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Conditional Probability and 
Bayes



Review



What is a Probability?



A number [0, 1] to which we ascribe meaning

The event we 
care about

Out of (close to) infinite 
trials

How many times does it 
occur



Sources of Probability

Infinite Trials Datasets Equally Likely Outcomes

AI ModelsAnalytics



How Does This Work?

WhatsApp m3ei51 to +1-415-728-3856 





Recall: S = all possible outcomes. E = the event.

• Axiom 1: 0  P(E)  1

• Axiom 2: P(S) = 1

• Axiom 3: If events E and F are mutually exclusive:

  

Axioms of Probability



P(Ec) = 1 – P(E)?

P(E ∪ Ec) = P(E) + P(Ec) Axiom 3. Since E and Ec 

are mutually exclusive 

P(S) = P(E) + P(Ec) 
Since everything 

must either be in E 

or Ec 

1 = P(E) + P(Ec) 

P(Ec) = 1 – P(E) 

Axiom 2

Rearrange



End Review



Announcements



Piech + Woodrow, CS109, Stanford University

Problem Set #1 is out

Check your answer

Insert LaTeX

Auto 
Submission

newish
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Write Agents newish
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Above and Beyond new
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Python Review Session

Friday at 4:30-5:30pm PT, recorded

Find links, recordings, and setup here
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Learn LaTex

Handout to help you get 
started
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Inline LaTex new

When you type 
the closing $
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What Makes for a Good Answer
https://psetapp.stanford.edu/win26/lecture2/dice_probability

https://psetapp.stanford.edu/win26/lecture2/dice_probability
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It should be robust, but things can happen.

Let me know: send an email to jwoodrow@stanford.edu. I need 
your email and the approximate time you encountered the bug.

If you notice a bug?

mailto:cpiech@stanford.edu
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Honor Code

Always remember: You need to be able to 
recreate your ability on an exam. And in the 
real world. This is a foundation course. 
Cheating in CS109 is cheating yourself and 
your friends.

Talk to your friends about the concepts, not 
the solution. Words must be your own. 

Practice the art of teaching. Three most 
important things to know:
1. Do not give away the answer
2. Always be respectful
3. Know what you don’t know
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Section Signups Open Tomorrow

Sunday Monday Tuesday Wed Thursday Friday Saturday

Jan 7

You are here

Jan 8

Section signup 
opens

Jan 9 Jan 10

Jan 11

Section 
signups close 

at 5pm

Jan 12 Jan 13

Sections 
announced

Jan 14 Jan 15, Jan 16

First section!

Jan 17
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End Announcements



Learning Goal for Today: Conditional Probability

23

𝑃 𝐸

𝑃 𝐸|𝐹

Law of Total

Probability

Definition of

conditional probabilityChain rule

𝑃 𝐸 and 𝐹

𝑃 𝐹|𝐸

Bayes’

Theorem



Conditional 
Probability

24



Roll two dice

25

Equally likely 

outcomes

In blue



Roll two 6-sided dice, yielding values 𝐷1 and 𝐷2. 
You want them to sum to 4.

What is the best outcome for  𝑃 𝐷1 ?

26

Dice, our misunderstood friends

Your Choices:
▪ A. 1 and 3 tie for best

▪ B. 1, 2 and 3 tie for best

▪ C. 2 is the best

▪ D. Other/none/more than one



Sum of Two Die = 4?

27

[1,1] [1,2] [1,3] [1,4] [1,5] [1,6]

[2,1] [2,2] [2,3] [2,4] [2,5] [2,6]

[3,1] [3,2] [3,3] [3,4] [3,5] [3,6]

[4,1] [4,2] [4,3] [4,4] [4,5] [4,6]

[5,1] [5,2] [5,3] [5,4] [5,5] [5,6]

[6,1] [6,2] [6,3] [6,4] [6,5] [6,6]

S = {

}

E =

Value 

dice 1
Value 

dice 2

Each outcome

Roll two 6-sidex dice. What is probability the sum = 4?

Let E be the event that the sum is 4

In red



Sum of Two Die = 4? Condition on F: D1 = 2

28

[1,1] [1,2] [1,3] [1,4] [1,5] [1,6]

[2,1] [2,2] [2,3] [2,4] [2,5] [2,6]

[3,1] [3,2] [3,3] [3,4] [3,5] [3,6]

[4,1] [4,2] [4,3] [4,4] [4,5] [4,6]

[5,1] [5,2] [5,3] [5,4] [5,5] [5,6]

[6,1] [6,2] [6,3] [6,4] [6,5] [6,6]

S = {

}

E =

Value 

dice 1
Value 

dice 2

Each outcome

Roll two 6-sidex dice. What is probability the sum = 4?

Let E be the event that the sum is 4

In red



Sum of Two Die = 4? Condition on F: D1 = 2

29

[1,1] [1,2] [1,3] [1,4] [1,5] [1,6]

[2,1] [2,2] [2,3] [2,4] [2,5] [2,6]

[3,1] [3,2] [3,3] [3,4] [3,5] [3,6]

[4,1] [4,2] [4,3] [4,4] [4,5] [4,6]

[5,1] [5,2] [5,3] [5,4] [5,5] [5,6]

[6,1] [6,2] [6,3] [6,4] [6,5] [6,6]

S = {

}

E =

Value 

dice 1
Value 

dice 2

Each outcome

Roll two 6-sidex dice. What is probability the sum = 4?

Let E be the event that the sum is 4

In red



Roll two 6-sided dice, yielding values 𝐷1 and 𝐷2.

Let 𝐸 be event: 𝐷1 + 𝐷2 = 4.

What is 𝑃 𝐸 ? What is 𝑃 𝐸, given 𝐹 already observed ?

30

Dice, our misunderstood friends

𝑆 = 36

𝐸 = 1,3 , 2, 2 , 3,1

𝑃 𝐸 = 3/36 = 1/12 

S = { 2,1 , 2,2 , 2,3 , 2,4 , 2,5 , (2,6)}

𝐸 = 2,2

𝑃 𝐸 = 1/6 

Let 𝐹 be event: 𝐷1 = 2.



Roll two 6-sided dice, yielding values 𝐷1 and 𝐷2.

Let 𝐸 be event: 𝐷1 + 𝐷2 = 4.

What is 𝑃 𝐸 ? What is 𝑃 𝐸, given 𝐹 already observed ?

31

Dice, our misunderstood friends

𝑆 = 36

𝐸 = 1,3 , 2, 2 , 3,1

𝑃 𝐸 = 3/36 = 1/12 

S = { 3,1 , 3,2 , 3,3 , 3,4 , 3,5 , (3,6)}

𝐸 = 3,1

𝑃 𝐸 = 1/6 

Let 𝐹 be event: 𝐷1 = 𝟑.



Roll two 6-sided dice, yielding values 𝐷1 and 𝐷2.

Let 𝐸 be event: 𝐷1 + 𝐷2 = 4.

What is 𝑃 𝐸 ? What is 𝑃 𝐸, given 𝐹 already observed ?

32

Dice, our misunderstood friends

𝑆 = 36

𝐸 = 1,3 , 2, 2 , 3,1

𝑃 𝐸 = 3/36 = 1/12 

S = { 5,1 , 5,2 , 5,3 , 5,4 , 5,5 , (5,6)}

𝐸 =

𝑃 𝐸 = 0/6 

Let 𝐹 be event: 𝐷1 = 𝟓.



Conditional Probability

The conditional probability of 𝐸 given 𝐹 is the probability that 𝐸 occurs given 
that F has already occurred. This is known as conditioning on F.

Written as:   𝑃(𝐸|𝐹)

Means:    “𝑃 𝐸, given 𝐹 already observed ”

Sample space →  all possible outcomes consistent with 𝐹 (i.e. S and F)

Event →   all outcomes in 𝐸 consistent with 𝐹 (i.e. E and F)

33



Conditional Probability, visual intuition

The conditional probability of 𝐸 given 𝐹 is the probability that 𝐸 occurs given 
that F has already occurred. This is known as conditioning on F.

34



Conditional Probability, visual intuition

The conditional probability of 𝐸 given 𝐹 is the probability that 𝐸 occurs given 
that F has already occurred. This is known as conditioning on F.

35



Conditional Probability, visual intuition

The conditional probability of 𝐸 given 𝐹 is the probability that 𝐸 occurs given 
that F has already occurred. This is known as conditioning on F.

36



Conditional Probability, visual intuition

37

𝑃 𝐸 𝐹 =
3

14
≈ 0.21

𝑃 𝐸 =
8

50
≈ 0.16

Shorthand notation for set 

intersection (aka set “and”)

||

||

||

||

F

EF

SF

EF
=

# of outcomes in E consistent with F

# of outcomes in S consistent with F

The conditional probability of 𝐸 given 𝐹 is the probability that 𝐸 occurs given 
that F has already occurred. This is known as conditioning on F.
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𝑃 𝐸 𝐹 =
3

14
≈ 0.21

𝑃 𝐸 =
8

50
≈ 0.16

Shorthand notation for set 

intersection (aka set “and”)

||

||

||

||

F

EF

SF

EF
=

# of outcomes in E consistent with F

# of outcomes in S consistent with F

The conditional probability of 𝐸 given 𝐹 is the probability that 𝐸 occurs given 
that F has already occurred. This is known as conditioning on F.

Conditional Probability, visual intuition



Conditional probability in general

General definition of conditional probability:

𝑃 𝐸|𝐹 =
𝑃 𝐸𝐹

𝑃(𝐹)

The Chain Rule (aka Product rule):

𝑃 𝐸𝐹 = 𝑃 𝐹 𝑃 𝐸 𝐹

39

These properties hold even when 

outcomes are not equally likely.

What if P(F) = 0?

▪P(E | F) undefined

▪Congratulations!  Observed impossible

Shorthand for E and F
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Bye, land of equally likely outcomes
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and Learn



Netflix and Learn 𝑃 𝐸|𝐹 =
𝑃 𝐸𝐹

𝑃(𝐹)

Definition of

Cond. Probability

P(E)

S = {Watch, Not Watch} 

E = {Watch} 

P(E) = ½ ?

What is the probability 

that a user will watch

Life is Beautiful?



Netflix and Learn

What is the probability 

that a user will watch

Life is Beautiful?

P(E)



Netflix and Learn

44

What is the probability 

that a user will watch

Life is Beautiful?

P(E) = 10,234,231 / 50,923,123 = 0.20

P(E)



Netflix and Learn

45

𝑃 𝐸|𝐹 =
𝑃 𝐸𝐹

𝑃(𝐹)

Definition of

Cond. Probability

𝑃 𝐸 = 0.19 𝑃 𝐸 = 0.32 𝑃 𝐸 = 0.20𝑃 𝐸 = 0.09

Let 𝐸 be the event that a user watches the given movie.

𝑃 𝐸 = 0.20



Netflix and Learn

Let 𝐸 = a user watches Life is Beautiful.

Let 𝐹 = a user watches CODA.

What is the probability that a user watches
Life is Beautiful, given they watched CODA?

   𝑃 𝐸|𝐹  

  𝑃 𝐸|𝐹 = 

 

46

𝑃 𝐸|𝐹 =
𝑃 𝐸𝐹

𝑃(𝐹)

Definition of

Cond. Probability

≈ 
# people who have watched both

# people on Netflix
# people who have watched CODA

# people on Netflix

𝑃 𝐸𝐹

𝑃(𝐹)



Netflix and Learn

Let 𝐸 = a user watches Life is Beautiful.

Let 𝐹 = a user watches CODA.

What is the probability that a user watches
Life is Beautiful, given they watched CODA?

   𝑃 𝐸|𝐹  

  𝑃 𝐸|𝐹 = 

 ≈
# people who have watched both

# people who have watched CODA
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𝑃 𝐸|𝐹 =
𝑃 𝐸𝐹

𝑃(𝐹)

Definition of

Cond. Probability

≈ 
# people who have watched both

# people on Netflix
# people who have watched CODA

# people on Netflix

𝑃 𝐸𝐹

𝑃(𝐹)

≈ 0.42



Netflix and Learn

Let 𝐸 = a user watches Life is Beautiful.

Let 𝐹 = a user watches CODA.

What is the probability that a user watches
Life is Beautiful, given they watched CODA?

   𝑃 𝐸|𝐹  

  𝑃 𝐸|𝐹 = 

 ≈
# people who have watched both

# people who have watched CODA
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𝑃 𝐸|𝐹 =
𝑃 𝐸𝐹

𝑃(𝐹)

Definition of

Cond. Probability

≈ 
# people who have watched both

# people on Netflix
# people who have watched CODA

# people on Netflix

𝑃 𝐸𝐹

𝑃(𝐹)

≈ 0.42



Netflix and Learn

Let 𝐸 be the event that a user watches the given movie.

Let 𝐹 be the event that the same user watches CODA (2021).

49

𝑃 𝐸 = 0.19 𝑃 𝐸 = 0.32 𝑃 𝐸 = 0.20𝑃 𝐸 = 0.09

𝑃 𝐸|𝐹 =
𝑃 𝐸𝐹

𝑃(𝐹)

Definition of

Cond. Probability

𝑃 𝐸|𝐹 = 0.14 𝑃 𝐸|𝐹 = 0.35 𝑃 𝐸|𝐹 = 0.20 𝑃 𝐸|𝐹 = 0.72 𝑃 𝐸|𝐹 = 0.42

𝑃 𝐸 = 0.20



Machine Learning

50

Machine Learning is:

Probability + Data + Computers 



Notation

51

And Or Given

Probability of E given 

F and G



Chain Rule via Baby Poop

In the morning when she wakes up, a baby has a 50% chance of having pooped. 

The chance that a baby cries given that she has pooped is 50%. What is the 

probability that a baby has pooped, and cries.

https://psetapp.stanford.edu/win26/lecture2/poop

https://psetapp.stanford.edu/win26/lecture2/poop


Generalized Chain Rule



Conditional Paradigm

54

When you condition on an event (or multiple events), you enter a world where 
all the rules of probability still hold. 

For example:



55

and Learn



Under the hood of a Large Language Model

56

https://poloclub.github.io/transformer-explainer/



Under the hood of a Large Language Model

57

https://poloclub.github.io/transformer-explainer/



LLM is a Conditional Probability Machine

After CS109 we all went to



LLM is a Conditional Probability Machine

Let be the ith token in a prompt. 

An LLM is built to compute:

Q1: What is the probability of the string  “After CS109 we”

Q2: the string “went dancing” coming after the string “After CS109 we”

After CS109 we all went to



Law of Total 
Probability

61



Relationship Between Probabilities

62

𝑃 𝐸

𝑃 𝐸|𝐹

Law of Total

Probability

Definition of

conditional probability

Chain rule

𝑃 𝐸 and 𝐹



Baby Poop Revisited

In the morning when she wakes up, a baby has a 50% chance of having pooped. 

The chance that a baby cries given that she has pooped is 50%.

What is the probability of crying, unconditioned?

What information do you need?



Law of Total Probability

Say E and F are events in S

FC

Sample Space

F E



Law of Total Probability

Say E and F are events in S

Poop No Poop

Sample Space

CriesF E FC



Law of Total Probability

Say E and F are events in S

Sample Space

Cries,

No poop

Cries,

Poop

Poop No Poop



Law of Total Probability

Say E and F are events in S

Sample Space

E and FC
E and FF FC



Law of Total Probability

Thm Let 𝐹 be an event where 𝑃 𝐹 > 0. For any event 𝐸,

 𝑃(𝐸) = 𝑃 𝐸|𝐹 𝑃 𝐹 + 𝑃 𝐸|𝐹𝐶 𝑃 𝐹𝐶  

Proof

 1. 𝐸 = 𝐸𝐹  or (𝐸𝐹𝐶)     Since F and 𝐹𝐶  are disjoint

 2. 𝑃(𝐸) = 𝑃 𝐸𝐹 + 𝑃(𝐸𝐹𝐶)    Probability of or for disjoint 

 3. 𝑃(𝐸) = 𝑃 𝐸|𝐹 𝑃 𝐹 + 𝑃 𝐸|𝐹𝐶 𝑃 𝐹𝐶  Chain rule (product rule)

68



Baby Poop

In the morning when she wakes up, a baby has a 50% chance of having pooped. 

The chance that a baby cries given that she has pooped is 50%. 

Probability of crying (E)?

What information do you need?

Probability of crying given no poop.

Recall that E is crying and F is poop

𝑃(𝐸) = 𝑃 𝐸|𝐹 𝑃 𝐹 + 𝑃 𝐸|𝐹𝐶 𝑃 𝐹𝐶  



Evolution of Bacteria
Law of Total

Probability

70

𝑃 𝐸 = 𝑃 𝐸|𝐹 𝑃 𝐹 + 𝑃 𝐸|𝐹𝐶 𝑃 𝐹𝐶

You have bacteria in your gut which is causing a disease.

10% have a mutation which makes them resistant to anti-biotics

You take half a course of anti-biotics…

Probability a bacteria survives given it has the mutation: 20%

Probability a bacteria survives given it doesn't have the mutation: 1%

What is the probability that a randomly chosen bacteria survives?

Let E be the event that a bacterium survives. Let M be the event that a 

bacteria has the mutation. By the Law of Total Probability (LOTP):

http://localhost:8000/en/en/part1/law_total


Real question. What is the probability of 

mutation given the bacteria survived?

P ( Mutation | Survive )

Know:

P(Survive | Mutation), P(Survive), P(Mutation)



Relationship Between Probabilities
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𝑃 𝐸

𝑃 𝐸|𝐹

Law of Total

Probability

Definition of

conditional probability

Chain rule

(Product rule)

𝑃 𝐸 and 𝐹



Relationship Between Probabilities

73

𝑃 𝐸

𝑃 𝐸|𝐹

Law of Total

Probability

Definition of

conditional probability

Chain rule

(Product rule)

𝑃 𝐸 and 𝐹

𝑃 𝐹|𝐸

Bayes’

Theorem



Bayes’ Theorem 
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Thomas Bayes

75

Rev. Thomas Bayes (~1701-1761):

British mathematician and Presbyterian minister

He looked remarkably similar to Sean Astin
(but that’s not important right now)
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I want to calculate 

P(State of the world F | Observation E)

It seems so tricky!…

The other way around is easy

P(Observation E | State of the world F)

P( F | E )

P( E | F )

Thomas Bayes



77

Thomas Bayes Want P( F | E ).  Know P( E | F )

A little while later…

A little while later…

LOTP



(silent drumroll)

78



Thm For any events 𝐸 and 𝐹 where 𝑃 𝐸 > 0 and 𝑃 𝐹 > 0,

Expanded form:

Bayes’ Theorem

79

𝑃 𝐹|𝐸𝑃 𝐸|𝐹



Detecting spam email

80

𝑃 𝐸 𝐹 = 𝑃  ቚ “Dear”
Spam

email

But what is the probability that an 
email containing “Dear” is spam?

𝑃 𝐹 𝐸 = 𝑃  ቚ  “Dear”
Spam 

email

We can easily calculate how many 

spam emails contain “Dear”:



Detecting spam email 𝑃 𝐹 𝐸 =
𝑃 𝐸 𝐹 𝑃 𝐹

𝑃 𝐸|𝐹 𝑃 𝐹 + 𝑃 𝐸 𝐹𝐶 𝑃(𝐹𝐶)
Bayes’ 

Theorem

• 60% of all email in 2016 is spam.

• 20% of spam has the word “Dear”

• 1% of non-spam (aka ham) has the word “Dear”

You get an email with the word “Dear” in it.

What is the probability that the email is spam?

81

1. Define events
& state goal

2. Identify known 
probabilities

3. Solve

Let: 𝐸: “Dear”, 𝐹: spam

Want: 𝑃 spam|“Dear”

     = 𝑃 𝐹|𝐸



Bayes’ Theorem terminology

𝑃 𝐹 𝐸 =
𝑃 𝐸 𝐹 𝑃 𝐹

𝑃 𝐸

82

posterior

likelihood prior

𝑃 𝐹

 𝑃 𝐸|𝐹

 𝑃 𝐸|𝐹𝐶

Want: 𝑃 𝐹|𝐸

normalization constant

• 60% of all email in 2016 is spam.

• 20% of spam has the word “Dear”

• 1% of non-spam (aka ham) has the word “Dear”

You get an email with the word “Dear” in it.

What is the probability that the email is spam?

Let: 𝐸: “Dear”, 𝐹: spam

Want: P(F | E)



A test is 98% effective at detecting SARS

▪ However, test has a “false positive” rate of 1%

▪ 0.5% of US population has SARS

▪ Let E = you test positive for SARS with this test

▪ Let F = you actually have SARS

▪ What is P(F | E)?

Solution:

P(E | F) P(F) + P(E | Fc) P(Fc)
P(F | E) =

P(E | F) P(F)

(0.98)(0.005) + (0.01)(1 - 0.005)
P(F | E) =

(0.98)(0.005)
 0.330

SARS Virus Testing



Intuition Time



All People

Bayes Theorem Intuition



All People

People with SARS

Bayes Theorem Intuition



All People

People who test positive

Bayes Theorem Intuition



All People

People with SARS

People who test positive

Bayes Theorem Intuition



Conditioning on a positive result changes the 

sample space to this:

 0.330

People who 

test positive

People who test 

positive and have 

SARS

Bayes Theorem Intuition



Conditioning on a positive result changes the 

sample space to this:

 0.330

People who 

test positive

P(F)P(E|F)

P(F)P(E|F) + 

P(Fc)P(E|Fc)

 
People who test 

positive and have 

SARS

Bayes Theorem Intuition



All People

People with positive 

test

People with SARS

Bayes Theorem Intuition



Say we have 1000 people:

5 have SARS and test positive, 985 do not have SARS and test negative.

10 do not have SARS and test positive.  0.333

Bayes Theorem Intuition



Conditioned on just those that test positive:

5 have SARS and test positive, 985 do not have SARS and test negative.

10 do not have SARS and test positive.  0.333

Bayes Theorem Intuition

Notice that all the people with SARS are here, 

but the group is still mainly folks without SARS



▪ Let Ec = you test negative for SARS with this test

▪ Let F = you actually have SARS

▪ 0.5% of population has SARS

▪ What is P(F | Ec)?

P(Ec | F) P(F) + P(Ec | Fc) P(Fc)
P(F | Ec) =

P(Ec | F) P(F)

(0.02)(0.005) + (0.99)(1 - 0.005)
P(F | Ec) =

(0.02)(0.005)
 0.0001

SARS + SARS –

Test + 0.98 = P(E | F) 0.01 = P(E | Fc)

Test – 0.02 = P(Ec | F) 0.99 = P(Ec | Fc)

Why it is still good to get tested



The End for Wednesday



Spam Revisited



Real spam email:

“Pay for Viagra with a credit-card. Viagra is great. 

Risk free Viagra. Click for free.”

How would you detect Spam using an LLM?

60%

60% 40%

1

2

Let E be email text. Let F be event the email is Spam.
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How would you detect Spam using an LLM?

60%

60% 40%

Let E be email text. Let F be event the email is Spam.1

2
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How would you detect Spam using an LLM?

60%

60% 40%

Let E be email text. Let F be event the email is Spam.1

2

prompt = "This email is spam: " 
p_email_given_spam = string_pr(prompt + email) / string_pr(prompt)

prompt = ("This email is NOT spam: ")
p_email_given_ham = string_pr(prompt + email) / string_pr(prompt)

3 Make assumption that LLM understands probability



Mysteries



Whats an LLMs (real) belief?

Llama-3.3-70B

f"Dice simulator output. Sum of two random 6 sided dice: 
{outcome}"

If you used a prompt like this:

Could you test an LLMs understanding of probability?

2

7

12

…

Outcome string_pr

…



Come on Friday!
Stories + Make History



Sneak Peek…



F FC

Sample Space

E

Law of Total Probability



B1

B2

Sample Space

E

B3 B4

Law of Total Probability

For mutually exclusive events 𝐵1, 𝐵2, …, 𝐵𝑛

 s.t. 𝐵1 ∪ 𝐵2 ∪ ⋯ ∪ 𝐵𝑛 = 𝑆,
Thm



Background event. 

Where is the person in 

San Francisco?

San Francisco, CA



Background event. 

Where is the person in 

San Francisco?

San Francisco, CA

From Google’s Perspective:

There are 18 different “districts” in San Francisco.

Know:

Want:

It rains tomorrow

Person is in district i



Background event. 

Where is the person in 

San Francisco?

San Francisco, CA

From Google’s Perspective:

There are 18 different “districts” in San Francisco.

Know:

Want:

Mission District Presidio SOMA

0.23 0.84 … 0.52

0.15 0.02 0.24



Background event. 

Where is the person in 

San Francisco?

San Francisco, CA

From Google’s Perspective:

There are 18 different “districts” in San Francisco.

Know:

Want:

Mission District Presidio SOMA

0.23 0.84 … 0.52

0.15 0.02 0.24



A test is 98% effective at detecting SARS

▪ However, test has a “false positive” rate of 1%

▪ 0.5% of US population has SARS

▪ Let E = you test positive for SARS with this test

▪ Let F = you actually have SARS

▪ What is P(F | E)?

Solution:

P(E | F) P(F) + P(E | Fc) P(Fc)
P(F | E) =

P(E | F) P(F)

(0.98)(0.005) + (0.01)(1 - 0.005)
P(F | E) =

(0.98)(0.005)
 0.330

SARS Virus Testing



Pedagogic Pause



Multiple Choice Theory

Let's consider the relationship between knowing the concepts used in a 
multiple choice midterm question, and getting the question correct, taking into 
account guessing and making silly mistakes. 

Let 3/4 be the prior probability that a learner knows the concepts to a midterm 
question. 

Let 1/4 be the probability that a learner gets the answer correct if they don't 
know the concepts.

Let 9/10 be the probability that a learner gets the question correct given they 
do know the concepts. 

What is the probability they know the concept, given they answered correct?

112



Monty Hall 
Problem

113

LIVE



Monty Hall Problem

114



Behind one door is a prize (equally likely to be any 
door).

Behind the other two doors is nothing

1. We choose a door

2. Host opens 1 of other 2 doors, revealing nothing

3. We are given an option to change to the other door.

Should we switch?

Monty Hall Problem aka Let’s Make a Deal

Doors A,B,C

Note: If we don’t switch,

P(Win) = 1/3



A: Prize in Door A
• Host opens B or C

• We switch

• We always lose

P(Win | A) = 0

B: Prize in Door B
• Host must open C

• We switch to B

• We always win

P(Win | B) = 1

116

In the world where we switch

C: Prize in Door C
• Host must open B

• We switch to C

• We always win

P(Win | C) = 1

Without loss of generality, say we pick A (out of Doors A,B,C).

1/3 1/31/3

You should switch!



117

Marilyn Vos Savant



Start with 1000 envelopes (of which 1 is the prize).

1. You choose 1 envelope.

2. I open 998 of remaining
999 (showing they are empty).

3. Should you
switch?

118

Monty Hall, 1000 envelope version

No: P(win without switching) = 

Yes: P(win with new knowledge) = 

999

1000
 = P(998 empty envelopes had prize)

  + P(last other envelope has prize)

 = P(last other envelope has prize)

1
original # envelopes

original # envelopes - 1

original # envelopes

1

1000
 = P(envelope is prize)

999

1000
 = P(other 999 envelopes have prize)
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