Great Expectations

Chris Piech (and Dickens)

CS109, Stanford University
Joint Random Variables

Use a joint table, density function or CDF to solve probability question

Think about **conditional** probabilities with joint variables (which might be continuous)

Use and find **expectation** of multiple RVS

Use and find **independence** of multiple RVS

What happens when you **add** random variables?

How do multiple variables **covary**?
This is actual midpoint of course
(Just wanted you to know)
Statistically speaking, if you pick up a seashell and don’t hold it to your ear, you can probably hear the ocean.
Review
Expected Values of Sums

\[E[X + Y] = E[X] + E[Y] \]

Generalized:

\[E\left[\sum_{i=1}^{n} X_i \right] = \sum_{i=1}^{n} E[X_i] \]

Holds regardless of dependency between \(X_i \)'s
End Review
Let E_1, E_2, ... E_n be events with indicator RVs X_i

- If event E_i occurs, then $X_i = 1$, else $X_i = 0$
- Recall $E[X_i] = P(E_i)$

Why?

$$E[X_i] = 0 \cdot (1 - P(E_i)) + 1 \cdot P(E_i)$$

Bernoulli aka Indicator Random Variables were studied extensively by George Boole

Boole died of being too cool
Expectation of Binomial

- Let $Y \sim \text{Bin}(n, p)$
 - n independent trials
 - Let $X_i = 1$ if i-th trial is “success”, 0 otherwise
 - $X_i \sim \text{Ber}(p)$ \hspace{1em} $E[X_i] = p$

$$Y = X_1 + X_2 + \cdots + X_n = \sum_{i=1}^{n} X_i$$

$$E[Y] = E[\sum_{i=1}^{n} X_i]$$

$$= \sum_{i=1}^{n} E[X_i]$$

$$= E[X_1] + E[X_2] + \cdots E[X_n]$$

$$= np$$
Expectation of Negative Binomial

- Let $Y \sim \text{NegBin}(r, p)$
 - Recall Y is number of trials until r “successes”
 - Let $X_i = \#$ of trials to get success after $(i-1)\text{st}$ success
 - $X_i \sim \text{Geo}(p)$ (i.e., Geometric RV)

$$E[X_i] = \frac{1}{p}$$

$$Y = X_1 + X_2 + \cdots + X_r = \sum_{i=1}^{r} X_i$$

$$E[Y] = E[\sum_{i=1}^{r} X_i]$$

$$= \sum_{i=1}^{r} E[X_i]$$

$$= E[X_1] + E[X_2] + \cdots + E[X_r]$$

$$= \frac{r}{p}$$
Aims to provide means to maximize the accuracy of probabilistic queries while minimizing the probability of identifying its records.

Cynthia Dwork’s celebrity lookalike is Cynthia Dwork.
Maximize accuracy, while preserving privacy.

def calculateYi(Xi):
 obfuscate = random()
 if obfuscate:
 return indicator(random())
 else:
 return Xi

100 independent values $X_1 \ldots X_{100}$ where $X_i \sim \text{Bern}(p)$
100 independent values $X_1 \ldots X_{100}$ where $X_i \sim \text{Bern}(p)$

```python
# Maximize accuracy, while preserving privacy.
def calculateYi(Xi):
    obfuscate = random()
    if obfuscate:
        return indicator(random())
    else:
        return Xi
```

What is $E[Y_i]$?

$$E[Y_i] = P(Y_i = 1) = \frac{p}{2} + \frac{1}{4}$$
Maximize accuracy, while preserving privacy.
def calculateYi(Xi):
 obfuscate = random()
 if obfuscate:
 return indicator(random())
 else:
 return Xi

100 independent values $X_1 \ldots X_{100}$ where $X_i \sim \text{Bern}(p)$

Let $Z = \sum_{i=1}^{100} Y_i$ What is the $E[Z]$?

$$E[Z] = E\left[\sum_{i=1}^{100} Y_i\right] = \sum_{i=1}^{100} E[Y_i] = \sum_{i=1}^{100} \left(\frac{p}{2} + \frac{1}{4}\right) = 50p + 25$$
Maximize accuracy, while preserving privacy.

```python
def calculateYi(Xi):
    obfuscate = random()
    if obfuscate:
        return indicator(random())
    else:
        return Xi
```

100 independent values $X_1 \ldots X_{100}$ where $X_i \sim \text{Bern}(p)$

Let $Z = \sum_{i=1}^{100} Y_i$ \hspace{1cm} E[Z] = 50p + 25

How do you estimate p?

$$p \approx \frac{Z - 25}{50}$$

Challenge: What is the probability that our estimate is good?
More Practice!
Computer Cluster Utilization

- Computer cluster with \(k \) servers
 - Requests independently go to server \(i \) with probability \(p_i \)
 - Let event \(A_i = \) server \(i \) receives no requests
 - Let Bernoulli \(B_i \) be an indicator for \(A_i \)
 - \(X = \# \) of events \(A_1, A_2, \ldots, A_k \) that occur
 - \(Y = \# \) servers that receive \(\geq 1 \) request = \(k - X \)
 - \(E[Y] \) after first \(n \) requests?
 - Since requests independent: \(P(A_i) = (1 - p_i)^n \)

\[
X = \sum_{i=1}^{k} B_i
\]

\[
E[X] = E\left[\sum_{i=1}^{k} B_i \right] = \sum_{i=1}^{k} E[B_i] = \sum_{i=1}^{k} P(A_i) = \sum_{i=1}^{k} (1 - p_i)^n
\]

\[
E[Y] = k - E[X] = k - \sum_{i=1}^{k} (1 - p_i)^n
\]
* 52% of Amazons Earnings

**More profitable than Amazon’s North America commerce operations

When stuck, brainstorm about random variables
• Consider a hash table with \(n \) buckets
 - Each string equally likely to get hashed into any bucket
 - Let \(X = \# \) strings to hash until each bucket \(\geq 1 \) string
 - What is \(\mathbb{E}[X] \)?
 - Let \(X_i = \# \) of trials to get success after \(i \)-th success
 - where “success” is hashing string to previously empty bucket
 - After \(i \) buckets have \(\geq 1 \) string, probability of hashing a string to an empty bucket is \(p = (n - i) / n \)
 - \(P(X_i = k) = \frac{n-i}{n} \left(\frac{i}{n} \right)^{k-1} \) equivalently: \(X_i \sim \text{Geo}\left((n - i) / n \right) \)
 - \(\mathbb{E}[X_i] = 1 / p = n / (n - i) \)
 - \(X = X_0 + X_1 + \ldots + X_{n-1} \implies \mathbb{E}[X] = \mathbb{E}[X_0] + \mathbb{E}[X_1] + \ldots + \mathbb{E}[X_{n-1}] \)
 \[
 \mathbb{E}[X] = \frac{n}{n} + \frac{n}{n-1} + \frac{n}{n-2} + \ldots + \frac{n}{1} = n \left[\frac{1}{n} + \frac{1}{n-1} + \ldots + 1 \right] = O(n \log n)
 \]

This is your final answer
Break
Conditional Expectation
• X and Y are jointly discrete random variables
 ▪ Recall conditional PMF of X given Y = y:
 \[p_{X|Y}(x \mid y) = P(X = x \mid Y = y) = \frac{p_{X,Y}(x, y)}{p_Y(y)} \]

• Define conditional expectation of X given Y = y:
 \[E[X \mid Y = y] = \sum_x x P(X = x \mid Y = y) = \sum_x x p_{X|Y}(x \mid y) \]

• Analogously, jointly continuous random variables:
 \[f_{X|Y}(x \mid y) = \frac{f_{X,Y}(x, y)}{f_Y(y)} \quad E[X \mid Y = y] = \int_{-\infty}^{\infty} x f_{X|Y}(x \mid y) \, dx \]
Rolling Dice

• Roll two 6-sided dice D_1 and D_2
 • $X = \text{value of } D_1 + D_2$ \hspace{1cm} $Y = \text{value of } D_2$
 • What is $E[X \mid Y = 6]$?

$$E[X \mid Y = 6] = \sum_{x} xP(X = x \mid Y = 6)$$

$$= \left(\frac{1}{6} \right)(7 + 8 + 9 + 10 + 11 + 12) = \frac{57}{6} = 9.5$$

• Intuitively makes sense: $6 + E[\text{value of } D_1] = 6 + 3.5$
Properties of Conditional Expectation

- X and Y are jointly distributed random variables

\[
E[g(X) \mid Y = y] = \sum_x g(x) p_{X \mid Y}(x \mid y) \quad \text{or} \quad \int_{-\infty}^{\infty} g(x) f_{X \mid Y}(x \mid y) \, dx
\]

- Expectation of conditional sum:

\[
E\left[\sum_{i=1}^{n} X_i \mid Y = y \right] = \sum_{i=1}^{n} E[X_i \mid Y = y]
\]
Conditional Expectation Functions

• Define $g(Y) = \mathbb{E}[X \mid Y]$
• This is just function of Y

$\mathbb{E}[X \mid Y=y]$

This is a function with Y as input
Conditional Expectation Functions

- Define $g(Y) = E[X \mid Y]$
- This is just function of Y

$Y = 5$

$E[X \mid Y=y]$

12
Conditional Expectation Functions

- Define $g(Y) = E[X | Y]
- This is just function of Y
Conditional Expectation Functions

This is a number:

\[E[X] \]

This is a function of \(y \):

\[E[X|Y = y] \]

\[E[X = 5] \] Doesn’t make sense. Take expectation of random variables, not events.
Conditional Expectation Functions

\[X = \text{favorite number} \]
\[Y = \text{year in school} \]

\[E[X] = 0 \times 0.05 + \ldots + 9 \times 0.10 = 5.38 \]
Conditional Expectation Functions

X = favorite number
Y = year in school

\[E[X \mid Y] \]

| Year in school, Y = y | E[X | Y = y] |
|-----------------------|------------|
| 2 | 5.5 |
| 3 | 5.8 |
| 4 | 6.0 |
| 5 | 4.7 |
Conditional Expectation Functions

\[X = \text{favorite number} \]
\[Y = \text{year in school} \]

\[E[X \mid Y] ? \]

![Graph showing the expected value of X given Y for different years in school.](image)

| Year in School (y) | E[X | Y] |
|-------------------|--------|
| 2 | 4.5 |
| 3 | 5.5 |
| 4 | 6.0 |
| 5 | 4.7 |
Conditional Expectation Functions

\[X = \text{units in fall quarter} \]
\[Y = \text{year in school} \]

\[E[X \mid Y] ? \]
Law of Total Expectation

\[E[E[X|Y]] = E[X] \]

\[
E[E[X|Y]] = \sum_y E[X|Y=y]P(Y=y)
\]

\[
= \sum_y \sum_x xP(X=x|Y=y)P(Y=y)
\]

\[
= \sum_x \sum_y xP(X=x,Y=y)
\]

\[
= \sum_x \sum_y xP(X=x,Y=y)
\]

\[
= \sum_x \sum_y xP(X=x,Y=y)
\]

\[
= \sum_x x \sum_y P(X=x,Y=y)
\]

\[
= \sum_x xP(X=x)
\]

\[
= E[X]
\]
Law of Total Expectation

For any random variable X and any discrete random variable Y

$$E[X] = \sum_y E[X|Y = y]P(Y = y)$$
int Recurse() {
 int x = randomInt(1, 3); // Equally likely values
 if (x == 1) return 3;
 else if (x == 2) return (5 + Recurse());
 else return (7 + Recurse());
}

• Let Y = value returned by Recurse(). What is E[Y]?

\[
E[Y] = E[Y \mid X = 1]P(X = 1) + E[Y \mid X = 2]P(X = 2) + E[Y \mid X = 3]P(X = 3)
\]

\[
E[Y \mid X = 1] = 3
\]

\[
E[Y \mid X = 2] = E[5 + Y] = 5 + E[Y]
\]

\[
E[Y \mid X = 3] = E[7 + Y] = 7 + E[Y]
\]

\[
E[Y] = 3(1/3) + (5 + E[Y])(1/3) + (7 + E[Y])(1/3) = (1/3)(15 + 2E[Y])
\]

\[
E[Y] = 15
\]
Protip: do this in CS161
If we have time...
Your company has one job opening for a software engineer.

You have n candidates. But you have to say yes/no immediately after each interview!

Proposed algorithm: reject the first k and accept the next one who is better than all of them.

What’s the best value of k?
n candidates, must say yes/no **immediately** after each interview. Reject the first k, accept the next who is better than all of them. What’s the best value of k?

B: event that you hire the best engineer

X: position of the best engineer on the interview schedule

What is the $P(B|X = i)$?
n candidates, must say yes/no **immediately** after each interview. Reject the first k, accept the next who is better than all of them. What’s the best value of k?

B: event that you hire the best engineer
X: position of the best engineer on the interview schedule

What is the $P(B|X = i)$?
n candidates, must say yes/no **immediately** after each interview. Reject the first k, accept the next who is better than all of them. What’s the best value of k?

B: event that you hire the best engineer
X: position of the best engineer on the interview schedule

What is the $P(B|X = i)$?

<table>
<thead>
<tr>
<th>k</th>
<th>i</th>
</tr>
</thead>
</table>

Hint: where is the best among the first $i - 1$ candidates?
n candidates, must say yes/no **immediately** after each interview. Reject the first k, accept the next who is better than all of them. What’s the best value of k?

B: event that you hire the best engineer
X: position of the best engineer on the interview schedule

What is the $P(B|X = i)$?

Hint: where is the best among the first $i - 1$ candidates?
n candidates, must say yes/no immediately after each interview. Reject the first k, accept the next who is better than all of them. What’s the best value of k?

B: event that you hire the best engineer

X: position of the best engineer on the interview schedule

What is the $P(B|X = i)$?

Hint: where is the best among the first $i-1$ candidates?
Hiring and Engineer

n candidates, must say yes/no **immediately** after each interview. Reject the first k, accept the next who is better than all of them. What’s the best value of k?

B: event that you hire the best engineer

X: position of the best engineer on the interview schedule

\[
P(B|X = i) = \begin{cases}
 \frac{k}{i-1} & \text{if } i > k \\
 \frac{k}{i} & \text{if } i \leq k
\end{cases}
\]

Hint: where is the best among the first $i - 1$ candidates?
Hiring and Engineer

n candidates, must say yes/no **immediately** after each interview. Reject the first k, accept the next who is better than all of them. What’s the best value of k?

B: event that you hire the best engineer

X: position of the best engineer on the interview schedule

\[
P_k(B) = \sum_{i=1}^{n} P_k(B|X = i)P(X = i)
\]

By the law of total expectation

\[
= \frac{1}{n} \sum_{i=1}^{n} P_k(B|X = i)
\]

\[
= \frac{1}{n} \sum_{i=k+1}^{n} \frac{k}{i-1}
\]

since we know $P_k(Best|X = i)$

\[
\approx \frac{1}{n} \int_{i=k+1}^{n} \frac{k}{i-1} \, di
\]

By Riemann Sum approximation

\[
= \frac{k}{n} \ln(i = 1) \bigg|_{k+1}^{n} = \frac{k}{n} \ln \frac{n-1}{k} \approx \frac{k}{n} \ln \frac{n}{k}
\]
n candidates, must say yes/no **immediately** after each interview. Reject the first k, accept the next who is better than all of them. What’s the best value of k?

B: event that you hire the best engineer
X: position of the best engineer on the interview schedule

\[
P_k(B) = \sum_{i=1}^{n} P_k(B|X = i)P(X = i) \quad \text{By the law of total expectation}
\]

\[
\approx \frac{k}{n} \ln \frac{n}{k}
\]

Fun fact. Optimized when:
\[
k^* = \frac{n}{e}
\]
That’s all folks!
Let’s Do Some Sorting!

5 3 7 4 8 6 2 1
QuickSort

select "pivot"

5 3 7 4 8 6 2 1
Partition array so:

• everything smaller than pivot is on left
• everything greater than or equal to pivot is on right
• pivot is in-between
Partition array so:

• everything smaller than pivot is on left
• everything greater than or equal to pivot is on right
• pivot is in-between
Now recursive sort “red” sub-array
Now recursive sort “red” sub-array
Now recursive sort “red” sub-array
Then, recursive sort “blue” sub-array
Now recursive sort “red” sub-array
Then, recursive sort “blue” sub-array
Recursive Insight

Everything is sorted!
void Quicksort(int arr[], int n)
{
 if (n < 2) return;

 int boundary = Partition(arr, n);

 // Sort subarray up to pivot
 Quicksort(arr, boundary);

 // Sort subarray after pivot to end
 Quicksort(arr + boundary + 1, n - boundary - 1);
}

“boundary” is the index of the pivot
Partition

<table>
<thead>
<tr>
<th>Before</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 3 7 4 8 6 2 1</td>
<td>2 3 1 4 5 6 8 7</td>
</tr>
</tbody>
</table>

Does one comparison for every element in the array and the pivot.

Complexity of quicksort is determined by the number of comparisons made to pivot.
QuickSort is $O(n \log n)$, where $n = \# \text{ elems to sort}$

- But in “worst case” it can be $O(n^2)$
- Worst case occurs when every time pivot is selected, it is maximal or minimal remaining element
Expected Running Time of QuickSort

- Let $X = \#$ comparisons made when sorting n elems
 - $E[X]$ gives us expected running time of algorithm
 - Given V_1, V_2, \ldots, V_n in random order to sort
 - Let Y_1, Y_2, \ldots, Y_n be V_1, V_2, \ldots, V_n in sorted order
When are Y_a and Y_b compared?
Let's imagine our array in sorted order.

\[
\begin{array}{ccccccc}
Y_a & & & & & & Y_b \\
1 & 3 & 5 & 7 & 9 & 11 \\
Y_1 & Y_2 & Y_3 & Y_4 & Y_5 & Y_6 \\
\end{array}
\]

Whether or not they are compared depends on pivot choice.
Let's imagine our array in sorted order:

\[Y_a \quad Y_b \]

\[
\begin{array}{cccccc}
1 & 3 & 5 & 7 & 9 & 11
\end{array}
\]

Whether or not they are compared depends on pivot choice.
Consider pivot choice: Y_a

They are compared
$P(Y_a \text{ and } Y_b \text{ ever compared})$

Consider pivot choice: Y_b

They are compared
Consider pivot choice: 7

They are **not** compared
Consider pivot choice: $< Y_a$

Whether or not they are compared depends on future pivots
Consider pivot choice: $Y_a > Y_b$

Whether or not they are compared depends on future pivots
Are Y_a and Y_b compared?

Keep repeating pivot choice until you get a pivot in the range $[Y_a, Y_b]$ inclusive.
• Let $X =$ # comparisons made when sorting n elems
 ▪ $E[X]$ gives us expected running time of algorithm
 ▪ Given V_1, V_2, \ldots, V_n in random order to sort
 ▪ Let Y_1, Y_2, \ldots, Y_n be V_1, V_2, \ldots, V_n in sorted order
 ▪ Let $I_{a,b} = 1$ if Y_a and Y_b are compared, 0 otherwise
 ▪ Order where $Y_b > Y_a$, so we have: $X = \sum_{a=1}^{n-1} \sum_{b=a+1}^{n} I_{a,b}$
Expected Running Time of QuickSort

Aside:

\[X = \sum_{a=1}^{n-1} \sum_{b=a+1}^{n} I_{a,b} \]

When \(a = 1 \)

\[I_{1,2} + I_{1,3} + \ldots + I_{1,n} \]

When \(a = 2 \)

\[+ I_{2,3} + \ldots + I_{2,n} \]

When \(a = n-1 \)

\[+ I_{n-1,n} \]

Contains a comparison between each \(i \) and \(j \) (where \(i \) does not equal \(j \)) exactly once
Expected Running Time of QuickSort

- Let \(X = \# \) comparisons made when sorting \(n \) elems
 - \(E[X] \) gives us expected running time of algorithm
 - Given \(V_1, V_2, \ldots, V_n \) in random order to sort
 - Let \(Y_1, Y_2, \ldots, Y_n \) be \(V_1, V_2, \ldots, V_n \) in sorted order
 - Let \(I_{a,b} = 1 \) if \(Y_a \) and \(Y_b \) are compared, 0 otherwise
 - Order where \(Y_b > Y_a \), so we have: \(X = \sum_{a=1}^{n-1} \sum_{b=a+1}^{n} I_{a,b} \)

\[
E[X] = E \left[\sum_{a=1}^{n-1} \sum_{b=a+1}^{n} I_{a,b} \right] = \sum_{a=1}^{n-1} \sum_{b=a+1}^{n} E[I_{a,b}] = \sum_{a=1}^{n-1} \sum_{b=a+1}^{n} P(Y_a \text{ and } Y_b \text{ ever compared})
\]
Consider when Y_a and Y_b are directly compared

- We only care about case where pivot chosen from set:
 \{Y_a, Y_{a+1}, Y_{a+2}, \ldots, Y_b\}

- From that set either Y_a and Y_b must be selected as pivot (with equal probability) in order to be compared

- So,

\[
P(Y_a \text{ and } Y_b \text{ ever compared}) = \frac{2}{b-a+1}
\]

\[
E[X] = \sum_{a=1}^{n-1} \sum_{b=a+1}^{n} P(Y_a \text{ and } Y_b \text{ ever compared}) = \sum_{a=1}^{n-1} \sum_{b=a+1}^{n} \frac{2}{b-a+1}
\]
Bring it on Home (i.e. Solve the Sum)

\[E[X] = \sum_{a=1}^{n-1} \sum_{b=a+1}^{n} \frac{2}{b-a+1} \]
\[\sum_{b=a+1}^{n} \frac{2}{b-a+1} \approx \int_{a+1}^{n} \frac{2}{b-a+1} \, db \]
\[= 2 \ln(b-a+1) \bigg|_{a+1}^{n} = 2 \ln(n-a+1) - 2 \ln(2) \]
\[\approx 2 \ln(n-a+1) \quad \text{for large } n \]

Thanks

Riemann

\[E[X] \approx \sum_{a=1}^{n-1} 2 \ln(n-a+1) \approx 2 \int_{a=1}^{n-1} \ln(n-a+1) \, da \]
\[= -2 \int_{y=n}^{2} \ln(y) \, dy \]
\[= -2(y \ln(y) - y) \bigg|_{n}^{2} \]
\[= -2[(2 \ln(2) - 2) - (n \ln(n) - n)] \approx 2n \ln(n) - 2n = O(n \log n) \]

Recall: \[\int \frac{1}{x} \, dx = \ln(x) \]

Recall:
\[\int \ln(x) \, dx = x \ln(x) - x \]

Let \(y = n - a + 1 \)
Ahhh 😊