18: Central Limit Theorem

Lisa Yan
May 15, 2020
Quick slide reference

3 i.i.d. random variables 18a_iid
9 Central Limit Theorem 18b_clt
19 CLT example 18c_clt_example
24 Sum/average/max of i.i.d. rvs 18d_sums
30 Exercises LIVE
43 Extra: History of the CLT 18f_clt_history
i.i.d. random variables
Another big day

Up until this point, we’ve mostly covered traditional probability topics:
• Equally likely outcomes
• Conditional probability, independence
• Joint probability distributions, conditional expectation

We have done some awesome applications:
• Federalist Papers: Authorship identification
• WebMD: General Inference

Today
• Our last big topic in traditional probability before we move onto modern-day statistical analysis!
Independence of multiple random variables

We have independence of n discrete random variables X_1, X_2, \ldots, X_n if for all x_1, x_2, \ldots, x_n:

$$P(X_1 = x_1, X_2 = x_2, \ldots, X_n = x_n) = \prod_{i=1}^{n} P(X_i = x_i)$$

$$p_{X_1, X_2, \ldots, X_n}(x_1, x_2, \ldots, x_n) = \prod_{i=1}^{n} p_{X_i}(x_i)$$

We have independence of n continuous random variables X_1, X_2, \ldots, X_n if for all x_1, x_2, \ldots, x_n:

$$P(X_1 \leq x_1, X_2 \leq x_2, \ldots, X_n \leq x_n) = \prod_{i=1}^{n} P(X_i \leq x_i)$$

$$f_{X_1, X_2, \ldots, X_n}(x_1, x_2, \ldots, x_n) = \prod_{i=1}^{n} f_{X_i}(x_i)$$
i.i.d. random variables

Consider \(n \) variables \(X_1, X_2, \ldots, X_n \).

\(X_1, X_2, \ldots, X_n \) are **independent and identically distributed** if

- \(X_1, X_2, \ldots, X_n \) are independent, and
- All have the same PMF (if discrete) or PDF (if continuous).

\[\Rightarrow E[X_i] = \mu \text{ for } i = 1, \ldots, n \]

\[\Rightarrow \text{Var}(X_i) = \sigma^2 \text{ for } i = 1, \ldots, n \]

Same thing: i.i.d. iid IID
Quick check

Are X_1, X_2, \ldots, X_n i.i.d. with the following distributions?

1. $X_i \sim \text{Exp}(\lambda)$, X_i independent
2. $X_i \sim \text{Exp}(\lambda_i)$, X_i independent
3. $X_i \sim \text{Exp}(\lambda)$, $X_1 = X_2 = \cdots = X_n$
4. $X_i \sim \text{Bin}(n_i, p)$, X_i independent
Quick check

Are X_1, X_2, \ldots, X_n i.i.d. with the following distributions?

1. $X_i \sim \text{Exp}(\lambda), \ X_i$ independent

2. $X_i \sim \text{Exp}(\lambda_i), \ X_i$ independent (unless λ_i equal)

3. $X_i \sim \text{Exp}(\lambda), \ X_1 = X_2 = \cdots = X_n$ dependent: $X_1 = X_2 = \cdots = X_n$

4. $X_i \sim \text{Bin}(n_i, p), \ X_i$ independent (unless n_i equal)

Note underlying Bernoulli RVs are i.i.d.!
Central Limit Theorem
(silent drumroll)
Central Limit Theorem

Consider \(n \) independent and identically distributed (i.i.d.) variables \(X_1, X_2, \ldots, X_n \) with \(E[X_i] = \mu \) and \(\text{Var}(X_i) = \sigma^2 \).

\[
\sum_{i=1}^{n} X_i \sim \mathcal{N}(n\mu, n\sigma^2)
\]

The sum of \(n \) i.i.d. random variables is normally distributed with mean \(n\mu \) and variance \(n\sigma^2 \).
True happiness
Sum of dice rolls

Roll n independent dice. Let X_i be the outcome of roll i. X_i are i.i.d.

$$\sum_{i=1}^{1} X_i \quad \text{Sum of 1 die roll}$$

$$\sum_{i=1}^{2} X_i \quad \text{Sum of 2 dice rolls}$$

$$\sum_{i=1}^{3} X_i \quad \text{Sum of 3 dice rolls}$$

How many ways can you roll a total of 3 vs 11?
The sum of n i.i.d. random variables is normally distributed with mean $n\mu$ and variance $n\sigma^2$.

Galton Board, by Sir Francis Galton (1822-1911)
CLT explains a lot

The sum of n i.i.d. random variables is normally distributed with mean $n\mu$ and variance $n\sigma^2$.

Proof:

Let $X_i \sim \text{Ber}(p)$ for $i = 1, \ldots, n$, where X_i are i.i.d.

$E[X_i] = p$, $\text{Var}(X_i) = p(1 - p)$

$X = \sum_{i=1}^{n} X_i$ (substitute mean, variance of Bernoulli)

$X \sim \mathcal{N}(n\mu, n\sigma^2)$ (CLT, as $n \to \infty$)

Normal approximation of Binomial
Sum of i.i.d. Bernoulli RVs \approx Normal
CLT explains a lot

\[
\sum_{i=1}^{n} X_i \sim \mathcal{N}(n\mu, n\sigma^2)
\]

As \(n \to \infty \)

The sum of \(n \) i.i.d. random variables is normally distributed with mean \(n\mu \) and variance \(n\sigma^2 \).

Sample of size 15, sum values

Distribution of \(X_i \)

Distribution of \(\sum_{i=1}^{15} X_i \)
CLT explains a lot

As $n \to \infty$

$\sum_{i=1}^{n} X_i \sim \mathcal{N}(n\mu, n\sigma^2)$

The sum of n i.i.d. random variables is normally distributed with mean $n\mu$ and variance $n\sigma^2$.

Sample of size 15, average values

Distribution of X_i (sample mean) Distribution of $\frac{1}{15} \sum_{i=1}^{15} X_i$
Proof of CLT

The sum of \(n \) i.i.d. random variables is normally distributed with mean \(n\mu \) and variance \(n\sigma^2 \).

Proof:

- The Fourier Transform of a PDF is called a characteristic function.
- Take the characteristic function of the probability mass of the sample distance from the mean, divided by standard deviation.
- Show that this approaches an exponential function in the limit as \(n \to \infty \):
 \[
 f(x) = e^{-\frac{x^2}{2}}
 \]
- This function is in turn the characteristic function of the Standard Normal, \(Z \sim \mathcal{N}(0,1) \).

(this proof is beyond the scope of CS109)
CLT example
Sum of n independent Uniform RVs

Let $X = \sum_{i=1}^{n} X_i$ be sum of i.i.d. RVs, where $X_i \sim \text{Uni}(0,1)$.
$\mu = E[X_i] = 1/2$
$\sigma^2 = \text{Var}(X_i) = 1/12$

For different n, how close is the CLT approximation of $P(X \leq n/3)$?

$n = 2$:

Exact

$P(X \leq 2/3) \approx 0.2222$

CLT approximation

$X \approx Y \sim \mathcal{N}(n\mu, n\sigma^2) \quad \Rightarrow \quad Y \sim \mathcal{N}(1, 1/6)$

$P(X \leq 2/3) \approx P(Y \leq 2/3)$

$= \Phi \left(\frac{2/3 - 1}{\sqrt{1/6}} \right) \approx 0.2071$
Sum of n independent Uniform RVs

Let $X = \sum_{i=1}^{n} X_i$ be sum of i.i.d. RVs, where $X_i \sim \text{Uni}(0,1)$.

$$\mu = E[X_i] = \frac{1}{2} \quad \sigma^2 = \text{Var}(X_i) = \frac{1}{12}$$

For different n, how close is the CLT approximation of $P(X \leq n/3)$?

$n = 5$:

Exact

$$P(X \leq 5/3) \approx 0.1017$$

CLT approximation

$$X \approx Y \sim \mathcal{N}(n\mu, n\sigma^2) \implies Y \sim \mathcal{N}(5/2, 5/12)$$

$$P(X \leq 5/3) \approx P(Y \leq 5/3)$$

$$= \Phi \left(\frac{5/3 - 5/2}{\sqrt{5/12}} \right) \approx 0.0984$$
Sum of n independent Uniform RVs

Let $X = \sum_{i=1}^{n} X_i$ be sum of i.i.d. RVs, where $X_i \sim \text{Uni}(0,1)$.

$\mu = E[X_i] = 1/2$

$\sigma^2 = \text{Var}(X_i) = 1/12$

For different n, how close is the CLT approximation of $P(X \leq n/3)$?

$n = 10$:

Exact

$P(X \leq 10/3) \approx 0.0337$

CLT approximation

$X \approx Y \sim \mathcal{N}(n\mu, n\sigma^2) \Rightarrow Y \sim \mathcal{N}(5, 5/6)$

$P(X \leq 10/3) \approx P(Y \leq 10/3)$

$= \Phi \left(\frac{10/3 - 5}{\sqrt{5/6}} \right) \approx 0.0339$
Sum of n independent Uniform RVs

Let $X = \sum_{i=1}^{n} X_i$ be sum of i.i.d. RVs, where $X_i \sim \text{Uni}(0,1)$. $\mu = E[X_i] = 1/2$; $\sigma^2 = \text{Var}(X_i) = 1/12$

For different n, how close is the CLT approximation of $P(X \leq n/3)$?

$n = 2$:

$n = 5$:

$n = 10$:

Most books will tell you that CLT holds if $n \geq 30$, but it can hold for smaller n depending on the distribution of your i.i.d. X_i's.
Sum/average/max of i.i.d. random variables
What about other functions?

Let X_1, X_2, \ldots, X_n be i.i.d., where $E[X_i] = \mu$, $\text{Var}(X_i) = \sigma^2$. As $n \to \infty$:

$$\sum_{i=1}^{n} X_i \sim \mathcal{N}(n\mu, n\sigma^2)$$

Sum of i.i.d. RVs

? Average of i.i.d. RVs (sample mean)

? Max of i.i.d. RVs
What about other functions?

Let X_1, X_2, \ldots, X_n be i.i.d., where $E[X_i] = \mu$, $\text{Var}(X_i) = \sigma^2$. As $n \to \infty$:

- Sum of i.i.d. RVs:
 \[
 \sum_{i=1}^{n} X_i \sim \mathcal{N}(n\mu, n\sigma^2)
 \]

- Average of i.i.d. RVs (sample mean):

- Max of i.i.d. RVs
Distribution of sample mean

Let X_1, X_2, \ldots, X_n be i.i.d., where $E[X_i] = \mu, \text{Var}(X_i) = \sigma^2$. As $n \to \infty$:

Define:

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \quad \text{(sample mean)}$$

$$Y = \sum_{i=1}^{n} X_i \quad \text{(sum)}$$

$$Y \sim \mathcal{N}(n\mu, n\sigma^2) \quad \text{(CLT, as } n \to \infty\text{)}$$

$$\bar{X} = \frac{1}{n} Y$$

$$\bar{X} \sim \mathcal{N}(\,?, \,?) \quad \text{(Linear transform of a Normal)}$$

$$E[\bar{X}] = \frac{1}{n} E[Y] = \mu$$

$$\text{Var}(\bar{X}) = \left(\frac{1}{n}\right)^2 \text{Var}(Y) = \left(\frac{1}{n}\right)^2 n \sigma^2 = \frac{\sigma^2}{n}$$

$$\bar{X} \sim \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right)$$
Distribution of sample mean

Let X_1, X_2, \ldots, X_n be i.i.d., where $E[X_i] = \mu$, $\text{Var}(X_i) = \sigma^2$. As $n \to \infty$:

Define: $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ (sample mean) $\quad Y = \sum_{i=1}^{n} X_i$ (sum)

$Y \sim \mathcal{N}(n\mu, n\sigma^2)$ \hspace{1cm} (CLT, as $n \to \infty$)

$\bar{X} = \frac{1}{n} Y$

$\bar{X} \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$ \hspace{1cm} (Linear transform of a Normal)

The average of i.i.d. random variables (i.e., sample mean) is normally distributed with mean μ and variance σ^2/n.

What about other functions?

Let X_1, X_2, \ldots, X_n be i.i.d., where $E[X_i] = \mu$, $\text{Var}(X_i) = \sigma^2$. As $n \to \infty$:

\[
\sum_{i=1}^{n} X_i \sim \mathcal{N}(n\mu, n\sigma^2)
\]

Sum of i.i.d. RVs

\[
\frac{1}{n} \sum_{i=1}^{n} X_i \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})
\]

Average of i.i.d. RVs (sample mean)

Max of i.i.d. RVs

(see Fisher-Tippett Gnedenko Theorem)
18: Central Limit Theorem

Lisa Yan
May 15, 2020
Slide 36 has a question to go over by yourself.

Post any clarifications here!

https://us.edstem.org/courses/109/discussion/64187

Think by yourself: 2 min
Quick check

What dimensions are the following RVs?
(Let X_i be i.i.d. with mean μ)

1. X_1
2. $(X_1, X_2, ..., X_n)$
3. $\sum_{i=1}^{n} X_i$
4. $\frac{1}{n} \sum_{i=1}^{n} X_i$
5. $\frac{1}{n} \sum_{i=1}^{n} \mu$

A. 1-D random variable
B. n-D random variable (a vector)
C. not a random variable

(by yourself)
Quick check

What dimensions are the following RVs?
(Let X_i be i.i.d. with mean μ)

1. X_1
 - A

2. (X_1, X_2, \ldots, X_n)
 - B
 - (aka a sample)

3. $\sum_{i=1}^{n} X_i$
 - A

4. $\frac{1}{n} \sum_{i=1}^{n} X_i$
 - A
 - (aka the sample mean)

5. $\frac{1}{n} \sum_{i=1}^{n} \mu$
 - C
Dice game

You will roll 10 6-sided dice \((X_1, X_2, \ldots, X_{10})\).

- Let \(X = X_1 + X_2 + \cdots + X_{10}\), the total value of all 10 rolls.
- You win if \(X \leq 25\) or \(X \geq 45\).

\[
\text{As } n \to \infty: \sum_{i=1}^{n} X_i \sim \mathcal{N}(n\mu, n\sigma^2)
\]
Discussion

Slide 50 has a question to discuss together.

Post any clarifications here! Or just unmutedef!

https://us.edstem.org/courses/109/discussion/64187

Think by yourself: 1 min
Discuss (as a class): 3 min
Dice game

You will roll 10 6-sided dice ($X_1, X_2, ..., X_{10}$).
- Let $X = X_1 + X_2 + \cdots + X_{10}$, the total value of all 10 rolls.
- You win if $X \leq 25$ or $X \geq 45$.

And now the truth (according to the CLT)...

1. Define RVs and state goal.
 - $E[X_i] = 3.5$, $\text{Var}(X_i) = 35/12$
 - Want: $P(X \leq 25$ or $X \geq 45)$
 - Approximate: ?

2. Solve.
Dice game

You will roll 10 6-sided dice \(X_1, X_2, \ldots, X_{10}\).
- Let \(X = X_1 + X_2 + \cdots + X_{10}\), the total value of all 10 rolls.
- You win if \(X \leq 25\) or \(X \geq 45\).

And now the truth (according to the CLT)...

1. Define RVs and state goal.
 \[E[X_i] = 3.5, \quad \text{Var}(X_i) = \frac{35}{12} \]
 Want: \(P(X \leq 25 \text{ or } X \geq 45) \)
 Approximate:
 \[X \approx Y \sim \mathcal{N}(10(3.5), 10\left(\frac{35}{12}\right)) \]

2. Solve.
 \[P(Y \leq 25.5) + P(Y \geq 44.5) \]
 or
 \[1 - P(25.5 \leq Y \leq 44.5) \]

⚠ Continuity correction
Dice game

You will roll 10 6-sided dice (X_1, X_2, \ldots, X_{10}).
- Let $X = X_1 + X_2 + \cdots + X_{10}$, the total value of all 10 rolls.
- You win if $X \leq 25$ or $X \geq 45$.

And now the truth (according to the CLT)...

1. Define RVs and state goal.
 $E[X_i] = 3.5, \quad \text{Var}(X_i) = 35/12$
 Want:
 $P(X \leq 25 \text{ or } X \geq 45)$
 Approximate:
 $X \approx Y \sim \mathcal{N}(10(3.5), 10(35/12))$

2. Solve.

 $$P(Y \leq 25.5) + P(Y \geq 44.5) = \Phi \left(\frac{25.5 - 35}{\sqrt{10(35/12)}} \right) + \left(1 - \Phi \left(\frac{44.5 - 35}{\sqrt{10(35/12)}} \right) \right)$$

 $$\approx \Phi(-1.76) + (1 - \Phi(1.76)) \approx (1 - 0.9608) + (1 - 0.9608) = 0.0784$$
Dice game

You will roll 10 6-sided dice (X_1, X_2, \ldots, X_{10}).
- Let $X = X_1 + X_2 + \cdots + X_{10}$, the total value of all 10 rolls.
- You win if $X \leq 25$ or $X \geq 45$.

And now the truth (according to the CLT)...

(by CLT)

$\approx P(Y \leq 25.5) + P(Y \geq 44.5)
\approx 0.0784$

(by computer)

$P(X \leq 25 \text{ or } X \geq 45) \approx 0.0780$
Working with the CLT

Let X_1, X_2, \ldots, X_n i.i.d., where $E[X_i] = \mu$, $\text{Var}(X_i) = \sigma^2$. As $n \to \infty$:

$$\sum_{i=1}^{n} X_i \sim \mathcal{N}(n\mu, n\sigma^2)$$

Sum of i.i.d. RVs

$$\frac{1}{n} \sum_{i=1}^{n} X_i \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$$

Average of i.i.d. RVs (sample mean)

⚠️ If X_i is discrete: Use the continuity correction on Y!
Crashing website

- Let $X =$ number of visitors to a website, where $X \sim $ Poi(100).
- The server crashes if there are ≥ 120 requests/minute.

What is $P($ server crashes in next minute)?

Strategy:

Poisson (exact)

$$P(X \geq 120) = \sum_{k=120}^{\infty} \frac{(100)^k e^{-100}}{k!} \approx 0.0282$$

Strategy:

CLT (approx.)

How would we involve CLT here?
Crashing website

- Let $X =$ number of visitors to a website, where $X \sim \text{Poi}(100)$.
- The server crashes if there are ≥ 120 requests/minute.

What is $P(\text{server crashes in next minute})$?

Strategy: Poisson (exact)

$$P(X \geq 120) = \sum_{k=120}^{\infty} \frac{(100)^k e^{-100}}{k!} \approx 0.0282$$

Strategy: CLT (approx.)

State approx. goal

$$X \sim Y \sim \mathcal{N}(n\mu, n\sigma^2)$$

$$\mu = \frac{100}{n} = \sigma^2$$

Want: $P(X \geq 120) \approx P(Y \geq 119.5)$

Solve

$$P(Y \geq 119.5) = 1 - \Phi \left(\frac{119.5 - 100}{\sqrt{100}} \right) = 1 - \Phi(1.95) \approx 0.0256$$
Interlude for jokes/announcements

Magnitude 6.5 earthquake
Affected countries: United States and Mexico
35 miles from Tonopah, NV • 4:03 AM
Announcements

Quiz #2

Time frame: Thursday 5/21 12:00am-11:59pm PT
Covers: Up to and including Lecture 17
Review session (Tim): Saturday 5/16 12-2pm PT
https://stanford.zoom.us/j/92275547392
Info and practice: up

Python tutorial #3 (Julie)

When: Friday 5/15 1:30-2:30PT
https://stanford.zoom.us/j/487421836
Recorded online
Useful for: pset5, pset6

Note: If you have an emergency situation during the quiz, please contact Lisa and Cooper. We will try our best to accommodate.

Problem Set 5: has been released early for quiz practice, due after quiz
Interesting probability news

Improving students’ attitudes to chance with games and activities

Statistically-significant changes in students’ attitudes had occurred (p < .05). At the end of the project, students reported:

• greater enjoyment when learning about chance
• less anxiety and worry when working on chance
• greater motivation and desire to learn more about chance in class,
• and an increased perception of the usefulness of chance in their lives.

Get Your M&Ms

Greedy Pig

https://core.ac.uk/download/pdf/143858603.pdf

CS109 Current Events Spreadsheet
Clock running time

Want to find the mean (clock) runtime of an algorithm, $\mu = t$ sec.
- Suppose variance of runtime is $\sigma^2 = 4$ sec2.

How many trials do we need s.t. estimated time $= t \pm 0.5$ with 95% certainty?

1. Define RVs and state goal.

 (CLT) $\bar{X} \sim \mathcal{N}\left(t, \frac{4}{n}\right)$

 (linear transform of a normal) $\bar{X} - t \sim \mathcal{N}\left(0, \frac{4}{n}\right)$

 Want: $P(t - 0.5 \leq \bar{X} \leq t + 0.5) = 0.95$

2. Solve.

 $\sum_{i=1}^{n} X_i \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$

 $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \sim \mathcal{N}\left(\frac{n}{n} \mu, \left(\frac{1}{n}\right)^2 n \sigma^2\right)$

 $\bar{X} \sim \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right)$

 $P(-0.5 \leq \bar{X} - t \leq 0.5) = 0.95$
Clock running time

Want to find the mean (clock) runtime of an algorithm, \(\mu = t \) sec.

- Suppose variance of runtime is \(\sigma^2 = 4 \) sec\(^2\).

How many trials do we need s.t. estimated time = \(t \pm 0.5 \) with 95% certainty?

1. Define RVs and state goal.

 \[
 \bar{X} - t \sim \mathcal{N} \left(0, \frac{4}{n} \right)
 \]

 \[
 0.95 = P(-0.5 \leq \bar{X} - t \leq 0.5)
 \]

2. Solve.

 \[
 0.95 = F_{\bar{X} - t}(0.5) - F_{\bar{X} - t}(-0.5)
 \]

 \[
 = \Phi \left(\frac{0.5 - 0}{\sqrt{4/n}} \right) - \Phi \left(\frac{-0.5 - 0}{\sqrt{4/n}} \right) = 2\Phi \left(\frac{\sqrt{n}}{4} \right) - 1
 \]

As \(n \to \infty \):

\[
\frac{1}{n} \sum_{i=1}^{n} X_i \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})
\]

Run algorithm repeatedly (i.i.d. trials):

- \(X_i = \) runtime of \(i \)-th run (for \(1 \leq i \leq n \))
- Estimate runtime to be average of \(n \) trials, \(\bar{X} \)
Clock running time

Want to find the mean (clock) runtime of an algorithm, $\mu = t$ sec.

- Suppose variance of runtime is $\sigma^2 = 4$ sec2.

How many trials do we need s.t. estimated time $= t \pm 0.5$ with 95% certainty?

1. Define RVs and state goal.
 \[
 \bar{X} - t \sim \mathcal{N} \left(0, \frac{4}{n} \right)
 \]

2. Solve.

 \[
 0.95 = F_{\bar{X} - t}(0.5) - F_{\bar{X} - t}(-0.5)
 = \Phi \left(\frac{0.5 - 0}{\sqrt{4/n}} \right) - \Phi \left(\frac{-0.5 - 0}{\sqrt{4/n}} \right)
 = 2\Phi \left(\frac{\sqrt{n}}{4} \right) - 1
 \]

 \[
 0.975 = \Phi(\sqrt{n}/4)
 \]

 \[
 \sqrt{n}/4 = \Phi^{-1}(0.975) \approx 1.96 \quad \Rightarrow \quad n \approx 62
 \]
Clock running time

Want to find the mean (clock) runtime of an algorithm, $\mu = t$ sec.

- Suppose variance of runtime is $\sigma^2 = 4 \text{ sec}^2$.

How many trials do we need s.t. estimated time $= t \pm 0.5$ with 95% certainty?

$$n \approx 62$$

Interpret: As we increase n (the size of our sample):

- The variance of our sample mean, σ^2 / n decreases
- The probability that our sample mean is close to the true mean μ increases

Run algorithm repeatedly (i.i.d. trials):
- $X_i =$ runtime of i-th run (for $1 \leq i \leq n$)
- Estimate runtime to be average of n trials, \bar{X}

As $n \to \infty$: \[\frac{1}{n} \sum_{i=1}^{n} X_i \sim \mathcal{N}(\mu, \frac{\sigma^2}{n}) \]
Wonderful form of cosmic order

I know of scarcely anything so apt to impress the imagination as the wonderful form of cosmic order expressed by the "[Central limit theorem]". The law would have been personified by the Greeks and deified, if they had known of it. It reigns with serenity and in complete self-effacement, amidst the wildest confusion. The huger the mob, and the greater the apparent anarchy, the more perfect is its sway. It is the supreme law of Unreason. Whenever a large sample of chaotic elements are taken in hand and marshalled in the order of their magnitude, an unsuspected and most beautiful form of regularity proves to have been latent all along.

– Sir Francis Galton
(of the Galton Board)
Next time

Central Limit Theorem:
• Sample mean $\bar{X} \sim \mathcal{N}(\mu, \sigma^2/n)$
• If we know μ and σ^2, we can compute probabilities on sample mean \bar{X} of a given sample size n

In real life:
• Yes, the CLT still holds....
• But we often don’t know μ or σ^2 of our original distribution
• However, we can collect data (a sample of size n)!
• How do we estimate the values μ and σ^2 from our sample?

...until next time!
Extra: History of the CLT
Once upon a time...

Abraham de Moivre
CLT for $X \sim \text{Ber}(1/2)$
1733

Aubrey Drake Graham
(Drake)
A short history of the CLT

1700

1733: CLT for $X \sim \text{Ber}(1/2)$
postulated by Abraham de Moivre

1800

1823: Pierre-Simon Laplace extends de Moivre’s
work to approximating $\text{Bin}(n, p)$ with Normal

1900

1901: Alexandr Lyapunov provides precise
definition and rigorous proof of CLT

2000

2018: Drake releases *Scorpion*

- It was his 5th studio album, bringing his total # of songs to 190
- Mean quality of subsamples of songs is normally distributed (thanks
to the Central Limit Theorem)