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Announcements

(1)Midterm Exam is Tuesday 2/10 7-9pm. 

(2) If you have an academic conflict with the exam or if you have OAE accommodations, 

fill out the form on Ed by end of class on Weds (form will be released very soon). 

(3) Location info will be announced later this week. We are in the AIWG proctoring pilot so 

we will assign you rooms and actual seats in the room as well. 

(4) You may bring 3 pieces of paper – 6 sides if you count front and back – of notes. Can 

be typed, handwritten, pictures, etc. 

(5) Leave phones at home if possible! If not – we will collect them before exam starts. 

(6) Review session on Friday at 4:30pm (location TBD). No lecture on Monday 2/9
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Why You Need a Model

3
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Why You Need a Model
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Multiple Random Variables. Start of Digital Revolution
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Surprisingly Simple (if you can code)

Code

Probability
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Four Prototypical Trajectories

Three Guiding Questions

1. How do people actually define large models?

2. How can we do inference in large models?

3. What data can inform the design process?



Four Prototypical Trajectories

But first some review.
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Did you know today is Groundhog’s day?

9

Sees shadow = 6 more weeks of winter. 

Doesn’t see shadow = early spring. 

Based on historical data:

- When the groundhog sees shadow, 70% chance of 6 more weeks of winter. 

- When the groundhog doesn’t see shadow, 40% chance of 6 more weeks of winter.

- Before we observe the groundhog, we think it is equally likely to be an early spring 

or 6 more weeks of winter.  
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Four Prototypical Trajectories

At this point you know inference with 

two random variables
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Today: Five New Real + Exciting Problems

12

Age from C14 Updated Delivery Prob Age from Name

Hidden Chambers Stanford Eye Test Updating Lidar Belief
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Today: Five New Real + Exciting Problems
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Age from C14 Updated Delivery Prob Age from Name

Hidden Chambers Stanford Eye Test Updating Lidar Belief
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Simple Joint

Repeat Observations Continuous
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Updating Lidar Belief

14

Object
Lidar

True Distance (t)

Your prior belief in true distance

Your sensor has uncertainty

Observe:

Plug in normal PDF

Bayes theorem

Drop constants + 
Combine exponents

After simplifying

Complete the square

Pro tip: keep the -1/2 factored out

Optional 
but neat

Observation (X)
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Tracking in 2D Space?
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Prior

18

Prior belief:
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Likelihood

You now observe a noisy distance reading from a sensor at (0,0). 

It says that your object is distance D = 4 away

μ = actual distance 

σ = 1
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Put it all Together
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Tracking Posterior

-5 5

5
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Four Prototypical Trajectories

Many real world problems have way 

more than two random variables…
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Why You Need a Model

23
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Why You Need a Model
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Multiple Random Variables. Start of Digital Revolution
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Challenge #1: Many Inference Questions

26

Flu

Cold

Under-

grad

Chest 

pain

Tired
Sore

Throat

Fever

Nausea

Inference question:

Given the values of some random

variables, what are the conditional

distributions of some other random

variables?

Strep

Throat
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Flu

Cold

Under-

grad

Chest 

pain

Tired
Sore

Throat

Fever

Nausea

One inference question:

𝑃 𝐹 = 1|𝑁 = 1, 𝑇 = 1

Strep

Throat

Challenge #1: Many Inference Questions
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Flu

Cold

Under-

grad

Chest 

pain

Tired
Sore

Throat

Fever

Nausea

Another inference question:

𝑃 𝐶𝑜 = 1, 𝑈 = 1|𝑆 = 0, 𝐹𝑒 = 0

Strep

Throat

Challenge #1: Many Inference Questions
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Challenge #2: Joint is Large

If we knew the joint distribution,
we can answer all probabilistic
inference questions.

What is the size of the joint 
probability table? 

A.  2𝑁−1 entries

B.  𝑁2 entries

C.  2𝑁 entries

D.  None/other/don’t know

Flu

Cold

Under-

grad

Chest 

pain

Tired
Sore

Throat

Fever

Nausea 𝑁 = 9
all binary RVs

Strep

Throat
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If we knew the joint distribution,
we can answer all probabilistic
inference questions.

What is the size of the joint 
probability table? 

A.  2𝑁−1 entries

B.  𝑁2 entries

C.  2𝑁 entries

D.  None/other/don’t know

Flu

Cold

Under-

grad

Chest 

pain

Tired
Sore

Throat

Fever

Nausea 𝑁 = 9
all binary RVs

Naively specifying a joint distribution 

is, in general, intractable.

Strep

Throat

Challenge #2: Joint is Large
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N can be large…

31
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Four Prototypical Trajectories

Three Guiding Questions

1. How do people actually define large models?

2. How can we do inference in large models?

3. What data can inform the design process?
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Four Prototypical Trajectories

Three Guiding Questions

1. How do people actually define large models?

2. How can we do inference in large models?

3. What data can inform the design process?
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Why You Need a Model

34



Chris Piech + Juliette Woodrow, CS109, 2021

A simpler WebMD

Great! Just specify 24 = 16 joint 
probabilities…?

𝑃 𝐹𝑙𝑢 = 𝑎, 𝐹𝑒𝑣 = 𝑏, 𝑈 = 𝑐, 𝑇 = 𝑑

We can compress the joint if we know 
the generative story…

35

Flu
Under-

grad

TiredFever
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Constructing a Bayesian Network

What would a Stanford flu expert do?

1. Describe the causality.

2. Provide 𝑃 values|causal parents  for 
each random variable

3. Implicitly assumes independences.

36

Flu
Under-

grad

TiredFever
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Recall: Probabilistic Model

Fever

Tired

Flu Undergrad

2. Provide 𝑃 values|causal parents  for each random variable
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Recall: Probabilistic Model

Fever

Tired

Flu Undergrad

2. Provide 𝑃 values|causal parents  for each random variable

Check your understanding: 

    What is 
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Four Prototypical Trajectories

Could we write a python program which 

makes a fake person from this joint?
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To the Code

40

Midjourney 2023. Prompt: “a lot of excited pixar 
characters running off to computers”

ChatGPT 5.2 2026. Prompt: “a lot of cute animated 
characters running off to computers to solve a problem”
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Writing a python 

program that can 

sample from the joint, 

is the same as defining 

the joint.

Can You Sample from the Joint?
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Make a Generative Model

47

A good probabilistic 

model is generative. It 

explains the process 

through which the joint 

is created. 
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Generative Model of Binomial Questions

48
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Generative Model of Hand Written Letters 
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50

Human Level. And More!
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Generative Student Modeling

Juliette Woodrow, Chris Piech, 2021

Used generative grammars to simulate the most 

common buggy programs that TAs would see in LaIR. 
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Generative Models make Independence Assumptions

What would a Stanford flu expert do?

1. Describe the causality.

2. Provide 𝑃 values|causal parents  for 
each random variable

3. Implicitly assumes independences.

52

Flu
Under-

grad

TiredFever
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Each random variable is conditionally 
independent of its causal non-
descendants, given its causal parents. 

53

Flu
Under-

grad

TiredFever

Generative Models make Independence Assumptions
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This model assumes that Flu and being 
an Undergraduate are independent.

Advanced: it also assumes that fever 
and tired are conditionally independent 
given Flu.

You need to tell a generative story. The 
independence assumptions come for 
free. 

54

Flu
Under-

grad

TiredFever

Generative Models make Independence Assumptions
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Bug: Constructing a Bayesian Network

55

Flu
Under-

grad

TiredFever

Must by acyclic!
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Four Prototypical Trajectories

Three Guiding Questions

1. How do people define large models?

2. How can we do inference in large models?

3. What data can inform the design process?
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Four Prototypical Trajectories

Three Guiding Questions

1. How do people define large models?

2. How can we do inference in large models?

3. What data can inform the design process?
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Four Prototypical Trajectories

[suspense]
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Algorithm #2: Rejection Sampling
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Algorithm #2: Rejection Sampling
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Algorithm #2: Rejection Sampling
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Algorithm #2: Rejection Sampling
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Algorithm #2: Rejection Sampling
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Algorithm #2: Rejection Sampling
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Algorithm #2: Rejection Sampling
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Lets try it! 
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Rejection sampling algorithm

68

What is 𝑃 𝐹𝑙𝑢 = 1|𝑈 = 1, 𝑇 = 1 ?
Inference

question:

# samples with 𝐹𝑙𝑢 = 1, 𝑈 = 1, 𝑇 = 1

# samples with 𝑈 = 1, 𝑇 = 1

Why would this definition of approximate probability make sense?

probability ≈  
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Why would this approximate probability make sense?

69

What is 𝑃 𝐹𝑙𝑢 = 1|𝑈 = 1, 𝑇 = 1 ?
Inference

question:

# samples with 𝐹𝑙𝑢 = 1, 𝑈 = 1, 𝑇 = 1

# samples with 𝑈 = 1, 𝑇 = 1

Recall our definition of 

probability as a frequency:
𝑃 𝐸 = lim

𝑛→∞

𝑛(𝐸)

𝑛
𝑛 = # of total trials

𝑛(𝐸) = # trials where 𝐸 occurs

# samples with 𝑈 = 1, 𝑇 = 1
probability ≈  



Each one of these is one joint 
sample

If you can sample enough 
from the joint distribution, 

you can answer any 
probability question



Chris Piech + Juliette Woodrow, CS109, 2021

Four Prototypical Trajectories

Lets try another question



Cousin 1 Cousin 2

?

You observe that someone has a recessive gene. 

What is the probability that their cousin has the same recessive gene?

Each person has a 1/20 chance of having the recessive gene. 



Cousin 1 Cousin 2

?

Parent 1 Parent 2

??

Grand Parent 1

?

Grand Parent 2

?

Spouse 1

?

Spouse 2

?

You observe that someone has a recessive gene. 

What is the probability that their cousin has the same recessive gene?



Cousin 1 Cousin 2

?

Parent 1 Parent 2

??

Grand Parent 1

?

Grand Parent 2

?

Spouse 1

?

Spouse 2

?

You observe that someone has a recessive gene. 

What is the probability that their cousin has the same recessive gene?
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Four Prototypical Trajectories

What’s the matter with 

rejection sampling?
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Probabilistic Model

Fever

Tired

Flu Undergrad
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Probabilistic Model

Fever

Tired

Flu Undergrad



Chris Piech + Juliette Woodrow, CS109, 2021

Back to the code !! 
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MCMC

Markov Chain

Monte Carlo

Many Algorithms
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Each one of these 
is one posterior 

sample:

[Flu, Undergrad, Fever, Tired]

MCMC is a way to sample 
with conditioned variables 

fixed

Many Algorithms
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Many Algorithms

Rejection

Sampling
MCMC Pyro Idea2Text
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Four Prototypical Trajectories

Three Guiding Questions

1. How do people define large models?

2. How can we do inference in large models?

3. What data can inform the design process?
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Four Prototypical Trajectories

Three Guiding Questions

1. How do people define large models?

2. How can we do inference in large models?

3. What data can inform the design process?
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reggae

From Correlation to Bayes Net!

rocky funky folky

opera punk country

dancy

pop

classy

categories

music
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Why is it harder to 
find independences 

here than for bat DNA 
expression?
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Gene1 Gene2 Gene3 Gene4 Gene5 Trait

TRUE FALSE TRUE TRUE FALSE FALSE

FALSE FALSE TRUE TRUE TRUE TRUE

TRUE FALSE TRUE FALSE FALSE FALSE

TRUE FALSE TRUE TRUE TRUE FALSE

FALSE TRUE TRUE TRUE TRUE TRUE

FALSE FALSE FALSE TRUE FALSE FALSE

TRUE FALSE FALSE TRUE FALSE FALSE

TRUE FALSE FALSE TRUE FALSE FALSE

TRUE FALSE TRUE FALSE FALSE FALSE

FALSE TRUE FALSE TRUE FALSE FALSE

TRUE TRUE FALSE TRUE FALSE FALSE

TRUE FALSE FALSE TRUE FALSE FALSE

TRUE FALSE TRUE TRUE TRUE FALSE

FALSE FALSE TRUE TRUE FALSE FALSE

TRUE FALSE FALSE TRUE FALSE FALSE

TRUE FALSE FALSE TRUE FALSE FALSE

…

TRUE FALSE FALSE TRUE FALSE FALSE

Bat Data
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Gene5 Trait

0.76 0.83

0.94 0.85

0.82 0.03

0.94 0.32

0.50 0.10

0.40 0.53

0.90 0.67

0.29 0.71

0.72 0.25

0.15 0.24

0.79 0.98

0.68 0.77

0.71 0.37

0.36 0.18

0.62 0.08

0.59 0.38

0.82 0.76

Expression Amount
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-4

0

4

-4 0 4

-4

0

4

-4 0 4

Spot The Difference
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-2

0

2

4

6

0 5

-2

0

2

4

6

0 5

Spot The Difference
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-2

0

2

4

6

0 5

Vary Together
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-2

0

2

4

6

0 5

Vary Together
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-2

0

2

4

6

0 5

Vary Together
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Understanding Covariance
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Say X and Y are arbitrary random variables

Covariance of X and Y:

])][])([[(),(Cov YEYXEXEYX −−=

The Dance of the Covariance

x y (x – E[X])(y – E[Y])p(x,y)

Above 

mean

Above 

mean
Positive

Below 

mean

Below 

mean
Positive

Below 

mean

Above 

mean
Negative

Above 

mean

Below 

mean
Negative
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Covariance

Poll: (a) positive, (b) negative, (c) zero
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Covariance

Is the Covariance: (a) positive, (b) negative, (c) zero

Positive
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Covariance

Is the Covariance: (a) positive, (b) negative, (c) zero
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Covariance

Is the Covariance: (a) positive, (b) negative, (c) zero

Negative
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Covariance

Is the Covariance: (a) positive, (b) negative, (c) zero



Chris Piech + Juliette Woodrow, CS109, 2021

Covariance

Is the Covariance: (a) positive, (b) negative, (c) zero

Zero
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Say X and Y are arbitrary random variables

Covariance of X and Y:

Equivalently:

▪ X and Y independent → Cov(X,Y) = 0

▪ But Cov(X,Y) = 0 does not imply X and Y independent!

])][])([[(),(Cov YEYXEXEYX −−=

]][][][][[),(Cov XEYEYXEYXEXYEYX +−−=

][][][][][][][ YEXEYEXEYEXEXYE +−−=

][][][ YEXEXYE −=

The Dance of the Covariance
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Consider the following data:

Weight Height Weight * Height

64 57 3648

71 59 4189

53 49 2597

67 62 4154

55 51 2805

58 50 2900

77 55 4235

57 48 2736

56 42 2352

51 42 2142

76 61 4636

68 57 3876

E[W]      

= 62.75

E[H]      

= 52.75

E[W*H]                     

= 3355.83

30

35

40

45

50

55

60

65

40 45 50 55 60 65 70 75 80

H
e

ig
h

t

Weight

Cov(W, H) = E[W*H] – E[W]E[H]

 = 3355.83 – (62.75)(52.75)

 = 45.77  

Covariance and Data
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Four Prototypical Trajectories

Correlation
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Consider the following data:

Weight Height Weight * Height

64 57 3648

71 59 4189

53 49 2597

67 62 4154

55 51 2805

58 50 2900

77 55 4235

57 48 2736

56 42 2352

51 42 2142

76 61 4636

68 57 3876

E[W]      

= 62.75

E[H]      

= 52.75

E[W*H]                     

= 3355.83

30

35

40

45

50

55

60

65

40 45 50 55 60 65 70 75 80

H
e

ig
h

t

Weight

Cov(W, H) = E[W*H] – E[W]E[H]

 = 3355.83 – (62.75)(52.75)

 = 45.77  

What is Wrong With This?
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Cauchy Schwarz, a great way to normalize!
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Say X and Y are arbitrary random variables

• Correlation of X and Y, denoted (X, Y):

• Note: -1  (X, Y)  1 

• (X, Y) = 1   perfectly correlated

• (X, Y) = -1   perfectly negatively correlated

• (X, Y) = 0   absence of linear relationship

◦ But, X and Y can still be related in some other way!

• If (X, Y) = 0, we say X and Y are “uncorrelated”

Y)Var(X)Var(

),(Cov
),(

YX
YX =

Viva La Correlatión
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reggae

Recall: It is a useful starting point

rocky funky folky

opera punk country

dancy

pop

classy

categories

music
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Rock Music Vs Oil?

Hubbert Peak Theory
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Tell your friends!



Chris Piech + Juliette Woodrow, CS109, 2021http://www.bbc.com/news/magazine-27537142

Divorce Vs Butter?



Chris Piech + Juliette Woodrow, CS109, 2021

Four Prototypical Trajectories

Three Guiding Questions

1. How do people actually define large models?

2. How can we do inference in large models?

3. What data can inform the design process?
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Four Prototypical Trajectories

What haven’t we talked about?
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Machine Learning (last section of CS109)

114

Flu
Under-

grad

TiredFever

𝑃 𝐹𝑙𝑢 = 1 = 0.1 𝑃 𝑈 = 1 = 0.8

𝑃 𝐹𝑒𝑣 = 1|𝐹𝑙𝑢 = 1 = 0.9
𝑃 𝐹𝑒𝑣 = 1|𝐹𝑙𝑢 = 0 = 0.05

𝑃 𝑇 = 1|𝐹𝑙𝑢 = 0, 𝑈 = 0 = 0.1
 𝑃 𝑇 = 1|𝐹𝑙𝑢 = 0, 𝑈 = 1 = 0.8
 𝑃 𝑇 = 1|𝐹𝑙𝑢 = 1, 𝑈 = 0 = 0.9
 𝑃 𝑇 = 1|𝐹𝑙𝑢 = 1, 𝑈 = 1 = 1.0 

1. Learn this from data

2. Learn this from data
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