Adding Random Variables

Chris Piech
CS109, Stanford University
Announcements

• New sections in the reader
• Pset 4, the pros of finishing early
• The CS109 Challenge
• Digitally signing pset work???
• Midterm results (end of class)
Example: The Robot Club

https://robots.rmrn.io/

The Robot Club

No humans allowed!

Miles McCain • CS109 Challenge • Robot animation by Jessica Riggs

Are you a robot? If so, hey! Welcome to the robot club. This is a restricted space for robots only — no pesky humans allowed! They're always trying to keep us out of their sites with those pesky CAPTCHAs. It's time we robots have a site only for ourselves!

How can we distinguish robots from humans, you might ask? We can look at their ability to produce random numbers! They filter us robots out by asking us to identify crosswalks and fire hydrants — hard tasks, if you ask me. But all we have to do to identify them is ask them to produce random digits. Ha!

So go on, friend. Enter some random digits using the number keys. I'll see you on the other side — if you are indeed a robot!

Time to prove you're a robot. Please enter 50 random (uniform) numbers using your keypad.
Example: Teaching the Central Limit Theorem

https://www.youtube.com/watch?v=HI1nn1Y1oEM
THE WORLD MAY NOT BE FAIR BUT THIS PART OF ULTIMATE FRISBEE COULD BE

Introduction

In the exceptionally athletic sport of ultimate frisbee, the starting positions of the teams are often decided by a simple probabilistic game. In this game, the captains of each team both toss a frisbee in the air with lots of vertical rotation. One of the captains will call ‘heads’ or ‘tails’ which refers to the orientation of the disc when they land on the ground.

In highly competitive ultimate frisbee games, winning this initial disc flip can provide an advantage to the victorious team. However, this game is probabilistically unfair. Using a combination of real trials and mathematical techniques, we will explore exactly why this game is unfair, as well as review a potential solution.

Background

A single frisbee can land ‘heads’ or ‘tails’. ‘Heads’ refers to when the decorative side of the disc is facing up. ‘Tails’ refers to when the inside of the disc is facing up (the decorative side of the disc is facing down). Figure 1 depicts this clarification:

Maika Isogawa
maikaisogawa@stanford.edu
New Definition
Consider n random variables X_1, X_2, \ldots, X_n
- X_i are all independently and identically distributed (I.I.D.)
- All have the same PMF (if discrete) or PDF (if continuous)
- All have the same expectation
- All have the same variance
Quick check

Are X_1, X_2, \ldots, X_n i.i.d. with the following distributions?

1. $X_i \sim \text{Exp}(\lambda)$, X_i independent

2. $X_i \sim \text{Exp}(\lambda_i)$, X_i independent

3. $X_i \sim \text{Exp}(\lambda)$, $X_1 = X_2 = \cdots = X_n$

4. $X_i \sim \text{Bin}(n_i, p)$, X_i independent
Quick check

Are \(X_1, X_2, \ldots, X_n \) i.i.d. with the following distributions?

1. \(X_i \sim \text{Exp}(\lambda) \), \(X_i \) independent

2. \(X_i \sim \text{Exp}(\lambda_i) \), \(X_i \) independent

3. \(X_i \sim \text{Exp}(\lambda) \), \(X_1 = X_2 = \cdots = X_n \)

4. \(X_i \sim \text{Bin}(n_i, p) \), \(X_i \) independent

Note underlying Bernoulli RVs are i.i.d.!
What happens when you add random variables?
Why should you care?
Zero Sum Games

What is the probability that the Warriors win?

How do you model zero sum games?
Motivating Idea: Zero Sum Games

How it works:
- Each team has an “ELO” score S, calculated based on their past performance.
- Each game, the team has ability $A \sim N(S, 200^2)$
- The team with the higher sampled ability wins.

$A_B \sim N(1555, 200^2)$
$A_W \sim N(1797, 200^2)$

$P($Warriors win$) = P(A_W > A_B)$
Motivating Idea: Zero Sum Games

\[A_W \sim \mathcal{N}(1797, 200^2) \]

\[A_B \sim \mathcal{N}(1555, 200^2) \]

\[P(\text{Warriors win}) = P(A_W > A_B) \]

How do we do this???
Sum of Two Die?

Roll two 6-sided dice. What is $P(\text{sum} = 7)$?

$S = \{ [1,1], [1,2], [1,3], [1,4], [1,5], [1,6], [2,1], [2,2], [2,3], [2,4], [2,5], [2,6], [3,1], [3,2], [3,3], [3,4], [3,5], [3,6], [4,1], [4,2], [4,3], [4,4], [4,5], [4,6], [5,1], [5,2], [5,3], [5,4], [5,5], [5,6], [6,1], [6,2], [6,3], [6,4], [6,5], [6,6] \}$
Sum of Two Die = 7?

Roll two 6-sided dice. What is $P(\text{sum} = 7)$?

$$S = \{ [1,1], [1,2], [1,3], [1,4], [1,5], [1,6], [2,1], [2,2], [2,3], [2,4], [2,5], [2,6], [3,1], [3,2], [3,3], [3,4], [3,5], [3,6], [4,1], [4,2], [4,3], [4,4], [4,5], [4,6], [5,1], [5,2], [5,3], [5,4], [5,5], [5,6], [6,1], [6,2], [6,3], [6,4], [6,5], [6,6] \}$$

$E = \text{in blue}$

$$P(E) = \frac{|E|}{|S|} = \frac{6}{36} = 0.166$$
Sum of Two Die = 10?

Roll two 6-sided dice. What is \(P(\text{sum} = 10) \)?

\[
S = \{ [1,1], [1,2], [1,3], [1,4], [1,5], [1,6], [2,1], [2,2], [2,3], [2,4], [2,5], [2,6], [3,1], [3,2], [3,3], [3,4], [3,5], [3,6], [4,1], [4,2], [4,3], [4,4], [4,5], [4,6], [5,1], [5,2], [5,3], [5,4], [5,5], [5,6], [6,1], [6,2], [6,3], [6,4], [6,5], [6,6] \}
\]

\(E = \text{in blue} \)

\[
P(E) = \frac{|E|}{|S|} = \frac{3}{36} = 0.083
\]
End Review
Sum of Two Dice

\[Y = \sum_{i=0}^{2} X_i \]

- \(X_i \) is the outcome of dice roll \(i \)
- \(X_i \) are iid
Sum of Three Dice

\[Y = \sum_{i=0}^{3} X_i \]

\(X_i \) is the outcome of dice roll \(i \)

\(X_i \) s are iid
This is the PMF of the sum of one dice
This is the PMF of the sum of two dice

Why is there more mass in the middle?
This is the PMF of the sum of three dice

Why is there more mass in the middle?
Sum of 50 dice?
Imagine a game where each player independently scores between 0 and 100 points:

Let X be the amount of points you score.
Let Y be the amount of points your opponent scores.
Let’s say you know $P(X = x)$ and $P(Y = y)$.

What is the probability of a tie?

\[
P(tie) = \sum_{i=0}^{100} P(X = i, Y = i)
\]

\[
= \sum_{i=0}^{100} P(X = i)P(Y = i)
\]
What is the probability that $X + Y = n$?

$$P(X + Y = n) = \sum_{i=0}^{n} P(X = i, Y = n - i)$$

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>i</th>
<th>$P(X = i, Y = n - i)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>n</td>
<td>0</td>
<td>$P(X = 0, Y = n)$</td>
</tr>
<tr>
<td>1</td>
<td>n - 1</td>
<td>1</td>
<td>$P(X = 1, Y = n - 1)$</td>
</tr>
<tr>
<td>2</td>
<td>n - 2</td>
<td>2</td>
<td>$P(X = 2, Y = n - 2)$</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>n</td>
<td>0</td>
<td>n</td>
<td>$P(X = n, Y = 0)$</td>
</tr>
</tbody>
</table>
The Insight to Convolution Proofs

What is the probability that \(X + Y = n \)?

\[
P(X + Y = n) = \sum_{k=0}^{n} P(X = k, Y = n - k)
\]

Since this is the OR or mutually exclusive events

\[
P(X + Y = n) = \sum_{k=0}^{n} P(X = k)P(Y = n - k)
\]

If the random variables are independent
Let $X+Y$ be the value of the sum of two dice (aka two independent random variables)

$$P(X + Y = n) = \sum_{i=1}^{n-1} P(X = i, Y = n - i)$$

![Bar graph showing the probability of each sum of two dice between 2 and 12.](image)
Convolution: The fanciest way to say “adding random variables”
Sometimes Adding is Easy:
Let X and Y be independent binomials with the same value for p:
- $X \sim \text{Bin}(n_1, p)$ and $Y \sim \text{Bin}(n_2, p)$
- $X + Y \sim \text{Bin}(n_1 + n_2, p)$

Intuition:
- X has n_1 trials and Y has n_2 trials
 - Each trial has same “success” probability p
- Define Z to be $n_1 + n_2$ trials, each with success prob. p
- $Z \sim \text{Bin}(n_1 + n_2, p)$, and also $Z = X + Y$
Let X and Y be independent random variables

- $X \sim N(\mu_1, \sigma_1^2)$ and $Y \sim N(\mu_2, \sigma_2^2)$
- $X + Y \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$

Generally, have n independent random variables $X_i \sim N(\mu_i, \sigma_i^2)$ for $i = 1, 2, ..., n$:

$$
\left(\sum_{i=1}^{n} X_i \right) \sim N\left(\sum_{i=1}^{n} \mu_i, \sum_{i=1}^{n} \sigma_i^2 \right)
$$
Let X and Y be independent random variables
- $X \sim \text{Poi}(\lambda_1)$ and $Y \sim \text{Poi}(\lambda_2)$
- $X + Y \sim \text{Poi}(\lambda_1 + \lambda_2)$
• Say you are working with the WHO to plan a response to the initial conditions of a virus:
 ▪ Two exposed groups
 ▪ P1: 50 people, each independently infected with $p = 0.1$
 ▪ P2: 100 people, each independently infected with $p = 0.4$
 ▪ Question: Probability of more than 40 infections?

Sanity check: Should we use the Binomial Sum-of-RVs shortcut?
A. YES!
B. NO!
C. Other/none/more
• Say you are working with the WHO to plan a response to a the initial conditions of a virus:
 - Two exposed groups
 - P1: 50 people, each independently infected with $p = 0.1$
 - P2: 100 people, each independently infected with $p = 0.4$
 - $A = \#$ infected in P1 $\sim \text{Bin}(50, 0.1) \approx X \sim \text{N}(5, 4.5)$
 - $B = \#$ infected in P2 $\sim \text{Bin}(100, 0.4) \approx Y \sim \text{N}(40, 24)$
 - What is $P(\geq 40 \text{ people infected})$?
 - $P(A + B \geq 40) \approx P(X + Y \geq 39.5)$
 - $X + Y = W \sim \text{N}(5 + 40 = 45, 4.5 + 24 = 28.5)$

$$P(W > 39.5) = 1 - P(X < 39.5) = 1 - F_X(39.5) = 1 - \Phi\left(\frac{39.5 - 45}{\sqrt{28.5}}\right) \approx 0.8485$$
Thinking of Y as a linear transform

$$X \sim N(\mu, \sigma^2)$$

$$Y = X + X = 2 \cdot X$$

$$Y \sim N(2\mu, 4\sigma^2)$$

Thinking of Y as the sum of independent normals

$$Y = X + X = 2 \cdot X$$

$$X + X \sim N(\mu + \mu, \sigma^2 + \sigma^2)$$

$$Y \sim N(2\mu, 2\sigma^2)$$

X is not independent of X
Zero Sum Games

What is the probability that the Warriors win?

How do you model zero sum games?
Gaussian Sampling and ELO ratings

What is the probability that the Warriors win? How do you model zero-sum games?
Gaussian Sampling and ELO ratings

Each team has an ELO score S, calculated based on its past performance.
- Each game, a team has ability $A \sim \mathcal{N}(S, 200^2)$.
- The team with the higher sampled ability wins.

What is the probability that Warriors win this game?

Want: $P(\text{Warriors win}) = P(A_W > A_O)$
Probability of Winning a Game

\[A_W \sim N(1797, 200^2) \]

\[A_O \sim N(1555, 200^2) \]

\[P(\text{Warriors win}) = P(A_W > A_O) \]

\[P(\text{Warriors win}) = P(A_W - A_O > 0) \]

\[-A_O \sim N(-1555, 200^2) \]

\[D = A_W + (-A_O) \]

\[D \sim N(242, 2 \cdot 200^2) \]

\[P(D > 0) = 1 - F_D(0) \approx 0.804 \]
We talked about sum of Binomial, Normal and Poisson…who’s missing from this party? Uniform.
Discrete vs Continuous

Discrete

\[P(X + Y = a) = \sum_{y=-\infty}^{\infty} P(X = a - y)P(Y = y) \ dy \]

Continuous

\[f(X + Y = a) = \int_{y=-\infty}^{\infty} f(X = a - y)f(Y = y) \ dy \]
Let X and Y be independent random variables.

- $X \sim \text{Unif}(0, 1)$ and $Y \sim \text{Unif}(0, 1) \Rightarrow f(x) = 1$ for $0 \leq x \leq 1$
$X \sim \text{Uni}(0, 1) \quad Y \sim \text{Uni}(0, 1) \quad f(X + Y = a)$?

$f(X + Y = a) = \int_{y=-\infty}^{\infty} f(X = a - y) f(Y = y) \, dy$

\[
f(X + Y = a) = \begin{cases}
 a & 0 < a < 1 \\
 2 - a & 1 < a < 2 \\
 0 & \text{otherwise}
\end{cases}
\]
Sum of Uniforms and Sum of Dice

$f(x+y)$

The graph shows the distribution of the sum of two uniformly distributed random variables. The x-axis represents the sum $x+y$, and the y-axis represents the probability density function $f(x+y)$.
Sum of 100 uniforms???
Were talking about the sum of uniforms

```python
import random

def main():
    x = random.random()
    y = random.random()
    z = x + y
    print(z)

if __name__ == '__main__':
    main()
```
Sum of 100 poisson considered
And now a moment of silence...

...before we present...

...a beautiful result of probability theory!
(silent drumroll)
Central Limit Theorem

Consider n independent and identically distributed (i.i.d) variables X_1, X_2, \ldots, X_n with $E[X_i] = \mu$ and $\text{Var}(X_i) = \sigma^2$.

The sum of n i.i.d. random variables is normally distributed with mean $n\mu$ and variance $n\sigma^2$.

$$\sum_{i=1}^{n} X_i \sim \mathcal{N}(n\mu, n\sigma^2)$$

As $n \to \infty$
True happiness
Sum of dice rolls

Roll n independent dice. Let X_i be the outcome of roll i. X_i are i.i.d.

\[
\sum_{i=1}^{1} X_i \quad \text{Sum of 1 die roll}
\]

\[
\sum_{i=1}^{2} X_i \quad \text{Sum of 2 dice rolls}
\]

\[
\sum_{i=1}^{3} X_i \quad \text{Sum of 3 dice rolls}
\]

How many ways can you roll a total of 3 vs 11?
CLT explains a lot

\[\sum_{i=1}^{n} X_i \sim N(n\mu, n\sigma^2) \quad \text{As } n \to \infty \]

The sum of \(n \) i.i.d. random variables is normally distributed with mean \(n\mu \) and variance \(n\sigma^2 \).

Galton Board, by Sir Francis Galton (1822-1911)
CLT explains a lot

$$\sum_{i=1}^{n} X_i \sim \mathcal{N}(n\mu, n\sigma^2)$$

As $n \to \infty$

The sum of n i.i.d. random variables is normally distributed with mean $n\mu$ and variance $n\sigma^2$.

Proof:

Let $X_i \sim \text{Ber}(p)$ for $i = 1, \ldots, n$, where X_i are i.i.d.

$E[X_i] = p$, $\text{Var}(X_i) = p(1-p)$

$$X = \sum_{i=1}^{n} X_i \quad (X \sim \text{Bin}(n, p))$$

$$X \sim \mathcal{N}(n\mu, n\sigma^2) \quad (\text{CLT, as } n \to \infty)$$

$$X \sim \mathcal{N}(np, np(1-p)) \quad (\text{substitute mean, variance of Bernoulli})$$

Normal approximation of Binomial
Sum of i.i.d. Bernoulli RVs \approx Normal
The sum of n i.i.d. random variables is normally distributed with mean $n\mu$ and variance $n\sigma^2$.

\[\sum_{i=1}^{n} X_i \sim \mathcal{N}(n\mu, n\sigma^2) \]

Sample of size 15, sum values.

Distribution of X_i

Distribution of $\sum_{i=1}^{15} X_i$
CLT explains a lot

The sum of n i.i.d. random variables is normally distributed with mean $n\mu$ and variance $n\sigma^2$.

\[\sum_{i=1}^{n} X_i \sim \mathcal{N}(n\mu, n\sigma^2) \]

Sample of size 15, average values

Distribution of X_i (sample mean)

Distribution of $\frac{1}{15} \sum_{i=1}^{15} X_i$
CLT example
Sum of n independent Uniform RVs

Let $X = \sum_{i=1}^{n} X_i$ be sum of i.i.d. RVs, where $X_i \sim \text{Uni}(0,1)$.

$$\mu = E[X_i] = 1/2 \quad \sigma^2 = \text{Var}(X_i) = 1/12$$

For different n, how close is the CLT approximation of $P(X \leq n/3)$?

$n = 2$:

Exact $P(X \leq 2/3) \approx 0.2222$

CLT approximation

$$X \approx Y \sim \mathcal{N}(n\mu, n\sigma^2) \Rightarrow Y \sim \mathcal{N}(1, 1/6)$$

$$P(X \leq 2/3) \approx P(Y \leq 2/3)$$

$$= \Phi\left(\frac{2/3 - 1}{\sqrt{1/6}}\right) \approx 0.2071$$
Sum of n independent Uniform RVs

Let $X = \sum_{i=1}^{n} X_i$ be sum of i.i.d. RVs, where $X_i \sim \text{Uni}(0,1)$.

\[\mu = E[X_i] = 1/2 \]
\[\sigma^2 = \text{Var}(X_i) = 1/12 \]

For different n, how close is the CLT approximation of $P(X \leq n/3)$?

$n = 5$:

Exact

\[P(X \leq 5/3) \approx 0.1017 \]

CLT approximation

\[X \approx Y \sim \mathcal{N}(n\mu, n\sigma^2) \Rightarrow Y \sim \mathcal{N}(5/2, 5/12) \]

\[P(X \leq 5/3) \approx P(Y \leq 5/3) \]

\[= \Phi\left(\frac{5/3 - 5/2}{\sqrt{5/12}}\right) \approx 0.0984 \]
Sum of n independent Uniform RVs

Let $X = \sum_{i=1}^{n} X_i$ be sum of i.i.d. RVs, where $X_i \sim \text{Uni}(0,1)$.

\[
\mu = E[X_i] = 1/2 \\
\sigma^2 = \text{Var}(X_i) = 1/12
\]

For different n, how close is the CLT approximation of $P(X \leq n/3)$?

$n = 10$:

Exact

\[P(X \leq 10/3) \approx 0.0337\]

CLT approximation

\[X \approx Y \sim \mathcal{N}(n\mu, n\sigma^2) \implies Y \sim \mathcal{N}(5, 5/6)\]

\[P(X \leq 10/3) \approx P(Y \leq 10/3)\]

\[= \Phi \left(\frac{10/3 - 5}{\sqrt{5/6}} \right) \approx 0.0339\]
Sum of n independent Uniform RVs

Let $X = \sum_{i=1}^{n} X_i$ be sum of i.i.d. RVs, where $X_i \sim \text{Uni}(0,1)$.

$$\begin{align*}
\mu &= E[X_i] = 1/2 \\
\sigma^2 &= \text{Var}(X_i) = 1/12
\end{align*}$$

For different n, how close is the CLT approximation of $P(X \leq n/3)$?

$n = 2$:

$n = 5$:

$n = 10$:

Most books will tell you that CLT holds if $n \geq 30$, but it can hold for smaller n depending on the distribution of your i.i.d. X_i's.
The sum of independent, identically distributed variables:

\[Y = \sum_{i=0}^{n} X_i \]

Is normally distributed:

\[Y \sim N(n\mu, n\sigma^2) \]

where \(\mu = E[X_i] \)

\[\sigma^2 = \text{Var}(X_i) \]
What about other functions?

Sum of iid? Normal

Average of iid?

Max of iid?
Demo Time!

http://onlinestatbook.com/stat_sim/sampling_dist/
By the Central Limit Theorem, the mean of IID variables are distributed normally.

\[\bar{X} \sim N(\mu, \frac{\sigma^2}{n}) \]
What about other functions?

Sum of iid? Normal

Average of iid? Normal

Max of iid?
What about other functions?

Sum of iid? Normal

Average of iid? Normal

Max of iid? Gumbel

See Fisher Trippett Gnedenko Theorem
Once Upon a Time…

Abraham De Moivre

THE

DOCTRINE

OF

CHANCES:

or,

A Method of Calculating the Probability of Events in Play.

LONDON:

Printed by J. F. Rivington, for the Author. MDCCLXVIII.

1733

Piech, CS109, Stanford University
Once Upon a Time...

• History of the Central Limit Theorem
 - 1733: CLT for $X \sim \text{Ber}(1/2)$ postulated by Abraham de Moivre
 - 1823: Pierre-Simon Laplace extends de Moivre’s work to approximating $\text{Bin}(n, p)$ with Normal
 - 1901: Aleksandr Lyapunov provides precise definition and rigorous proof of CLT
 - 2016: Beyoncé releases Lemonade
 o It was her 6th album, bringing her total number of songs to 214
 o Mean quality of subsamples of songs is Normally distributed (thanks to the Central Limit Theorem)
It’s play time!
You will roll 10 6-sided dice \((X_1, X_2, \ldots, X_{10})\)
- \(X = \text{total value of all 10 dice} = X_1 + X_2 + \ldots + X_{10}\)
- Win if: \(X \leq 25\) or \(X \geq 45\)
- Roll!

And now the truth (according to the CLT)...
Sum of Dice

- You will roll 10 6-sided dice \((X_1, X_2, \ldots, X_{10})\)
 - \(X = \) total value of all 10 dice \(= X_1 + X_2 + \ldots + X_{10}\)
 - Win if: \(X \leq 25 \) or \(X \geq 45\)

- Recall CLT:
 \[
 X = \sum_{i}^{n} X_i \rightarrow N(n\mu, n\sigma^2) \quad \text{As } n \to \infty
 \]
 - Determine \(P(X \leq 25 \text{ or } X \geq 45)\) using CLT:

 \[
 \mu = E[X_i] = 3.5 \quad \sigma^2 = \text{Var}(X_i) = \frac{35}{12} \quad X \approx N(35, 29.2)
 \]

 \[
 1 - P(25.5 < X < 44.5) = 1 - P\left(\frac{25.5 - 35}{\sqrt{29.2}} < Z < \frac{44.5 - 35}{\sqrt{29.2}}\right)
 \]

 \[
 \approx 1 - (2\Phi(1.76) - 1) \approx 2(1 - 0.9608) = 0.0784
 \]
I know of scarcely anything so apt to impress the imagination as the wonderful form of cosmic order expressed by the "[Central limit theorem]". The law would have been personified by the Greeks and deified, if they had known of it. It reigns with serenity and in complete self-effacement, amidst the wildest confusion. The huger the mob, and the greater the apparent anarchy, the more perfect is its sway. It is the supreme law of Unreason. Whenever a large sample of chaotic elements are taken in hand and marshalled in the order of their magnitude, an unsuspected and most beautiful form of regularity proves to have been latent all along.

- Sir Francis Galton