13: Statistics of Multiple RVs

Lisa Yan
May 4, 2020
<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Expectation of Common RVs</td>
<td>13a_expectation_sum</td>
</tr>
<tr>
<td>8</td>
<td>Coupon Collecting Problems</td>
<td>13b_coupon_collecting</td>
</tr>
<tr>
<td>14</td>
<td>Covariance</td>
<td>13c_covariance</td>
</tr>
<tr>
<td>20</td>
<td>Independence and Variance</td>
<td>13d_variance_sum</td>
</tr>
<tr>
<td>27</td>
<td>Exercises</td>
<td>LIVE</td>
</tr>
<tr>
<td>48</td>
<td>Correlation</td>
<td>LIVE</td>
</tr>
</tbody>
</table>
Expectation of Common RVs
Linearity of Expectation is useful

Expectation is a linear mathematical operation. If \(X = \sum_{i=1}^{n} X_i \):

\[
E[X] = E \left[\sum_{i=1}^{n} X_i \right] = \sum_{i=1}^{n} E[X_i]
\]

• Even if you don’t know the distribution of \(X \) (e.g., because the joint distribution of \((X_1, \ldots, X_n) \) is unknown), you can still compute expectation of the sum!!

• Problem-solving key: Define \(X_i \) such that \(X = \sum_{i=1}^{n} X_i \)

Most common use cases:
• \(E[X_i] \) easy to calculate
• Sum of dependent RVs
Expectations of common RVs: Binomial

\[X \sim \text{Bin}(n, p) \quad E[X] = np \]

of successes in \(n \) independent trials with probability of success \(p \)

Recall: \(\text{Bin}(1, p) = \text{Ber}(p) \)

\[
X = \sum_{i=1}^{n} X_i
\]

Let \(X_i = i \)th trial is heads
\(X_i \sim \text{Ber}(p), E[X_i] = p \)

\[
E[X] = E \left[\sum_{i=1}^{n} X_i \right] = \sum_{i=1}^{n} E[X_i] = \sum_{i=1}^{n} p = np
\]
Expectations of common RVs: Negative Binomial

\[Y \sim \text{NegBin}(r, p) \quad E[Y] = \frac{r}{p} \]

of independent trials with probability of success \(p \) until \(r \) successes

Recall: \(\text{NegBin}(1, p) = \text{Geo}(p) \)

\[Y = \sum_{i=1}^{?} Y_i \]

1. How should we define \(Y_i \)?

2. How many terms are in our summation?
Expectations of common RVs: Negative Binomial

\[Y \sim \text{NegBin}(r, p) \quad E[Y] = \frac{r}{p} \]

of independent trials with probability of success \(p \) until \(r \) successes

Recall: \(\text{NegBin}(1, p) = \text{Geo}(p) \)

Let \(Y_i = \) # trials to get \(i \)th success (after \((i - 1) \)th success)

\[Y_i \sim \text{Geo}(p), \quad E[Y_i] = \frac{1}{p} \]

\[Y = \sum_{i=1}^{\infty} Y_i \]

\[E[Y] = E\left[\sum_{i=1}^{r} Y_i \right] = \sum_{i=1}^{r} E[Y_i] = \sum_{i=1}^{r} \frac{1}{p} = \frac{r}{p} \]
Coupon Collecting Problems
Linearity of Expectation is useful

Expectation is a linear mathematical operation. If \(X = \sum_{i=1}^{n} X_i \):

\[
E[X] = E \left[\sum_{i=1}^{n} X_i \right] = \sum_{i=1}^{n} E[X_i]
\]

- Even if you don’t know the distribution of \(X \) (e.g., because the joint distribution of \((X_1, \ldots, X_n) \) is unknown), you can still compute expectation of the sum!!
- Problem-solving key: Define \(X_i \) such that \(X = \sum_{i=1}^{n} X_i \)

Most common use cases:
- \(E[X_i] \) easy to calculate
- Sum of dependent RVs
The **coupon collector’s problem** in probability theory:

- You buy boxes of cereal.
- There are k different types of coupons
- For each box you buy, you ”collect” a coupon of type i.

1. How many coupons do you expect after buying n boxes of cereal?

What is the expected number of utilized servers after n requests?

* 52% of Amazon profits
** more profitable than Amazon’s North America commerce operations

source
Computer cluster utilization

Consider a computer cluster with \(k \) servers. We send \(n \) requests.
- Requests independently go to server \(i \) with probability \(p_i \)
- Let \(X = \# \) servers that receive \(\geq 1 \) request.

What is \(E[X] \)?
Computer cluster utilization

Consider a computer cluster with k servers. We send n requests.

- Requests independently go to server i with probability p_i
- Let $X = \#$ servers that receive ≥ 1 request.

What is $E[X]$?

1. Define additional random variables.

Let: $A_i = \text{event that server } i \text{ receives } \geq 1 \text{ request}$
$X_i = \text{indicator for } A_i$

$$P(A_i) = 1 - P(\text{no requests to } i) = 1 - (1 - p_i)^n$$

Note: A_i are dependent!

2. Solve.

$$E[X_i] = P(A_i) = 1 - (1 - p_i)^n$$
$$E[X] = E\left[\sum_{i=1}^{k} X_i\right] = \sum_{i=1}^{k} E[X_i] = \sum_{i=1}^{k} (1 - (1 - p_i)^n)$$
$$= \sum_{i=1}^{k} 1 - \sum_{i=1}^{k} (1 - p_i)^n = k - \sum_{i=1}^{k} (1 - p_i)^n$$
The coupon collector’s problem in probability theory:

- You buy boxes of cereal.
- There are k different types of coupons
- For each box you buy, you "collect" a coupon of type i.

1. How many coupons do you expect after buying n boxes of cereal?

2. How many boxes do you expect to buy until you have one of each coupon?

What is the expected number of utilized servers after n requests?

What is the expected number of strings to hash until each bucket has ≥ 1 string?

Stay tuned for live lecture!
Covariance
Statistics of sums of RVs

For any random variables X and Y,

$$E[X + Y] = E[X] + E[Y]$$

$$\text{Var}(X + Y) = \ ?$$

But first…
a new statistic!
Spot the difference

Compare/contrast the following two distributions:

Both distributions have the same $E[X]$, $E[Y]$, $\text{Var}(X)$, and $\text{Var}(Y)$

Difference: how the two variables vary with each other.

Assume all points are equally likely.

$$P(X = x, Y = y) = \frac{1}{N}$$
Covariance

The **covariance** of two variables X and Y is:

$$\text{Cov}(X, Y) = E[(X - E[X])(Y - E[Y])]$$

$$= E[XY] - E[X]E[Y]$$

Proof of second part:

$$\text{Cov}(X, Y) = E[(X - E[X])(Y - E[Y])]$$

$$= E[XY] - E[X]E[Y]$$

(linearity of expectation)

$(E[X], E[Y]$ are scalars)
Covarying humans

What is the covariance of weight \(W \) and height \(H \)?

\[
\text{Cov}(W, H) = \mathbb{E}[WH] - \mathbb{E}[W]\mathbb{E}[H]
\]

(positive) \[= 3355.83 - (62.75)(52.75)

= 45.77

\]

Covariance > 0: one variable ↑, other variable ↑

<table>
<thead>
<tr>
<th>Weight (kg)</th>
<th>Height (in)</th>
<th>(W \cdot H)</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>57</td>
<td>3648</td>
</tr>
<tr>
<td>71</td>
<td>59</td>
<td>4189</td>
</tr>
<tr>
<td>53</td>
<td>49</td>
<td>2597</td>
</tr>
<tr>
<td>67</td>
<td>62</td>
<td>4154</td>
</tr>
<tr>
<td>55</td>
<td>51</td>
<td>2805</td>
</tr>
<tr>
<td>58</td>
<td>50</td>
<td>2900</td>
</tr>
<tr>
<td>77</td>
<td>55</td>
<td>4235</td>
</tr>
<tr>
<td>57</td>
<td>48</td>
<td>2736</td>
</tr>
<tr>
<td>56</td>
<td>42</td>
<td>2352</td>
</tr>
<tr>
<td>51</td>
<td>42</td>
<td>2142</td>
</tr>
<tr>
<td>76</td>
<td>61</td>
<td>4636</td>
</tr>
<tr>
<td>68</td>
<td>57</td>
<td>3876</td>
</tr>
</tbody>
</table>

\[
\mathbb{E}[W] = 62.75 \quad \mathbb{E}[H] = 52.75 \quad \mathbb{E}[WH] = 3355.83
\]
Properties of Covariance

The covariance of two variables X and Y is:

$$\text{Cov}(X, Y) = E[(X - E[X])(Y - E[Y])]$$

$$= E[XY] - E[X]E[Y]$$

Properties:

1. $\text{Var}(X) = E[X^2] - (E[X])^2 = \text{Cov}(X, X)$
2. Symmetry
3. Non-linearity
4. Covariance of sums

(to be discussed in live lecture)
Variance of sums of RVs
Statistics of sums of RVs

For any random variables X and Y,

$$E[X + Y] = E[X] + E[Y]$$

$$\text{Var}(X + Y) = \text{Var}(X) + 2 \cdot \text{Cov}(X, Y) + \text{Var}(Y)$$
Variance of general sum of RVs

For any random variables X and Y,

$$\text{Var}(X + Y) = \text{Var}(X) + 2 \cdot \text{Cov}(X, Y) + \text{Var}(Y)$$

Proof:

$$\text{Var}(X + Y) = \text{Cov}(X + Y, X + Y)$$

$$= \text{Cov}(X, X) + \text{Cov}(X, Y) + \text{Cov}(Y, X) + \text{Cov}(Y, Y)$$

$$= \text{Var}(X) + 2 \cdot \text{Cov}(X, Y) + \text{Var}(Y)$$

More generally:

$$\text{Var}\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} \text{Var}(X_i) + 2 \sum_{i=1}^{n} \sum_{j=i+1}^{n} \text{Cov}(X_i, X_j)$$

(proof in extra slides)
Statistics of sums of RVs

For any random variables X and Y,

$$E[X + Y] = E[X] + E[Y]$$

$$\text{Var}(X + Y) = \text{Var}(X) + 2 \cdot \text{Cov}(X, Y) + \text{Var}(Y)$$

For independent X and Y,

$$E[XY] = E[X]E[Y]$$

$$\text{Var}(X + Y) = \text{Var}(X) + \text{Var}(Y)$$

(Lemma: proof in extra slides)
Variance of sum of independent RVs

For independent X and Y,

$$\text{Var}(X + Y) = \text{Var}(X) + \text{Var}(Y)$$

Proof:

 $\qquad = E[X]E[Y] - E[X]E[Y]$
 $\qquad = 0$

X and Y are independent

2. $\text{Var}(X + Y) = \text{Var}(X) + 2 \cdot \text{Cov}(X, Y) + \text{Var}(Y)$
 $\qquad = \text{Var}(X) + \text{Var}(Y)$

NOT bidirectional: $\text{Cov}(X, Y) = 0$ does NOT imply independence of X and Y!
Let's instead prove this using independence and variance!
Proving Variance of the Binomial

\[X \sim \text{Bin}(n, p) \quad \text{Var}(X) = np(1 - p) \]

Let \(X = \sum_{i=1}^{n} X_i \)

Let \(X_i = i\text{th trial is heads} \)
\(X_i \sim \text{Ber}(p) \)
\(\text{Var}(X_i) = p(1 - p) \)

\(X_i \) are independent
(by definition)

\[\text{Var}(X) = \text{Var} \left(\sum_{i=1}^{n} X_i \right) \]
\[= \sum_{i=1}^{n} \text{Var}(X_i) \]
\[= \sum_{i=1}^{n} p(1 - p) \]
\[= np(1 - p) \]

\(X_i \) are independent,
therefore variance of sum
= sum of variance

Variance of Bernoulli
13: Statistics of Multiple RVs

Lisa Yan
May 4, 2020
Where are we now? A roadmap of CS109

Today: Statistics of multiple RVs!

- $\text{Var}(X + Y)$
- $E[X + Y]$
- $\text{Cov}(X, Y)$
- $\rho(X, Y)$

Wednesday: Conditional distributions

- $p_{X|Y}(x|y)$
- $E[X|Y]$

Friday: Modeling with Bayesian Networks

Last week: Joint distributions

- $p_{X,Y}(x, y)$
Don’t we already know linearity of expectation?

Expectation is a linear mathematical operation. If \(X = \sum_{i=1}^{n} X_i \):

\[
E[X] = E \left[\sum_{i=1}^{n} X_i \right] = \sum_{i=1}^{n} E[X_i]
\]

We covered this back in Lecture 6 (when we first learned expectation)!

- Proved binomial: sum of 1s or 0s
- Hat check (section): sum of 1s or 0s
- We ignored (in)dependence of events.

Why are we learning this again???

- Now we can prove it!
- We can now ignore (in)dependence of random variables.
- Our approach is still the same!
The coupon collector’s problem in probability theory:

- You buy boxes of cereal.
- There are k different types of coupons.
- For each box you buy, you ”collect” a coupon of type i.

1. How many coupons do you expect after buying n boxes of cereal?

2. How many boxes do you expect to buy until you have one of each coupon?

What is the expected number of utilized servers after n requests?

What is the expected number of strings to hash until each bucket has ≥ 1 string?
Check out the properties on the next slide (Slide 32). Post any clarifications here!

https://us.edstem.org/courses/109/discussion/54580

Breakout rooms: 4 min. Introduce yourself!
Hash Tables

Consider a hash table with k buckets.
- Strings are equally likely to get hashed into any bucket (independently).
- Let $Y =$ # strings to hash until each bucket ≥ 1 string.

What is $E[Y]$?

1. Define additional random variables. How should we define Y_i such that $Y = \sum_i Y_i$?

2. Solve.
Hash Tables

Consider a hash table with k buckets.
- Strings are equally likely to get hashed into any bucket (independently).
- Let $Y = \#$ strings to hash until each bucket ≥ 1 string.

What is $E[Y]$?

1. Define additional random variables.
 - Let: $Y_i = \#$ of trials to get success after i-th success
 - Success: hash string to previously empty bucket
 - If i non-empty buckets: $P($success$) = \frac{k-i}{k}

2. Solve.

 \[
P(Y_i = n) = \left(\frac{i}{k}\right)^{n-1} \left(\frac{k-i}{k}\right)
 \]

 Equivalently, $Y_i \sim \text{Geo} \left(p = \frac{k-i}{k} \right)$

 \[
 E[Y_i] = \frac{1}{p} = \frac{k}{k-i}
 \]
Hash Tables

Consider a hash table with \(k \) buckets.
- Strings are equally likely to get hashed into any bucket (independently).
- Let \(Y = \# \) strings to hash until each bucket \(\geq 1 \) string.

What is \(E[Y] \)?

1. Define additional random variables.
 Let: \(Y_i = \# \) of trials to get success after \(i \)-th success

 \[Y_i \sim \text{Geo} \left(p = \frac{k - i}{k} \right), \quad E[Y_i] = \frac{1}{p} = \frac{k}{k - i} \]

2. Solve.
 \[Y = Y_0 + Y_1 + \cdots + Y_{k-1} \]

 \[E[Y] = E[Y_0] + E[Y_k] + \cdots + E[Y_{k-1}] = \frac{k}{k} + \frac{k}{k-1} + \frac{k}{k-2} + \cdots + \frac{k}{1} = k \left[\frac{1}{k} + \frac{1}{k-1} + \cdots + 1 \right] = O(k \log k) \]

Errata (5/9): \(Y_i \) independent

Dependence of \(Y_i \) doesn’t affect expectation!
Covariance

The **covariance** of two variables X and Y is:

$$
\text{Cov}(X, Y) = E[(X - E[X])(Y - E[Y])] \\
= E[XY] - E[X]E[Y]
$$
Slide 37 has a question to go over by yourself.

Post any clarifications here!

https://us.edstem.org/courses/109/discussion/54580

Think by yourself: 1 min
Feel the covariance

Is the covariance positive, negative, or zero?

1. $X = x \quad Y = y \quad E[X] \quad E[Y]

2. $X = x \quad Y = y \quad E[X] \quad E[Y]

3. $X = x \quad Y = y \quad E[X] \quad E[Y]

Covariance:

\[
\]
Feel the covariance

Is the covariance positive, negative, or zero?

1. Positive
 - $X = x$
 - $Y = y$
 - $E[X]$
 - $E[Y]$

2. Negative
 - $X = x$
 - $Y = y$
 - $E[X]$
 - $E[Y]$

3. Zero
 - $X = x$
 - $Y = y$
 - $E[X]$
 - $E[Y]$

Covariance formula:

Properties of Covariance

The covariance of two variables X and Y is:

\[
\]

Properties:

1. $\text{Cov}(X, Y) = \text{Cov}(Y, X)$
2. $\text{Var}(X) = \text{Cov}(X, X)$
3. $\text{Cov}(\sum_i X_i, \sum_j Y_j) = \sum_i \sum_j \text{Cov}(X_i, Y_j)$
4. $\text{Cov}(aX + b, Y) = a\text{Cov}(X, Y) + b$?

Covariance is non-linear: $\text{Cov}(aX + b, Y) = a\text{Cov}(X, Y)$
Statistics of sums of RVs

For any random variables X and Y,

$$E[X + Y] = E[X] + E[Y]$$

$$\text{Var}(X + Y) = \text{Var}(X) + 2 \cdot \text{Cov}(X, Y) + \text{Var}(Y)$$

For independent X and Y,

$$E[XY] = E[X]E[Y]$$

$$\text{Var}(X + Y) = \text{Var}(X) + \text{Var}(Y)$$

$\text{Cov}(X, Y) = 0$ does NOT imply independence of X and Y!
Zero covariance does not imply independence

Let X take on values \{-1,0,1\} with equal probability $1/3$.

Define $Y = \begin{cases} 1 & \text{if } X = 0 \\ 0 & \text{otherwise} \end{cases}$

What is the joint PMF of X and Y?
Check out the properties on the next slide (Slide 43). Post any clarifications here!

https://us.edstem.org/courses/109/discussion/54580

Breakout rooms: 4 min. Introduce yourself!
Zero covariance does not imply independence

Let X take on values $\{-1, 0, 1\}$ with equal probability $1/3$.

Define $Y = \begin{cases}
1 & \text{if } X = 0 \\
0 & \text{otherwise}
\end{cases}$

1. $E[X] = \quad \quad E[Y] = \quad \quad$

2. $E[XY] = \quad \quad$

3. $\text{Cov}(X, Y) = \quad \quad$

4. Are X and Y independent?
Zero covariance does not imply independence

Let X take on values $\{-1, 0, 1\}$ with equal probability $1/3$.

Define $Y = \begin{cases} 1 & \text{if } X = 0 \\ 0 & \text{otherwise} \end{cases}$

1. $E[X] = -1 \left(\frac{1}{3}\right) + 0 \left(\frac{1}{3}\right) + 1 \left(\frac{1}{3}\right) = 0$

 $E[Y] = 0 \left(\frac{2}{3}\right) + 1 \left(\frac{1}{3}\right) = \frac{1}{3}$

2. $E[XY] = (-1 \cdot 0) \left(\frac{1}{3}\right) + (0 \cdot 1) \left(\frac{1}{3}\right) + (1 \cdot 0) \left(\frac{1}{3}\right) = 0$

3. $\text{Cov}(X, Y) = E[XY] - E[X]E[Y] = 0 - 0(1/3) = 0$! does not imply independence!

4. Are X and Y independent?

 $P(Y = 0|X = 1) = 1$

 $\neq P(Y = 0) = \frac{2}{3}$
Interlude for jokes/announcements
Announcements

Problem Set 3
Due: Monday 5/8 10am
Covers: Up to and including Lecture 11
Interesting probability news

Probability and Game Theory in *The Hunger Games*

“Suppose the parents in a given district gave birth to only...five girls, and that all of these kids were born at the same time.”

- Not a probability mass function
- Also duh? (P(you get chosen if you’re the only person) = 1)
- You now know enough Python/ probability to write a better simulation to model the Reaping!!!
- (game theory part of the article is good)

Correlation
Covarying humans

What is the covariance of weight W and height H?

\[
\]
\[
= 3355.83 - (62.75)(52.75)
\]
\[
= 45.77 \quad \text{(positive)}
\]

What about weight (lb) and height (cm)?

\[
\text{Cov}(2.20W, 2.54H)
\]
\[
= E[2.20W \cdot 2.54H] - E[2.20W]E[2.54H]
\]
\[
= 18752.38 - (138.05)(133.99)
\]
\[
= 255.06 \quad \text{(positive)}
\]

⚠ Covariance depends on units!

Sign of covariance (+/−) more meaningful than magnitude
Correlation

The correlation of two variables X and Y is:

$$\rho(X, Y) = \frac{\text{Cov}(X, Y)}{\sigma_X \sigma_Y}$$

- Note: $-1 \leq \rho(X, Y) \leq 1$
- Correlation measures the linear relationship between X and Y:
 - $\rho(X, Y) = 1 \implies Y = aX + b$, where $a = \sigma_Y / \sigma_X$
 - $\rho(X, Y) = -1 \implies Y = aX + b$, where $a = -\sigma_Y / \sigma_X$
 - $\rho(X, Y) = 0 \implies \text{“uncorrelated” (absence of linear relationship)}$

$s_2 = \text{Var}(X)$, $s_Y^2 = \text{Var}(Y)$
Think

Slide 52 has a question to go over by yourself.

Post any clarifications here!

https://us.edstem.org/courses/109/discussion/54580

Think by yourself: 1 min
Correlation reps

What is the correlation coefficient $\rho(X,Y)$?

1. ![Graph 1]
2. ![Graph 2]
3. ![Graph 3]
4. ![Graph 4]

A. $\rho(X,Y) = 1$
B. $\rho(X,Y) = -1$
C. $\rho(X,Y) = 0$
D. Other
Correlation reps

What is the correlation coefficient $\rho(X, Y)$?

1. B. $\rho(X, Y) = -1$

 $Y = -aX + b$

 $a > 0$

2. A. $\rho(X, Y) = 1$

 $Y = aX + b$

 $a > 0$

3. C. $\rho(X, Y) = 0$

 “uncorrelated”

4. C. $\rho(X, Y) = 0$

 $Y = X^2$

X and Y can be nonlinearly related even if $\rho(X, Y) = 0$.
CS103: Conditional statements

Statement $P \rightarrow Q$: Independence \rightarrow No correlation

Contrapositive $\neg Q \rightarrow \neg P$: Correlation \rightarrow Dependence

Inverse $\neg P \rightarrow \neg Q$: Dependence \rightarrow Correlation

Converse $Q \rightarrow P$: No correlation \rightarrow Independence

“Correlation does not imply causation”
Spurious Correlations

\[\rho(X, Y) \] is used a lot to statistically quantify the relationship b/t X and Y.

Correlation: 0.947091
Spurious Correlations

\(\rho(X, Y) \) is used a lot to statistically quantify the relationship between \(X \) and \(Y \).

Correlation:

0.947091

Per capita cheese consumption correlates with

Number of people who died by becoming tangled in their bedsheets
Divorce vs. Butter

![Graph showing correlation between divorce rates and margarine consumption.](http://www.bbc.com/news/magazine-27537142)
Arcade revenue vs. CS PhDs

Correlation: 0.947091

Total revenue generated by arcades correlates with Computer science doctorates awarded in the US

Data sources: U.S. Census Bureau and National Science Foundation
Extra
Expectation of product of independent RVs

If X and Y are independent, then

$$E[XY] = E[X]E[Y]$$

$$E[g(X)h(Y)] = E[g(X)]E[h(Y)]$$

Proof:

$$E[g(X)h(Y)] = \sum_y \sum_x g(x)h(y)p_{X,Y}(x,y)$$

$$= \sum_x \sum_y g(x)h(y)p_X(x)p_Y(y)$$

$$= \sum_y \left(h(y)p_Y(y) \sum_x g(x)p_X(x) \right)$$

$$= \left(\sum_x g(x)p_X(x) \right) \left(\sum_y h(y)p_Y(y) \right)$$

$$= E[g(X)]E[h(Y)]$$

(for continuous proof, replace summations with integrals)

X and Y are independent

Terms dependent on y are constant in integral of x

Summations separate
Variance of Sums of Variables

\[
\text{Var}\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} \text{Var}(X_i) + 2 \sum_{i=1}^{n} \sum_{j=i+1}^{n} \text{Cov}(X_i, X_j)
\]

Proof:

\[
\text{Var}\left(\sum_{i=1}^{n} X_i\right) = \text{Cov}\left(\sum_{i=1}^{n} X_i, \sum_{i=1}^{n} X_i\right)
\]

\[
= \sum_{i=1}^{n} \text{Var}(X_i) + \sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} \text{Cov}(X_i, X_j)
\]

\[
= \sum_{i=1}^{n} \text{Var}(X_i) + 2 \sum_{i=1}^{n} \sum_{j=i+1}^{n} \text{Cov}(X_i, X_j)
\]

Symmetry of covariance\n\[
\text{Cov}(X, X) = \text{Var}(X)
\]

Adjust summation bounds