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We are going to make history today



Announcements

* Introduce our awesome head TA — Isabel Michel
 Pset 1isdue on Friday ! This went out on Weds.
* Need to tell you about Late Days

e Sections start this week! You should have received an email
from your TA with your section time and location.

— For late sign ups: see post on Ed and sign up ASAP




Late Policy (5 Late Days!)

@ @ & Pset1-Counting for Probabi x  + 46
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Pset 1 - Counting for Probability
For Juliette Woodrow

Due Date: Friday, Jan 16, 10:00 PM Pacific Standard Time (in 5 days).
Grace Period Date: Friday, Jan 16, 11:59 PM Pacific Standard Time (in 5 days).

Solutions Posted: Sunday, Jan 18, 11:59 PM Pacific Standard Time (in 7 days).

Extension: 1 Late Day (26 hours)

New Due Date: Saturday, Jan 17, 11:59 PM Pacific Standard Time (in 6 days)

Reason for request: | had to attend a family event this weekend and | got a little behind on lecture.
Catch-up Plan: | will finish this pset only one day late. Each day | am spending at least 2 hours
getting caught up (either watching lectures that | missed or working through example problems).

Extension Request Forms ~

Grace period extension
26 hour extension (1 Late Day)
50 hour extension (2 Late Days)

Over 50 hour extension

Three types of extensions:

1. Grace period (2 hours)

2. Can take up to 2 late days (50 hours)
3. After the hard deadline (> 2 late days)

You give them to yourself. Need to talk to us if:
A. You need more than 5 late days / qtr
B. Extension past the hard deadline

But CS109 is a fast class. If you want a long
extension | want you to be intentional about how
you are going to catch up. Not all late days are

created equal (especially before exams).




Review



The Core Probability Toolkit

The Law of Total Probability Bayes' Theorem

P(E) = P(Eand F) + P(Eand F ©) P(E) = 3 P(Eand B) p(am) - PEIB)-P(E)
L P(E)
P(E) = P(E|F)P(F) + P(E|F ®)P(F ) = P(EB,)P(B;)

P(E|B) - P(B)
P(E|B) - P(B) + P(E|BC) - P(B°)

i=1

P(B|E) =

Definition of Conditional Probability L Axiom 1: 0 < P(E) < 1

Axiom 2: P(S) =1 De Morgan's Laws
(A or B)* = A“ and B®

(A and B)° = A or B®

Axiom 3: If E and F are mutually exclusive,
then P(E or F) = P(E) + P(F)

Otherwise, use Inclusion-Exclusion: Independence

P(Eor F) = P(E) + P(F) — P(Eand F)

Chain Rule

P(Eand F) = P(E|F) - P(F)
— P(F|E) - P(E)

P(E|F) = P(E)

P(E and F) = P(E) P(F)



Review: Last Lecture

Mutually Exclusive Events

make OR easy:

P(A or B) = P(A) + P(B)

Independent Events

make AND easy:
P(A and B) = P(A) - P(B)



Sample Space

- Sample space, S, is set of all possible outcomes
of an experiment

= Coin flip: S = {Head, Tails}

« Flipping two coins: S ={[H, H], [H, T], [T, H], [T, T]}

« Roll of 6-sided die: S ={1, 2, 3,4, 5, 6}

= # emails in a day: S={x|xeZ, x=20} {non-neg. ints}
« YouTube hrs.inday: S={x|x e R, 0 < x<24}




Event Space

Event, E, is some subsetof S {E C S}

= Coin flip is heads: E = {Head}

« =21 head on 2 coin flips: E={[H, H], [H, T], [T, H]}
= Roll of die is 3 or less: E={1,2, 3}

« # emails in a day < 20: E={x|xeZ 0<x<20}

« Wastedday{5YThrs.}: E={x|xeR,5<x<24}

Note: When Ross uses: C , he really means: C




Equally Likely Outcomes

Some sample spaces have equally likely outcomes.
Coin flip: S = {Head, Tails}

Flipping two coins: S ={[H, H], [H, T], [T, H], [T, T]}
Roll of 6-sided die: S={1, 2, 3, 4, 5, 6}

1
It we have equally likely outcomes, then P(Each outcome) = ﬁ
P(E) # outcomes in E E {by Axiom 3)
_ y Axiom
Therefore # outcomes in S S

Piech + Woodrow, CS109, Stanford University 10




End Review



Learning Goals and Outline

(1) Step rule of counting

2) Permutations

(3) Combinations

4) Probabilities with Equally Likely Outcomes

(5) Make history ©




Counting!



Counting Rules

Counting operations on n distinct objects

_— \

Sort, order matters Choose k

{perms; {combinations}

& <Z> B zc!(nni k)l

# give me each possible permutation
itertools.permutations([1,2,3,4])

# give me each possible combination
# calculate 20! itertools.combinations([1,2,3,4,5], 3)
math.factorial(20)

# calculate 10 choose 5
math.comb(10, 5)




Counting with Steps

Definition: Step Rule of Counting (aka Product Rule of Counting)

If an experiment has two parts, where the first part can result in one of m outcomes and the

second part can result in one of n outcomes regardless of the outcome of the first part, then the
total number of outcomes for the experiment is m - n.

15



Counting with Steps

Definition: Step Rule of Counting (aka Product Rule of Counting)

If an experiment has two parts, where the first part can result in one of m outcomes and the

second part can result in one of n outcomes regardless of the outcome of the first part, then the

total number of outcomes for the experiment is m - n.

Definition: Step Rule of Counting with Many Steps

If an experiment has k parts, where the first step has n; outcomes and the ith step has n; outcomes (regardless of
the result of any earlier steps), then the total number of outcomes of the experiment is:

k
Number of Outcomes = H n;
i=1

16



How Many Unique Images?

Each pixel can be one of 17 million distinct colors

(a) 12 million pixels (b) 300 pixels (c) 12 pixels

(17 million)"

Piech + Woodrow, CS109, Stanford University Stanford University






How Many Unique Images?

Each pixel can be one of 17 million distinct colors

(a) 12 million pixels
~ 1086696638

(b) 300 pixels
~ 102167

(17 million)"

Piech + Woodrow, CSi09, Stanford University

(¢) 12 pixels
086

~ 1

Stanford University



Orderings of Letters

How many letter orderings are possible for the following string?

BAYES

)

Piech + Woodrow, CS109, Stanford University Stanford University 20




Orderings of Letters

BAYES
BYEAS
BESAY
ABYES
AYEBS
AESBY
YBAES
YAEBS
YESBA
EBAYS
EAYBS
EYSBA
SBAYE
SAYBE
SYEBA

BAYSE
BYESA
BESYA
ABYSE
AYESB
AESYB
YBASE
YAESB
YESAB
EBASY
EAYSB
EYSAB
SBAEY
SAYEB
SYEAB

BAEYS
BYSAE
BSAYE

ABEYS
AYSBE

ASBYE
YBEAS
YASBE

YSBAE
EBYAS

EASBY
ESBAY
SBYAE
SAEBY
SEBAY

BAESY
BYSEA
BSAEY
ABESY
AYSEB
ASBEY
YBESA
YASEB
YSBEA
EBYSA
EASYB
ESBYA
SBYEA
SAEYB
SEBYA

BASYE
BEAYS
BSYAE
ABSYE
AEBYS
ASYBE
YBSAE
YEBAS
YSABE
EBSAY
EYBAS
ESABY
SBEAY
SYBAE
SEABY

BASEY
BEASY
BSYEA

ABSEY
AEBSY

ASYEB

YBSEA

YEBSA

YSAEB

EBSYA
EYBSA
ESAYB
SBEYA
SYBEA
SEAYB

BYAES
BEYAS
BSEAY
AYBES
AEYBS
ASEBY
YABES
YEABS
YSEBA
EABYS
EYABS
ESYBA
SABYE
SYABE
SEYBA

BYASE
BEYSA
BSEYA
AYBSE
AEYSB
ASEYB
YABSE
YEASB
YSEAB
EABSY
EYASB
ESYAB
SABEY
SYAEB
SEYAB

Stanford University 21



Orderings of Letters

Step 3: Step b:
Chose 3rd letter Chose 5th letter
Step 2: Step 4:
Chose 2nd letter Chose 4th letter

Step 1:
Chose first letter

Piech + Woodrow, CS109, Stanford University Stanford University 22




Orderings of Letters

A B S E, Y,

- Step 3: Step b:
Step 1:
Chose bth letter
Chose first letter Chose 3r.d letter (1 option)
(5 options) (3 options) P
Step 2: Step 4:
Chose 2nd letter Chose 4th letter

(4 options) (2 options)

Stanford University 23




To the Code!

import itertools
def main():
letters = ['B', 'A', 'Y', 'E','S"]

perms = set(itertools.permutations(letters))

for p in perms:
print(p)

Piech + Woodrow, CS109, Stanford University Stanford University 24




Permutations

A permutation is an ordered arrangement of objects.

The number of unique orderings (permutations) of n distinct objects is
nn=nxmn-1) xXxnN—-2) X X 2 X 1.

Piech + Woodrow, CS109, Stanford University Stanford University 25




Unique 6-digit passcodes with six smudges

How many unique 6-digit passcodes are possible if a
phone password uses each of six distinct numbers?

Piech + Woodrow, CS109, Stanford University




Unique 6-digit passcodes with six smudges

How many unique 6-digit passcodes are possible if a
phone password uses each of six distinct numbers?

Total = 6! = 720 passcodes

What if you had no smudges, but you knew it was still 6
digits long?

Total = 10° = 1 million passcodes

Piech + Woodrow, CS109, Stanford University




Summary of Combinatorics

Counting tasks on n objects

" T

Sort objects Choose k objects
(permutations) (combinations)
Distinct
(distinguishable)

o

Piech + Woodrow, CS109, Stanford University Stanford University 2




Summary of Combinatorics

Counting tasks on n objects

" T

Sort objects Choose k objects
(permutations) (combinations)
Distinct Some

(distinguishable) distinct

o

Stanford University 29




Unique Bit Strings

1,0,1,0,0

Piech + Woodrow, CS109, Stanford University




Sort n distinct objects




Sort n distinct objects

Irina Joey




Sort n distinct objects

Steps:
1. Choose 15t can 5 options

2. Choose 2" can 4 options

5. Choose 5% can 1 option

Irina Joey Waddie

3rd 4th 5th
Total =5 X4 X 3 X 2 x1

=120




How many ways can we sort coke cans!

Cokel Coke0 Cokel Coke0 Coke0

Stanford University 34




Sort n distinct objects

v 4

Tim Irina Joey

# of permutations =

Stanford University 35




Ordern

Sort semi-distinct objects distinct objects 1"

All distinct Some indistinct

Joey Waddie

Stanford University 36




Sort semi-distinct objects

How do we find the number of permutations considering
some objects are indistinct?

By the product rule of counting (aka step rule), permutations of distinct
objects is a two-step process:

. permutations Permutations
permutations S L :
of distinct obiects considering some of just the
J objects are indistinct indistinct objects

Piech + Woodrow, CS109, Stanford University Stanford University 37




Sort semi-distinct objects

How do we find the number of permutations considering
some objects are indistinct?

By the product rule of counting (aka step rule), permutations of distinct
objects is a two-step process:

permutations
considering some
objects are indistinct

permutations
of distinct objects

Permutations
of just the
Indistinct objects

Piech + Woodrow, CS109, Stanford University Stanford University 3s




BOBA

How many different orderings of letters are possible for the string BOBA?

Piech + WOOdI'OVv, CO1UY, Ulaliviu ULV CIDILy



Strings

Is this just a regular permutation? 4! = 24 unique permutations!

boba bboa
boab bbao
bboa boba
bbao boab
baob babo
babo baob
obba abob
obab abbo
obba aobb
obab aobb
oabb abbo
oabb abob

Piech + Woodrow, CS109, Stanford University Stanford University




Strings

Is this just a regular permutation? 4! = 24 unique permutations!

boba bboa
boab bbao
bboa boba
bbao boab
baob babo
babo baob
obba abob
obab abbo
obba aobb
obab aobb
oabb abbo
oabb abob
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Strings

Is this just a regular permutation? 4! = 24 unique permutations!

boba bboa
boab bbao
bboa boba
bbao boab
baob babo
babo baob
obba abob
obab abbo
obba aobb
obab aobb
oabb abbo
oabb abob
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Strings

Is this just a regular permutation? 4! = 24 unique permutations!

boba bboa
boab bbao
bboa boba
bbao boab
baob babo
babo baob
obba abob
obab abbo
obba aobb
obab aobb
oabb abbo
oabb abob

Piech + Woodrow, CS109, Stanford University Stanford University




To the Code!

baob import itertools
bbao def main():
Ob ba letters = ['b",'0','b’,'a']
perms = set(itertools.permutations(letters))
oabb for perm in perms:
boab pretty _perm ="".join(perm)
print(pretty _perm)

babo
abEE import math
d0

def main():
boba n = math.factorial(4)
abob d = math.factorial(2)
bboa print(n/ d)
obab

Piech + Woodrow, CS109, Stanford University Stanford University 44




To the Code!

baob import itertools
bbao def main():
obba letters = ['b','o','b','t'}

perms = set(itertoos.permutations(letters))
oabb for perm in perms:
boab pretty _perm ="".join(perm)
babo print(pretty_perm)
abEE import math
d0

def main():

boba n = math.factorial(4)
abob d = math.factorial(2)

print(n/ d)
bboa
obab

Piech + Woodrow, CS109, Stanford University Stanford University 45




To the Code!

baob import itertools
bbao def main():
obba letters = ['b','t.a' o] ]
perms = set(ifertools.permutations(letters))
oabb for perm in perms.
boab pretty _perm ="".join(perm)
print(pretty _perm)

babo
abEE import math
d0

def main():
boba n = math.factorial(4)
abob d = math.factorial(2)
bboa print(n/ d)
obab

Piech + Woodrow, CS109, Stanford University Stanford University 46




General approach to counting permutations

When there are n objects such that
n, are the same (indistinguishable or indistinct), and
n, are the same, and

n, are the same,
The number of unique orderings (permutations) is

n!

nl!nz! Tlr' .

For each group of indistinct objects,
Divide by the overcounted permutations.

Stanford University 47




Order n semi- n!

Sort semi-distinct objects distinct objects TTmgl 7!

How many permutations?

Coke Coke0 Coke

Stanford University 4s




Order n semi- n!

Stl‘ings distinct objects nq!ny!---n,!

How many letter orderings are possible for the following strings?

. BOBA

. MISSISSIPPI

This is Jerry’s dog, Doris. She puts her little Doris paw g
up to her chin when she’s thinking. ‘

Piech + Woodrow, CS109, Stanford University Stanford University 49




Order n semi- n!

Stl‘ings distinct objects nq!ny!---n,!

How many letter orderings are possible for the following strings?

. BOBA - ‘2*—: — 12
111
. MISSISSIPPI = — o = 34,650

Piech + Woodrow, CS109, Stanford University Stanford University 5o




Summary of Combinatorics

Counting tasks on n objects

" T

Sort objects Choose k objects
(permutations) (combinations)
Distinct Some

(distinguishable) distinct

n!

n!
nyiny!---n,!

Stanford University 51




Combinations




Summary of Combinatorics

Counting tasks on n objects

" T

Sort objects Choose k objects
(permutations) (combinations)

/ \ Distinct
Distinct Some @

(distinguishable) distinct

n!

n!
nyiny!---n,!

Stanford University 53




Combinations with cake

There are n = 20 people.
How many ways can we choose k = 5 people to get cake?

oW

5

—r

o.’
v

Consider the following
generative process...

Piech + Woodrow, CS109, Stanford University Stanford University 54




Combinations with cake

There are n = 20 people.
How many ways can we choose k = 5 people to get cake?

t}

s A <A

1. n people
get in line

n! ways

Piech + Woodrow, CS109, Stanford University Stanford University 55




Combinations with cake

There are n = 20 people.
How many ways can we choose k = 5 people to get cake?

é o) H‘ o |
u vNeevry
§) ?‘ 8 9 %g

’64 eoede

16 17 18 19 20

1. n people 2. Put flrst k
get in line In cake room

n! ways 1 way

Piech + Woodrow, CSi09, Stanford University

Stanford University se6



Combinations with cake

There are n = 20 people.
How many ways can we choose k = 5 people to get cake?

1. n people 2. Putfirst k
get in line In cake room

n! ways 1 way

Piech + Woodrow, CSi09, Stanford University

o) . - H7 ¢ % 1}0
14 15 16 17 18

" S 8
L' @
11 12 13
A
19 20

Stanford University 57



Combinations with cake

There are n = 20 people.
How many ways can we choose k = 5 people to get cake?

’\

6 7 8 10 11 12 13

9

14 15 16 17 18 19 20
1. n people 2. Putfirst k 3. Allow cake

get in line In cake room group to mingle
k! different
n! ways 1 way permutations lead to

the same mingle
Piech + Woodrow, CS109, Stanford University Stanford University 58




Combinations with cake

There are n = 20 people.
How many ways can we choose k = 5 people to get cake?

TR ERT
6 I 8 10 11 12 13

9

Yyvevede
14 15 16 ? g 19 20
1. n people 2. Putfirst k 3. Allow cake 4. Allow non-cake
get in line In cake room group to mingle group to mingle
k! different
n! ways 1 way permutations lead to

the same mingle
Piech + Woodrow, CSi09, Stanford University Stanford University 59



Combinations with cake

There are n = 20 people.
How many ways can we choose k = 5 people to get cake?

1. n people 2. Putfirst k 3. Allow cake 4. Allow non-cake
get in line In cake room group to mingle group to mingle
' k! different (n — k)! different
n. ways 1 way permutations lead to permutations lead to the
the same mingle same mingle

Piech + Woodrow, CSi09, Stanford University Stanford University o



Combinations

A combination is an unordered selection of k objects
from a set of n distinct objects.

The number of ways of making this selection is

n! ' , 1 1
K-kt o " Xk!x(n—k)!&
f ﬂ % 4. Overcounted:
any ordering
1.0rdern 5 Take first i =-Overcounted: of unchosen
distinct as chosen any ordering of chosen group is
objects group is same choice same choice

Stanford University 61




Combinations

A combination is an unordered selection of k objects
from a set of n distinct objects.

The number of ways of making this selection is

n! 1 1 _(n) Binomial

= n! —
k!'(n—k)! nix 1 ><k! ><(n—k)! lc/ coefficient

Fun Fact: (2) = (nfk)

Piech + Woodrow, CSi09, Stanford University

Stanford University 62




o7 e Ch kof (M
Probability textbooks n distnct ovects. ()

How many ways are there to choose 3 books
from a set of 6 distinct books?

Piech + Woodrow, CS109, Stanford University Stanford University 63




To the code!

How many unique hands of 5 cards are there in a 52 card deck?

def main():
cards = make deck()
all_hands = itertools.combinations(cards, 5)
for hand in all_hands:
print(hand)

def main():
total = math.comb(52, 5)
print(total)

Piech + Woodrow, CS109, Stanford University Stanford University 64




Probabilities
With Equally

Likely Outcomes




Straight Poker Hand

- Consider 5 card poker hands.

« “straight” is 5 consecutive rank cards of any suit
« What is P(straight)?

5'3 Oi-!- EQ 3"
¢ o 99

) ® % v LI

10 9 7 6

8
‘'v'ea’'e’s’e




Straight Poker Hand

- Consider 5 card poker hands.

« “straight” is 5 consecutive rank cards of any suit
« What is P(straight)?

(%)
e

B 10-(1)°
S| (52)

5

What 1s an example
of one outcome?

Is each outcome
equally likely?

~ 0.00394

P(straight)




Bunnies and Foxes

- 4 bunnies and 3 foxes in a toy box. 3 drawn.
« Whatis P(1 bunny and 2 fox drawn)?

Equally likely sample space? Thought experiment

4 bunnies




The Choice of Sample Space is Yours!

Distinct ) Indistinct

Unordered {F,, B,, B3} {2 foxes, | bunny}
{F,, F,, F;} {3 foxes}
{3 bunnies}
Ordered [fox, bunny, fox]

[fox, fox, fox]

[bunny, bunny, bunny]

Which choice will lead to equally likely outcomes?




Bunnies and Foxes

- 4 bunnies and 3 foxes in a Bag. 3 drawn.
« Whatis P(1 bunny and 2 foxes drawn)?

- Ordered and Distinct:
» Pick 3 ordered items: |S|=7*"6*5=210
= Pick bunny as either 1st, 2nd, or 3rd item:
IE|=(4"3*2)+(3%4*2)+(3*2%4)=72
= P(1 bunny, 2 foxes) = 72/210 = 12/35

Unordered and Distinct:
= |S] = (7] =35

3

=

« P(1 bunny, 2 foxes) = 12/35




Make indistinct items
distinct to get equally
likely sample space
outcomes

*You will need to use this “trick” with high probability




When approaching an
“equally likely probability”
problem, start by defining
sample spaces and
event spaces.




Chip Defect Detection

- n chips manufactured, 1 of which is defective.

-k chips randomly selected from n for testing.
« What is P(defective chip is in k selected chips)?

. |S|= kj

_ (1Y n—1
- E=()E 0

- P(defective chip is in k selected chips)

n— (n—1)!
G) (k—i) _ R=D!(n=k)! _ k

() Sleg)







WHEN YOU MEET YOUR BEST FRIEND

Somewhere you didn't expect to.




Serendipity

- Say the population of Stanford is 17,000 people
= You are friends with 100
« Walk into a room, see 450 random people.
« What is the probability that you see someone you know?

= Assume you are equally likely to see each person at
Stanford |




Many times it is easier to
calculate P(E©)




-

Trailing the dovetail shuffle to 1t’s lair — Persi Diaconis




Trailing the Dovetail Shuffle to Its Lair

Tha Annals of Applird Probability
1982, Val. 2, No. 2, 284-313

TRAILING THE DOVETAIL SHUFFLE TO ITS LAIR

By Dave Baver' anp Perst Diacons®

Columbia University and Harvard University

We analyze the most commonly used method for shuffling cards. The
main result is a simple expression for the chance of any arrangement after
any number of shuffles. This is used to give sharp bounds on the approach
to randomness: § log, r + # shufles are necessary and sufficient to mix up
n eards.

Key ingredients are the analysis of a card trick and the determination of
the idempotents of a natural commutative subalgebra in the symmetric
group algebra.

1. Introduction. The dovetail, or riffle shuffle is the most commonly
used method of shuffling cards. Roughly, a deck of cards is cut about in half
and then the two halves are riffled together. Figure 1 gives an example of a
riffle shuffle for a deck of 13 cards.

A mathematically precise model of shuffling was introduced by Gilbert and
Shannon [see Gilbert (1955)] and independently by Reeds (1981). A deck of n
cards is cul into two portions according to a binomial distribution; thus, the
chance that & cards are cut off is (:}/2“ for 0 < k < n. The two packets are
then riffled together in such a way that cards drop from the left or right heaps
with probability proportional to the number of cards in each heap. Thus, if
there are A and B cards remaining in the left and right heaps, then the
chance that the next card will drop from the left heap is A/(A + B). Such
shuffles are easily deseribed backwards: Each card has an equal and indepen-
dent chanee of being pulled back into the left or right heap, An inverse riffle
shuffle is illustrated in Figure 2.

Experiments reported in Diaconis (1988} show that the Gilbert-Shannon-
Reeds (GSR) model is a good description of the way real people shuffle real
cards, It is natural to ask how many times a deck must be shuffled to mix it
up. In Section 3 we prove:

Tueorem 1. If n cards are shuffled m times, then the chance that the deck
is in arrangement T is [21 +ﬂ“"),’2"‘", where r is the number of rising
sequences in .

Rising sequences are defined and illustrated in Section 2 through the
analysis of a card trick. Section 3 develops several equivalent interpretations of

Received January 1990; revised May 1991,

'Partiaﬂy supported by the Alfred P. Sloan Foundation, by ONR contract NOMW14-87-K0214
amd by NSF Grant DMS-80-06116.

*Partially supported by NSF Grant DMS-89-05874.

AMS 1080 subject classifications. 20830, 60B15, 60005, 60FH9.

Hey words and phrases. Card shuffling, symmetric group algebra, total variation distance.
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= BEEERIEEEEREEE
HIEHSH

A 2. 3 4115
Uty ¥gE
. FIEEEEEEEREEE

Fig. 1. A riffle shuffle. (a) We begin with an ordered deck. (b) The deck iz divided into two
packets of similar size. (c) The two mkm are riffled fogether. (d) The fwo packets can atill be
identified in the shuffled deck as fwoe distined * rising sequences” of face values.

=3

the GSR distribution for rifle shuffles, including a geometric description as
the motion of n points dropped at random into the unit interval under the
baker’s transformation x — 2x (mod 1). This leads to a proof of Theorem 1.
Section 3 also relates shuffling to some developments in algebra. A permuta-
tion « has a descent at ¢ if w(¢) > w(: + 1). A permutation = has r rising
sequences if and only if = ! has r — 1 descents. Let
Ay = Y ™

o has & descents

- [EEIEEEEE R

b A 3 6 819 J
gy ¥y ¥y

. BEEEEE

. JEEEEEEEEEEEE

Fic. 2. An inverse riffle shugfle. (a) We begin with a sorfed deck. (b} Each card is moved one way
or the ather uniformily af random, to " pull apart” a riffle shuffle and refrieve feo packets. (c) The
fwo packefs are placed in sequence. (d) The two packets can still be identified in the shufled deck;
they are separnfed by a “descent” in the foce values. This shuffle s inverse to the shuffle
dingrammed in Figure 1,




Trailing the Dovetail Shuftle to Its Lair (Simple)

- What is the probability that a single shuffle is
different from yours?
. |S| =52!
. |E| =52! -1
- P(different) = (52!-1)/52!

P(different) > 0.9999999999. ..
P(same) < 0.0000000... f\

~

About 68 “9”s




Trailing the Dovetail Shuffle to Its Lair (Medium)

. What is the probability that 2 shuffles are different
from yours?
- |S] = (52!)?
- |E| = (52! = 1)
- P(no deck matching yours) = (52!-1)%/(52!)




Trailing the Dovetail Shuftle to Its Lair (Full)

- What is the probability that in the n shuffles seen
since the start of time, yours is unique?
- |S]=(521)"
- |E| = (52! = 1)
« P(no deck matching yours) = (52!-1)"/(52!)"

= Forn =10%,
= P(deck matching yours) < 0.000000001

* Assume 7 billion people have been shuffling cards once a second
since 52 deck cards were invented (see Topkapi deck)




That’s all for
today ©



Trailing the Dovetail Shuftle to Its Lair (Full)

from decimal import *
52! — 1

import math
log

n = math.pow(10, 20) 52'
card_perms = math.factorial(52)

denominator = card_perms

numerator = card_perms - 1

# decimal library because these are tiny numbers
getcontext().prec = 100 # increase precision
log_numer = Decimal(numerator).1ln()

log_denom = Decimal(denominator).ln()

log_pr = log_numer - log_denom

# approximately -1.24E-68
print(log_pr)




Let’'s Gamble



Need to explain the two hands together...



Telling in Cards

Your opponent gets excited if they are winning...

—

[ Probability of a tell given they

have a winning hand: 0.5

—

Probability of a tell given they
don’t have awinning hand: 0.1

88



The Tell Game

You are playing a game. Your opponent has two unseen cards. If either is an ace you lose...
The following cards are seen by you (ie are not in opponent hand):

3H
2S
3D
5S
9D
KD
AC
Opponent does *xnotx have an excited tell... 4 )
Do vou choose to plav?

Probability of a tell given they
{ have a winning hand: 0.5
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