Poisson
Chris Piech
CS109, Stanford University
Probability for Extreme Weather?
Review
Consider n independent trials of an experiment with success probability p.
- X is number of successes in n trials
- X is a **Binomial** Random Variable:

Examples
- # of heads in n coin flips
- # of 1’s in randomly generated length n bit string
- # of disk drives crashed in 1000 computer cluster
 - Assuming disks crash independently
Our random variable is distributed as a Binomial with these parameters: num trials and probability of success on each trial.
If X is a binomial with parameters n and p,

$$P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$$

Probability Mass Function for a Binomial

Probability that our variable takes on the value k
Bernoulli vs Binomial

$X \sim \text{Bern}(p)$

$X \in \{0, 1\}$

Bernoulli is a type of RV that can take on two values, 1 (for success) with probability p and 0 (for failure) with probability $(1- p)$

$Y \sim \text{Bin}(n, p)$

$Y = \sum_{i=1}^{n} X_i$

Binomial is the sum of n Bernoullis

s.t. $X_i \sim \text{Bern}(p)$
Random Variable

Semantic Meaning

$P(X = k)$

$E[X]$

$Var(X)$

$Std(X)$

$E[X^2]$
Is Peer Grading Accurate Enough?

Looking ahead

Peer Grading on Coursera HCI.

31,067 peer grades for 3,607 students.

Tuned Models of Peer Assessment. C Piech, J Huang, A Ng, D Koller
Looking ahead

1. Defined random variables for:
 - True grade (s_i) for assignment i
 - Observed (z_{ij}) score for assign i
 - Bias (b_j) for each grader j
 - Variance (r_j) for each grader j

2. Designed a probabilistic model that defined the distributions for all random variables

$$s_i \sim \text{Bin(}\text{points, }\theta)$$

$$z_{ij} \sim \mathcal{N}(\mu = s_i + b_j, \sigma = \sqrt{r_j})$$
Is Peer Grading Accurate Enough?

Looking ahead

1. Defined random variables for:
 - True grade (s_i) for assignment i
 - Observed (z_{ij}) score for assign i
 - Bias (b_j) for each grader j
 - Variance (r_j) for each grader j

2. Designed a probabilistic model that defined the distributions for all random variables

3. Found the variable assignments that maximized the probability of our observed data

Inference or Machine Learning

Tuned Models of Peer Assessment. C Piech, J Huang, A Ng, D Koller
Yes, With Probabilistic Modelling

Before:

81% within 10pp

After:

99% within 10pp

Tuned Models of Peer Assessment. C Piech, J Huang, A Ng, D Koller
Good to know

Natural Exponent def:

$$\lim_{n \to \infty} \left(1 - \frac{\lambda}{n}\right)^n = e^{-\lambda}$$
End Review
Algorithmic Ride Sharing
Probability of k requests from this area in the next 1 min
Probability of k requests from this area in the next 1 min
Probability of k requests from this area in the next 1 min

On average $\lambda = 5$ requests per minute
On average $\lambda = 5$ requests per minute

We can break the next minute down into seconds.
Probability of k requests from this area in the next 1 min

On average $\lambda = 5$ requests per minute

We can break the next minute down into seconds

At each second either get a request or you don’t.
Probability of \(k \) requests from this area in the next 1 min

On average \(\lambda = 5 \) requests per minute

We can break the next minute down into seconds

At each second either get a request or you don’t.
Let \(X = \text{Number of requests in the minute} \)

\[
X \sim \text{Bin}(n = 60, p = 5/60)
\]

\[
P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}
\]

\[
P(X = 3) = \binom{60}{3} (5/60)^3 (1 - 5/60)^{57}
\]
Probability of \(k \) requests from this area in the next 1 min

On average \(\lambda = 5 \) requests per minute

We can break the next minute down into seconds

At each second either get a request or you don’t.
 Let \(X = \) Number of requests in the minute

\[
X \sim \text{Bin}(n = 60, p = 5/60)
\]

\[
P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}
\]

But what if there are two requests in the same second?
Probability of k requests from this area in the next 1 min

On average $\lambda = 5$ requests per minute

We can break that next minute down into \textit{milli}-seconds

At each \textit{milli}-second either get a request or you don’t.
Let $X =$ Number of requests in the minute

But what if there are two requests in the same second?
On average $\lambda = 5$ requests per minute

We can break that next minute down into milli-seconds

At each milli-second either get a request or you don’t.
(0,5),(994,992)

Let $X =$ Number of requests in the minute

$$X \sim \text{Bin}(n = 60000, p = \lambda/n)$$

$$P(X = k) = \binom{n}{k}(\lambda/n)^k(1 - \lambda/n)^{n-k}$$

Can we do any better than milli-seconds?
Binomial in the Limit

On average $\lambda = 5$ requests per minute

We can break that minute down into infinitely small buckets

OMG so small

Let $X =$ Number of requests in the minute

$$X \sim \text{Bin}(n, p = \lambda/n)$$

$$P(X = k) = \lim_{n \to \infty} \binom{n}{k} (\lambda/n)^k (1 - \lambda/n)^{n-k}$$

Who wants to see some cool math?
Binomial in the Limit

\[P(X = k) = \lim_{n \to \infty} \binom{n}{k} \left(\frac{\lambda}{n} \right)^k \left(1 - \frac{\lambda}{n} \right)^{n-k} \]

\[= \lim_{n \to \infty} \frac{n!}{(n-k)!k!} \cdot \frac{\lambda^k}{n^k} \cdot \frac{(1 - \frac{\lambda}{n})^n}{(1 - \frac{\lambda}{n})^k} \]

By expanding each term

\[= \lim_{n \to \infty} \frac{n!}{(n-k)!k!} \cdot \frac{\lambda^k}{n^k} \cdot \frac{e^{-\lambda}}{1} \]

By definition of natural exp

\[= \lim_{n \to \infty} \frac{n^k}{(n-k)!n^k} \cdot \frac{\lambda^k}{k!} \cdot \frac{e^{-\lambda}}{1} \]

Rearranging terms

\[= \lim_{n \to \infty} \frac{n^k}{n^k} \cdot \frac{\lambda^k}{k!} \cdot \frac{e^{-\lambda}}{1} \]

Limit analysis

\[= \frac{\lambda^k e^{-\lambda}}{k!} \]

Simplifying
Probability of k requests from this area in the next 1 min
Simeon-Denis Poisson (1781-1840) was a prolific French mathematician.

- Published his first paper at 18, became professor at 21, and published over 300 papers in his life.
 - He reportedly said “Life is good for only two things, discovering mathematics and teaching mathematics.”
- I’m going with French Martin Freeman.
• X is a **Poisson** Random Variable: the number of occurrences in a fixed interval of time.

\[X \sim \text{Poi}(\lambda) \]

- \(\lambda \) is the “rate”
- \(X \) takes on values 0, 1, 2…
- has distribution (PMF):

\[
P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}
\]
Consider events that occur over time
- Earthquakes, radioactive decay, hits to web server, etc.
- Have time interval for events (1 year, 1 sec, whatever...)
- Events arrive at rate: \(\lambda \) events per interval of time

Split time interval into \(n \to \infty \) sub-intervals
- Assume at most one event per sub-interval
- Event occurrences in sub-intervals are independent
- With many sub-intervals, probability of event occurring in any given sub-interval is small

\(N(t) = \# \text{ events in original time interval} \sim \text{Poi}(\lambda) \)
Poisson is great when you have a rate!
Poisson is great when you have a rate and you care about # of occurrences!
Make sure that the time unit for “rate” and match the probability question
Earthquakes

Average of 2.79 major earthquakes per year. What is the probability of 3 major earthquakes next year?
Earthquake Probability Mass Function

Let $X =$ number of earthquakes next year

$$X \sim \text{Poi}(2.79)$$

$$P(X = 3) = \frac{\lambda^k e^{-\lambda}}{k!} = \frac{2.79^3 e^{-2.79}}{3!} \approx 0.23$$
IS THE SEQUENCE OF EARTHQUAKES IN SOUTHERN CALIFORNIA, WITH AFTERSHOCKS REMOVED, POISSONIAN?

By J. K. Gardner and L. Knopoff

Abstract

Yes.
Poisson can approximate a Binomial!
Storing Data on DNA

All the movies, images, emails and other digital data from more than 600 smartphones (10,000 gigabytes) can be stored in the faint pink smear of DNA at the end of this test tube.
Will the DNA storage become corrupt?

- In DNA (and real networks) store large strings
- Length \(n \approx 10^4 \)
- Probability of corruption of each base pair is very small \(p \approx 10^{-6} \)
- \(X \sim \text{Bin}(10^4, 10^{-6}) \) is unwieldy to compute

Extreme \(n \) and \(p \) values arise in many cases

- # bit errors in steam sent over a network
- # of servers crashes in a day in giant data center
Will the DNA storage become corrupt?

- In DNA (and real networks) store large strings
- Length $n \approx 10^4$
- Probability of corruption of each base pair is very small $p \approx 10^{-6}$
- $X \sim \text{Poi}(\lambda = 10^4 \times 10^{-6} = 0.01)$

\[
P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}
\]
\[
P(X = 0) = e^{-\lambda} \frac{1}{0!}
\]

\[
= e^{-0.01} \approx 0.99
\]
Poisson is Binomial in the Limit

- Poisson approximates Binomial where n is large, p is small, and $\lambda = np$ is “moderate”
- Different interpretations of "moderate"
 - $n > 20$ and $p < 0.05$
 - $n > 100$ and $p < 0.1$
- Really, Poisson is Binomial as
 \[n \to \infty \text{ and } p \to 0, \text{ where } np = \lambda \]
Bin(10, 0.3) vs Bin(100, 0.03) vs Poi(3)
Poisson can be used to approximate a Binomial where \(n \) is large and \(p \) is small.
Tender (Central) Moments with Poisson

• Recall: \(Y \sim \text{Bin}(n, p) \)
 - \(E[Y] = np \)
 - \(\text{Var}(Y) = np(1 - p) \)

• \(X \sim \text{Poi}(\lambda) \) where \(\lambda = np \) (\(n \to \infty \) and \(p \to 0 \))
 - \(E[X] = np = \lambda \)
 - \(\text{Var}(X) = np(1 - p) = \lambda(1 - 0) = \lambda \)
 - Yes, expectation and variance of Poisson are same
 - It brings a tear to my eye…
A Real License Plate Seen at Stanford

No, it’s not mine…
but I kind of wish it was.
Poisson can still provide a good approximation even when assumptions are “mildly” violated

“Poisson Paradigm”

Can apply Poisson approximation when...

- “Successes” in trials are not entirely independent
 - Example: # entries in each bucket in large hash table

- Probability of “Success” in each trial varies (slightly)
 - Small relative change in a very small p
 - Example: average # requests to web server/sec. may fluctuate slightly due to load on network
Consider requests to a web server in 1 second

- In past, server load averages 2 hits/second
- \(X = \# \) hits server receives in a second
- What is \(P(X < 5) \)?

Solution

\[
X \sim \text{Poi}(\lambda = 2)
\]

\[
P(X < 5) = \sum_{i=0}^{4} P(X = i)
\]

\[
= \sum_{i=0}^{4} e^{-\lambda} \frac{\lambda^i}{i!}
\]

Since \(X \) is Poisson

\[
= \sum_{i=0}^{4} e^{-2} \frac{2^i}{i!} \approx 0.95
\]

Since \(\lambda = 2 \)
Probability for Extreme Weather?
To the code!
Until 1966, things look pretty Poisson

Lambda = 8.5
What is the probability of over 15 hurricanes in a season given that the distribution doesn’t change?

Let $X =$ # hurricanes in a year. $X \sim \text{Poi}(8.5)$

Solution:

$$P(X > 15) = 1 - P(X \leq 15)$$

$$= 1 - \sum_{i=0}^{15} P(X = i)$$

$$= 1 - 0.98$$

$$= 0.02$$

This is the pmf of a Poisson. Your favorite programming language has a function for it.
Twice since 1966 there have been years with over 30 hurricanes.
What is the probability of over 30 hurricanes in a season given that the distribution doesn’t change?

- Let $X = \# \text{ hurricanes in a year. } X \sim \text{Poi}(8.5)$

Solution:

$$P(X > 30) = 1 - P(X \leq 30)$$

$$= 1 - \sum_{i=0}^{30} P(X = i)$$

$$= 1 - 0.999999997823$$

$$= 2.2e - 09$$

This is the pdf of a Poisson. Your favorite programming language has a function for it
The Distribution has Changed

Since 1966, looks like the distribution has changed

Lambda = 16.6?
What’s Up?

CO2 levels over the last 10,000 years

- Taylor Dome Ice Core
- Law Dome Ice Core
- Mauna Loa, Hawaii

Atmospheric CO2 (ppm)

Years (AD)
What’s Up?

Global annual average surface temperature

Annual anomaly relative to 1961-1990 (°C)

Year
What’s Up?
<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pmf(k)</td>
<td>Probability mass function.</td>
</tr>
<tr>
<td>cdf(k)</td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td>entropy()</td>
<td>(Differential) entropy of the RV.</td>
</tr>
<tr>
<td>mean()</td>
<td>Mean of the distribution.</td>
</tr>
<tr>
<td>var()</td>
<td>Variance of the distribution.</td>
</tr>
<tr>
<td>std()</td>
<td>Standard deviation of the distribution.</td>
</tr>
</tbody>
</table>
The Poisson Common Path

Solution

“Backbone”