13: Statistics of Multiple RVs

Lisa Yan and Jerry Cain
October 12, 2020
Quick slide reference

<table>
<thead>
<tr>
<th>Page</th>
<th>Topic</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Expectation of Common RVs</td>
<td>13a_expectation_sum</td>
</tr>
<tr>
<td>8</td>
<td>Coupon Collecting Problems</td>
<td>13b_coupon_collecting</td>
</tr>
<tr>
<td>14</td>
<td>Covariance</td>
<td>13c_covariance</td>
</tr>
<tr>
<td>20</td>
<td>Independence and Variance</td>
<td>13d_variance_sum</td>
</tr>
<tr>
<td>27</td>
<td>Exercises</td>
<td>LIVE</td>
</tr>
<tr>
<td>48</td>
<td>Correlation</td>
<td>LIVE</td>
</tr>
</tbody>
</table>
Expectation of Common RVs
Linearity of Expectation is useful

Expectation is a linear mathematical operation. If $X = \sum_{i=1}^{n} X_i$:

$$E[X] = E\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} E[X_i]$$

• Even if you don’t know the **distribution** of X (e.g., because the joint distribution of (X_1, \ldots, X_n) is unknown), you can still compute **expectation** of X!!

• Problem-solving key: Define X_i such that $X = \sum_{i=1}^{n} X_i$

Most common use cases:
- $E[X_i]$ easy to calculate
- Or sum of dependent RVs
Expectations of common RVs: Binomial

\[X \sim \text{Bin}(n, p) \quad E[X] = np \]

of successes in \(n \) independent trials with probability of success \(p \)

Recall: \(\text{Bin}(1, p) = \text{Ber}(p) \)

\[X = \sum_{i=1}^{n} X_i \]

Let \(X_i = i^{th} \) trial is heads \(X_i \sim \text{Ber}(p) \), \(E[X_i] = p \)

\[E[X] = E \left[\sum_{i=1}^{n} X_i \right] = \sum_{i=1}^{n} E[X_i] = \sum_{i=1}^{n} p = np \]
Expectations of common RVs: Negative Binomial

\[Y \sim \text{NegBin}(r, p) \quad E[Y] = \frac{r}{p} \]

of independent trials with probability of success \(p \) until \(r \) successes

Recall: \(\text{NegBin}(1, p) = \text{Geo}(p) \)

\[Y = \sum_{i=1}^{?} Y_i \]

1. How should we define \(Y_i \)?

2. How many terms are in our summation?
Expectations of common RVs: Negative Binomial

\[Y \sim \text{NegBin}(r, p) \quad E[Y] = \frac{r}{p} \]

of independent trials with probability of success \(p \) until \(r \) successes

Recall: \(\text{NegBin}(1, p) = \text{Geo}(p) \)

Let \(Y_i \) = # trials to get \(i \)th success (after \((i-1)\)th success)

\[Y_i \sim \text{Geo}(p), \quad E[Y_i] = \frac{1}{p} \]

\[
E[Y] = E \left[\sum_{i=1}^{r} Y_i \right] = \sum_{i=1}^{r} E[Y_i] = \sum_{i=1}^{r} \frac{1}{p} = \frac{r}{p}
\]
Coupon Collecting Problems
Linearity of Expectation is useful

Expectation is a linear mathematical operation. If $X = \sum_{i=1}^{n} X_i$:

$$E[X] = E \left[\sum_{i=1}^{n} X_i \right] = \sum_{i=1}^{n} E[X_i]$$

• Even if you don’t know the distribution of X (e.g., because the joint distribution of $(X_1, ..., X_n)$ is unknown), you can still compute expectation of the sum!!

• Problem-solving key: Define X_i such that $X = \sum_{i=1}^{n} X_i$

Most common use cases:
• $E[X_i]$ easy to calculate
• Or sum of dependent RVs
Coupon collecting problems: Server requests

The **coupon collector's problem** in probability theory:

- You buy boxes of cereal.
- There are k different types of coupons.
- For each box you buy, you "collect" a coupon of type i.

1. How many coupons do you expect after buying n boxes of cereal? What is the expected number of utilized servers after n requests?

* 52% of Amazon profits
** more profitable than Amazon’s North America commerce operations

source

Lisa Yan and Jerry Cain, CS109, 2020
Computer cluster utilization

Consider a computer cluster with k servers. We send n requests.

- Requests independently go to server i with probability p_i
- Let $X = \#$ servers that receive ≥ 1 request.

What is $E[X]$?
Computer cluster utilization

Consider a computer cluster with \(k \) servers. We send \(n \) requests.

- Requests independently go to server \(i \) with probability \(p_i \)
- Let \(X = \# \) servers that receive \(\geq 1 \) request.

What is \(E[X] \)?

1. Define additional random variables.

Let:
- \(A_i \) = event that server \(i \) receives \(\geq 1 \) request
- \(X_i \) = indicator for \(A_i \)

\[
P(A_i) = 1 - P(\text{no requests to } i) = 1 - (1 - p_i)^n
\]

Note: \(A_i \) are dependent!

2. Solve.

\[
E[X_i] = P(A_i) = 1 - (1 - p_i)^n
\]

\[
E[X] = E \left[\sum_{i=1}^{k} X_i \right] = \sum_{i=1}^{k} E[X_i] = \sum_{i=1}^{k} (1 - (1 - p_i)^n)
\]

\[
= \sum_{i=1}^{k} 1 - \sum_{i=1}^{k} (1 - p_i)^n = k - \sum_{i=1}^{k} (1 - p_i)^n
\]
Coupon collecting problems: Hash tables

The **coupon collector’s problem** in probability theory:

- You buy boxes of cereal.
- There are \(k \) different types of coupons.
- For each box you buy, you ”collect” a coupon of type \(i \).

1. How many coupons do you expect after buying \(n \) boxes of cereal?

2. How many boxes do you expect to buy until you have one of each coupon?

What is the expected number of utilized servers after \(n \) requests?

What is the expected number of strings to hash until each bucket has \(\geq 1 \) string?

Stay tuned for live lecture!
Covariance
Statistics of sums of RVs

For any random variables X and Y,

$$E[X + Y] = E[X] + E[Y]$$

$$\text{Var}(X + Y) = ?$$

But first... a new statistic!
Spot the difference

Compare/contrast the following two distributions:

Both distributions have the same $E[X]$, $E[Y]$, Var(X), and Var(Y)

Difference: how the two variables vary with each other.

Assume all points are equally likely.

$$P(X = x, Y = y) = \frac{1}{N}$$
Covariance

The **covariance** of two variables X and Y is:

\[\text{Cov}(X, Y) = E[(X - E[X])(Y - E[Y])] \]
\[= E[XY] - E[X]E[Y] \]

Proof of second part:

\[\text{Cov}(X, Y) = E[(X - E[X])(Y - E[Y])] \]
\[= E[XY] - E[X]E[Y] \]

(linearity of expectation)

$(E[X], E[Y]$ are scalars)
Covarying humans

What is the covariance of weight W and height H?

= $3355.83 - (62.75)(52.75)$

(positive) $= 45.77$

Covariance > 0: one variable ↑, other variable ↑
Properties of Covariance

The covariance of two variables X and Y is:

$$\text{Cov}(X, Y) = E[(X - E[X])(Y - E[Y])]$$

$$= E[XY] - E[X]E[Y]$$

Properties:

1. $\text{Cov}(X, Y) = \text{Cov}(Y, X)$
2. $\text{Var}(X) = E[X^2] - (E[X])^2 = \text{Cov}(X, X)$
3. Covariance of sums = sum of all pairwise covariances
 $$\text{Cov}(X_1 + X_2, Y_1 + Y_2) = \text{Cov}(X_1, Y_1) + \text{Cov}(X_2, Y_1) + \text{Cov}(X_1, Y_2) + \text{Cov}(X_2, Y_2)$$
4. Non-linearity (to be discussed in live lecture)
Variance of sums of RVs
Statistics of sums of RVs

For any random variables X and Y,

\[E[X + Y] = E[X] + E[Y] \]

\[\text{Var}(X + Y) = \text{Var}(X) + 2 \cdot \text{Cov}(X, Y) + \text{Var}(Y) \]
Variance of general sum of RVs

For any random variables X and Y,

$$\text{Var}(X + Y) = \text{Var}(X) + 2 \cdot \text{Cov}(X, Y) + \text{Var}(Y)$$

Proof:

$$\text{Var}(X + Y) = \text{Cov}(X + Y, X + Y)$$

$$= \text{Cov}(X, X) + \text{Cov}(X, Y) + \text{Cov}(Y, X) + \text{Cov}(Y, Y)$$

$$= \text{Var}(X) + 2 \cdot \text{Cov}(X, Y) + \text{Var}(Y)$$

More generally:

$$\text{Var}\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} \text{Var}(X_i) + 2 \sum_{i=1}^{n} \sum_{j=i+1}^{n} \text{Cov}(X_i, X_j)$$

(proof in extra slides)
Statistics of sums of RVs

For any random variables X and Y,

$$E[X + Y] = E[X] + E[Y]$$

$$\text{Var}(X + Y) = \text{Var}(X) + 2 \cdot \text{Cov}(X, Y) + \text{Var}(Y)$$

For independent X and Y,

$$E[XY] = E[X]E[Y]$$

$$\text{Var}(X + Y) = \text{Var}(X) + \text{Var}(Y)$$

(Lemma: proof in extra slides)
Variance of sum of independent RVs

For independent X and Y,

$$\text{Var}(X + Y) = \text{Var}(X) + \text{Var}(Y)$$

Proof:

 $$= 0$$

2. $\text{Var}(X + Y) = \text{Var}(X) + 2 \cdot \text{Cov}(X, Y) + \text{Var}(Y)$

 $$= \text{Var}(X) + \text{Var}(Y)$$

NOT bidirectional: Cov$(X, Y) = 0$ does NOT imply independence of X and Y!
Proving Variance of the Binomial

Let’s instead prove this using independence and variance!

\[X \sim \text{Bin}(n, p) \quad \text{Var}(X) = np(1 - p) \]

To simplify the algebra a bit, let \(q = 1 - p \), so \(p + q = 1 \).

So,

\[
\begin{align*}
\mathbb{E}(X^2) &= \sum_{k=0}^{n} k^2 \binom{n}{k} p^k q^{n-k} \\
&= \sum_{k=0}^{n} k \binom{n}{k} p^{k-1} q^{n-k} + \sum_{k=0}^{n} \binom{n}{k} p^k q^{n-k}
\end{align*}
\]

Definition of Binomial Distribution: \(p + q = 1 \)

Factors of Binomial Coefficient: \(\binom{n}{k} = \binom{n}{n-k} \)

Change of limit: term is zero when \(k = 1 \)

Putting \(j = k - 1 \), \(m = n - 1 \)

Splitting sum up into two

Factors of Binomial Coefficient: \(\binom{n}{m} = \binom{n}{n-m} \)

Change of limit: term is zero when \(j = 0 \)

Binomial Theorem

So \(p + q = 1 \)

By algebra,

Then,

\[
\text{Var}(X) = \mathbb{E}(X^2) - [\mathbb{E}(X)]^2
\]

Expectation of Binomial Distribution: \(\mathbb{E}(X) = np \)

as required.
Proving Variance of the Binomial

\[X \sim \text{Bin}(n, p) \quad \text{Var}(X) = np(1 - p) \]

Let \(X = \sum_{i=1}^{n} X_i \)

Let \(X_i = \text{ith trial is heads} \)
\(X_i \sim \text{Ber}(p) \)
\(\text{Var}(X_i) = p(1 - p) \)

\(X_i \) are independent (by definition)

\[\text{Var}(X) = \text{Var}\left(\sum_{i=1}^{n} X_i \right) \]
\[= \sum_{i=1}^{n} \text{Var}(X_i) \]
\[= \sum_{i=1}^{n} p(1 - p) \]
\[= np(1 - p) \]

\(X_i \) are independent, therefore variance of sum = sum of variance

Variance of Bernoulli
13: Statistics of Multiple RVs

Lisa Yan and Jerry Cain
October 12, 2020
Where are we now? A roadmap of CS109

Last week: Joint distributions
\[p_{X,Y}(x,y) \]

Today: Statistics of multiple RVs!
\[\text{Var}(X + Y) \]
\[E[X + Y] \]
\[\text{Cov}(X, Y) \]
\[\rho(X, Y) \]

Wednesday: Conditional distributions
\[p_{X|Y}(x|y) \]
\[E[X|Y] \]

Friday: Modeling with Bayesian Networks

Lisa Yan and Jerry Cain, CS109, 2020
Don’t we already know linearity of expectation?

Expectation is a linear mathematical operation. If \(X = \sum_{i=1}^{n} X_i \) :

\[
E[X] = E \left[\sum_{i=1}^{n} X_i \right] = \sum_{i=1}^{n} E[X_i]
\]

We covered this back in Lecture 6 (when we first learned expectation)!
- Proved binomial: sum of 1s or 0s
- Hat check (section): sum of 1s or 0s
- We ignored (in)dependence of events.

Why are we learning this again?
- Well, now we can prove it!
- We can now ignore any random variables dependencies!
- Our approach is still the same!
Proof of expectation of a sum of RVs

\[E[X + Y] = \sum_x \sum_y (x + y)p_{X,Y}(x, y) \]

\[= \sum_x \sum_y xp_{X,Y}(x, y) + \sum_x \sum_y yp_{X,Y}(x, y) \]

\[= \sum_x x \sum_y p_{X,Y}(x, y) + \sum_y y \sum_x p_{X,Y}(x, y) \]

\[= \sum_x xp_X(x) + \sum_y yp_Y(y) \]

\[= E[X] + E[Y] \]

\[E[X + Y] = E[X] + E[Y] \]

LOTUS,
\[g(X, Y) = X + Y \]

Linearity of summations (and integrals, btw)

Marginal PMFs for \(X \) and \(Y \)
Coupon collecting problems: Hash tables

The **coupon collector’s problem** in probability theory:

- You buy boxes of cereal.
- There are k different types of coupons.
- For each box you buy, you “collect” a coupon of type i.

1. How many coupons do you expect after buying n boxes of cereal?
2. How many boxes do you expect to buy until you have one of each coupon?

What is the expected number of utilized servers after n requests?

What is the expected number of strings to hash until each bucket has ≥ 1 string?
Check out the properties on the next slide (Slide 33). Post any clarifications here!

https://us.edstem.org/courses/2678/discussion/146231

Breakout rooms: 4 min. Introduce yourself!
Hash Tables

Consider a hash table with \(k \) buckets.

- Strings are equally likely to get hashed into any bucket (independently).
- Let \(Y = \# \) strings to hash until each bucket \(\geq 1 \) string.

What is \(E[Y] \)?

1. **Define additional random variables.** How should we define \(Y_i \) such that \(Y = \sum_i Y_i \)?

2. **Solve.**
Hash Tables

Consider a hash table with k buckets.
- Strings are equally likely to get hashed into any bucket (independently).
- Let $Y = \#$ strings to hash until each bucket ≥ 1 string.

What is $E[Y]$?

1. Define additional random variables.
 - Let: $Y_i = \#$ of trials to get success after i-th success
 - Success: hash string to previously empty bucket
 - If i non-empty buckets: $P(\text{success}) = \frac{k - i}{k}$

2. Solve.

\[P(Y_i = n) = \left(\frac{i}{k} \right)^{n-1} \frac{k - i}{k} \]

Equivalently, $Y_i \sim \text{Geo} \left(p = \frac{k - i}{k} \right) \quad E[Y_i] = \frac{1}{p} = \frac{k}{k - i}$
Hash Tables

Consider a hash table with \(k \) buckets.
- Strings are equally likely to get hashed into any bucket (independently).
- Let \(Y = \# \) strings to hash until each bucket \(\geq 1 \) string.

What is \(E[Y] \)?

1. Define additional random variables.
 - Let: \(Y_i = \# \) of trials to get success after \(i \)-th success
 \[Y_i \sim \text{Geo}\left(p = \frac{k-i}{k}\right), \quad E[Y_i] = \frac{1}{p} = \frac{k}{k-i} \]

2. Solve.
 \[Y = Y_0 + Y_1 + \cdots + Y_{k-1} \]
 \[E[Y] = E[Y_0] + E[Y_1] + \cdots + E[Y_{k-1}] \]
 \[= \frac{k}{k} + \frac{k}{k-1} + \frac{k}{k-2} + \cdots + \frac{k}{1} = k \left[\frac{1}{k} + \frac{1}{k-1} + \cdots + 1 \right] = O(k \log k) \]
Covariance

The covariance of two variables X and Y is:

\[
\]

Covariance measures how one random variable varies with a second.

- Outside temperature and utility bills have a negative covariance.
- Handedness and musical ability have near zero covariance.
- Product demand and price have a positive covariance.
Slide 38 has a question to go over by yourself.

Post any clarifications here!

https://us.edstem.org/courses/2678/discussion/146231

Think by yourself: 1 min
Feel the covariance

Is the covariance positive, negative, or zero?

\[
\]
Feel the covariance

Is the covariance positive, negative, or zero?

1. \(E[X] \)
 \(E[Y] \)
 positive

2. \(E[X] \)
 \(E[Y] \)
 negative

3. \(E[X] \)
 \(E[Y] \)
 zero

Cov\((X, Y)\) = \(E[(X - E[X])(Y - E[Y])] \)
= \(E[XY] - E[X]E[Y] \)
Properties of Covariance

The covariance of two variables X and Y is:

\[
\text{Cov}(X, Y) = E[(X - E[X])(Y - E[Y])]
= E[XY] - E[X]E[Y]
\]

Properties:

1. $\text{Cov}(X, Y) = \text{Cov}(Y, X)$
2. $\text{Var}(X) = \text{Cov}(X, X)$
3. $\text{Cov}\left(\sum_i X_i, \sum_j Y_j\right) = \sum_i \sum_j \text{Cov}(X_i, Y_j)$
4. $\text{Cov}(aX + b, Y) = a\text{Cov}(X, Y) + b$ \(\times\)

Covariance is non-linear: $\text{Cov}(aX + b, Y) = a\text{Cov}(X, Y)$
Statistics of sums of RVs

For any random variables X and Y,

$$E[X + Y] = E[X] + E[Y]$$

$$\text{Var}(X + Y) = \text{Var}(X) + 2 \cdot \text{Cov}(X, Y) + \text{Var}(Y)$$

For independent X and Y,

$$E[XY] = E[X]E[Y]$$

$$\text{Var}(X + Y) = \text{Var}(X) + \text{Var}(Y)$$

\text{(Lemma: proof in extra slides)}

$\text{Cov}(X, Y) = 0$ does NOT imply independence of X and Y!
Zero covariance does not imply independence

Let X take on values $\{-1, 0, 1\}$ with equal probability $1/3$.

Define $Y = \begin{cases} 1 & \text{if } X = 0 \\ 0 & \text{otherwise} \end{cases}$

What is the joint PMF of X and Y?
Check out the properties on the next slide (Slide 44). Post any clarifications here!

https://us.edstem.org/courses/2678/discussion/146231

Breakout rooms: 4 min. Introduce yourself!
Zero covariance does not imply independence

Let X take on values $\{-1, 0, 1\}$ with equal probability $1/3$.

Define $Y = \begin{cases} 1 & \text{if } X = 0 \\ 0 & \text{otherwise} \end{cases}$

1. $E[X] = \quad E[Y] = $

2. $E[XY] = $

3. $\text{Cov}(X, Y) = $

4. Are X and Y independent?
Zero covariance does not imply independence

Let X take on values $\{-1,0,1\}$ with equal probability $1/3$.

Define $Y = \begin{cases} 1 & \text{if } X = 0 \\ 0 & \text{otherwise} \end{cases}$

<table>
<thead>
<tr>
<th>X</th>
<th>-1</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0/3</td>
<td>0/3</td>
<td>0/3</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1/3</td>
<td>0</td>
</tr>
<tr>
<td>Sum</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
</tr>
</tbody>
</table>

Marginal PMF of X, $p_X(x)$

<table>
<thead>
<tr>
<th>Y</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1/3</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1/3</td>
</tr>
<tr>
<td>Sum</td>
<td>1/3</td>
<td>1/3</td>
</tr>
</tbody>
</table>

Marginal PMF of Y, $p_Y(y)$

1. $E[X] = \frac{-1}{3} \cdot 0 + 0 \cdot \frac{1}{3} + 1 \cdot \frac{1}{3} = 0$
 $E[Y] = 0 \cdot \frac{2}{3} + 1 \cdot \frac{1}{3} = 1/3$

2. $E[XY] = (-1 \cdot 0 \cdot \frac{1}{3}) + (0 \cdot 1 \cdot \frac{1}{3}) + (1 \cdot 0 \cdot \frac{1}{3})$
 $= 0$

 $= 0 - 0(1/3) = 0$

4. Are X and Y independent? \times

 $P(Y = 0 | X = 1) = 1$
 $\neq P(Y = 0) = 2/3$

Lisa Yan and Jerry Cain, CS109, 2020

Stanford University
Interesting probability news

Probability and Game Theory in *The Hunger Games*

“Suppose the parents in a given district gave birth to only...five girls, and that all of these kids were born at the same time.”

- Not a probability mass function
- Also duh? (P(you get chosen if you’re the only person) = 1)
- You now know enough Python/ probability to write a better simulation to model the Reaping!!!!
- (game theory part of the article is good)

Topical book review! Fiction is brain food.

Rochester author takes scary look at Big Pharma in debut novel

- "Called 'Malcharist,' it is a completely made-up story about a potentially dangerous drug being put on the market — with outsourced drug trial research, ghostwritten studies, lack of access to raw drug-trial data, and doctors essentially paid to champion new drugs."

- "[Paul John] Scott’s novel is actually a thriller, with not-quite-believable villains who need to be exposed. Yet it’s too wonky to be a beach read. There’s even a conversation over the [😍] probability concept of p-values [😍]."

- "Scott takes his writer into one of those medical meetings he once found so cool, and his book reproduces enough of the numbers — yes, [😊] number tables [😊] in a thriller — that the reader can see the fictional speaker’s good point that the data really do give up their secrets."

Correlation
Covarying humans

What is the covariance of weight W and height H?

$$= 3355.83 - (62.75)(52.75)$$

$$= 45.77 \text{ (positive)}$$

What about weight (lb) and height (cm)?

$$\text{Cov}(2.20W, 2.54H)$$

$$= E[2.20W \cdot 2.54H] - E[2.20W]E[2.54H]$$

$$= 18752.38 - (138.05)(133.99)$$

$$= 255.06 \text{ (positive)}$$

⚠ Covariance depends on units!

Sign of covariance (+/−) more meaningful than magnitude.
Correlation

The **correlation** of two variables X and Y is:

$$
\rho(X, Y) = \frac{\text{Cov}(X, Y)}{\sigma_X \sigma_Y}
$$

- Note: $-1 \leq \rho(X, Y) \leq 1$
- Correlation measures the **linear relationship** between X and Y:

 - $\rho(X, Y) = 1 \implies Y = aX + b$, where $a = \sigma_Y / \sigma_X$
 - $\rho(X, Y) = -1 \implies Y = aX + b$, where $a = -\sigma_Y / \sigma_X$
 - $\rho(X, Y) = 0 \implies \text{"uncorrelated" (absence of linear relationship)}$
Slide 52 has a question to go over by yourself.

Post any clarifications here!

https://us.edstem.org/courses/2678/discussion/146231

Think by yourself: 1 min
Correlation reps

What is the correlation coefficient $\rho(X,Y)$?

1.

2.

3.

4.

A. $\rho(X,Y) = 1$
B. $\rho(X,Y) = -1$
C. $\rho(X,Y) = 0$
D. Other
Correlation reps

What is the correlation coefficient $\rho(X, Y)$?

1. B. $\rho(X, Y) = -1$

 $Y = -aX + b$

 $a > 0$

2. A. $\rho(X, Y) = 1$

 $Y = aX + b$

 $a > 0$

3. C. $\rho(X, Y) = 0$

 “uncorrelated”

4. C. $\rho(X, Y) = 0$

 $Y = X^2$

X and Y can be nonlinearly related even if $\rho(X, Y) = 0$.
Throwback to CS103: Conditional statements

Statement $P \rightarrow Q$: Independence \rightarrow No correlation

Contrapositive $\neg Q \rightarrow \neg P$: Correlation \rightarrow Dependence

Inverse $\neg P \rightarrow \neg Q$: Dependence \rightarrow Correlation

Converse $Q \rightarrow P$: No correlation \rightarrow Independence

“Correlation does not imply causation”
Spurious Correlations

\(\rho(X, Y) \) is used a lot to statistically quantify the relationship b/t X and Y.

Correlation: 0.947091
Spurious Correlations

\(\rho(X, Y) \) is used a lot to statistically quantify the relationship b/t X and Y.

Correlation:

0.947091

Per capita cheese consumption correlates with Number of people who died by becoming tangled in their bedsheets.
Divorce vs. Margarine

Source: US Census, USDA, tylervigen.com

Lisa Yan and Jerry Cain, CS109, 2020

Stanford University
Arcade revenue vs. CS PhDs

Total revenue generated by arcades correlates with Computer science doctorates awarded in the US

Correlation: 0.947091

Data sources: U.S. Census Bureau and National Science Foundation

Lisa Yan and Jerry Cain, CS109, 2020
Extra
Expectation of product of independent RVs

If X and Y are independent, then

$$E[XY] = E[X]E[Y]$$

$$E[g(X)h(Y)] = E[g(X)]E[h(Y)]$$

Proof:

$$E[g(X)h(Y)] = \sum_y \sum_x g(x)h(y)p_{X,Y}(x,y)$$

$$= \sum_y \sum_x g(x)h(y)p_X(x)p_Y(y)$$

$$= \sum_y \left(h(y)p_Y(y) \sum_x g(x)p_X(x) \right)$$

$$= \left(\sum_x g(x)p_X(x) \right) \left(\sum_y h(y)p_Y(y) \right)$$

$$= E[g(X)]E[h(Y)]$$

(for continuous proof, replace summations with integrals)

X and Y are independent

Terms dependent on y are constant in integral of x

Summations separate
Variance of Sums of Variables

\[
\text{Var} \left(\sum_{i=1}^{n} X_i \right) = \sum_{i=1}^{n} \text{Var}(X_i) + 2 \sum_{i=1}^{n} \sum_{j=i+1}^{n} \text{Cov}(X_i, X_j)
\]

Proof:

\[
\text{Var} \left(\sum_{i=1}^{n} X_i \right) = \text{Cov} \left(\sum_{i=1}^{n} X_i, \sum_{i=1}^{n} X_i \right) = \sum_{i=1}^{n} \sum_{j=1}^{n} \text{Cov}(X_i, X_j)
\]

\[
= \sum_{i=1}^{n} \text{Var}(X_i) + \sum_{i=1}^{n} \sum_{j=i+1}^{n} \text{Cov}(X_i, X_j)
\]

\[
= \sum_{i=1}^{n} \text{Var}(X_i) + 2 \sum_{i=1}^{n} \sum_{j=i+1}^{n} \text{Cov}(X_i, X_j)
\]

Symmetry of covariance: \(\text{Cov}(X, X) = \text{Var}(X)\)

Adjust summation bounds