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Natural Exponent def:

https://en.wikipedia.org/wiki/E_(mathematical_constant)

Jacob Bernoulli

Jacob 
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Natural Exponent Definition
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5

Binomial Random Variable

The number of successes, in n 

independent trials, where each trial 

is a success with probability p:



Number of 
successes

Is distributed 
as a

Binomial

With these 
parameters

Num 
trials

Probability of 
success on each 

trial

Declare a Random Variable to be Binomial



Probability that there are 
k successes

Probability Mass Function for a 
Binomial

Automatically Know the PMF

* This is also called the 
binomial term
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The PMF as a Graph: X ~ Bin(n = 20, p = 0.6)



You Get So Much For Free!



Four Prototypical Trajectories

What if we could summarize the whole 

beautiful PMF into a single number?



Expected Value

Loop over all values x that X can take on

The value
The probability of 

that value



Let X be your winnings. 

 

What if you could play this game for only $1000…but just once?

St. Petersburg Paradox

The Game:

▪ We have a fair coin (lands on heads with p = 0.5)

▪ Let n = number of coin flips to get the first heads

▪ You will win: $2n 

How much would you pay to play?



Let X be your winnings. 

 

St. Petersburg Paradox

The Game:

▪ We have a fair coin (lands on heads with p = 0.5)

▪ Let n = number of coin flips to get the first heads

▪ You will win: $2n 

▪ If you win over $65,536 I leave the country. 

How much would you pay to play?



St Petersburg Probability Mass Function

0

0.1

0.2

0.3

0.4

0.5

0.6 Let X be your winnings if you play once

x



Linearity:

Expectation of a sum is the sum of expectations

Unconscious statistician:

Properties of Expectation (more on this later)



Unconscious statistician:

LOUTS Examples



Four Prototypical Trajectories

End Review



Peer Grading on Coursera HCI. 

31,067 peer grades for 3,607 

students.  

Intuition: Peer Grading



-100 -80 -60 -40 -20 0 20 40 60 8070 10040

B
-100 -80 -60 -40 -20 0 20 40 60 8050 8020

C
-100 -80 -60 -40 -20 0 20 40 60 8070 10040

True grade

A

P(X=x)

Intuition: Peer Grading



Consider the following 3 distributions (PMFs)

All have the same expected value, E[X] = 3

But “spread” in distributions is different

Invent a formal quantification of “spread”?

Intuition: Measure of Spread
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Peer grading in Coursera HCI

Let X be a random variable that represents a peer grade

μ = E[X] = 57.5 
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Peer grading in Coursera HCI

Let X be a random variable that represents a peer grade

μ = E[X] = 57.5 

Var(X) = E [(X – μ)2] 
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Var(X) = E [(X – μ)2] 

Peer grading in Coursera HCI

Let X be a random variable that represents a peer grade

μ = E[X] = 57.5 

x (x – μ)2

25 points 1056 points2

P(X = x)

0.02
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Peer grading in Coursera HCI

Let X be a random variable that represents a peer grade

μ = E[X] = 57.5 

x (x – μ)2

25 points 1056 points2

80 points 506 points2

P(X = x)

0.02

0.09

Var(X) = E [(X – μ)2] 
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Peer grading in Coursera HCI

Let X be a random variable that represents a peer grade

μ = E[X] = 57.5 

x (x – μ)2

25 points 1056 points2

80 points 506 points2

50 points 56 points2

P(X = x)

0.02

0.09

0.12

Var(X) = E [(X – μ)2] 
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Peer grading in Coursera HCI

Let X be a random variable that represents a peer grade

μ = E[X] = 57.5 

x (x – μ)2

25 points 1056 points2

80 points 506 points2

50 points 56 points2

…

E [(X – μ)2] = 52 points2

P(X = x)

0.02

0.09

0.12

Var(X) = E [(X – μ)2] 
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Peer grading in Coursera HCI

Let X be a random variable that represents a peer grade

μ = E[X] = 57.5 

x (x – μ)2

25 points 1056 points2

80 points 506 points2

50 points 56 points2

…

E [(X – μ)2] = 52 points2

P(X = x)

Std(X) = 7.2 points

0.02

0.09

0.12

Var(X) = E [(X – μ)2] 
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Normalized histograms are 
approximations of 
probability mass functions



-100 -80 -60 -40 -20 0 20 40 60 8060 80 10040200

How Should We Measure Spread?

Different Possibility:

On average..

The random 
variable X

The mean 
of X

distance
Spread stat.

μ = E[X] = 57.5 

Let X be a random variable



If X is a random variable with mean  then the 
variance of X, denoted Var(X), is:

Variance is a formal definition of the spread of a 
random variable. 

Also known as the 2nd Central Moment, or square 
of the Standard Deviation

Variance

Var(X) = E [(X – μ)2] 



Computing Variance

Law of unconscious statistician 

Notation



How do you get E[X2]?

32

Unconscious statistician:

E[X2]:



Standard Deviation?

Units are in points squared
Units are in points



Let X be the result of rolling a 6 sided dice.

What is Var(X)?

Example: Variance of a Dice Roll

Piech & Cain, CS109, Stanford University



Let X be the result of rolling a 6 sided dice.

What is Var(X)?

Example: Variance of a Dice Roll

Piech & Cain, CS109, Stanford University



Let X be the result of rolling this weird 6 sided dice.

What is Var(X)?

Example: Variance of a Dice Roll

Piech & Cain, CS109, Stanford University



Let X be the result of rolling this weird 6 sided dice.

What is Var(X)?

Example: Variance of a Dice Roll

Piech & Cain, CS109, Stanford University
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Variance of a 6 Sided Dice



Random 

Variable

Moments

P(X = x)
Semantic 

Meaning

Fundamental Properties of Random Variables

E[X]

Measure of spread

Var(X) Std(X)

Mode(X)

Support



You Get So Much For Free!



Curious? Proof of Variance for a Binomial (Hard Way)



Four Prototypical Trajectories

Now the easy way….



Variance of a Bernoulli



Variance of a Binomial?



Variance of a Binomial (Easy Way)

Is this true? Is the 
variance of the 
sum the sum of 

variance?

Only if Xis are 
independent!

Definitions

Proved

Want to Show

Proof



Is Peer Grading Accurate Enough?

Peer Grading on Coursera HCI. 

31,067 peer grades for 3,607 

students.  

Tuned Models of Peer Assessment. C Piech, J Huang, A Ng, D Koller

Looking ahead



Is Peer Grading Accurate Enough?

1. Defined random variables for:

• True grade (si) for assignment i

• Observed (zi
j) score for assign i

• Bias (bj) for each grader j

• Variance (rj) for each grader j

Tuned Models of Peer Assessment. C Piech, J Huang, A Ng, D Koller

2. Designed a probabilistic model that    

defined the distributions for all random 

variables

Looking ahead



-100 -80 -60 -40 -20 0 20 40 60 80-100 -80 -60 -40 -20 0 20 40 60 80

99% 

within 

10pp

Before: After:

Yes, With Probabilistic Modelling

Tuned Models of Peer Assessment. C Piech, J Huang, A Ng, D Koller

81% 

within 

10pp

Std 7.2
Std 4.7



Four Prototypical Trajectories

Ready..



Algorithmic Ride Sharing



Probability of k requests from this area in the next 1 min



Probability of k requests from this area in the next 1 min



On average λ = 5 requests per minute

Probability of k requests from this area in the next 1 min



We can break the next minute down into seconds

…

1 2 3 4 5 6 60

On average λ = 5 requests per minute

Probability of k requests from this area in the next 1 min



On average λ = 5 requests per minute

…

At each second either get a request or you don’t.

Let X = Number of requests in the minute

1 2 3 4 5 6 60

We can break the next minute down into seconds

Probability of k requests from this area in the next 1 min



On average λ = 5 requests per minute

…

At each second either get a request or you don’t.

Let X = Number of requests in the minute

1 2 3 4 5 6 60

We can break the next minute down into seconds

Probability of k requests from this area in the next 1 min



On average λ = 5 requests per minute

…

At each second either get a request or you don’t.

Let X = Number of requests in the minute

But what if there are two requests in the same second?

1 2 3 4 5 6 60

We can break the next minute down into seconds

Probability of k requests from this area in the next 1 min



On average λ = 5 requests per minute

We can break that next minute down into milli-seconds

…

60,000

But what if there are two requests in the same second?

1

At each milli-second either get a request or you don’t.

Let X = Number of requests in the minute

Probability of k requests from this area in the next 1 min



On average λ = 5 requests per minute

…

60,0001

Can we do any better than milli-seconds?

At each milli-second either get a request or you don’t.

Let X = Number of requests in the minute

We can break that next minute down into milli-seconds

Probability of k requests from this area in the next 1 min



On average λ = 5 requests per minute

We can break that minute down into infinitely small buckets

1

OMG so small

Let X = Number of requests in the minute

Who wants to see some cool math?

Probability of k requests from this area in the next 1 min



Probability of k requests from this area in the next 1 min



Probability of k requests from this area in the next 1 min



Simeon-Denis Poisson (1781-1840) was a prolific 
French mathematician

Published his first paper at 18, became professor at 21, 
and published over 300 papers in his life

▪ He reportedly said “Life is good for only two things, 
discovering mathematics and teaching mathematics.”

Going with French Martin Freeman

File:Simeon Poisson.jpg

Simeon-Denis Poisson

http://upload.wikimedia.org/wikipedia/commons/b/b7/Simeon_Poisson.jpg


X is a Poisson Random Variable: the number of 
occurrences in a fixed interval of time. 

 

• λ is the “rate”

• X takes on values 0, 1, 2…

• has distribution (PMF):

Poisson Random Variable



Consider events that occur over time
▪ Earthquakes, radioactive decay, hits to web server, etc.

▪ Have time interval for events (1 year, 1 sec, 
whatever...)

▪ Events arrive at rate:  events per interval of time

Split time interval into  n →   sub-intervals
▪ Assume at most one event per sub-interval

▪ Event occurrences in sub-intervals are independent

▪ With many sub-intervals, probability of event occurring  
in any given sub-interval is small

 # events in original time interval ~ Poi()

Poisson Process

1

2

3



To the reader!

68



Poisson is great when you 

have a rate!



Poisson is great when you 

have a rate and you care 

about # of occurrences!



Make sure that the time 

unit for “rate” and match 

the probability question



Four Prototypical Trajectories

Two quick examples!



Average of 2.79 major earthquakes per year. 

What is the probability of 3 major earthquakes next year? 

Earthquakes



Let X = number of earthquakes next year

P
(X

 =
 x

)

Number of earthquakes (x)

Earthquake Probability Mass Function



Earthquakes



Candy in Class!

Students ask on average 15 questions per class.

Juliette only brought 10 pieces of candy!

What is the probability she doesn’t have enough candy?

* Assume: (a) question rate is constant (b) questions don’t impact one another.

76

Let X be the number of questions asked in class.

from scipy import stats
def main():
  lam = int(input("Questions per class: "))
  num_candy = int(input("Number of Candy: "))
  X = stats.poisson(lam)
  prob_enough_candy = 0
  for i in range(0, num_candy+1):
    pr_i_questions = X.pmf(i)
    prob_enough_candy += pr_i_questions
  print(prob_enough_candy)

PMF of 
Poisson

λ = 15



Function Description

X.pmf(k) P(X = k)

X.cdf(k) P(X ≤ k)

X.mean() E[X]

X.var() Var(X)

X.std() Std(X)

from scipy import stats # great package
X = stats.poisson(2.5)  # X ~ Poi(λ = 2.5)
print(X.pmf(2))         # P(X = 2)

Poisson in Python



Four Prototypical Trajectories

Poisson can approximate a Binomial!

Wait why would you want to do that? 

1) Binomial can be expensive to compute.

2) Connections help build math intuition.



All the movies, images, emails and other digital data from more than 600 smartphones 

(10,000 gigabytes) can be stored in the faint pink smear of DNA at the end of this test 

tube.

Storing Data in DNA



Will more than 1% of DNA storage become corrupt?

▪ In DNA (and real networks) store large strings

▪ Length n  104

▪ Probability of corruption of each base pair is very 
small p  10-6

▪ X ~ Bin(104, 10-6) is unwieldy to compute

Extreme n and p values arise in many cases

▪ # bit errors in stream sent over a network

▪ # of servers crashes in a day in giant data center

Storing Data in DNA



Will the DNA storage become corrupt?

▪ In DNA (and real networks) store large strings

▪ Length n  104

▪ Probability of corruption of each base pair is very 
small p  10-6

▪ X ~ Poi( = 104 * 10-6 = 0.01)

Storing Data in DNA



Poisson approximates Binomial where n is large, p 
is small, and  = np is “moderate”

Different interpretations of "moderate" 

▪ n > 20 and p < 0.05

▪ n > 100 and p < 0.1

Really, Poisson is Binomial as

   n →  and p → 0, where np = 

Poisson is a Binomial in the Limit



0

0.05

0.1

0.15

0.2

0.25

0.3

1 2 3 4 5 6 7 8 9 10

Bin(10, 0.3)

Bin(100, 0.03)

Poi(3)

Bin(10,0.3) vs Bin(100,0.03) vs Poi(3)



No, it’s not mine… 

but I kind of wish it was.

A Real License Plate Seen at Stanford



Poisson can be used 

to approximate a 

Binomial where n is 

large and p is small.



Recall: Y ~ Bin(n, p)

• E[Y] = np

• Var(Y) = np(1 – p)

X ~ Poi() where  = np   (n →  and p → 0)

• E[X] = np =   

• Var(X) = np(1 – p) = (1 – 0) = 

• Yes, expectation and variance of Poisson are 
same

• It brings a tear to my eye…

Tender (Central) Moments with Poisson



Poisson can still provide a good way to model an 
event, even when assumptions are “mildly” violated. 
Can apply Poisson approximation when...

Poisson Paradigm

“Successes” in trials are 

not entirely independent. 

• Example: # entries in 

each bucket in large hash 

table

Probability of “Success” p in 

each trial varies slightly.

• Example: average # requests 

to web server/sec. may 

fluctuate slightly due to load 

on network

1 2



Consider requests to a web server in 1 second

▪ In past, server load averages 2 hits/second

▪ X = # hits server receives in a second

▪ What is P(X < 5)?

Solution

Web Server Load
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To the code!



0

2

4

6

8

10

12

14

16

18

0 10 20 30 40

P
re

d
ic

te
d
 a

n
d

 A
ct

u
al

 F
re

q
u

en
cy

Num Hurricanes

Until 1966, things look pretty Poisson

Lambda = 8.5

Historically ~ Poisson(8.5)



What is the probability of over 15 hurricanes in a 
season given that the distribution doesn’t change? 

• Let X = # hurricanes in a year. X ~ Poi(8.5)

Solution:
This is the pmf of a 
Poisson. Your favorite 
programming language 
has a function for it

= 0.0135

Improbability Drive



Four Prototypical Trajectories

Twice since 1966 there have been two 

years with over 30 hurricanes



Improbability Drive

What is the probability of over 30 hurricanes in a 
season given that the distribution doesn’t change? 

• Let X = # hurricanes in a year. X ~ Poi(8.5)

Solution: This is the pdf of a 
Poisson. Your favorite 
programming language 
has a function for it

* Challenge: Calculate the probability of two years with over 30 hurricanes
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Lambda = 16.6?

Since 1966, looks like the distribution has 

changed

The Distribution has Changed
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What’s up?



What’s Up?



CO2 leads to Hotter Oceans

99



What’s Up?



Four Prototypical Trajectories

Next Time



Bernoulli: 
• indicator of coin flip X ~ Ber(p)

Binomial: 
• # successes in n coin flips X ~ Bin(n, p)

Poisson: 
• # successes in n coin flips X ~ Poi()

Geometric: 
• # coin flips until success X ~ Geo(p)

Negative Binomial: 
• # trials until r successes X ~ NegBin(r, p)

Zipf: 
• The popularity rank of a random word, from a natural language

•  X ~ Zipf(s)

Discrete Distributions
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