14: Conditional Expectation

Lisa Yan
May 6, 2020
Quick slide reference

3 Conditional distributions 14a_conditional_distributions
11 Web server requests, redux 14b_web_servers
14 Conditional expectation 14c_cond_expectation
20 Law of Total Expectation 14d_law_of_total_expectation
24 Exercises LIVE
Discrete conditional distributions
Discrete conditional distributions

Recall the definition of the conditional probability of event E given event F:

$$P(E|F) = \frac{P(EF)}{P(F)}$$

For discrete random variables X and Y, the conditional PMF of X given Y is

$$P(X = x|Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)}$$

Different notation, same idea:
Discrete probabilities of CS109

Each student responds with:

Year Y
- 1: Frosh/Soph
- 2: Jr/Sr
- 3: Co-term/grad/NDO

Timezone T (12pm California time in my timezone is):
- -1: AM
- 0: noon
- 1: PM

<table>
<thead>
<tr>
<th></th>
<th>$Y = 1$</th>
<th>$Y = 2$</th>
<th>$Y = 3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T = -1$</td>
<td>.06</td>
<td>.01</td>
<td>.01</td>
</tr>
<tr>
<td>$T = 0$</td>
<td>.29</td>
<td>.14</td>
<td>.09</td>
</tr>
<tr>
<td>$T = 1$</td>
<td>.30</td>
<td>.08</td>
<td>.02</td>
</tr>
</tbody>
</table>

$P(Y = 3, T = 1)$

Joint PMFs sum to 1.
Discrete probabilities of CS109

The below are **conditional probability tables** for conditional PMFs

(A) $P(Y = y|T = t)$ and (B) $P(T = t|Y = y)$.

1. Which is which?
2. What’s the missing probability?

<table>
<thead>
<tr>
<th>$Y = 1$</th>
<th>$Y = 2$</th>
<th>$Y = 3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T = -1$</td>
<td>.09</td>
<td>.04</td>
</tr>
<tr>
<td>$T = 0$</td>
<td>.45</td>
<td>.61</td>
</tr>
<tr>
<td>$T = 1$</td>
<td>.46</td>
<td>.35</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$Y = 1$</th>
<th>$Y = 2$</th>
<th>$Y = 3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T = -1$</td>
<td>.75</td>
<td>.125</td>
</tr>
<tr>
<td>$T = 0$</td>
<td>.56</td>
<td>.27</td>
</tr>
<tr>
<td>$T = 1$</td>
<td>.75</td>
<td>.2</td>
</tr>
</tbody>
</table>

0 ≤ $P(Y = y|T = t) ≤ 1$

(y, t) → number
Discrete probabilities of CS109

The below are **conditional probability tables** for conditional PMFs

(A) \(P(Y = y | T = t) \) and (B) \(P(T = t | Y = y) \).

1. Which is which?
2. What’s the missing probability?

Joint PMF

<table>
<thead>
<tr>
<th></th>
<th>(Y = 1)</th>
<th>(Y = 2)</th>
<th>(Y = 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T = -1)</td>
<td>.06</td>
<td>.01</td>
<td>.01</td>
</tr>
<tr>
<td>(T = 0)</td>
<td>.29</td>
<td>.14</td>
<td>.09</td>
</tr>
<tr>
<td>(T = 1)</td>
<td>.30</td>
<td>.08</td>
<td>.02</td>
</tr>
</tbody>
</table>

Conditional PMFs

(A) \(P(Y = y | T = t) \)

<table>
<thead>
<tr>
<th></th>
<th>(Y = 1)</th>
<th>(Y = 2)</th>
<th>(Y = 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T = -1)</td>
<td>.75</td>
<td>.125</td>
<td>.125</td>
</tr>
<tr>
<td>(T = 0)</td>
<td>.56</td>
<td>.27</td>
<td>.17</td>
</tr>
<tr>
<td>(T = 1)</td>
<td>.75</td>
<td>.2</td>
<td>.05</td>
</tr>
</tbody>
</table>

(B) \(P(T = t | Y = y) \)

<table>
<thead>
<tr>
<th></th>
<th>(Y = 1)</th>
<th>(Y = 2)</th>
<th>(Y = 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T = -1)</td>
<td>.09</td>
<td>.04</td>
<td>.08</td>
</tr>
<tr>
<td>(T = 0)</td>
<td>.45</td>
<td>.61</td>
<td>.75</td>
</tr>
<tr>
<td>(T = 1)</td>
<td>.46</td>
<td>.35</td>
<td>.17</td>
</tr>
</tbody>
</table>

\[
\frac{0.30}{0.06 + 0.29 + 0.30} = \frac{P(T=1, Y=3)}{P(T=1)}
\]

Conditional PMFs also sum to 1 conditioned on different events!
Extended to Amazon

Stainless Steel Mixing Bowls by Fixedline (Set of 5) Polished Mirror Finish Nesting Bowl, ¾ - 1.5 - 3 - 4.5 - 8 Quart - Cooking Supplies

Customer Reviews:

Average: 4.3 stars
Rated: 5 stars (4 reviews)

Details:

- BPA-free, non-toxic, dishwasher-safe stainless steel bowls
- Nesting design for easy storage
- Non-slipping bottoms for stability on countertops
- Mirror finish

Price: $24.95 & FREE Shipping on orders over $25 shipped by Amazon.

Get a 30-day trial of Prime. Details

Amazon.com Gift Card - $25

Specifications:

- 4.5 quart capacity
- Mirror finish
- Polished stainless steel

- **Customer Reviews:**
 - "These bowls are amazing! They're perfect for mixing and storing food. I love the nesting feature for easy storage." - by Customer Name
 - "Stainless steel bowls are a must-have in any kitchen. These are especially great because they're dishwasher-safe and nest together." - by Customer Name

More Like This:

- Stainless Steel Measuring Cups and Spoons Set
- Glass Measuring Cups and Spoons Set
- Measuring Spoons and Cups Set

Related Products:

- [Easy Mixing Spoons](product-url) - $9.95
- [3-Piece Mixing Bowl Set](product-url) - $24.95

Customer who bought this item also bought:

- [Stainless Steel Measuring Cups and Spoons Set](product-url) - $12.99
- [Acrylic Measuring Spoons](product-url) - $9.95

**P(bought item X | bought item Y)"
Quick check

Number or function?

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>$P(X = 2</td>
</tr>
<tr>
<td>2.</td>
<td>$P(X = x</td>
</tr>
<tr>
<td>3.</td>
<td>$P(X = 2</td>
</tr>
<tr>
<td>4.</td>
<td>$P(X = x</td>
</tr>
</tbody>
</table>

True or false?

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5.</td>
<td>$\sum_x P(X = x</td>
</tr>
<tr>
<td>6.</td>
<td>$\sum_y P(X = 2</td>
</tr>
<tr>
<td>7.</td>
<td>$\sum_x \sum_y P(X = x</td>
</tr>
<tr>
<td>8.</td>
<td>$\sum_x \left(\sum_y P(X = x</td>
</tr>
</tbody>
</table>
Quick check

Number or function?

1. $P(X = 2|Y = 5)$
 number

2. $P(X = x|Y = 5)$
 1-D function

3. $P(X = 2|Y = y)$
 1-D function

4. $P(X = x|Y = y)$
 2-D function

True or false?

5. $\sum_x P(X = x|Y = 5) = 1$
 true

6. $\sum_y P(X = 2|Y = y) = 1$
 false

7. $\sum_x \sum_y P(X = x|Y = y) = 1$
 left to you to prove

8. $\sum_x \left(\sum_y \frac{P(X = x|Y = y)P(Y = y)}{\sum_x \sum_y P(x, y)} \right) = 1$
 true
Web server requests, redux
Web server requests (Lecture: Independent RVs)

Let $N = \#$ of requests to a web server per day. Suppose $N \sim \text{Poi}(\lambda)$.
- Each request independently comes from a human (prob. p), or bot $(1 - p)$.
- Let X be # of human requests/day, and Y be # of bot requests/day.

Are X and Y independent? What are their marginal PMFs?

Our approach:
- Yes, independent Poisson random variables:
 \[X \sim \text{Poi}(\lambda p), Y \sim \text{Poi}(\lambda(1 - p)) \]
- Two big parts of our derivation:
 \[P(X = n, Y = m) = P(X = n|N = n + m)P(N = n + m) \]
 \[X|N = n + m \sim \text{Bin}(n + m, p) \]

A conditional distribution, $X|N$!
Web server requests, redux

Consider the number of requests to a web server per day.

- Let \(X = \# \) requests from humans/day. \(X \sim \text{Poi}(\lambda_1) \)
- Let \(Y = \# \) requests from bots/day. \(Y \sim \text{Poi}(\lambda_2) \)
- \(X \) and \(Y \) are independent. \(\rightarrow X + Y \sim \text{Poi}(\lambda_1 + \lambda_2) \)

What is \(P(X = k | X + Y = n) \)?

\[
P(X = k | X + Y = n) = \frac{P(X = k, Y = n - k)}{P(X + Y = n)} = \frac{P(X = k)P(Y = n - k)}{P(X + Y = n)}
\]

\[
= \frac{e^{-\lambda_1} \lambda_1^k}{k!} \cdot \frac{e^{-\lambda_2} \lambda_2^{n-k}}{(n-k)!} \cdot \frac{n!}{e^{-(\lambda_1+\lambda_2)}(\lambda_1 + \lambda_2)^n} = \frac{n!}{k! (n-k)!} \cdot \frac{\lambda_1^k \lambda_2^{n-k}}{(\lambda_1 + \lambda_2)^n}
\]

\[
= \binom{n}{k} \left(\frac{\lambda_1}{\lambda_1 + \lambda_2} \right)^k \left(\frac{\lambda_2}{\lambda_1 + \lambda_2} \right)^{n-k} = X | X + Y \sim \text{Bin} \left(X + Y, \frac{\lambda_1}{\lambda_1 + \lambda_2} \right)
\]
Conditional Expectation
Conditional expectation

Recall the conditional PMF of X given $Y = y$:

$$p_{X|Y}(x|y) = P(X = x|Y = y) = \frac{p_{X,Y}(x,y)}{p_Y(y)}$$

The conditional expectation of X given $Y = y$ is

$$E[X|Y = y] = \sum_x xP(X = x|Y = y) = \sum_x xp_{X|Y}(x|y)$$
It’s been so long, our dice friends

• Roll two 6-sided dice.
• Let roll 1 be D_1, roll 2 be D_2.
• Let $S = \text{value of } D_1 + D_2$.

1. What is $E[S|D_2 = 6]$?

$$E[S|D_2 = 6] = \sum_{x \leq 7} x P(S = x|D_2 = 6)$$

$$= \left(\frac{1}{6}\right)(7 + 8 + 9 + 10 + 11 + 12)$$

$$= \frac{57}{6} = 9.5$$

Intuitively: \hspace{1cm} 6 + E[D_1] = 6 + 3.5 = 9.5

Let’s prove this!
Properties of conditional expectation

1. LOTUS:

\[E[g(X) | Y = y] = \sum_x g(x)p_{X|Y}(x | y) \]

2. Linearity of conditional expectation:

\[E \left[\sum_{i=1}^{n} X_i | Y = y \right] = \sum_{i=1}^{n} E[X_i | Y = y] \]

3. Law of total expectation (next time)
It’s been so long, our dice friends

• Roll two 6-sided dice.
• Let roll 1 be D_1, roll 2 be D_2.
• Let $S =$ value of $D_1 + D_2$.

1. What is $E[S|D_2 = 6]$?

 $\frac{57}{6} = 9.5$

2. What is $E[S|D_2]$?

 A. A function of S
 B. A function of D_2
 C. A number

\[E[X|Y = y] = \sum_x x p_{X|Y}(x|y) \]
It’s been so long, our dice friends

• Roll two 6-sided dice.
• Let roll 1 be D_1, roll 2 be D_2.
• Let $S = \text{value of } D_1 + D_2$.

1. What is $E[S|D_2 = 6]$?

2. What is $E[S|D_2]$?

 A. A function of S
 B. A function of D_2
 C. A number

 $E[S|D_2 = d_2] = E[D_1 + d_2|D_2 = d_2]$

 $= \sum_{d_1} (d_1 + d_2)P(D_1 = d_1|D_2 = d_2)$

 $= \sum_{d_1} d_1 P(D_1 = d_1) + d_2 \sum_{d_1} P(D_1 = d_1)$

 $= E[D_1] + d_2 = 3.5 + d_2$

 $E[S|D_2] = 3.5 + D_2$
Law of Total Expectation
Properties of conditional expectation

1. LOTUS:

\[E[g(X)|Y = y] = \sum_x g(x)p_{X|Y}(x|y) \]

2. Linearity of conditional expectation:

\[E \left[\sum_{i=1}^{n} X_i | Y = y \right] = \sum_{i=1}^{n} E[X_i|Y = y] \]

3. Law of total expectation:

\[E[X] = E[E[X|Y]] \quad \text{what}?! \]
Proof of Law of Total Expectation

\[E[E[X|Y]] = E[g(Y)] = \sum_y P(Y = y)E[X|Y = y] \]

\[= \sum_y P(Y = y) \sum_x xP(X = x|Y = y) \]

\[= \sum_y \left(\sum_x xP(X = x|Y = y)P(Y = y) \right) = \sum_y \left(\sum_x xP(X = x, Y = y) \right) \]

\[= \sum_x \sum_y xP(X = x, Y = y) = \sum_x x \sum_y P(X = x, Y = y) \]

\[= \sum_x xP(X = x) \]

\[= E[X] \quad \text{...what?} \]
Another way to compute $E[X]$

$$E[E[X|Y]] = \sum_y P(Y = y)E[X|Y = y] = E[X]$$

If we only have a conditional PMF of X on some discrete variable Y, we can compute $E[X]$ as follows:

1. Compute expectation of X given some value of $Y = y$

2. Repeat step 1 for all values of $Y = y$

3. Compute a weighted sum (where weights are $P(Y = y)$)

```python
def recurse():
    if (random.random() < 0.5):
        return 3
    else: return (2 + recurse())
```

Useful for analyzing recursive code!!
14: Conditional Expectation

Lisa Yan
May 6, 2020
Where are we now? A roadmap of CS109

Monday

Today: Statistics of multiple RVs!
- $\text{Var}(X + Y)$
- $E[X + Y]$
- $\text{Cov}(X, Y)$
- $\rho(X, Y)$

Last week: Joint distributions
- $p_{X,Y}(x, y)$

Wednesday

Conditional distributions
- $p_{X|Y}(x|y)$
- $E[X|Y]$

Time to kick it up a notch!

Friday

Modeling with Bayesian Networks
Conditional Expectation

Conditional Distributions Expectation
Breakout Rooms

Check out the question on the next slide (Slide 28). Post any clarifications here!

https://us.edstem.org/courses/109/discussion/54694

Breakout rooms: 4 min. Introduce yourself!
Quick check

1. $E[X]$
2. $E[X, Y]$
3. $E[X + Y]$
4. $E[X|Y]$
5. $E[X|Y = 6]$
6. $E[X = 1]$
7. $E[Y|X = x]$

A. value
B. random variable, function of Y
C. random variable, function of X
D. function of X and Y
E. doesn’t make sense
Quick check

1. $E[X] \quad A.$
2. $E[X, Y] \quad E$
3. $E[X + Y] \quad A,$ expectation of a function of X and Y
4. $E[X|Y] \quad B$
5. $E[X|Y = 6] \quad A$
6. $E[X = 1] \quad E$
7. $E[Y|X = x] \quad A,$ for a particular value of $X = x$

A. value
B. random variable, function of Y
C. random variable, function of X
D. function of X and Y
E. doesn’t make sense
Conditional Expectation

The conditional expectation of X given $Y = y$ is

$$E[X|Y = y] = \sum_x xP(X = x|Y = y) = \sum_x xp_{X|Y}(x|y)$$

- Interpret: $E[X|Y]$ is a random variable that takes on the value $E[X|Y = y]$ with probability $P(Y = y)$

The Law of Total Expectation states that

$$E[E[X|Y]] = \sum_y E[X|Y = y]P(Y = y) = E[X]$$

- Apply: $E[X]$ can be calculated as the expectation of $E[X|Y]$
Analyzing recursive code

```python
def recurse():
    # equally likely values 1,2,3
    x = np.random.choice([1,2,3])
    if (x == 1): return 3
    elif (x == 2): return (5 + recurse())
    else: return (7 + recurse())
```

Let $Y = \text{return value of } \text{recurse()}$. What is $E[Y]$?

$E[X] = E[E[X|Y]] = \sum_y E[X|Y = y]P(Y = y)$
Analyzing recursive code

```python
def recurse():
    # equally likely values 1,2,3
    x = np.random.choice([1,2,3])
    if (x == 1): return 3
    elif (x == 2): return (5 + recurse())
    else: return (7 + recurse())
```

Let $Y = \text{return value of } \text{recurse()}$. What is $E[Y]$?

$$E[X] = E[E[X|Y]] = \sum_y E[X|Y = y]P(Y = y)$$

$$E[Y] = \frac{1}{3}E[Y|X = 1]P(X = 1) + \frac{1}{3}E[Y|X = 2]P(X = 2) + \frac{1}{3}E[Y|X = 3]P(X = 3)$$

$E[Y|X = 1] = 3$

When $X = 1$, return 3.
Think Slide 34 has a question to go over by yourself.

Post any clarifications here!

https://us.edstem.org/courses/109/discussion/54694

Think by yourself: 2 min
Analyzing recursive code

```python
def recurse():
    # equally likely values 1,2,3
    x = np.random.choice([1,2,3])
    if (x == 1): return 3
    elif (x == 2): return (5 + recurse())
    else: return (7 + recurse())
```

Let $Y = \text{return value of recurse()}$. What is $E[Y]$?

$E[Y|X = 1] = 3$

What is $E[Y|X = 2]$?

B. $E[Y + 5] = 5 + E[Y]$
C. $5 + E[Y|X = 2]$

(by yourself)
Analyzing recursive code

```python
def recurse():
    # equally likely values 1, 2, 3
    x = np.random.choice([1, 2, 3])
    if (x == 1):
        return 3
    elif (x == 2):
        return (5 + recurse())
    else:
        return (7 + recurse())
```

Let $Y =$ return value of `recurse()`. What is $E[Y]$?

When $X = 2$, return $5 +$ a future return value of `recurse()`.

What is $E[Y|X = 2]$?

B. $E[Y + 5] = 5 + E[Y]$
C. $5 + E[Y|X = 2] = E[Y|X = 2]$

If Y discrete

$$E[X] = E[E[X|Y]] = \sum_y E[X|Y = y]P(Y = y)$$
Analyzing recursive code

```python
def recurse():
    # equally likely values 1,2,3
    x = np.random.choice([1,2,3])
    if (x == 1): return 3
    elif (x == 2): return (5 + recurse())
    else: return (7 + recurse())
```

Let $Y =$ return value of `recurse()`.

What is $E[Y]$?

\[
\]

When $X = 3$, return 7 + a future return value of `recurse()`.

\[
E[Y|X = 3] = E[7 + Y]
\]

If Y discrete

\[
E[X] = E[E[X|Y]] = \sum_y E[X|Y = y]P(Y = y)
\]
Analyzing recursive code

```python
def recurse():
    # equally likely values 1,2,3
    x = np.random.choice([1,2,3])
    if (x == 1): return 3
    elif (x == 2): return (5 + recurse())
    else: return (7 + recurse())
```

Let $Y =$ return value of `recurse()`. What is $E[Y]$?

\[
\]

\[
\]

\[
E[Y] = \frac{3}{3} \times (1) + (5 + E[Y]) \times \frac{1}{3} + (7 + E[Y]) \times \frac{1}{3}
\]

\[
E[Y] = (1/3)(15 + 2E[Y]) = 5 + (2/3)E[Y]
\]

\[
E[Y] = 15
\]

On your own: What is $\text{Var}(Y)$?
Interlude for jokes/announcements

too tired
Announcements

Problem Set 3
Due: Monday 5/8 10am
Covers: Up to and including Lecture 11
Interesting probability news

U.S. Recession Model at 100% Confirms Downturn Is Already Here

“Bloomberg Economics created a model last year to determine America’s recession odds.”
 • I encourage you to read through and understand the parameters used to define this model!

Independent RVs, defined another way

If X and Y are independent discrete random variables, then $\forall x, y$:

$$P(X = x | Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)} = \frac{P(X = x)P(Y = y)}{P(Y = y)} = P(X = x)$$

$$\Rightarrow p_{X|Y}(x|y) = \frac{p_{X,Y}(x, y)}{p_Y(y)} = \frac{p_X(x)p_Y(y)}{p_Y(y)} = p_X(x)$$

Note for conditional expectation, independent X and Y implies

$$E[X | Y = y] = \sum_x xp_{X|Y}(x | y) = \sum_x xp_X(x) = E[X]$$
Check out the question on the next slide (Slide 43). Post any clarifications here!

https://us.edstem.org/courses/109/discussion/54694

Breakout rooms: 4 min. Introduce yourself!
Random number of random variables

Say you have a website: BestJokesEver.com. Let:

- $X = \# \text{ of people per day who visit your site.} \quad X \sim \text{Bin}(100, 0.5)$
- $Y_i = \# \text{ of minutes spent by visitor } i.$ \quad $Y_i \sim \text{Poi}(8)$
- X and all Y_i are independent.

The time spent by all visitors per day is $W = \sum_{i=1}^{X} Y_i$. What is $E[W]$?

Indep X, Y

$E[X|Y = y] = E[X]$
Random number of random variables

Say you have a website: BestJokesEver.com. Let:

- $X = \#$ of people per day who visit your site. $X \sim \text{Bin}(100, 0.5)$
- $Y_i = \#$ of minutes spent by visitor $i./\text{day}$ $Y_i \sim \text{Poi}(8)$
- X and all Y_i are independent.

The time spent by all visitors per day is $W = \sum_{i=1}^{X} Y_i$. What is $E[W]$?

$E[W] = E\left[\sum_{i=1}^{X} Y_i\right]$

Alternate simpler problem: 100 ppl per day

$E[W] = E\left[\sum_{i=1}^{n} Y_i\right] = 100 \cdot E[Y_i]$ (linearity)
Random number of random variables

Say you have a website: BestJokesEver.com. Let:

- \(X = \# \) of people per day who visit your site. \(X \sim \text{Bin}(100, 0.5) \)
- \(Y_i = \# \) of minutes spent by visitor \(i \). \(Y_i \sim \text{Poi}(8) \)
- \(X \) and all \(Y_i \) are independent.

The time spent by all visitors per day is \(W = \sum_{i=1}^{X} Y_i \). What is \(E[W] \)?

\[
E[W] = E \left[\sum_{i=1}^{X} Y_i \right] = E \left[\sum_{i=1}^{X} E \left[Y_i \mid X \right] \right] \\
= E \left[X E[Y_i] \right] \\
= E[Y_i] E[X] \quad \text{(scalar } E[Y_i]) \\
= 8 \cdot 50
\]
See you next time!

Have a GREAT day!
Extra
Hiring software engineers

Your company has only one job opening for a software engineer.

• n candidates interview, in order ($n!$ orderings equally likely)
• Must decide hire/no hire immediately after each interview

Strategy: 1. Interview k (of n) candidates and reject all k
2. Accept the next candidate better than all of first k candidates.

What is your target k that maximizes P(get best candidate)?

Fun fact:
• There is an α-to-1 factor difference in productivity b/t the “best” and “average” software engineer.
• Steve jobs said $\alpha=25$, Mark Zuckerberg claims $\alpha=100$
Hiring software engineers

Your company has only one job opening for a software engineer.

- n candidates interview, in order ($n!$ orderings equally likely)
- Must decide hire/no hire immediately after each interview

Strategy:
1. Interview k (of n) candidates and reject all k
2. Accept the next candidate better than all of first k candidates.

What is your target k that maximizes $P(\text{get best candidate})$?

Define:
- $X =$ position of best engineer candidate (1, 2, ..., n)
- $B =$ event that you hire the best engineer

Want to maximize for k: $P_k(B) =$ probability of B when using strategy for a given k

$$P_k(B) = \sum_{i=1}^{n} P_k(B|X = i)P(X = i) = \frac{1}{n} \sum_{i=1}^{n} P_k(B|X = i)$$ (law of total probability)
Hiring software engineers

Your company has only one job opening for a software engineer.

Strategy:
1. Interview k (of n) candidates and reject all k
2. Accept the next candidate better than all of first k candidates.

What is your target k that maximizes P(get best candidate)?

Define:

$X = \text{position of best engineer candidate}$

$B = \text{event that you hire the best engineer}$

If $i \leq k : \ P_k(B|X = i) = 0$ \hspace{0.5cm} (we fired best candidate already)

Else:

We must not hire prior to the i-th candidate.
\[P_k(B|X = i) = \frac{k}{i - 1} \]

We must have fired the best of the $i-1$ first candidates.

The best of the $i-1$ needs to be our comparison point for positions $k+1, \ldots, i-1$.

The best of the $i-1$ needs to be one of our first k comparison/auto-fire

\[P_k(B) = \frac{1}{n} \sum_{i=1}^{n} P_k(B|X = i) = \frac{1}{n} \sum_{i=k+1}^{n} \frac{k}{i - 1} \]

\[\Leftarrow \text{Want to maximize over } k \]
Hiring software engineers

Your company has only one job opening for a software engineer.

Strategy:
1. Interview \(k \) (of \(n \)) candidates and reject all \(k \)
2. Accept the next candidate better than all of first \(k \) candidates.

What is your target \(k \) that maximizes \(P(\text{get best candidate}) \)?

Want to maximize over \(k \):

\[
P_k(B) = \frac{1}{n} \sum_{i=k+1}^{n} \frac{k}{i-1} \approx \frac{k}{n} \int_{i=k+1}^{n} \frac{1}{i-1} \, di = \frac{k}{n} \ln(i-1) \bigg|_{i=k+1}^{n} = \frac{k}{n} \ln \left(1 - \frac{1}{n} \right) \approx \frac{k}{n} \ln \frac{n}{k}
\]

Maximize by differentiating w.r.t \(k \), set to 0, solve for \(k \):

\[
\frac{d}{dk} \left(\frac{k}{n} \ln \frac{n}{k} \right) = \frac{1}{n} \ln \frac{n}{k} + \frac{k}{n} \cdot \frac{1}{k} \cdot \frac{n}{k^2} = 0
\]

\[
\ln \frac{n}{k} = 1
\]

\[
k = \frac{n}{e}
\]

1. Interview \(\frac{n}{e} \) candidates
2. Pick best based on strategy
3. \(P_k(B) \approx \frac{1}{e} \approx 0.368 \)