 0) = 0.9

P (Tired = 1 | Flu = 1, U = 1) = 1.0

Diagram:

Flu U

Fever Tired

P (Flu=1) = 0.1 P (U=1) = 0.8

P (F=1 | Fl=1) = 0.9
P (F=1 | Fl=0) = 0.05

P (T=1 | Fl=0, U=0) = 0.1
P (T=1 | Fl=0, U=1) = 0.8
P (T=1 | Fl=1, U=0) = 0.9
P (T=1 | Fl=1, U=1) = 1.0

a) Compute P (Fever = 0 | Flu = 1).

b) We want:
P (Flu = 1 | U = 1, T ired = 1).

A simulation-based estimate is:

P (Flu = 1 | U = 1, T ired = 1) ≈ # samples with (Flu = 1, U = 1, T ired = 1)

# samples with (U = 1, T ired = 1)
.

Explain why this ratio is a reasonable approximation.
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Solution

Solution to part (a)

P (Fever = 0 | Flu = 1) = 1− P (Fever = 1 | Flu = 1) = 1− 0.9 = 0.1.

Solution

Solution to part (b)
If we generate many i.i.d. samples from the joint distribution, then (by the law of large
numbers) the fraction of samples satisfying (U = 1, T ired = 1) that also satisfy Flu = 1
approaches the true conditional probability:

P (A | B) = lim
n→∞

#{A ∩B}
#{B}

.

Here A is (Flu = 1) and B is (U = 1, T ired = 1).

Problem 6: The Cousin Problem

A simplified genetic model: each person has a binary variable indicating whether they have a
recessive gene (1) or not (0). We observe that Cousin 1 has the gene.

GP1 GP2

P1 P2S1 S2

C1 C2

P (GP1=1) = 1
20 P (GP2=1) = 1

20

P (S1=1) = 1
20 P (S2=1) = 1

20

observed C1 = 1

We want (conceptually): P (C2 = 1 | C1 = 1).

a) Describe in words: if you do rejection sampling, what samples do you throw away?
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b) Describe in words: among the samples you keep, what do you count?

c) What steps would you include in a function make sample() that generates one full assignment
for all nodes in the Bayes net?

Solution

a) Reject any sampled world where the evidence is violated; here, throw away any sample
with C1 ̸= 1 (i.e., C1 = 0).

b) Among accepted samples (those with C1 = 1), count how many have C2 = 1. Estimate

P (C2 = 1 | C1 = 1) ≈ #accepted samples with C2 = 1

#accepted samples
.

c) make sample() does ancestral sampling: sample GP1, GP2, S1, S2 from priors; sample
P1, P2 from their CPTs given (GP1, GP2); sample C1 from its CPT given (P1, S1);
sample C2 from its CPT given (P2, S2); return the full assignment.
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