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Review



Natural Exponent Definition

Natural Exponent def:

lim (1 _ é)n — e

n— 00 n

Jacob
Bernoulli

https://en.wikipedia.org/wiki/E_(mathematical_constant)



https://en.wikipedia.org/wiki/E_(mathematical_constant)
http://en.wikipedia.org/wiki/File:Jakob_Bernoulli.jpg

independent trials, where each trial
1S a success with probability p:

The number of successes, 1n 7
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Binomial Random Variable



Declare a Random Variable to be Binomial

Probability of
Number of Num success on each

successes trials trial

%
X ~ Bin(n, p)

/]

Is distributed Binomial

asd With these
parameters




Automatically Know the PMF

Probability Mass Function for a
Binomial

———

—
PX=k = |pra—pr*

Probability that there are
k successes

* This is also called the
binomial term




The PMF as a Graph: X ~ Bin(n = 20, p = 0.6)

Parameter n: 20 Parameter p:  0.60
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0.02 I IP(x): 0.03499
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Probability

Values that X can take on




You Get So Much For Free!

Binomial Random Variable

Notation:

Description:

Parameters:

Support:
PMF equation:

Expectation:
Variance:
PMF graph:

Parameter n: 20

0.18
0.16
0.14
0.12
0.10
0.08
0.06
0.04
0.02

0

Probability

0 1

X ~ Bin(n, p)

Number of "successes" in n identical, independent experiments each with
probability of success p.

n € {0,1,...}, the number of experiments.

p € [0, 1], the probability that a single experiment gives a "success".

z €{0,1,...,n}
Pr(X =z) = (Z)pz(l _p)ne

EX]=n-p
Var(X) =n-p-(1-p)

Parameter p:  0.60

16
[]P(x): 0.03499

10 11 12 13 14 15 16 17 18 19 20

- .II L
23456 7 8 9

Values that X can take on

Bernoulli Random Variable

Notation: X ~ Bern(p)

Description: A boolean variable that is 1 with probability p
Parameters: p, the probability that X = 1.

Support: x is either 0 or 1

PMF equation: Pr(X=2z)= {;; p iiz z (1)
Expectation: EX]=p

Variance: Var(X) =p(1 —p)

PMF graph:

Parameter p:  0.80

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3

0.2
0-1 -
0

Probability

Values that X can take on




What if we could summarize the whole
beautiful PMF into a single number?



Expected Value

The probability of
The value that value

) %
EX]=)» z-P(X =ux)

[

Loop over all values x that X can take on




St. Petersburg Paradox

The Game:

= We have a fair coin (lands on heads with p = 0.5)
" Let n = number of coin flips to get the first heads

= You will win; S2"

How much would you pay to play?

Let X be your winnings.

1\ 1 12 143 =
E[X]=21(§) +22(§) +23(§) +=%"1=00
i |

What if you could play this game for only $1000...but just once?




St. Petersburg Paradox

The Game:

= We have a fair coin (lands on heads with p = 0.5)

" Let n = number of coin flips to get the first heads

= You will win; S2"

= |If you win over $65,536 | leave the country.

How much would you pay to play?

LY o




St Petersburg Probability Mass Function

0.6

0.5

0.4

0.3

0.2

0.

U

Let X be your winnings 1f you play once

E[X] =16
II. -
Vi f\f’b N K




Properties of Expectation (more on this later)

Linearity:
FElaX +b] =aF|X]|+b
Expectation of a sum is the sum of expectations
EX+Y]|=FEX|+ E|Y]

Unconscious statistician:

Elg(X)] =) g(z)P(X = x)

reX




LOUTS Examples

Unconscious statistician:

Elg(X)] = ) (=)

re X

g(z) =2 E[X?

| = ZxQP(X —

re X




End Review



Intuition: Peer Grading

Peer Grading on Coursera HCI.

31,067 peer grades for 3,607
students.

L : v

e
o B, & 070 .0
o @ 400 ®




Intuition: Peer Grading

True grade




Intuition: Measure of Spread

Consider the following 3 distributions (PMFs)
0.6 0.6 0.6
04 04 04
0.2 0.2 - 0.2 -
o g
1 2 5 1 2 3 4 5 1 2 3 4 5

All have the same expected value, E[X] =
But “spread” in distributions is different
Invent a formal quantification of “spread”?




Peer grading in Coursera HCI

Let X be a random variable that represents a peer grade

1= E[X]=575

0 20 40 60 80 100




Peer grading in Coursera HCI

Let X be a random variable that represents a peer grade Var(X) = E [(X — u)*]

1= E[X]=575

0 20 40 60 80 100




Peer grading in Coursera HCI

Let X be a random variable that represents a peer grade Var(X) = E [(X — u)*]

X (x — )’ P(X'=x)

u=E[X]=575 25 points 1056 points? 0.02

0 20 40 60 80 100




Peer grading in Coursera HCI

Let X be a random variable that represents a peer grade Var(X) = E [(X — u)*]

X (x — u)? P(X =x)
u=E[X]=575 25 points 1056 points? 0.02
80 points 506 points? 0.09

0 20 40 60 80 100




Peer grading in Coursera HCI

Let X be a random variable that represents a peer grade Var(X) = E [(X — u)*]

X (x — w1)? P(X=x)
1= E[X]=57.5 25 points 1056 points? 0.02
80 points 506 points? 0.09
50 points 56 points? 0.12

0 20 40 60 80 100




Peer grading in Coursera HCI

Let X be a random variable that represents a peer grade Var(X) = E [(X — u)*]

X (x — w1)? P(X=x)
1= E[X]=57.5 25 points 1056 points? 0.02
80 points 506 points? 0.09
50 points 56 points? 0.12

E [(X - 1)*] = 52 points?

0 20 40 60 80 100




Peer grading in Coursera HCI

Let X be a random variable that represents a peer grade Var(X) = E [(X — u)*]

X (x — w1)? P(X=x)
1= E[X]=57.5 25 points 1056 points? 0.02
80 points 506 points? 0.09
50 points 56 points? 0.12

E [(X - 1)*] = 52 points?
Std(X) = 7.2 points

0 20 40 60 80 100




Normalized histograms are
approximations of
probability mass functions




How Should We Measure Spread?

Let X be a random variable

On average..

l distance
Spread stat.
1= E[X]=57.5 Preat Yt

r T ..

Var(X) = E[(X — E[X))?
N

The random The mean

variable X of X

Different Possibility: F||X — F|X]|]?

60 80 100




Variance

If X Is a random variable with mean u then the
variance of X, denoted Var(X), is:

Var(X) = E [(X - )]

Variance is a formal definition of the spread of a
random variable.

Also known as the 2nd Central Moment, or square
of the Standard Deviation




Computing Variance

Law of unhconscious statistician

Notation — ZIEP[}{ =z)— EpZIP{X =x) + p? Z P(X = x)
= E[X?] — 242 + p?
— E[X?) — u2
= E[X? - (E[X])?




How do you get E[X?]?

Var(X) :@— E[X]?

Unconscious statistician:

Elg(X)]=> g(z)P(X =)
E[X?]:

EX?|=) 2*-P(X =ux)




Standard Deviation?

Std(X) = /Var(X

/\

, , , Units are in points squared
Units are in points




Example: Variance of a Dice Roll Var(X) = E[X*] - E[X]

Let X be the result of rolling a 6 sided dice. ® 0
What is Var(X)? il
® O o ® o
® O i o
® 00 ® O
o
i
o

Piech & Cain, CS109, Stanford University



Example: Variance of a Dice Roll Var(X) = E[X*] - E[X]

Let X be the result of rolling a 6 sided dice. ® 0
What is Var(X)? il
® O o ® o
® O i o
E|X|=3.5 @ 0o ® o
o
1 1 1 1 91 ..
E X2 — 12 22 32 2= 52 2- _ ~°
X = D g P3G T g 976 6% = 5

Piech & Cain, CS109, Stanford University



Example: Variance of a Dice Roll

Let X be the result of rolling this weird 6 sided dice.

What is Var(X)?

Var(X) = E[X?] — E[X]?

Piech & Cain, CS109, Stanford University




Example: Variance of a Dice Roll

Let X be the result of rolling this weird 6 sided dice.

What is Var(X)?
E[X] = 3.5

3 3
FIX?=3%.-21+4%°.2 =125
X7 s T4 g
Var(X) = E[X?] — E[X]?

= 12.5 — (3.5)% = 0.25

Var(X) = E[X?] — E[X]?

Piech & Cain, CS109, Stanford University




Variance of a 6 Sided Dice

‘s .:.:... N Var(X) = 2.91
Std(X) = 1.7
SN - Var(X) = 0.25
¢ oo oo® lo° —) Std(X) = 0.5




Fundamental Properties of Random Variables

Semantic
Meaning

\ / / / E[X]

Moments

NS

Measure of spread

/' \

Var(X) Std(X)




You Get So Much For Free!

Bernoulli Random Variable

Notation: X ~ Bern(p)

Description: A boolean variable that is 1 with probability p
Parameters: p, the probability that X = 1.

Support: x is either 0 or 1

PMF equation: Pr(X=2z)= {;; —p iiz z (1)
Expectation: EX]|=p

Variance: Var(X) =p(1 —p)

PMF graph:

Parameter p:  0.80

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

Probability

Values that X can take on

Binomial Random Variable

Notation:

Description:

Parameters:

Support:
PMF equation:

Expectation:
Variance:
PMF graph:

Parameter n: 20

0.18
0.16
0.14
0.12
0.10
0.08
0.06
0.04
0.02

0

Probability

0 1

X ~ Bin(n, p)

Number of "successes" in n identical, independent experiments each with
probability of success p.

n € {0,1,...}, the number of experiments.

p € [0, 1], the probability that a single experiment gives a "success".

z €{0,1,...,n}

Pr(X =z) = (Z)pz(l _p)ne

Parameter p:  0.60

EX]=n-p
| [
[1P(%): 0.03499
. _—

Var(X)=n-p-(1-p)
10 11 12 13 14 15 16 17 18 19 20

. -lI
6 7 8 9

2 3 4 5

Values that X can take on




Curious? Proof of Variance for a Binomial (Hard Way)

E(X?) = ) K (Z) pkq"* Definition of Binomial Distribution: p + g = 1
k>0
= Z k(" 1 prq* Factors of Binomial Coefficient: k[ " ) = n( "~ !
k=0 k— k k-1
= np Z (n a 1) k-1 ("_1) (e=1) Change of limit: term is zerowhen k — 1 =0
=np2(j+1)(j)piqm_j puttingj =k—1,m=n—1

= np ZJ( )plq”"! Z ( )pfq’"— ) splitting sum up into two
= np 2 m( , )p’q’"‘f + 2 ( )p’q’" J') Factors of Binomial Coefficient:j("_z) = m(m a 1)
j=0 J

j—1
= np ((n - Dp Z ( )p’_l m=1-G-1) 2 ( )p’qm_ ) Change of limit: term is zerowhenj — 1 =0
= np ((n - l)p(p +9" 4+ (p+ q)m) Binomial Theorem
=np((n—-1Dp+1) asp+qg=1
=n’p* +np(1 —p) by algebra

Var(X) = E[X?] — E[X]?




Now the easy way....



Variance of a Bernoull

Bernoulli Random Variable

Notation: X ~ Bern(p)

Description: A boolean variable that is 1 with probability p
Parameters: p, the probability that X = 1.

Support: x is either 0 or 1

PMF equation: Pr(X=2z)= {‘117 —p iiﬁ z (1)
Expectation: EX]|=p

Variance: Var(X) =p(1 —p)

PMF graph:

Parameter p:  0.80

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

Probability

0 1

Values that X can take on

EX*= ) 2’P(X=ux)
xze{0,1}
=0°-(1-p)+1%-p
=P

=p-(1—p)




Variance of a Binomaial?

Bernoulli Random Variable

Notation: X ~ Bern(p)

Description: A boolean variable that is 1 with probability p
Parameters: p, the probability that X = 1.

Support: x is either 0 or 1

PMF equation: Pr(X=2z)= {;; —p iiz z (1)
Expectation: EX]|=p

Variance: Var(X) =p(1 —p)

PMF graph:

Parameter p:  0.80

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

Probability

Values that X can take on

Binomial Random Variable

Notation:

Description:

Parameters:

Support:
PMF equation:

Expectation:
Variance:
PMF graph:

Parameter n: 20

0.18
0.16
0.14
0.12
0.10
0.08
0.06
0.04
0.02

0

Probability

0 1

X ~ Bin(n, p)

Number of "successes" in n identical, independent experiments each with
probability of success p.

n € {0,1,...}, the number of experiments.

p € [0, 1], the probability that a single experiment gives a "success".

z €{0,1,...,n}

Pr(X =z) = (Z)pz(l _p)ne

Parameter p:  0.60

EX]=n-p
| [
[1P(%): 0.03499
. _—

Var(X)=n-p-(1-p)
10 11 12 13 14 15 16 17 18 19 20

. -lI
6 7 8 9

2 3 4 5

Values that X can take on




Variance of a Binomial (Easy Way)

Definitions Proot h 2 s th
n s this true? Is the

-); ~ EEI‘?(P)) Var(X) = VM(Z Xﬂ?) variance of the
rin n,p =1 sum the sum of

X — ;Xi _ ZV&I‘(X') é—/ variance?

1 )

Proved -
=>» p-(1-p) -
Ver(X) =+ (1) % ori 2
=n-p-(1—p)

Want to Show
Var(X) =n-p-(1—-p)




Is Peer Grading Accurate Enough?

Looking ahead

Peer Grading on Coursera HCI.

31,067 peer grades for 3,607
students.

Tuned Models of Peer Assessment. C Piech, J Huang, A Ng, D Koller




Is Peer Grading Accurate Enough?

Looking ahead

1. Defined random variables for:
 True grade (s;) for assignment i
« Observed (z/) score for assign i
* Bias (b)) for each grader j
- Variance (r;) for each grader j

2. Designed a probabilistic model that

defined the distributions for all random

variables Prop,
. . r €m pal“am
s; ~ Bin(points, 0)

ZgNN(/L:Si—f—bj,O': Tj)

Tuned Models of Peer Assessment. C Piech, J Huang, A Ng, D Koller




Yes, With Probabilistic Modelling

Before: After:
81% 99%
within within
lllllllllllllllll J LI !_l rrrrrrrrrrrrrriri
-100 -80 -60 40 -20 0 20 40 60 80 -100-80 -60 40 20 O 20 40 60 80

Tuned Models of Peer Assessment. C Piech, J Huang, A Ng, D Koller




Ready..



Algorithmic Ride Sharing

A 0;@




Probability of k requests from thi

e

s area 1n the next 1 min

o AR 2
() The Castro Theatre
"HE CASTRO 19th St
MISSION 19th St
DISTRICT
fc: ©) Atlas Cafe
20th St ‘-g :g_
2 5
5 L
O o
% 2ond St 5 : &9
3 (D The Spice Jar 5
(.L)
25th St
) Terra Mia Ceramic Studio o6th St
W
26th St i
o
%; é_‘_ Qo\eon St
2 3 &
t g The Royal Cuckoo €4 « 1591 Treat Avghue \r{;‘b
valley St A8
sta Del
donte
Billy Goat Hill 0 Lowe's Home
Improvement
nridge

A
Y.




Probability of k requests from this area in the next 1 min
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Probability of k requests from this area in the next 1 min
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Probability of k requests from this area in the next 1 min

On average A = 5 requests per minute

We can break the next minute down into seconds




Probability of k requests from this area in the next 1 min

On average A = 5 requests per minute

We can break the next minute down into seconds

1 2 3 4 5 6 60

At each second either get a request or you don’t.




Probability of k requests from this area in the next 1 min

On average A = 5 requests per minute

We can break the next minute down into seconds

1 2 3 4 5 6 60

At each second either get a request or you don’t.
Let X = Number of requests in the minute

X ~ Bin(n = 60, p = 5/60)
Pex == () wHa-p*

P(X =3)= (630> (5/60)3(1 — 5/60)°7




Probability of k requests from this area in the next 1 min

On average A = 5 requests per minute

We can break the next minute down into seconds

1 2 3 4 5 6 60

At each second either get a request or you don’t.
Let X = Number of requests in the minute

X ~ Bin(n = 60, p = 5/60)
Pex == () wHa-p*

But what 1f there are two requests in the same second?




Probability of k requests from this area in the next 1 min

On average A = 5 requests per minute

We can break that next minute down into milli-seconds

1 60,000

At each milli-second either get a request or you don’t.
Let X = Number of requests in the minute

But what 1f there are two requests in the same second?




Probability of k requests from this area in the next 1 min

On average A = 5 requests per minute

We can break that next minute down into milli-seconds

(el |

LI

At each milli-second either get a request or you don’t.
Let X = Number of requests in the minute

60,000

X ~ Bin(n = 60000, p = A/n)

n

P(X = k) = (k) /) (1 — Afm)nh

Can we do any better than milli-seconds?




Probability of k requests from this area in the next 1 min

On average A = 5 requests per minute

We can break that minute down 1nto infinitely small buckets

OMG so small

Let X = Number of requests in the minute

X ~ Bin(n,p = \/n)

n—oo

Px =1 =t () /)1 = Ay

Who wants to see some cool math?




Probability of k requests from this area in the next 1 min

P(X = k)= lim (Z) (A/n)F(1 = X/n)"F
! o1 - n
= lim " A : ( An) By expanding each term

n—roo (n— k)l nk (1 \/n)k

= lim By definition of natural exp

n—oo (n — k)k! nko1

= lim : : Rearranging terms

— n11_>n;10 T Limit analysis
)\k —A
_ A ° Simplifying




Probability of k requests from this area in the next 1 min
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Simeon-Denis Poisson

Simeon-Denis Poisson (1781-1840) was a prolific
French mathematician

Published his first paer at 18, became rofesor at 21,
and published over 300 papers in his life

= He reportedly said “Life is good for only two things,
discovering mathematics and teaching mathematics.”

Going with French Martin Freeman



http://upload.wikimedia.org/wikipedia/commons/b/b7/Simeon_Poisson.jpg

Poisson Random Variable

X is a Poisson Random Variable: the number of
occurrences in a fixed interval of time.

X ~ Poi(\)

* A Is the “rate”

* X takes on values 0, 1, 2...
* has distribution (PMF):

)\k
L =)
P(X=k)=e 5




Poisson Process

o Consider events that occur over time
= Earthquakes, radioactive decay, hits to web server, eftc.

= Have time interval for events (1 year, 1 sec,
whatever...)

= Events arrive at rate: A events per interval of time

9 Split time interval into n - « sub-intervals
= Assume at most one event per sub-interval

= Event occurrences in sub-intervals are independent

= With many sub-intervals, probability of event occurring
In any given sub-interval is small

e # events in original time interval ~ Poi())




To the reader!

Poisson Random Variable

Notation: X ~ Poi(A)
Description: Number of events in a fixed time frame if (a) the events occur with a

constant mean rate and (b) they occur independently of time since last event.

Parameters: A € {0,1,...}, the constant average rate.
Support: z €{0,1,...}
PMF equation: oy _ ) _ Aze;*
z!
Expectation: E[X]=X
Variance: Var(X) = A
PMF graph:

Parameter A: 5

0.18
0.16

0.14
0.12
0.10
0.08
0.06
0.04 I
0.02
o | I I . N

10 11 12 13 14 15 16 17 18

Values that X can take on

Probability




Poisson is great when you
have a rate!




Poisson is great when you
have a rate and you care
about # of occurrences!




Make sure that the time
unit for “rate” and match
the probability question




Two quick examples!



Earthquakes

bl Earthquake Animation:

{ January 2001
(0
31 December 2015

quNWSPacific Tsunami Warning Center
data from USGS/NEIC

Average of 2.79 major earthquakes per year.
What 1s the probability of 3 major earthquakes next year?




Earthquake Probability Mass Function

Let X = number of earthquakes next year
X ~ Poi(2.79)

0.25

The expected probability mass function
for the major earthquake given its

0.20 4 mean rate = 2.79 events per year

X)

0.15 4

P(X =

0.10 -

0.05

0.00 -

Number of earthquakes (x)

)\ke—)\ B 2.7936_2'79

x 3 ~ 0.23




Earthquakes

Bulletin of the
Seismological Society of America

Vol. 64 October 1974 No. 5

IS THE SEQUENCE OF EARTHQUAKES IN SOUTHERN CALIFORNIA,
WITH AFTERSHOCKS REMOVED, POISSONIAN?

By J. K. GARDNER and L. KNOPOFF

ABSTRACT

Yes.




Candy 1 Class!

Students ask on average 15 questions per class.
Juliette only brought 10 pieces of candy!
What is the probability she doesn’t have enough candy?

* Assume: (a) question rate is constant (b) questions don’t impact one another.

Let X be the number of questions asked in class. X ~ Poi(A = 15)

P(X > 10) ZP i) =1— P(X <10)
4 ’ )
1=11 from scipy import stats
_ def main():
P(X < 10) = ZP(X = 1) lam = int(input("Questions per class: "))
' num_candy = int(input("Number of Candy: "))
Nig PMF of X = stats.poisson(lam)
— Z 5 Poisson prob_enough candy =0
—n ¥ for i in range(0, num_candy+1):
151 15 pr_i_questions = X.pmf(i) | |
_ Z A =15 prob_enough_candy += pr_i_questions
print(prob_enough_candy)
J

t=0 \_




Poisson 1n Python

from scipy import stats # great package
X = stats.poisson(2.5) # X ~ Poi(A = 2.5)
print(X.pmf(2)) #P(X=2)

Function Description
X.pmf(k) P(X = k)
X.cdf(k) PX < k)
X.mean() E[X]

X.var() Var(X)

X.std() Std(X)




Poisson can approximate a Binomial!

Wait why would you want to do that?
1) Binomial can be expensive to compute.
2) Connections help build math intuition.



Storing Data in DNA

All the movies, images, emails and other digital data from more than 600 smartphones
(10,000 gigabytes) can be stored in the faint pink smear of DNA at the end of this test
tube.




Storing Data in DNA

Will more than 1% of DNA storage become corrupt?

= In DNA (and real networks) store large strings

= Length n ~ 10*

= Probability of corruption of each base pair is very
small p ~ 10°

= X ~ Bin(10%, 107°) is unwieldy to compute

Extreme n and p values arise in many cases
= # bit errors in stream sent over a network
= # of servers crashes in a day in giant data center




Storing Data in DNA

Will the DNA storage become corrupt?
= In DNA (and real networks) store large strings

= Length n =~ 10

= Probability of corruption of each base pair is very
small p ~ 10°

= X ~ Poi(: = 10* * 10 = 0.01)

)\)‘k
P(X=k)=e 05
1
_ = A
P(X =0)=¢5

— ¢ 901 %~ 0.99




Poisson 1s a Binomial in the Limat

Poisson approximates Binomial where n is large, p
is small, and A = np is “moderate”

Different interpretations of "moderate”
= n>20and p<0.05
= n>100and p <0.1

Really, Poisson is Binomial as
n->oandp->0,wherenp=A1




Bin(10,0.3) vs Bin(100,0.03) vs Poi(3)

03
0.25
Bin(10, 0.3)

02 -
= ® Bin(100, 0.03)
I DPoi(3)
= 015
a,

0.1

0.05 [|

O _
o




A Real License Plate Seen at Stanford

No, it's not mine...
but | kind of wish it was.




Poisson can be used
to approximate a
Binomial where n is
large and p is small.




Tender (Central) Moments with Poisson

Recall: Y ~ Bin(n, p)

* E[Y]=np
* Var(Y) = np(1 - p)

X ~Poi(L) whereA=np (nh-> wandp > 0)
« E[X]=np=»M\
* Var(X)=np(1-p)=A(1-0)=A

* Yes, expectation and variance of Poisson are
same

* |t brings a tear to my eye...




Poisson Paradigm

Poisson can still provide a good way to model an
event, even when assumptions are “mildly” violated.
Can apply Poisson approximation when...

“Successes” in trials are Probability of “Success” p in
not entirely independent. each trial varies slightly.
* Example: # entries in - Example: average # requests
each bucket in large hash to web server/sec. may
table fluctuate slightly due to load

on network




Web Server Load

Consider requests to a web server in 1 second
= |In past, server load averages 2 hits/second

= X =# hits server receives in a second
= What is P(X < 5)?

Solution
X ~ Poi(A = 2)

P(X <5) ZP

— e " — Since X is Poisson

= Z e 2 ~0.95 Since A\ = 2







Hurricanes per Year since 1851
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To the code!



Historically ~ Poisson(8.5)

ek
o0

[E—
(@)

ek
M~

Until 1966, things look pretty Poisson

Lambda = 8.5
8
6
4
I
. | “LII

30 40
Num Hurricanes

[E—
(\®)

[E—
-

Predicted and Actual Frequency




Improbability Drive

What is the probability of over 15 hurricanes in a
season given that the distribution doesn’t change?

* Let X =# hurricanes in a year. X ~ P0i(8.5)

Solution:
This is the pmf of a

Poisson. Your favorite
P(X > 15) =1- P(X < 15) programming language
has a function for it

15
=1-)» P(X :/z)
1=0




Twice since 1966 there have been two
years with over 30 hurricanes



Improbability Drive

What is the probability of over 30 hurricanes in a
season given that the distribution doesn’t change?

 Let X =# hurricanes in a year. X ~ Poi(8.9)
SO'Ution: This is the pdf of a

Poisson. Your favorite

. rogramming language

P(X > 30) =1- P(X S 30) / Easga functiogn forgit :
30

=1-) P(X =)

1=0

= 1 —0.999999997823
= 2.2e¢ — 09

* Challenge: Calculate the probability of two years with over 30 hurricanes




The Distribution has Changed

8

O

Since 1966, looks like the distribution has
changed

|

@)

Lambda = 16.67?
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What's up?



I1O,OIOO Years of Carbon Diqxide
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CQO2 leads to Hotter Oceans

Sea Surface Temperatures
) ) |__|_—\__
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Source: Brian McNoldy; University of Miami Upper Ocean Dynamics Lab




What's Up?




Next Time




Discrete Distributions
—_—

Bernoullr:
* indicator of coin flip X ~ Ber(p)

Binomial:
« # successes in n coin flips X ~ Bin(n, p)

Poisson:
* # successes in n coin flips X ~ Poi(A\)

Geometric:
« # coin flips until success X ~ Geo(p)

Negative Binomial:
 # trials until r successes X ~ NegBin(r, p)

Zipf: el
« The popularity rank of a random word, from a natural language
o X~ Zipf(s)
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